JP2003314786A5 - - Google Patents

Download PDF

Info

Publication number
JP2003314786A5
JP2003314786A5 JP2002123993A JP2002123993A JP2003314786A5 JP 2003314786 A5 JP2003314786 A5 JP 2003314786A5 JP 2002123993 A JP2002123993 A JP 2002123993A JP 2002123993 A JP2002123993 A JP 2002123993A JP 2003314786 A5 JP2003314786 A5 JP 2003314786A5
Authority
JP
Japan
Prior art keywords
core material
heat insulating
vacuum heat
opening
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002123993A
Other languages
Japanese (ja)
Other versions
JP2003314786A (en
JP3563729B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2002123993A priority Critical patent/JP3563729B2/en
Priority claimed from JP2002123993A external-priority patent/JP3563729B2/en
Publication of JP2003314786A publication Critical patent/JP2003314786A/en
Application granted granted Critical
Publication of JP3563729B2 publication Critical patent/JP3563729B2/en
Publication of JP2003314786A5 publication Critical patent/JP2003314786A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0015】
【課題を解決するための手段】
上記問題を解決するため、本発明の真空断熱材は、ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止してなる真空断熱材であって、前記芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、前記芯材の減圧前の密度が100kg/m 3 以上400kg/m 3 以下で、前記芯材の減圧前の曲げ弾性率が0.5MPa以上であり、前記開口部の内周長と、前記開口部と平行方向における前記芯材の外周長最大部との差が0mmより大きく30mm以下であることを特徴とするものである。
0015.
[Means for solving problems]
In order to solve the above problem, in the vacuum heat insulating material of the present invention, the board-shaped core material is inserted into the outer cover material through the opening on one side of the outer cover material to reduce the pressure inside the outer cover material to open the opening. It is a sealed vacuum heat insulating material, and the core material is formed by adhering a binder to inorganic fibers having an average fiber diameter of 0.1 μm or more and 10 μm or less and compression molding into a board shape, and before depressurizing the core material. The density of the core material is 100 kg / m 3 or more and 400 kg / m 3 or less, the bending elasticity of the core material before decompression is 0.5 MPa or more, and the inner peripheral length of the opening and the said in a direction parallel to the opening. The feature is that the difference from the maximum outer peripheral length of the core material is larger than 0 mm and 30 mm or less .

【0018】
無機繊維を主成分とし、バインダーを用いて成形したボード状の芯材とすることにより剛性が確保でき、芯材と外被材との隙間が小さくても外被材のへりで芯材が削られることを抑制することが可能となる。
0018.
Rigidity can be ensured by using a board-shaped core material molded using a binder with inorganic fibers as the main component, and even if the gap between the core material and the outer cover material is small, the core material is scraped by the edge of the outer cover material. It is possible to suppress the fact that it is being used.

【0019】
これに伴い、外被材のへりで芯材が削られて結局芯材と外被材の隙間が大きくなったり、削られた芯材が粉体となって外被材に付着して、減圧後にシール不良を引き起こす可能性も大幅に減少する。
[0019]
Along with this, the core material is scraped by the edge of the jacket material, and eventually the gap between the core material and the jacket material becomes large, or the scraped core material becomes powder and adheres to the jacket material, and the pressure is reduced. The possibility of causing a seal failure later is also greatly reduced.

【0020】
ここで、芯材に用いる無機繊維の平均繊維径が0.1μm未満であれば工業的生産は困難で実用上不向きであり、10μmより大きいと繊維間の空隙が大きくなり、初期断熱性能に優れた真空断熱材を得ることができない。
0020
Here, if the average fiber diameter of the inorganic fibers used for the core material is less than 0.1 μm, industrial production is difficult and practically unsuitable, and if it is larger than 10 μm, the voids between the fibers become large and the initial heat insulating performance is excellent. The vacuum heat insulating material cannot be obtained.

【0021】
また、密度を100kg/m 3 以上400kg/m 3 以下にすることにより繊維間の空隙径を減少させ、さらに無機繊維に対してバインダーを添加して上記密度を保持することにより、所定の繊維径に対し初期断熱性能、及び信頼性の面から最適な空隙径を保持した芯材を得ることができる。
0021.
Further, by reducing the density to 100 kg / m 3 or more and 400 kg / m 3 or less, the void diameter between the fibers is reduced, and further, by adding a binder to the inorganic fibers to maintain the above density, the predetermined fiber diameter is maintained. On the other hand, it is possible to obtain a core material having an optimum void diameter in terms of initial heat insulation performance and reliability.

【0022】
ここで、密度が100kg/m 3 未満であればボードの剛性を維持することが困難であり、芯材と外被材の隙間が小さい場合はうまく芯材を挿入することができず、また400kg/m 3 より大きいと固体熱伝導の影響が大きくなり初期断熱性能が悪化する。
[0022]
Here, if the density is less than 100 kg / m 3 , it is difficult to maintain the rigidity of the board, and if the gap between the core material and the outer cover material is small, the core material cannot be inserted properly, and 400 kg. If it is larger than / m 3 , the influence of solid heat conduction becomes large and the initial heat insulation performance deteriorates.

【0023】
芯材を外被材中に挿入する際、開口部の内周長が芯材外周長に対して大きすぎるとひれ部が増大し、小さすぎると芯材をスムーズに挿入できない。
[0023]
When inserting the core material into the outer cover material, if the inner peripheral length of the opening is too large with respect to the outer peripheral length of the core material, the fin portion increases, and if it is too small, the core material cannot be inserted smoothly.

【0024】
ここで、曲げ弾性率が所定の値以上の芯材であれば、開口部の内周長と芯材外周長との差が30mm以下という余裕代が小さい状態でもスムーズに挿入できるものである。
0024
Here, if the core material has a bending elastic modulus of a predetermined value or more, it can be smoothly inserted even in a state where the difference between the inner peripheral length of the opening and the outer peripheral length of the core material is 30 mm or less and the margin is small.

【0025】
このようにして作製した真空断熱材は、芯材まわりにできるひれ部の面積を低減できる。
0025.
The vacuum heat insulating material produced in this way can reduce the area of the fin portion formed around the core material.

【0026】
また、本発明の真空断熱材は、ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止してなる真空断熱材であって、前記芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、減圧後、大気圧下で前記外被材内における前記芯材の密度が110kg/m 3 以上413kg/m 3 以下で、減圧後、大気圧下で外被材より取り出した時の前記芯材の曲げ弾性率が0.2MPa以上であり、前記外被材の開口部と平行方向における少なくとも一断面において、減圧封止後の前記芯材の外周長と前記外被材の外周長との差が0mmより大きく70mm以下であることを特徴とするものである。
0026
Further, the vacuum heat insulating material of the present invention is formed by inserting a board-shaped core material into the outer cover material through an opening on one side of the outer cover material to reduce the pressure inside the outer cover material and seal the opening. The core material is a vacuum heat insulating material, which is formed by adhering a binder to an inorganic fiber having an average fiber diameter of 0.1 μm or more and 10 μm or less and compression-molding into a board shape. The density of the core material in the inside is 110 kg / m 3 or more and 413 kg / m 3 or less, and the bending elasticity of the core material when taken out from the outer cover material under atmospheric pressure after depressurization is 0.2 MPa or more. In at least one cross section in a direction parallel to the opening of the jacket material, the difference between the outer circumference length of the core material after vacuum encapsulation and the outer circumference length of the jacket material is larger than 0 mm and 70 mm or less. It is something to do.

【0027】
繊維材をバインダーを使用して成形した芯材は弾性があるために、外被材に挿入して減圧し、大気圧により圧縮されると僅かではあるが縮小変形する傾向がある。この変形によりバインダーによる繊維同士の固着が破壊され、曲げ弾性率は低下する。
[0027]
Since the core material obtained by molding the fiber material using a binder is elastic, it tends to be slightly reduced and deformed when it is inserted into the outer cover material to reduce the pressure and compressed by the atmospheric pressure. This deformation breaks the adhesion between the fibers by the binder, and the flexural modulus decreases.

【0028】
この点に配慮したもので、減圧後、大気圧下で前記外被材より取り出した時の前記芯材の曲げ弾性率が0.2MPa以上の芯材を用いれば、芯材を外被材に挿入する際に芯材がたわんだり、あるいは割れたりすることもないため、芯材と外被材との隙間を小さくしてもスムーズに芯材を挿入することができ、ひれ部の少ない真空断熱材を得ることが可能となる。
[0028]
In consideration of this point, if a core material having a flexural modulus of 0.2 MPa or more when taken out from the outer cover material under atmospheric pressure after depressurization is used, the core material can be used as the outer cover material. Since the core material does not bend or crack during insertion, the core material can be inserted smoothly even if the gap between the core material and the outer cover material is small, and vacuum heat insulation with few fins. It becomes possible to obtain the material.

【0037】
例えば、四方シール袋のように真空断熱材の一断面においてひれ部が2方向にある外被材では、外被材の外周長と芯材の外周長との差を70mm以下にすることにより、芯材を外被材の中心に置くと、真空断熱材の片側に生じるひれ部の長さは17.5mm以下となり、これであれば、例えば冷凍冷蔵庫の断熱壁に真空断熱材及び発泡断熱材を適用した場合でも発泡断熱材が良好に充填され、熱漏洩や壁面の変形等が生じることもない。
0037
For example, in the case of an outer cover material having fins in two directions in one cross section of the vacuum heat insulating material such as a four-way seal bag, the difference between the outer peripheral length of the outer cover material and the outer peripheral length of the core material is set to 70 mm or less. When the core material is placed in the center of the outer cover material, the length of the fin part generated on one side of the vacuum heat insulating material is 17 . If it is 5 mm or less, the foam heat insulating material is well filled even when the vacuum heat insulating material and the foam heat insulating material are applied to the heat insulating wall of the refrigerator / freezer, and heat leakage and deformation of the wall surface do not occur.

【0174】
【発明の効果】
以上のように、本発明の真空断熱材は、ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止してなる真空断熱材であって、前記芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、前記芯材の減圧前の密度が100kg/m 3 以上400kg/m 3 以下で、前記芯材の減圧前の曲げ弾性率が0.5MPa以上であり、前記開口部の内周長と、前記開口部と平行方向における前記芯材の外周長最大部との差が0mmより大きく30mm以下であることを特徴とするものであり、芯材の減圧前の曲げ弾性率を0.5MPa以上としたので、芯材を外被材に挿入する際に芯材がたわんだり、あるいは割れたりすることもないため、芯材と外被材との隙間を小さくしてもスムーズに芯材を挿入することができ、ひれ部の少ない真空断熱材を得ることができる。
[0174]
【The invention's effect】
As described above, in the vacuum heat insulating material of the present invention, the board-shaped core material is inserted into the jacket material from the opening on one side of the jacket material, the inside of the jacket material is depressurized, and the opening is sealed. The vacuum heat insulating material is made by adhering a binder to inorganic fibers having an average fiber diameter of 0.1 μm or more and 10 μm or less and compression molding into a board shape, and the density of the core material before depressurization. Is 100 kg / m 3 or more and 400 kg / m 3 or less, the bending elasticity of the core material before depressurization is 0.5 MPa or more, and the inner peripheral length of the opening and the core material in the direction parallel to the opening. The difference from the maximum outer peripheral length of the core material is larger than 0 mm and 30 mm or less. Since the bending elasticity of the core material before decompression is 0.5 MPa or more, the core material is used as the outer cover material. Since the core material does not bend or crack during insertion, the core material can be inserted smoothly even if the gap between the core material and the outer cover material is small, and vacuum heat insulation with few fins. The material can be obtained.

【0175】
また、芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、前記芯材の減圧前の密度が100kg/m 3 以上400kg/m 3 以下であるので、芯材と外被材との隙間が小さくても外被材のへりで芯材が削られることを抑制することが可能となるとともに、削られた芯材が粉体となって外被材に付着して、減圧後にシール不良を引き起こす可能性も大幅に減少する。また、初期断熱性能、及び信頼性の面から最適な空隙径を保持した芯材を得ることができる。
[0175]
The core material is formed by adhering a binder to inorganic fibers having an average fiber diameter of 0.1 μm or more and 10 μm or less and compression-molding them into a board shape, and the density of the core material before decompression is 100 kg / m 3 or more and 400 kg / m. Since it is 3 or less, even if the gap between the core material and the outer cover material is small, it is possible to suppress the core material from being scraped by the edge of the outer cover material, and the scraped core material is powder. The possibility that it will adhere to the outer cover material and cause a sealing failure after depressurization is also greatly reduced. Further, it is possible to obtain a core material having an optimum void diameter in terms of initial heat insulating performance and reliability.

【0176】
また、ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止する製造方法で真空断熱材を作製し、前記開口部の内周長と、前記開口部と平行方向における前記芯材の外周長最大部との差が0mmより大きく30mm以下としたので、芯材まわりにできるひれ部の面積を低減できる上に、芯材もスムーズに挿入できる。
[0176]
Further, a vacuum heat insulating material is produced by a manufacturing method in which a board-shaped core material is inserted into the jacket material from an opening on one side of the jacket material to reduce the pressure inside the jacket material and seal the opening. Since the difference between the inner peripheral length of the opening and the maximum outer peripheral length of the core material in the direction parallel to the opening is larger than 0 mm and 30 mm or less, the area of the fin portion formed around the core material can be reduced. In addition, the core material can be inserted smoothly.

【0177】
また、本発明の真空断熱材は、ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止してなる真空断熱材であって、前記芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、減圧後、大気圧下で前記外被材内における前記芯材の密度が110kg/m 3 以上413kg/m 3 以下で、減圧後、大気圧下で外被材より取り出した時の前記芯材の曲げ弾性率が0.2MPa以上であり、前記外被材の開口部と平行方向における少なくとも一断面において、減圧封止後の前記芯材の外周長と前記外被材の外周長との差が0mmより大きく70mm以下であることを特徴とするものであり、減圧後、大気圧下で外被材より取り出した時の芯材の曲げ弾性率を0.2MPa以上としたので、芯材を外被材に挿入する際に芯材がたわんだり、あるいは割れたりすることもないため、芯材と外被材との隙間を小さくしてもスムーズに芯材を挿入することができ、ひれ部の少ない真空断熱材を得ることができる。
[0177]
Further, the vacuum heat insulating material of the present invention is formed by inserting a board-shaped core material into the outer cover material through an opening on one side of the outer cover material to reduce the pressure inside the outer cover material and seal the opening. The core material is a vacuum heat insulating material, and the core material is formed by adhering a binder to inorganic fibers having an average fiber diameter of 0.1 μm or more and 10 μm or less and compression molding into a board shape. The density of the core material in the inside is 110 kg / m 3 or more and 413 kg / m 3 or less, and the bending elasticity of the core material when taken out from the outer cover material under atmospheric pressure after depressurization is 0.2 MPa or more. In at least one cross section in a direction parallel to the opening of the jacket material, the difference between the outer circumference length of the core material after vacuum encapsulation and the outer circumference length of the jacket material is larger than 0 mm and 70 mm or less. Since the bending elasticity of the core material when taken out from the outer cover material under atmospheric pressure after depressurization was set to 0.2 MPa or more, the core material was evacuated when the core material was inserted into the outer cover material. Since it does not drip or crack, the core material can be inserted smoothly even if the gap between the core material and the outer cover material is made small, and a vacuum heat insulating material with few fins can be obtained.

【0178】
また、芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、減圧後、大気圧下で前記外被材内における前記芯材の密度が110kg/m 3 以上413kg/m 3 以下であるので、芯材と外被材との隙間が小さくても外被材のへりで芯材が削られることを抑制することが可能となるとともに、削られた芯材が粉体となって外被材に付着して、減圧後にシール不良を引き起こす可能性も大幅に減少する。また、初期断熱性能、及び信頼性の面から最適な空隙径を保持した芯材を得ることができる。
[0178]
The core material is formed by adhering a binder to inorganic fibers having an average fiber diameter of 0.1 μm or more and 10 μm or less and compression-molding them into a board shape. Since the density is 110 kg / m 3 or more and 413 kg / m 3 or less, it is possible to prevent the core material from being scraped by the edge of the outer cover material even if the gap between the core material and the outer cover material is small. The possibility that the scraped core material becomes powder and adheres to the outer cover material, causing a sealing failure after depressurization is also greatly reduced. Further, it is possible to obtain a core material having an optimum void diameter in terms of initial heat insulating performance and reliability.

【0179】
また、ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止する製造方法で真空断熱材を作製し、前記外被材の開口部と平行方向における少なくとも一断面において、減圧封止後の前記芯材の外周長と前記外被材の外周長との差が0mmより大きく70mm以下としたので、どのような袋形態においてもひれ部を最小限に抑制できるような外被材を得ることができる。
[0179]
Further, a vacuum heat insulating material is produced by a manufacturing method in which a board-shaped core material is inserted into the jacket material from an opening on one side of the jacket material to reduce the pressure inside the jacket material and seal the opening. In at least one cross section in the direction parallel to the opening of the jacket material, the difference between the outer circumference length of the core material after vacuum encapsulation and the outer circumference length of the jacket material is larger than 0 mm and 70 mm or less. It is possible to obtain an outer cover material that can minimize the fin portion even in the form of a bag.

Claims (4)

ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止してなる真空断熱材であって、前記芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、前記芯材の減圧前の密度が100kg/m 3 以上400kg/m 3 以下で、前記芯材の減圧前の曲げ弾性率が0.5MPa以上であり、前記開口部の内周長と、前記開口部と平行方向における前記芯材の外周長最大部との差が0mmより大きく30mm以下であることを特徴とする真空断熱材。 A vacuum heat insulating material comprising a board-like core material inserted into an outer covering material from an opening at one side of the outer covering material to decompress the inside of the outer covering material and sealing the opening, the core material Is made by attaching a binder to inorganic fibers having an average fiber diameter of 0.1 μm to 10 μm and compression molding it into a board shape, and the density of the core material before decompression is 100 kg / m 3 to 400 kg / m 3 , The flexural modulus before pressure reduction of the core is 0.5 MPa or more, and the difference between the inner circumferential length of the opening and the maximum outer peripheral length of the core in the direction parallel to the opening is greater than 0 mm and 30 mm The vacuum heat insulating material characterized by being the following . ボード状の芯材を外被材の一辺の開口部から外被材中に挿入して前記外被材内を減圧し前記開口部を封止してなる真空断熱材であって、前記芯材は、平均繊維径0.1μm以上10μm以下の無機繊維にバインダーを付着させてボード状に圧縮成形してなり、減圧後、大気圧下で前記外被材内における前記芯材の密度が110kg/m 3 以上413kg/m 3 以下で、減圧後、大気圧下で外被材より取り出した時の前記芯材の曲げ弾性率が0.2MPa以上であり、前記外被材の開口部と平行方向における少なくとも一断面において、減圧封止後の前記芯材の外周長と前記外被材の外周長との差が0mmより大きく70mm以下であることを特徴とする真空断熱材。 A vacuum heat insulating material comprising a board-like core material inserted into an outer covering material from an opening at one side of the outer covering material to decompress the inside of the outer covering material and sealing the opening, the core material A binder is attached to inorganic fibers having an average fiber diameter of 0.1 μm to 10 μm and compression molded into a board shape, and after pressure reduction, the density of the core material in the outer covering material under atmospheric pressure is 110 kg / kg. m 3 or more 413Kg / m 3 or less, after decompression, the flexural modulus of the core material when removed from the envelope material at atmospheric pressure is not less 0.2MPa or more, a direction parallel to the opening of said outer covering material A vacuum heat insulating material characterized in that the difference between the outer peripheral length of the core material after sealing under reduced pressure and the outer peripheral length of the outer covering material is greater than 0 mm and not more than 70 mm in at least one cross section in . 外箱と、内箱と、前記外箱と前記内箱とによって形成される空間に真空断熱材とを有し、前記真空断熱材が請求項1または請求項記載のものであることを特徴とする真空断熱材を用いた冷凍機器及び冷温機器。It has a vacuum heat insulating material in a space formed by an outer case, an inner case, the outer case and the inner case, and the vacuum heat insulating material is the one described in claim 1 or 2 Refrigeration equipment and cold equipment using vacuum insulation material. 圧縮機と、凝縮器と、キャピラリチューブと、蒸発器とを環状に接続した冷凍サイクルを備え、前記冷凍サイクル内に可燃性を有する冷媒を封入し、外箱と、内箱と、前記外箱と前記内箱とによって形成される空間に真空断熱材とを有し、前記真空断熱材が請求項1または請求項記載のものであることを特徴とする真空断熱材を用いた冷凍機器及び冷温機器。A refrigeration cycle comprising a compressor, a condenser, a capillary tube, and an evaporator connected annularly, wherein a flammable refrigerant is enclosed in the refrigeration cycle, an outer case, an inner case, and the outer case And a vacuum heat insulating material in a space formed by the inner box and the vacuum heat insulating material, wherein the vacuum heat insulating material is the one described in claim 1 or 2; Cold equipment.
JP2002123993A 2002-04-25 2002-04-25 Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material Expired - Fee Related JP3563729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123993A JP3563729B2 (en) 2002-04-25 2002-04-25 Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123993A JP3563729B2 (en) 2002-04-25 2002-04-25 Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material

Publications (3)

Publication Number Publication Date
JP2003314786A JP2003314786A (en) 2003-11-06
JP3563729B2 JP3563729B2 (en) 2004-09-08
JP2003314786A5 true JP2003314786A5 (en) 2004-11-11

Family

ID=29539124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123993A Expired - Fee Related JP3563729B2 (en) 2002-04-25 2002-04-25 Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material

Country Status (1)

Country Link
JP (1) JP3563729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233070B2 (en) 2018-04-16 2023-03-06 アクア株式会社 vacuum insulation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603817B2 (en) * 2004-05-19 2010-12-22 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material
JP4898157B2 (en) * 2005-04-15 2012-03-14 旭ファイバーグラス株式会社 Manufacturing method of vacuum insulation core material
JP4898141B2 (en) * 2005-05-12 2012-03-14 旭ファイバーグラス株式会社 Manufacturing method of vacuum insulation core material
JP5333038B2 (en) 2008-09-10 2013-11-06 パナソニック株式会社 Vacuum insulation and manufacturing method thereof
WO2014087834A1 (en) * 2012-12-07 2014-06-12 旭硝子株式会社 Heat-insulating material and manufacturing process therefor, and insulation method
JP6212975B2 (en) * 2013-06-20 2017-10-18 凸版印刷株式会社 Vacuum insulation material
FR3030353B1 (en) * 2014-12-23 2021-02-12 Saint Gobain Isover VACUUM INSULATION PANEL WITH IMPROVED GASKET
JP7325053B2 (en) * 2019-12-24 2023-08-14 パナソニックIpマネジメント株式会社 Thermal insulation bag, thermal insulation bag, and method for manufacturing thermal insulation bag

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269781A (en) * 1994-03-31 1995-10-20 Toshiba Corp Vacuum heat insulating material and manufacture thereof and heat insulating box body using vacuum heat insulating body therein
JP3039573U (en) * 1997-01-14 1997-07-22 日本特許管理株式会社 Tape insert bag
WO2001081818A1 (en) * 2000-04-21 2001-11-01 Matsushita Refrigeration Company Heat insulation box, and vacuum heat insulation material used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233070B2 (en) 2018-04-16 2023-03-06 アクア株式会社 vacuum insulation

Similar Documents

Publication Publication Date Title
KR100823798B1 (en) Vacuum heat insulation material and refrigerator using the same
US10088221B2 (en) Vacuum insulation body
JP4580843B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2003314786A5 (en)
KR20060032656A (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
US10041726B2 (en) Vacuum insulation body
EP2554759A2 (en) High-performance vacuum insulation panel and manufacturing method thereof
CN204114473U (en) Vacuum heat insulation material and hot box
KR100691917B1 (en) Refrigerator
JP4576197B2 (en) Vacuum insulation and refrigerator
EP3615872B1 (en) Structural cabinet for an appliance
JP2004125394A (en) Refrigerator
AU2015407161B2 (en) Vacuum thermal insulator and refrigerator
JP2012062905A (en) Vacuum heat insulating material and refrigerator equipped with the same
CN102194556B (en) Center fastening type insulation sleeve
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2006183896A (en) Refrigerator and vacuum heat insulating material
JP2948764B2 (en) Method for manufacturing heat insulating box and heat insulating structure
JP2006342852A (en) Vacuum thermal insulating material and refrigerator using it
JP5372878B2 (en) Vacuum heat insulating material and refrigerator equipped with the same
WO2018001492A1 (en) A vacuum insulation panel with improved assemblage
JP2005273696A (en) Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board
CN106441484A (en) Anti-freezing device for water meter
JP3888215B2 (en) Method for manufacturing refrigeration cycle apparatus
JP2010144747A (en) Joint structure and compressor using the joint structure