JP7233070B2 - vacuum insulation - Google Patents

vacuum insulation Download PDF

Info

Publication number
JP7233070B2
JP7233070B2 JP2018078394A JP2018078394A JP7233070B2 JP 7233070 B2 JP7233070 B2 JP 7233070B2 JP 2018078394 A JP2018078394 A JP 2018078394A JP 2018078394 A JP2018078394 A JP 2018078394A JP 7233070 B2 JP7233070 B2 JP 7233070B2
Authority
JP
Japan
Prior art keywords
fiber sheet
heat insulating
insulating material
core member
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078394A
Other languages
Japanese (ja)
Other versions
JP2019184020A (en
Inventor
勉 上田
礼司 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aqua Co Ltd
Original Assignee
Aqua Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aqua Co Ltd filed Critical Aqua Co Ltd
Priority to JP2018078394A priority Critical patent/JP7233070B2/en
Priority to CN201910242961.6A priority patent/CN110388538B/en
Publication of JP2019184020A publication Critical patent/JP2019184020A/en
Application granted granted Critical
Publication of JP7233070B2 publication Critical patent/JP7233070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Description

本発明は、コア部材を外包材で減圧封止した真空断熱材に関する。 TECHNICAL FIELD The present invention relates to a vacuum heat insulating material in which a core member is vacuum-sealed with an outer wrapping material.

コア部材を外包材で減圧封止して断熱性能を高めた真空断熱材が広く用いられている。真空断熱材の設置場所によっては、真空断熱材を折り曲げることが望まれる場合がある。これに対処するため、非伸縮部分と伸縮部分とが交互に配置された芯材部と、芯材部を包む外包部とを含む真空断熱材が提案されている(例えば、特許文献1参照)。 A vacuum heat insulating material is widely used in which a core member is vacuum-sealed with an outer wrapping material to improve heat insulating performance. Depending on the installation location of the vacuum heat insulating material, it may be desired to bend the vacuum heat insulating material. In order to cope with this problem, a vacuum heat insulating material has been proposed that includes a core portion in which non-stretchable portions and stretchable portions are alternately arranged, and an outer wrapping portion that wraps the core portion (see, for example, Patent Document 1). .

特開2016-176491号JP 2016-176491 A

特許文献1に記載の真空断熱材は、グラスウールを主成分とする芯材部を外包材で封止した構造を有するので、断熱性の低下を考慮すると、芯材部をあまり薄くすることはできない。よって、芯材部の非伸縮部分及び伸縮部分の形状及び配置によって予め定められた方向に曲げることはできるが、その他の方向に曲げることは困難である。よって、所望の立体形状に成型することはできない。 The vacuum heat insulating material described in Patent Document 1 has a structure in which a core part containing glass wool as a main component is sealed with an outer wrapping material, so the core part cannot be made very thin in consideration of a decrease in heat insulation. . Therefore, although it can be bent in a predetermined direction depending on the shape and arrangement of the non-stretchable portion and the stretchable portion of the core portion, it is difficult to bend in other directions. Therefore, it cannot be molded into a desired three-dimensional shape.

従って、本発明の目的は、上記の課題を解決するものであり、薄型であっても十分な断熱性能を有する立体形状の成型が可能な真空断熱材を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, and to provide a vacuum heat insulating material capable of being molded into a three-dimensional shape having sufficient heat insulating performance even if it is thin.

本発明の真空断熱材は、
無機繊維シートまたは無機繊維シート及び樹脂繊維シートが交互に配置された積層シートから構成される内部層、及び前記内部層の上面及び下面と接するように配置された樹脂繊維シートから構成される外部層を有するコア部材と、
前記コア部材を減圧封止した外包材と、
を備えることを特徴とする。
The vacuum insulation material of the present invention is
An inner layer composed of inorganic fiber sheets or laminated sheets in which inorganic fiber sheets and resin fiber sheets are alternately arranged, and an outer layer composed of resin fiber sheets disposed so as to be in contact with the upper and lower surfaces of the inner layer. a core member having
an outer packaging material obtained by sealing the core member under reduced pressure;
characterized by comprising

本発明では、無機繊維シート及び樹脂繊維シートが接しているので、境界部に複数の微少な空気層が存在し、これにより薄型であっても十分な断熱性能を有する。また、加熱して、コア部材の最外層に配置された樹脂繊維シートを熱変形させることにより、様々な立体形状への成型が可能となる。このとき、加熱により無機繊維シート及び樹脂繊維シートの間で熱膨張差が生じるが、繊維シートどうしが接しているので接触部が限定されており、更に境界部に複数の微少な空気層が存在するので、熱膨張差による損傷を抑制することができる。 In the present invention, since the inorganic fiber sheet and the resin fiber sheet are in contact with each other, a plurality of very small air layers are present at the boundary, thereby providing sufficient heat insulating performance even if the sheet is thin. Further, by heating and thermally deforming the resin fiber sheet arranged as the outermost layer of the core member, molding into various three-dimensional shapes becomes possible. At this time, a difference in thermal expansion occurs between the inorganic fiber sheet and the resin fiber sheet due to heating, but since the fiber sheets are in contact with each other, the contact area is limited, and a plurality of minute air layers exist at the boundary. Therefore, damage due to the difference in thermal expansion can be suppressed.

以上のように、本発明では、薄型であっても十分な断熱性能を有する立体形状の成型が可能な真空断熱材を提供できる。 As described above, according to the present invention, it is possible to provide a vacuum heat insulating material that can be molded into a three-dimensional shape and has sufficient heat insulating performance even if it is thin.

また本発明は、前記樹脂繊維シートの硬度が前記無機繊維シートの硬度より低いことを特徴とする。 Further, the present invention is characterized in that the hardness of the resin fiber sheet is lower than the hardness of the inorganic fiber sheet.

本発明では、樹脂繊維シートの硬度が無機繊維シートの硬度より低いので、真空断熱材製造時の真空引きにおいて、樹脂繊維シートがより大きく変形して、多数の微少な空気層が生じる。これにより、優れた断熱性能を有するとともに、熱膨張差による損傷を効果的に抑制することができる。 In the present invention, since the hardness of the resin fiber sheet is lower than the hardness of the inorganic fiber sheet, the resin fiber sheet is deformed to a greater extent during evacuation during the production of the vacuum insulation material, and a large number of minute air layers are generated. Thereby, it is possible to effectively suppress damage due to a difference in thermal expansion while having excellent heat insulation performance.

また本発明は、
前記樹脂繊維シートがオレフィン系短繊維から形成されることを特徴とする。
Further, the present invention
The resin fiber sheet is characterized by being formed from olefin short fibers.

本発明では、樹脂繊維シートがオレフィン系短繊維から形成されているので、立体形状の成型が容易な軽量で信頼性の高い真空断熱材を実現できる。更に、低温の場合、オレフィン系短繊維からなる樹脂繊維シートの熱伝導率が低下するので、より断熱性能が高まる。よって、この真空断熱材は、冷蔵庫、冷凍庫、保冷容器等に特に好適に用いることができる。 In the present invention, since the resin fiber sheet is formed from olefin short fibers, it is possible to realize a lightweight and highly reliable vacuum heat insulating material that can be easily molded into a three-dimensional shape. Furthermore, when the temperature is low, the thermal conductivity of the resin fiber sheet made of short olefin fibers is lowered, so that the heat insulating performance is further improved. Therefore, this vacuum heat insulating material can be used particularly suitably for refrigerators, freezers, cold storage containers, and the like.

また本発明は、
前記樹脂繊維シート及び前記無機繊維シートの繊維が、シートの厚み方向と略直交する略同一方向に配向していることを特徴とする。
Further, the present invention
It is characterized in that the fibers of the resin fiber sheet and the inorganic fiber sheet are oriented in substantially the same direction which is substantially perpendicular to the thickness direction of the sheets.

本発明では、樹脂繊維シート及び無機繊維シートの繊維が、シートの厚み方向と略直交する方向に配向しているので、厚み方向に伸びた繊維による熱的な短絡である、所謂ヒートブリッジが生じることがないので、優れた断熱性能が得られる。更に、樹脂繊維シート及び無機繊維シートの繊維が略同一方向に配向しているので、熱膨張差が生じた場合でも、樹脂繊維シート及び無機繊維シートの繊維の間の摩擦がより低減され、損傷を効果的に抑制できる。 In the present invention, since the fibers of the resin fiber sheet and the inorganic fiber sheet are oriented in a direction substantially perpendicular to the thickness direction of the sheet, a so-called heat bridge, which is a thermal short circuit due to the fibers extending in the thickness direction, occurs. Because there is no heat loss, excellent thermal insulation performance is obtained. Furthermore, since the fibers of the resin fiber sheet and the inorganic fiber sheet are oriented in substantially the same direction, even if there is a difference in thermal expansion, the friction between the fibers of the resin fiber sheet and the inorganic fiber sheet is further reduced, resulting in damage. can be effectively suppressed.

また本発明は、
前記外包材の接合部の内側に前記コア部材が配置されていることを特徴とする。
Further, the present invention
The core member is arranged inside the joint portion of the outer wrapping material.

本発明では、コア部材を薄くできるので、封筒状の外包材の中にコア部材を入れて真空引きをすることが可能である。これによって、耳部を有さず、外包材の接合部の内側にコア部材が配置された真空断熱材を実現できるので、外包材の耳部処理が不要となり、製造工程を簡略化することができる。 In the present invention, since the core member can be made thin, it is possible to put the core member in an envelope-shaped outer wrapping material and draw a vacuum. As a result, it is possible to realize a vacuum heat insulating material in which the core member is arranged inside the joint portion of the outer wrapping material without having the outer wrapping material. can.

以上のように、本発明においては、薄型であっても十分な断熱性能を有し、かつ、立体形状の成型が可能な真空断熱材を提供することができる。 As described above, according to the present invention, it is possible to provide a vacuum heat insulating material that has sufficient heat insulating performance even if it is thin and that can be molded into a three-dimensional shape.

本発明の第1の実施形態に係る真空断熱材を模式的に示す側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is side surface sectional drawing which shows typically the vacuum heat insulating material which concerns on the 1st Embodiment of this invention. 無機繊維シート及び樹脂繊維シートの境界領域を模式的に示す側面断面図である。FIG. 3 is a side cross-sectional view schematically showing a boundary region between an inorganic fiber sheet and a resin fiber sheet; 本発明の第2の実施形態に係る真空断熱材を模式的に示す側面断面図である。FIG. 4 is a side cross-sectional view schematically showing a vacuum heat insulating material according to a second embodiment of the present invention; 耳部を有する外包材に厚いコア部材を入れる場合を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a case where a thick core member is put into an outer wrapping material having ears. 封筒状の外包材に薄いコア部材を入れる場合を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a case where a thin core member is put in an envelope-shaped outer wrapping material. 実際に製造した真空断熱材に曲げ加工で凹部を設けた実施例を示す図(写真)である。It is a figure (photograph) which shows the Example which provided the recessed part in the actually manufactured vacuum heat insulating material by bending. 実際に製造した係る真空断熱材に立体形状の成型を行った実施例を示す図(写真)である。It is a figure (photograph) which shows the Example which performed shaping|molding of three-dimensional shape to the vacuum heat insulating material which actually manufactured.

以下、図面を参照しながら、本発明を実施するための実施形態を説明する。以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。
各図面中、同一の機能を有する部材には、同一符号を付している場合がある。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示す場合があるが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。後述の実施形態では前述の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態ごとには逐次言及しないものとする。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The embodiments described below are for embodying the technical idea of the present invention, and unless there is a specific description, the present invention is not limited to the following.
In each drawing, members having the same function may be given the same reference numerals. In some cases, the embodiments are shown separately for the sake of convenience in consideration of the explanation of the main points or the ease of understanding, but partial replacement or combination of the configurations shown in different embodiments is possible. In the embodiments to be described later, descriptions of matters common to the above-described embodiments will be omitted, and only different points will be described. In particular, similar actions and effects due to similar configurations will not be mentioned sequentially for each embodiment. The sizes and positional relationships of members shown in each drawing may be exaggerated for clarity of explanation.

(本発明の第1の実施形態に係る真空断熱材)
図1は、本発明の第1の実施形態に係る真空断熱材2を模式的に示す側面断面図である。
(Vacuum insulation material according to the first embodiment of the present invention)
FIG. 1 is a side sectional view schematically showing a vacuum heat insulating material 2 according to a first embodiment of the invention.

図1を参照すると、本発明の第1の実施形態に係る真空断熱材2は、断熱材として機能するコア部材30が、外包材40により減圧封止されて構成されている。外包材40は、樹脂層を含むフィルムである。
コア部材30は、無機繊維シート4から構成される内部層10と、内部層10の上面10a及び下面10bと接するように配置された樹脂繊維シート6a,6bから構成される外部層20とを有する。積層された無機繊維シート4、樹脂繊維シート6a,6bの間には接着層は存在せず、減圧により密着した状態になっている。
Referring to FIG. 1, the vacuum heat insulating material 2 according to the first embodiment of the present invention is constructed by vacuum-sealing a core member 30 functioning as a heat insulating material with an outer wrapping material 40 . The outer wrapping material 40 is a film containing a resin layer.
The core member 30 has an inner layer 10 made of the inorganic fiber sheet 4 and an outer layer 20 made of the resin fiber sheets 6a and 6b arranged so as to be in contact with the upper surface 10a and the lower surface 10b of the inner layer 10. . There is no adhesive layer between the laminated inorganic fiber sheet 4 and resin fiber sheets 6a and 6b, and they are kept in close contact with each other by decompression.

<無機繊維シート>
本実施形態では、無機繊維シート4の材料としてグラスウールが用いられ、特に湿式タイプが好ましい。グラスウールの繊維径については、繊維径が細いと、繊維間の空間が多くなって空隙率が増加するので、熱伝導率を低減でき、繊維の目付ばらつきを低減できる。一方、繊維径が細くなると、繊維同士のからみが弱くなり、強度が低下する。これらを総合的に考慮すると、グラスウールの繊維径は、1μm~8μm程度が好ましく、3μm~5μm程度がより好ましい。
<Inorganic fiber sheet>
In this embodiment, glass wool is used as the material of the inorganic fiber sheet 4, and a wet type is particularly preferable. As for the fiber diameter of the glass wool, if the fiber diameter is small, the space between the fibers increases and the porosity increases, so that the thermal conductivity can be reduced and the variation in basis weight of the fiber can be reduced. On the other hand, when the fiber diameter becomes small, the entanglement between the fibers becomes weak, and the strength decreases. Considering these factors comprehensively, the fiber diameter of the glass wool is preferably about 1 μm to 8 μm, more preferably about 3 μm to 5 μm.

グラスウールの繊維長については、繊維長が短いと、繊維の目付ばらつきを低減できる。一方、グラスウールの繊維長が短いと、繊維どうしのからみが少なくて強度が低下する。これらを総合的に考慮すると、グラスウールの繊維長として、2~100mm程度が好ましく、3mm~50mm程度がより好ましい。
繊維長が短いと、断熱方向に繊維が向いて、所謂ヒートブリッジにより断熱性能が低下する可能性があるが、後述するように本実施形態ではこれを回避する対策が取られている。
As for the fiber length of the glass wool, if the fiber length is short, the variation in basis weight of the fiber can be reduced. On the other hand, if the fiber length of the glass wool is short, the fibers are less entangled with each other, resulting in a decrease in strength. Considering these factors comprehensively, the fiber length of the glass wool is preferably about 2 to 100 mm, more preferably about 3 mm to 50 mm.
If the fiber length is short, the fibers are oriented in the heat insulation direction, and there is a possibility that the heat insulation performance will deteriorate due to so-called heat bridging.

無機繊維シート4の材料としてグラスウールを用いる場合に限られず、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化珪素繊維等の無機繊維を用いることもできる。 The material of the inorganic fiber sheet 4 is not limited to glass wool, and inorganic fibers such as glass fiber, alumina fiber, silica-alumina fiber, silica fiber, rock wool, and silicon carbide fiber can also be used.

<樹脂繊維シート>
樹脂繊維は、通常、熱可塑性樹脂から形成される。そのような熱可塑性樹脂の中でも、本実施形態では、ポリプレンやポリエチレンで代表されるオレフィン系樹脂が用いられている。特に、繊維長が比較的短いオレフィン系短繊維が好ましい。その中でも、メルトブロー法によるポリプレン製の不織布を用いることがより好ましい。
<Resin fiber sheet>
Resin fibers are usually formed from thermoplastic resins. Among such thermoplastic resins, olefin resins represented by polypropylene and polyethylene are used in this embodiment. In particular, short olefinic fibers having a relatively short fiber length are preferred. Among them, it is more preferable to use a non-woven fabric made of polypropylene by the melt-blown method.

樹脂繊維についても、繊維径が細いと、繊維間の空間が多くなって空隙率が増加するので、熱伝導率を低減でき、繊維の目付ばらつきを低減できる。一方、繊維径が細くなると、繊維同士のからみが弱くなり、強度が低下する。これらを総合的に考慮すると、樹脂繊維の繊維径は、1μm~8μm程度が好ましく、3μm~5μm程度が更に好ましい。 As for the resin fibers, if the fiber diameter is small, the space between the fibers increases and the porosity increases, so that the thermal conductivity can be reduced, and the variation in basis weight of the fibers can be reduced. On the other hand, when the fiber diameter becomes small, the entanglement between the fibers becomes weak, and the strength decreases. Considering these factors comprehensively, the fiber diameter of the resin fiber is preferably about 1 μm to 8 μm, more preferably about 3 μm to 5 μm.

樹脂繊維の繊維長についても、繊維長が短いと、繊維の目付ばらつきを低減できる。一方、樹脂繊維の繊維長が短いと、繊維どうしのからみが少なくて強度が低下する。これらを総合的に考慮すると、樹脂繊維の繊維長として、2~100mm程度が好ましく、3mm~50mm程度がより好ましい。
繊維長が短いと、断熱方向に繊維が向いて、所謂ヒートブリッジにより断熱性能が低下する可能性があるが、後述するように本実施形態ではこれを回避する対策が取られている。
As for the fiber length of the resin fiber, if the fiber length is short, the variation in basis weight of the fiber can be reduced. On the other hand, if the fiber length of the resin fiber is short, the entanglement between the fibers is small, resulting in a decrease in strength. Considering these factors comprehensively, the fiber length of the resin fiber is preferably about 2 to 100 mm, more preferably about 3 mm to 50 mm.
If the fiber length is short, the fibers are oriented in the heat insulation direction, and there is a possibility that the heat insulation performance will deteriorate due to so-called heat bridging.

樹脂繊維シート6の材料として、オレフィン系樹脂繊維を用いる場合に限られず、ナイロン、ポリエステルア、アクリル、ビニロン、ポリウレタンをはじめとするその他の任意の熱可塑性樹脂の繊維を用いることができる。 The material of the resin fiber sheet 6 is not limited to the case of using olefin resin fibers, and any other thermoplastic resin fibers such as nylon, polyester, acrylic, vinylon, and polyurethane can be used.

<外包材>
本実施形態に係る外包材40として、下記に示すような4層構造のガスバリアフィルムが用いられている。最外層から最内層の順に説明すると、最外層に、表面保護層として機能するナイロン、ポリエチレンテレフタレート樹脂等が配置されている。次に、第1の中間層として、ガスバリア層として機能するアルミ蒸着PET(ポリエチレンテレフタレート)が配置されている。次に、第2の中間層として、アルミ箔が配置されている。そして、最内層として、シール層として機能する高密度ポリエチレンが配置されている。
<Outer packaging material>
As the outer wrapping material 40 according to this embodiment, a gas barrier film having a four-layer structure as shown below is used. Explaining in order from the outermost layer to the innermost layer, nylon, polyethylene terephthalate resin, etc. functioning as a surface protective layer are arranged in the outermost layer. Next, as a first intermediate layer, an aluminum deposited PET (polyethylene terephthalate) functioning as a gas barrier layer is arranged. Next, an aluminum foil is arranged as a second intermediate layer. As the innermost layer, a high-density polyethylene that functions as a sealing layer is arranged.

外包材40として、上記の4層構造のガスバリアフィルムを用いる場合に限られず、例えば、ポリエチレンテレフタレート樹脂、アルミ箔、高密度ポリエチレン樹脂からなる3層構造のガスバリアフィルムや、ポリエチレンテレフタレート樹脂、アルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂、高密度ポリエチレン樹脂からなるガスバリアフィルム等を用いることもできる。
外包材40の厚みとして、15μm~200μmを例示することができる。
The outer wrapping material 40 is not limited to the case of using the gas barrier film having the four-layer structure described above. It is also possible to use an ethylene-vinyl alcohol copolymer resin, a gas barrier film made of a high-density polyethylene resin, or the like.
The thickness of the outer wrapping material 40 can be exemplified from 15 μm to 200 μm.

<断熱性能>
真空断熱材では、コア部材が外包材の中に減圧された状態で封止されているので、外包材内の空気による対流伝熱の影響は非常に小さく、コア部材における熱伝導が真空断熱材の断熱性能に大きな影響を与える。
<Heat insulation performance>
In the vacuum insulation material, the core member is sealed inside the outer packaging material in a decompressed state. have a great effect on the thermal insulation performance of

図2は、無機繊維シート4及び樹脂繊維シート6の境界領域を模式的に示す側面断面図である。図2に示すように、本実施形態に係る真空断熱材2では、コア部材30の内部層10及び外部層20の境界で、無機繊維シート4及び樹脂繊維シート6が接しているので、矢印Aで示すように、複数の微少な空気層が存在する。空気層は高い断熱性を有するので、本実施形態に係る真空断熱材2は、薄型であっても十分な断熱性能を有することができる。 FIG. 2 is a side cross-sectional view schematically showing a boundary region between the inorganic fiber sheet 4 and the resin fiber sheet 6. As shown in FIG. As shown in FIG. 2, in the vacuum heat insulating material 2 according to this embodiment, the inorganic fiber sheet 4 and the resin fiber sheet 6 are in contact at the boundary between the inner layer 10 and the outer layer 20 of the core member 30, so arrow A As indicated by , there are a plurality of minute air layers. Since the air layer has high heat insulating properties, the vacuum heat insulating material 2 according to the present embodiment can have sufficient heat insulating properties even if it is thin.

<熱変形性能>
外包材は、上記のように樹脂層を有するフィルムなので、加熱すると熱膨張して伸びる。仮に、コア部材が樹脂繊維シートから構成される外部層を有さず、無機繊維からなるコア部材及び外包材が直接接している場合には、真空断熱材を熱変形させるために加熱すると、外包材は熱膨張して伸びるが、無機繊維からなるコア部材はあまり熱膨張しないため、コア部材及び外包材の境界部で熱膨張差が生じる。
このとき、樹脂フィルムを含む外包材が、減圧によりコア部材の外面に密着しているため、外包材及びコア部材の間に大きな摩擦力が生じて、境界部で損傷が起きる可能性がある。
<Thermal deformation performance>
Since the outer wrapping material is a film having a resin layer as described above, it thermally expands and extends when heated. If the core member does not have an outer layer made of a resin fiber sheet, and the core member made of inorganic fibers and the outer wrapping material are in direct contact with each other, the outer wrapping material will be deformed when heated to thermally deform the vacuum heat insulating material. The material expands due to thermal expansion, but the core member made of inorganic fibers does not thermally expand so much, so a difference in thermal expansion occurs at the boundary between the core member and the outer wrapping material.
At this time, since the outer wrapping material containing the resin film is in close contact with the outer surface of the core member due to the reduced pressure, a large frictional force is generated between the outer wrapping material and the core member, which may cause damage at the boundary.

一方、本実施形態では、無機繊維シート4から構成される内部層10と外包材40との間に、樹脂繊維シート6a,6bから構成される外部層20が存在する。仮に、真空断熱材2を熱変形させるために加熱すると、樹脂繊維シート6である外部層20は、樹脂フィルムを含む外包材40に追従して熱膨張する。一方、コア部材30の内部層10及び外部層20の境界においては、無機繊維シート4である内部層10が外部層20に比べて熱膨張せず、内部層10及び外部層20の間の境界部で熱膨張差が生じる。
しかし、内部層10及び外部層20の間の境界部では、無機繊維シート4と樹脂繊維シート6とが接しているため接触部が限定されており、更に境界部に複数の微少な空気層が存在するので、摩擦力が小さく、互いに滑って熱膨張差による損傷を抑制することができる。上記のように、内部層10及び外部層20の間の境界部に接着層は存在しないので、繊維シート間の滑りを拘束することはない。
On the other hand, in the present embodiment, the outer layer 20 composed of the resin fiber sheets 6a and 6b is present between the inner layer 10 composed of the inorganic fiber sheet 4 and the outer wrapping material 40. As shown in FIG. If the vacuum heat insulating material 2 is heated to thermally deform it, the outer layer 20, which is the resin fiber sheet 6, thermally expands following the outer wrapping material 40 containing the resin film. On the other hand, at the boundary between the inner layer 10 and the outer layer 20 of the core member 30, the inner layer 10, which is the inorganic fiber sheet 4, is less thermally expanded than the outer layer 20, and the boundary between the inner layer 10 and the outer layer 20 A difference in thermal expansion occurs between the
However, at the boundary between the inner layer 10 and the outer layer 20, the contact portion is limited because the inorganic fiber sheet 4 and the resin fiber sheet 6 are in contact with each other. Since it exists, the frictional force is small, and it is possible to suppress damage due to the difference in thermal expansion by slipping over each other. As described above, there is no adhesive layer at the boundary between the inner layer 10 and the outer layer 20, so that it does not restrict sliding between the fibrous sheets.

よって、本実施形態に係る真空断熱材2を加熱して、コア部材30の最外層に配置された樹脂繊維シート6a,6bを熱変形させることにより、様々な立体形状への成型が可能となる。
以上のように、本実施形態では、薄型であっても十分な断熱性能を有する立体形状の成型が可能な真空断熱材2を提供できる。これにより、デザインフリーの真空断熱材2を実現でき、真空断熱材の市場拡大に繋がる。
Therefore, by heating the vacuum heat insulating material 2 according to the present embodiment and thermally deforming the resin fiber sheets 6a and 6b arranged in the outermost layer of the core member 30, molding into various three-dimensional shapes becomes possible. .
As described above, according to the present embodiment, it is possible to provide the vacuum heat insulating material 2 that can be molded into a three-dimensional shape and has sufficient heat insulating performance even if it is thin. As a result, the design-free vacuum heat insulating material 2 can be realized, leading to expansion of the vacuum heat insulating material market.

更に、樹脂繊維シート6の硬度が無機繊維シート4の硬度より低いことが好ましい。樹脂繊維シート6の硬度が無機繊維シート4の硬度より低い場合には、コア部材30を外包材40の中に入れて真空引きをするとき、無機繊維シート4はあまり変形しないが、樹脂繊維シート6はそれよりも大きく変形する。このため、無機繊維シート4と樹脂繊維シート6との間に多数の微少空間が生じ(図2の矢印A参照)、このため多数の微少な空気層を形成することができる。この空気層は断熱層として働くので、真空断熱材2は薄くても優れた断熱性能を有することができる。また、内部層10と外部層20との境界において、前記空気層により接触部がより限定されるので、無機繊維シート4と樹脂繊維シート6との間での熱膨張差による損傷を効果的に抑制できる。 Furthermore, it is preferable that the hardness of the resin fiber sheet 6 is lower than the hardness of the inorganic fiber sheet 4 . When the hardness of the resin fiber sheet 6 is lower than that of the inorganic fiber sheet 4, when the core member 30 is placed in the outer wrapping material 40 and vacuumed, the inorganic fiber sheet 4 does not deform much, but the resin fiber sheet does not deform. 6 deforms more than that. For this reason, a large number of minute spaces are generated between the inorganic fiber sheet 4 and the resin fiber sheet 6 (see arrow A in FIG. 2), and therefore a large number of minute air layers can be formed. Since this air layer works as a heat insulating layer, the vacuum heat insulating material 2 can have excellent heat insulating performance even if it is thin. In addition, since the contact portion is further limited by the air layer at the boundary between the inner layer 10 and the outer layer 20, damage caused by the difference in thermal expansion between the inorganic fiber sheet 4 and the resin fiber sheet 6 can be effectively prevented. can be suppressed.

図2に示すように、本実施形態では、樹脂繊維シート6の繊維f6及び無機繊維シート4の繊維f4が、シートの厚み方向と略直交する方向に配向している。これにより、繊維の長さが短くても、厚み方向に伸びた繊維による熱的な短絡である、所謂ヒートブリッジが生じることを抑制できるので、優れた断熱性能が得られる。
更に、樹脂繊維シート6の繊維f6及び無機繊維シート4の繊維f4が略同一方向に配向しているので、熱膨張差が生じた場合でも、繊維長手方向へより滑り易くなり、内部層10と外部層20との境界で生じる摩擦力がより低減され、損傷を更に効果的に抑制できる。
As shown in FIG. 2, in this embodiment, the fibers f6 of the resin fiber sheet 6 and the fibers f4 of the inorganic fiber sheet 4 are oriented in a direction substantially perpendicular to the sheet thickness direction. As a result, even if the length of the fibers is short, it is possible to suppress the occurrence of so-called heat bridges, which are thermal short circuits caused by the fibers extending in the thickness direction, so that excellent heat insulation performance can be obtained.
Furthermore, since the fibers f6 of the resin fiber sheet 6 and the fibers f4 of the inorganic fiber sheet 4 are oriented in substantially the same direction, even if there is a difference in thermal expansion, it becomes easier to slide in the longitudinal direction of the fibers, and the inner layer 10 and the inner layer 10 are more likely to slide. The frictional force generated at the boundary with the outer layer 20 is further reduced, and damage can be more effectively suppressed.

ただし、本発明はこれに限られるものではなく、樹脂繊維シート6及び無機繊維シート4の繊維f6、f4が、シートの厚み方向と略直交する方向に配向しているが、平面視において、樹脂繊維シート6及び無機繊維シート4の繊維f6、f4が、所定の角度をなして配置されている場合もあり得る。また、樹脂繊維シート6及び無機繊維シート4の繊維f6、f4が、シートの厚み方向と略直交する方向に配向しているが、平面視において、樹脂繊維シート6及び無機繊維シート4の繊維f6、f4がランダムな方向に配置されている場合もあり得る。これらの場合には、樹脂繊維シート6及び無機繊維シート4の間により多くの空気層が設けられることが期待できる。 However, the present invention is not limited to this, and the fibers f6 and f4 of the resin fiber sheet 6 and the inorganic fiber sheet 4 are oriented in a direction substantially perpendicular to the thickness direction of the sheets, but in plan view, the resin The fibers f6 and f4 of the fiber sheet 6 and the inorganic fiber sheet 4 may be arranged at a predetermined angle. In addition, although the fibers f6 and f4 of the resin fiber sheet 6 and the inorganic fiber sheet 4 are oriented in a direction substantially perpendicular to the sheet thickness direction, the fibers f6 of the resin fiber sheet 6 and the inorganic fiber sheet 4 are oriented in a plan view. , f4 may be randomly oriented. In these cases, it can be expected that more air layers are provided between the resin fiber sheet 6 and the inorganic fiber sheet 4 .

上記のように、本実施形態では、樹脂繊維シート6がオレフィン系短繊維から形成されている。オレフィン系樹脂は、耐熱性、耐寒性、耐候性に優れ、軽量でリサイクルが可能なので製造コストを低減できる。これにより、立体形状の成型が容易な軽量で信頼性の高い真空断熱材を実現できる。 As described above, in this embodiment, the resin fiber sheet 6 is made of short olefin fibers. Olefin-based resins are excellent in heat resistance, cold resistance, and weather resistance, and are lightweight and recyclable, so that manufacturing costs can be reduced. As a result, it is possible to realize a lightweight and highly reliable vacuum insulation material that can be easily molded into a three-dimensional shape.

更に、特筆すべきことには、低温の場合、オレフィン系短繊維からなる樹脂繊維シート6の熱伝導率が低下して、より断熱性能が高まることを知見した。よって、本実施形態に係る真空断熱材2は、冷蔵庫、冷凍庫、保冷容器等に用いるのに特に適している。 Furthermore, it is noteworthy that when the temperature is low, the thermal conductivity of the resin fiber sheet 6 made of short olefinic fibers is lowered, and the heat insulation performance is further enhanced. Therefore, the vacuum heat insulating material 2 according to this embodiment is particularly suitable for use in refrigerators, freezers, cold storage containers, and the like.

(本発明の第2の実施形態に係る真空断熱材)
図3は、本発明の第2の実施形態に係る真空断熱材2を模式的に示す側面断面図である。
上記の第1の実施形態では、内部層10が1つの無機繊維シート4から構成されていたが、本実施形態では、内部層10が、図面上側から、無機繊維シート4a、樹脂繊維シート6c、無機繊維シート4bの順に交互に配置された3層の積層シート8から構成されている点で異なる。上記の第1の実施形態と同様に、内部層10の上下面10a,10bには、それぞれ樹脂繊維シート6a,6bが接している。積層された無機繊維シート4a,4b、樹脂繊維シート6a,6b,6cの間には接着層は存在せず、減圧により密着した状態になっている。
(Vacuum insulation material according to the second embodiment of the present invention)
FIG. 3 is a side sectional view schematically showing a vacuum heat insulating material 2 according to a second embodiment of the invention.
In the above-described first embodiment, the internal layer 10 is composed of one inorganic fiber sheet 4, but in this embodiment, the internal layer 10 is composed of an inorganic fiber sheet 4a, a resin fiber sheet 6c, and a It is different in that it is composed of three layers of laminated sheets 8 alternately arranged in the order of the inorganic fiber sheets 4b. Similar to the above first embodiment, the upper and lower surfaces 10a and 10b of the inner layer 10 are in contact with the resin fiber sheets 6a and 6b, respectively. There is no adhesive layer between the laminated inorganic fiber sheets 4a, 4b and the resin fiber sheets 6a, 6b, 6c, and they are kept in close contact with each other by decompression.

このように、内部層10が、無機繊維シート4a、樹脂繊維シート6c、無機繊維シート4bが交互に配置された積層シート8から構成される場合には、無機繊維シート4a,b及び樹脂繊維シート6cの間にも複数の微少な空気層が形成されるので、断熱性能が更に高まる。
また、内部層10における無機繊維シート4a,b及び樹脂繊維シート6cの間の境界においても、繊維シートどうしが接しているため接触部が限定されており、更に境界部に複数の微少な空気層が存在するので、熱膨張差による損傷を抑制することができる。
更に、内部層10が積層シート8から構成される場合には、外部層20を構成する樹脂繊維シート6a,6bに加えて、内部層10の積層シート8を構成する樹脂繊維シート6cを熱変形させることにより、立体形状の強度を増すことができる。
Thus, when the inner layer 10 is composed of the laminated sheet 8 in which the inorganic fiber sheet 4a, the resin fiber sheet 6c, and the inorganic fiber sheet 4b are alternately arranged, the inorganic fiber sheets 4a and 4b and the resin fiber sheet Since a plurality of minute air layers are also formed between 6c, the heat insulating performance is further enhanced.
Also, at the boundary between the inorganic fiber sheets 4a and 4b and the resin fiber sheet 6c in the internal layer 10, the contact area is limited because the fiber sheets are in contact with each other, and furthermore, there are a plurality of minute air layers at the boundary. exists, so damage due to the difference in thermal expansion can be suppressed.
Furthermore, when the internal layer 10 is composed of the laminated sheet 8, in addition to the resin fiber sheets 6a and 6b constituting the external layer 20, the resin fiber sheet 6c constituting the laminated sheet 8 of the internal layer 10 is thermally deformed. By increasing the strength of the three-dimensional shape, the strength of the three-dimensional shape can be increased.

本実施形態では、無機繊維シート4a,b及び樹脂繊維シート6cが交互に配置された3層の積層シート8から構成されているが、これに限られるものではなく、任意の数の無機繊維シート及び樹脂繊維シートを交互に積層した任意の積層数の積層シートを採用することができる。また、外部層20を構成する樹脂繊維シート6a,bと接する内部層10の最外層は、必ずしも無機繊維シートである必要はなく、樹脂繊維シートである場合もあり得る。つまり、内部層10及び外部層20の境界で、樹脂繊維シートどうしが接触する場合もあり得る。
その他の点については、上記の第1の実施形態と同様なので、更なる説明は省略する。
In this embodiment, the laminate sheet 8 is composed of three layers in which the inorganic fiber sheets 4a and 4b and the resin fiber sheet 6c are alternately arranged. and resin fiber sheets can be alternately laminated to form an arbitrary number of laminated sheets. Moreover, the outermost layer of the inner layer 10 that is in contact with the resin fiber sheets 6a and 6b constituting the outer layer 20 does not necessarily have to be an inorganic fiber sheet, and may be a resin fiber sheet. In other words, the resin fiber sheets may come into contact with each other at the boundary between the inner layer 10 and the outer layer 20 .
Other points are the same as those of the above-described first embodiment, so further description is omitted.

上記の第1及び第2の実施形態に係る真空断熱材2において、減圧する前の各部材の寸法として、下記を例示できる。内部層10の厚みとして、1mm~8mm程度を例示でき、外部層20の厚み(上下の樹脂繊維シート6の厚みの合計)として、2mm~5mm程度を例示することができる。よって、コア部材30の厚み寸法は、3mm~20mm程度となる。外包材40の厚みは200μm以下なので、コア部材30が外包材40の中に減圧封止された真空断熱材2の厚み寸法としては、1mm~15mm程度となる。
このように、本実施形態に係る真空断熱材2は非常に薄いため、後述するように、用途に合わせて所望の形状に熱変形させることができる。
In the vacuum heat insulating materials 2 according to the first and second embodiments described above, the following can be exemplified as the dimensions of each member before pressure reduction. The thickness of the inner layer 10 can be exemplified from about 1 mm to 8 mm, and the thickness of the outer layer 20 (total thickness of the upper and lower resin fiber sheets 6) can be exemplified from about 2 mm to 5 mm. Therefore, the thickness dimension of the core member 30 is about 3 mm to 20 mm. Since the thickness of the outer wrapping material 40 is 200 μm or less, the thickness of the vacuum heat insulating material 2 in which the core member 30 is decompressed and sealed in the outer wrapping material 40 is about 1 mm to 15 mm.
As described above, the vacuum heat insulating material 2 according to the present embodiment is extremely thin, so that it can be thermally deformed into a desired shape according to the application, as will be described later.

(真空断熱材の製造方法)
真空断熱材の一般的な製造方法では、ガスシールド性を有するフィルムから形成されたシートを準備して、開口部を残してシートの3辺を熱融着させて、袋状の外包材を形成する。そして、開口から外包材の中にコア部材を入れて、真空引きをするとともに、開口部分を熱融着させて、コア部材を外包材により減圧封止する。
(Manufacturing method of vacuum insulation material)
In a general method for manufacturing a vacuum insulation material, a sheet formed from a film having gas shielding properties is prepared, and three sides of the sheet are heat-sealed leaving an opening to form a bag-like outer wrapping material. do. Then, the core member is put into the outer wrapping material through the opening and vacuumed, and the opening portion is heat-sealed so that the core member is decompressed and sealed by the outer wrapping material.

図4は、矢印Bに示すような耳部Bを有する外包材140に、厚いコア部材130を入れる場合を模式的に示す斜視図である。図5は、封筒状の外包材40に薄いコア部材30を入れる場合を模式的に示す斜視図である。 FIG. 4 is a perspective view schematically showing a case where a thick core member 130 is inserted into an outer wrapping material 140 having ears B as indicated by an arrow B. FIG. FIG. 5 is a perspective view schematically showing a case where the thin core member 30 is put in the envelope-shaped outer wrapping material 40. As shown in FIG.

図4に示すように、断熱性能を得るため、従来の真空断熱材102のコア部材130は所定に厚みを有する。このため、コア部材130を挿入できる空間を確保するため、開口部となる1辺を除く3辺が熱融着された所定の大きさの耳部Bを有する外包材140を用いる必要がある。この場合、真空引きをして開口部を熱融着すると、コア部材130が詰められていない耳部Bは余剰部分となる。このため、真空断熱材102を断熱箇所に設置するとき、耳部Bの耳折り作業が生じ、耳折り作業時に外包材140の破損が生じる可能性もある。 As shown in FIG. 4, the core member 130 of the conventional vacuum heat insulating material 102 has a predetermined thickness in order to obtain heat insulating performance. Therefore, in order to secure a space into which the core member 130 can be inserted, it is necessary to use the outer packaging material 140 having ears B of a predetermined size with three sides excluding one side serving as an opening portion being heat-sealed. In this case, when the opening is heat-sealed by drawing a vacuum, the ear portion B, which is not filled with the core member 130, becomes a surplus portion. For this reason, when the vacuum heat insulating material 102 is installed at the heat insulating location, the edge folding operation of the edge portion B occurs, and there is a possibility that the outer wrapping material 140 may be damaged during the edge folding operation.

一方、図5に示すように、本発明の実施形態に係る真空断熱材2では、コア部材30が薄いので、耳部を有さない封筒状の外包材40を用いることができる。つまり、ガスシールド性を有するシートを折り曲げて、図5の矢印Cに示すように、開口部となる1辺を除く2辺を熱溶着で留めて(残り1辺は折り曲げ部となる)、封筒状の外包材40を形成する。そして、開口からコア部材30を封筒状の外包材40に入れ、真空引きするととともに、開口部分を熱溶着することにより、真空断熱材2を製造できる。この場合、耳部が生じず、耳折り作業や、耳折り作業時に生じる破損等の問題がない。 On the other hand, as shown in FIG. 5, in the vacuum heat insulating material 2 according to the embodiment of the present invention, since the core member 30 is thin, an envelope-shaped outer wrapping material 40 without ears can be used. That is, a gas-shielding sheet is folded, and as shown by arrow C in FIG. A shaped outer wrapping material 40 is formed. Then, the vacuum heat insulating material 2 can be manufactured by inserting the core member 30 into the envelope-shaped outer packaging material 40 through the opening, vacuuming the same, and heat-sealing the opening portion. In this case, no selvage is formed, and there is no problem of edge folding work or breakage during the edge folding work.

以上のように、本発明の実施形態に係る真空断熱材2では、コア部材30を薄くできるので、封筒状の外包材40の中にコア部材30を密封することができる。つまり、本実施形態に係る真空断熱材2では、外包材40の接合部Cの内側にコア部材30が配置されている。よって耳部が生じず、耳折り作業や、耳折り作業時に生じる破損等の問題が生じない。
ただし、本発明の実施形態に係る真空断熱材2においても、3辺が熱融着された耳部Bを有する外包材140を用いることもできる。この場合、コア部材を薄くできるので、耳部の幅を狭くすることができる。
As described above, in the vacuum heat insulating material 2 according to the embodiment of the present invention, the core member 30 can be made thin, so that the core member 30 can be hermetically sealed in the envelope-shaped outer wrapping material 40 . That is, in the vacuum heat insulating material 2 according to this embodiment, the core member 30 is arranged inside the joint portion C of the outer wrapping material 40 . Therefore, no selvages are generated, and problems such as edge folding work and breakage during the edge folding work do not occur.
However, also in the vacuum heat insulating material 2 according to the embodiment of the present invention, it is possible to use the outer wrapping material 140 having the ears B with three sides heat-sealed. In this case, since the core member can be thinned, the width of the ear portion can be narrowed.

(その他の実施形態)
上記の第1及び第2の実施形態に係る真空断熱材2では、内部層10の上下面10a,10bと接する2枚の樹脂繊維シート6a,6bが配置されている。しかし、異なるシート6a,6bが内部層10の上下に配置されている場合だけでなく、1枚のシートを用いて、1枚のシートで内部層10の上下面及び側面を覆う場合もあり得る。その場合、1枚のシートで片側の側面だけを覆う場合も、両側の側面を覆う(つまり、内部層10全面を覆っている)場合もあり得る。
(Other embodiments)
In the vacuum heat insulating material 2 according to the first and second embodiments described above, two resin fiber sheets 6a and 6b are arranged in contact with the upper and lower surfaces 10a and 10b of the inner layer 10 . However, in addition to the case where different sheets 6a and 6b are arranged above and below the internal layer 10, a single sheet may be used to cover the upper and lower surfaces and side surfaces of the internal layer 10. . In that case, one sheet may cover only one side surface or may cover both side surfaces (that is, cover the entire surface of the inner layer 10).

本発明の実施形態に係る真空断熱材2では、設置場所に応じて所望の形状に成型できるので、例えば、真空断熱材2を冷蔵庫の庫内の断熱に用いる場合に、庫内の容積効率を高めることができる。特に、真空断熱材2を冷蔵庫のエバポレータ近傍に設置する場合、予めリブ等による凹凸形状に合わせて真空断熱材2を成型することにより、容積効率を高めるとともに、真空断熱材2を設置する作業効率を高め、作業中における破損の危険性を低減することができる。 The vacuum heat insulating material 2 according to the embodiment of the present invention can be molded into a desired shape according to the installation location. can be enhanced. In particular, when the vacuum heat insulating material 2 is installed near the evaporator of a refrigerator, the vacuum heat insulating material 2 is preformed according to the uneven shape of ribs or the like, thereby increasing the volumetric efficiency and the work efficiency of installing the vacuum heat insulating material 2. and reduce the risk of breakage during work.

上記の実施形態に係る真空断熱材2は、冷蔵庫に適用するだけでなく、保冷保温ボックス、建設パネル、医療機器の保冷容器、自動販売機、ショーケース、断熱ヘルメット、保温弁当箱、給湯器をはじめとする様々な機器に好適に適用することができる。 The vacuum insulation material 2 according to the above embodiment is applied not only to refrigerators, but also to cold insulation boxes, construction panels, cold insulation containers for medical equipment, vending machines, showcases, heat insulation helmets, heat insulation lunch boxes, and water heaters. It can be suitably applied to various devices including the above.

次に、上記の第2の実施形態に係る真空断熱材を実際に製作して行った試験の説明を行う。
製作した真空断熱材の仕様は以下のようになる。
(1)コア部材
(a)内部層:無機繊維シート、樹脂繊維シート、無機繊維シートの順に交互に配置された3層の積層シート
(b)外部層:内部層の上面及び下面と接するように配置された樹脂繊維シート
(c)無機繊維シート:グラスウール
メーカー_中国常州 長海社
品番_S-VIP120
平均厚み1.09mm 120g/m2
(c)樹脂繊維シート:オレフィン系
メーカー_日本バイリーン
品番_OF-13042(T-1Z)
平均厚み1.5mm 75g/m2
(2)外包材 フィルム構成
メーカー_ジェイフィルム
仕様_ONY15μ/VMPET12μ/AL7μ/LLDPE50μ
Next, a description will be given of a test conducted by actually manufacturing the vacuum heat insulating material according to the second embodiment.
The specifications of the manufactured vacuum insulation material are as follows.
(1) Core member (a) Inner layer: three-layer laminated sheet alternately arranged in the order of inorganic fiber sheet, resin fiber sheet, and inorganic fiber sheet (b) Outer layer: so as to be in contact with the upper and lower surfaces of the inner layer Arranged resin fiber sheet (c) inorganic fiber sheet: glass wool
Manufacturer_CHANGHAI CHANGZHOU CHINA
Product number_S-VIP120
Average thickness 1.09mm 120g/m2
(c) Resin fiber sheet: Olefin
Manufacturer_Japan Vilene
Product number_OF-13042 (T-1Z)
Average thickness 1.5mm 75g/m2
(2) Outer packaging material Film configuration
Manufacturer_J Film
Specifications_ONY15μ/VMPET12μ/AL7μ/LLDPE50μ

(試験1)
はじめにJIS A 1412-1に基づき、真空断熱材の熱伝導率を測定した。このとき、試験体2枚(No.1及びNo.2)を用いて測定した。
(1)試験片仕様
(a)寸法
(No.1)305mm×317mm、厚さ4.7mm
(No.2)304mm×302mm、厚さ4.8mm
(b)重量
(No.1) 97.90g
(No.2) 97.28g
(Test 1)
First, based on JIS A 1412-1, the thermal conductivity of the vacuum insulation material was measured. At this time, two specimens (No. 1 and No. 2) were used for the measurement.
(1) Specimen specifications (a) Dimensions (No. 1) 305 mm × 317 mm, thickness 4.7 mm
(No. 2) 304mm x 302mm, thickness 4.8mm
(b) Weight (No. 1) 97.90g
(No.2) 97.28g

[試験結果]

Figure 0007233070000001
[Test results]
Figure 0007233070000001

以上のように、本実施例に係る真空断熱材では、平均温度θが0℃の場合の熱伝導率が0.0054W/(m・K)、平均温度θが23℃の場合の熱伝導率が0.0067W/(m・K)である。よって、真空断熱材の平均厚さが4.75mmと非常に薄いのにも関わらず、高い断熱性能を有することが実証された。また、平均温度θが0℃の場合には、平均温度θが23℃の場合に比べて、断熱性能が24%向上することも実証された。つまり、真空断熱材の断熱性能は温度異存性があり、温度が低い方が、高い断熱性能が得られることが実証された。 As described above, in the vacuum heat insulating material according to the present embodiment, the thermal conductivity is 0.0054 W/(mK) when the average temperature θm is 0°C, and the thermal conductivity when the average temperature θm is 23°C. It has a conductivity of 0.0067 W/(m·K). Therefore, it was demonstrated that the vacuum heat insulating material has a high heat insulating performance in spite of its extremely thin average thickness of 4.75 mm. It was also demonstrated that when the average temperature θm is 0°C, the heat insulation performance is improved by 24% compared to when the average temperature θm is 23°C. In other words, it was demonstrated that the heat insulating performance of the vacuum heat insulating material is temperature dependent, and that the lower the temperature, the higher the heat insulating performance.

(試験2)
次に、従来の真空断熱材またはウレタン発泡材を用いたクーラーボックスに対して、本実施例係る真空断熱材を付加した場合の断熱性能の改善率を測定した。
(Test 2)
Next, the rate of improvement in heat insulation performance was measured when the vacuum heat insulating material according to the present embodiment was added to a cooler box using a conventional vacuum heat insulating material or urethane foam material.

[試験結果]

Figure 0007233070000002
[Test results]
Figure 0007233070000002

以上のように、従来の真空断熱材を備えたクーラーボックスに、上記の実施例に係る真空断熱材を付加することにより、断熱性能が14%改善することが実証された。また、厚いが断熱性能が高いウレタン材料を備えたクーラーボックスにおいても、上記の実施例に係る真空断熱材を付加することにより、断熱性能が7%改善することが実証された。何れの場合においても、上記の実施例に係る真空断熱材による断熱性能の向上が実証された。 As described above, it was demonstrated that the heat insulating performance was improved by 14% by adding the vacuum heat insulating material according to the above example to a cooler box equipped with a conventional vacuum heat insulating material. It was also demonstrated that the addition of the vacuum heat insulating material according to the above example improved the heat insulation performance of a cooler box made of urethane material, which is thick but has high heat insulation performance, by 7%. In any case, the improvement of the heat insulating performance by the vacuum heat insulating material according to the above examples was demonstrated.

(試験3)
次に、実際に製造した真空断熱材に曲げ加工や立体成型を行う試験を行った。図6は、実際に製造した真空断熱材に曲げ加工で凹部を設けた実施例を示す図(写真)である。図7は、実際に製造した真空断熱材に立体形状の成型を行った実施例を示す図(写真)である。
(Test 3)
Next, a test was conducted in which the actually manufactured vacuum insulation material was subjected to bending and three-dimensional molding. FIG. 6 is a diagram (photograph) showing an example in which concave portions are provided in an actually manufactured vacuum heat insulating material by bending. FIG. 7 is a diagram (photograph) showing an example in which an actually manufactured vacuum heat insulating material was molded into a three-dimensional shape.

図6に示すように、真空断熱材の中央部にしわがよることも無く凹部が設けられている。また、図7の(a)は、真空断熱材を立体形状に成型した成型品の斜視図であり、(b)は、(a)に示す成型品を上方から見た図であり、(c)は、(a)に示す成型品を下方から見た図である。図7から明らかなように、立体形状の成型が可能なデザインフリーの真空断熱材を実現できることが実証された。 As shown in FIG. 6, the central portion of the vacuum heat insulating material is provided with a recess without wrinkles. In addition, (a) of FIG. 7 is a perspective view of a molded product obtained by molding a vacuum heat insulating material into a three-dimensional shape, (b) is a top view of the molded product shown in (a), and (c ) is a bottom view of the molded product shown in (a). As is clear from FIG. 7, it was demonstrated that a design-free vacuum insulation material that can be molded into a three-dimensional shape can be realized.

以上のように、本発明の実施形態に係る真空断熱材2は、無機繊維シート4または無機繊維シート4及び樹脂繊維シート6が交互に配置された積層シート8から構成される内部層10、及び内部層10の上面10a及び下面10bと接するように配置された樹脂繊維シート6から構成される外部層20を有するコア部材30と、コア部材30を減圧封止した外包材40とを備える。よって、薄型であっても十分な断熱性能を有し、立体形状の成型が可能である。特に、樹脂繊維シート6の硬度が無機繊維シート4の硬度より低いことが好ましい。これにより無機繊維シート4と樹脂繊維シート6との間に多数の微少な空気層を形成することができるので、コア部材30が薄くても優れた断熱性能を有し、加熱時の無機繊維シート4と樹脂繊維シート6との間での熱膨張差による損傷を効果的に抑制できる。 As described above, the vacuum heat insulating material 2 according to the embodiment of the present invention has an inner layer 10 composed of the laminated sheet 8 in which the inorganic fiber sheet 4 or the inorganic fiber sheet 4 and the resin fiber sheet 6 are alternately arranged, and It comprises a core member 30 having an outer layer 20 composed of a resin fiber sheet 6 arranged so as to be in contact with the upper surface 10a and the lower surface 10b of the inner layer 10, and an outer packaging material 40 in which the core member 30 is vacuum-sealed. Therefore, even if it is thin, it has sufficient heat insulating performance and can be molded into a three-dimensional shape. In particular, it is preferable that the hardness of the resin fiber sheet 6 is lower than the hardness of the inorganic fiber sheet 4 . As a result, a large number of very small air layers can be formed between the inorganic fiber sheet 4 and the resin fiber sheet 6, so that even if the core member 30 is thin, excellent heat insulation performance can be achieved, and the inorganic fiber sheet can be heated. Damage due to the difference in thermal expansion between 4 and resin fiber sheet 6 can be effectively suppressed.

本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。 Although embodiments and embodiments of the present invention have been described, the disclosure may vary in details of construction, and changes in the combination and order of elements in the embodiments and embodiments, etc., will not affect the claimed invention. without departing from the scope and spirit of

2 真空断熱材
4,4a,b 無機繊維シート
6,6a~c 樹脂繊維シート
8 積層シート
10 内部層
10a 上面
10b 下面
20 外部層
30 コア部材
40 外包材
102 真空断熱材
130 コア部材
140 外包材
f4、f6 繊維
2 Vacuum insulation materials 4, 4a, b Inorganic fiber sheets 6, 6a-c Resin fiber sheet 8 Laminated sheet 10 Internal layer 10a Upper surface 10b Lower surface 20 External layer 30 Core member 40 Outer wrapping material 102 Vacuum insulating material 130 Core member 140 Outer wrapping material f4 , f6 fiber

Claims (5)

無機繊維シートまたは無機繊維シート及び樹脂繊維シートが交互に配置された積層シートから構成される内部層、及び前記内部層の上面及び下面と接するように配置された樹脂繊維シートから構成される外部層を有するコア部材と、
前記コア部材を減圧封止する外包材と、
を備え、
前記樹脂繊維シート及び前記無機繊維シートの繊維は、シートの厚み方向と略直交する方向に配向し、
前記樹脂繊維シートの硬度は前記無機繊維シートの硬度より低く、
真空引き時の変形の差による微少空気層が、前記コア部材の最外層に配置された前記樹脂繊維シートとその内側に隣接する前記無機繊維シートとの間に存在することを特徴とする真空断熱材。
An inner layer composed of inorganic fiber sheets or laminated sheets in which inorganic fiber sheets and resin fiber sheets are alternately arranged, and an outer layer composed of resin fiber sheets disposed so as to be in contact with the upper and lower surfaces of the inner layer. a core member having
an outer packaging material for vacuum-sealing the core member;
with
The fibers of the resin fiber sheet and the inorganic fiber sheet are oriented in a direction substantially perpendicular to the thickness direction of the sheet,
The hardness of the resin fiber sheet is lower than the hardness of the inorganic fiber sheet,
A vacuum insulation characterized in that a minute air layer due to a difference in deformation during vacuuming exists between the resin fiber sheet arranged as the outermost layer of the core member and the inorganic fiber sheet adjacent to the inner side thereof. material.
加熱により前記コア部材の最外層に配置された前記樹脂繊維シートが熱変形して立体形状に成型されることを特徴とする請求項1に記載の真空断熱材。
2. The vacuum heat insulating material according to claim 1, wherein the resin fiber sheet arranged as the outermost layer of the core member is thermally deformed by heating to be molded into a three-dimensional shape.
前記無機繊維の繊維長が2~100mmであり、前記樹脂繊維の繊維長が2~100mmであることを特徴とする請求項1または2に記載の真空断熱材。
3. The vacuum heat insulating material according to claim 1, wherein the inorganic fibers have a fiber length of 2 to 100 mm, and the resin fibers have a fiber length of 2 to 100 mm .
前記樹脂繊維シートはオレフィン系短繊維から形成されることを特徴とする請求項1から3の何れか1項に記載の真空断熱材。
4. The vacuum heat insulating material according to any one of claims 1 to 3, wherein the resin fiber sheet is made of short olefin fibers.
前記外包材の接合部の内側に前記コア部材が配置されていることを特徴とする請求項1から4の何れか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the core member is arranged inside the joint portion of the outer wrapping material.
JP2018078394A 2018-04-16 2018-04-16 vacuum insulation Active JP7233070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018078394A JP7233070B2 (en) 2018-04-16 2018-04-16 vacuum insulation
CN201910242961.6A CN110388538B (en) 2018-04-16 2019-03-28 Vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078394A JP7233070B2 (en) 2018-04-16 2018-04-16 vacuum insulation

Publications (2)

Publication Number Publication Date
JP2019184020A JP2019184020A (en) 2019-10-24
JP7233070B2 true JP7233070B2 (en) 2023-03-06

Family

ID=68284878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078394A Active JP7233070B2 (en) 2018-04-16 2018-04-16 vacuum insulation

Country Status (2)

Country Link
JP (1) JP7233070B2 (en)
CN (1) CN110388538B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314786A5 (en) 2002-04-25 2004-11-11
JP2006017151A (en) 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
JP2006307921A (en) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP2008223922A (en) 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2010060048A (en) 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
JP2010065711A (en) 2008-09-08 2010-03-25 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011058537A (en) 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
DE102014003413A1 (en) 2014-03-13 2015-09-17 Va-Q-Tec Ag Vacuum insulation panel and container with vacuum insulation panels
WO2016143780A1 (en) 2015-03-10 2016-09-15 株式会社 東芝 Insulation, core material, refrigerator, and insulation manufacturing method
JP2016166660A (en) 2015-03-10 2016-09-15 株式会社東芝 Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator
WO2017134862A1 (en) 2016-02-04 2017-08-10 三菱電機株式会社 Heat-retaining body, vacuum heat insulation material, and method for manufacturing vacuum heat insulation material
JP2018040421A (en) 2016-09-07 2018-03-15 株式会社東芝 Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796580A (en) * 1993-09-29 1995-04-11 Sanyo Electric Co Ltd Vacuum heat-insulating material
JP3563729B2 (en) 2002-04-25 2004-09-08 松下冷機株式会社 Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
US20040180176A1 (en) * 2003-03-14 2004-09-16 Rusek Stanley J. Vaccum insulation article
KR100690895B1 (en) * 2005-10-18 2007-03-09 엘지전자 주식회사 Vacuum isolation panel and isolation structure applying same
JP4774320B2 (en) * 2006-03-30 2011-09-14 日立アプライアンス株式会社 Vacuum heat insulating material and manufacturing method thereof
JP4713566B2 (en) * 2007-12-28 2011-06-29 シャープ株式会社 Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method thereof
JP5193713B2 (en) * 2008-07-17 2013-05-08 日立アプライアンス株式会社 Freezer refrigerator
JP4772887B2 (en) * 2009-03-27 2011-09-14 シャープ株式会社 Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method thereof
JP5398604B2 (en) * 2010-03-17 2014-01-29 三菱電機株式会社 Vacuum insulation material and manufacturing method thereof
JP2012047211A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
CN102401216B (en) * 2010-09-14 2014-05-14 日立空调·家用电器株式会社 Vacuum insulating material and fridge using vacuum insulating material
JP5618756B2 (en) * 2010-10-18 2014-11-05 三菱電機株式会社 Vacuum insulation material and manufacturing method thereof
JP5331148B2 (en) * 2011-03-25 2013-10-30 シャープ株式会社 Refrigerator and manufacturing method thereof
JP2013036595A (en) * 2011-08-11 2013-02-21 Mitsubishi Electric Corp Vacuum heat insulating material
KR101774078B1 (en) * 2013-04-08 2017-09-01 (주)엘지하우시스 Core material for vacuum insulation having organic synthetic fibers and vacuum insulation including the same
CN206347259U (en) * 2014-06-03 2017-07-21 松下知识产权经营株式会社 Vacuum heat insulator and the heat-insulated container and thermal wall using it
CN206449358U (en) * 2014-06-04 2017-08-29 松下知识产权经营株式会社 Vacuum heat insulator and using its heat-insulated container, thermal wall
JP2016176491A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Heat insulation material
CN106015838A (en) * 2015-11-23 2016-10-12 福建赛特新材股份有限公司 Inner core material used for vacuum heat-insulating plate and vacuum heat-insulating plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314786A5 (en) 2002-04-25 2004-11-11
JP2006017151A (en) 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
JP2006307921A (en) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP2008223922A (en) 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2010060048A (en) 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
JP2010065711A (en) 2008-09-08 2010-03-25 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011058537A (en) 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
DE102014003413A1 (en) 2014-03-13 2015-09-17 Va-Q-Tec Ag Vacuum insulation panel and container with vacuum insulation panels
WO2016143780A1 (en) 2015-03-10 2016-09-15 株式会社 東芝 Insulation, core material, refrigerator, and insulation manufacturing method
JP2016166660A (en) 2015-03-10 2016-09-15 株式会社東芝 Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator
WO2017134862A1 (en) 2016-02-04 2017-08-10 三菱電機株式会社 Heat-retaining body, vacuum heat insulation material, and method for manufacturing vacuum heat insulation material
JP2018040421A (en) 2016-09-07 2018-03-15 株式会社東芝 Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator

Also Published As

Publication number Publication date
CN110388538A (en) 2019-10-29
JP2019184020A (en) 2019-10-24
CN110388538B (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP5691112B2 (en) Groove type vacuum heat insulating material and method for manufacturing the same
JP5624305B2 (en) Insulated container
JP2006077792A (en) Vacuum insulating material
JP2007056972A (en) Vacuum heat insulating material and refrigerator using the same
KR101353647B1 (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
JP7233070B2 (en) vacuum insulation
JP2016176491A (en) Heat insulation material
JP4603817B2 (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material
JP6469232B2 (en) refrigerator
JP5334399B2 (en) Insulation, insulation sheet and heat insulation sheet
JP5517150B2 (en) Vacuum insulation panel packaging material and vacuum insulation panel
JP4907480B2 (en) Vacuum insulation
JP2008196572A (en) Vacuum heat insulating material and refrigerator
JP2005076725A (en) Core material for vacuum heat insulating material and vacuum heat insulating panel
JP7045141B2 (en) refrigerator
JP6874529B2 (en) Vacuum heat insulating material
KR102531641B1 (en) Vacuum insulation box
JP4654840B2 (en) Vacuum insulation and composite insulation
JP5788714B2 (en) Vacuum insulation panel and refrigerator using the same
KR102566976B1 (en) Container using vacuum insulation panel and manufacturing method of same
WO2022071425A1 (en) Battery cover
JP2017223390A (en) freezer
JP2008057570A (en) Vacuum heat insulation material
JP6476084B2 (en) Simple mat and packaging of simple mat
JP2009138918A (en) Thermal insulation member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7233070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150