JP4580843B2 - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP4580843B2
JP4580843B2 JP2005242277A JP2005242277A JP4580843B2 JP 4580843 B2 JP4580843 B2 JP 4580843B2 JP 2005242277 A JP2005242277 A JP 2005242277A JP 2005242277 A JP2005242277 A JP 2005242277A JP 4580843 B2 JP4580843 B2 JP 4580843B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
core material
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005242277A
Other languages
Japanese (ja)
Other versions
JP2007056972A (en
JP2007056972A5 (en
Inventor
恒 越後屋
邦成 荒木
克美 福田
久男 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005242277A priority Critical patent/JP4580843B2/en
Priority to CNB2006101159415A priority patent/CN100441932C/en
Publication of JP2007056972A publication Critical patent/JP2007056972A/en
Publication of JP2007056972A5 publication Critical patent/JP2007056972A5/ja
Application granted granted Critical
Publication of JP4580843B2 publication Critical patent/JP4580843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、真空断熱材及びそれを用いた冷蔵庫に関する。   The present invention relates to a vacuum heat insulating material and a refrigerator using the same.

(従来技術1)
従来の真空断熱材としては、特開2001−336691号公報(特許文献1)に示されたものがある。この特許文献1に記載の真空断熱材は、平均直径が1μm以上5μm以下の無機繊維からなるシート状成形体を少なくとも2層以上積層してなる芯材を、ガスバリア性フィルムで覆い、その内部を減圧し、密封したものであって、圧縮成型により、前記真空断熱材の厚み方向に垂直な側面部に少なくとも一本以上の溝を形成して、該真空断熱材の折り曲げを可能にしたものである。
(従来技術2)
また、従来の真空断熱材としては、特開2004−197954号公報(特許文献2)に示されたものがある。この特許文献2に記載の真空断熱材は、熱溶着層を有するガスバリア性の外被材と板状の芯材とを有し、芯材の周囲に芯材を間に含まず密着した外被材のみから構成される周辺部が形成された真空断熱材であって、真空断熱材の厚みが0.5mm以上5mm以下として、周縁部を芯材形状に合わせることによって、容易に任意形状の真空断熱材を作製できるようにするものである。
(従来技術3)
また、従来の真空断熱材としては、特開2002−81596号公報(特許文献3)に示されたものがある。特許文献3に記載の真空断熱材は、繊維径分布のピーク値が1μm以下0.1μm以上である無機繊維芯材と、ガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ繊維材料を固形化するための結合材を含まない構成としたことにより、真空断熱材としての可撓性を有するようにしていた。
(Prior art 1)
As a conventional vacuum heat insulating material, there exists a thing shown by Unexamined-Japanese-Patent No. 2001-336691 (patent document 1). In the vacuum heat insulating material described in Patent Document 1, a core material formed by laminating at least two layers of sheet-like molded bodies made of inorganic fibers having an average diameter of 1 μm or more and 5 μm or less is covered with a gas barrier film, and the inside thereof is covered. It is a vacuum-sealed and sealed, and at least one groove is formed in a side surface perpendicular to the thickness direction of the vacuum heat insulating material by compression molding, so that the vacuum heat insulating material can be bent. is there.
(Prior art 2)
Moreover, as a conventional vacuum heat insulating material, there exist some which were shown by Unexamined-Japanese-Patent No. 2004-197954 (patent document 2). The vacuum heat insulating material described in Patent Document 2 has a gas barrier outer cover material having a heat-welded layer and a plate-shaped core material, and the outer cover is closely attached without surrounding the core material. A vacuum heat insulating material in which a peripheral portion composed only of a material is formed, and the vacuum heat insulating material has a thickness of 0.5 mm or more and 5 mm or less, and the peripheral portion is matched to the shape of the core material to easily form a vacuum of any shape. This makes it possible to produce a heat insulating material.
(Prior art 3)
Moreover, as a conventional vacuum heat insulating material, there exists a thing shown by Unexamined-Japanese-Patent No. 2002-81596 (patent document 3). The vacuum heat insulating material described in Patent Document 3 is a vacuum heat insulating material comprising an inorganic fiber core material having a fiber diameter distribution peak value of 1 μm or less and 0.1 μm or more, and an outer skin material having gas barrier properties. Since the material is composed of SiO2 as a main component and does not include a binder for solidifying the fiber material, the material has flexibility as a vacuum heat insulating material.

特開2001−336691号公報JP 2001-336691 A 特開2004−197954号公報JP 2004-197954 A 特開2002−81596号公報JP 2002-81596 A

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が望まれている。そして、冷蔵庫は家電品の中で特に消費電力量の多い製品であるため、冷蔵庫の断熱箱体中に真空断熱材を採用して、この断熱箱体の熱漏洩量を低減することが提案されている。この真空断熱材の応用展開を推進するためには、コストアップや断熱性能の低下を招くことなく、被取付け部の形状に沿って真空断熱材を配設できるように変形性及び形状保持性を付与することが重要な課題となっている。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances is desired. And since the refrigerator is a product that consumes a lot of electric power among household electrical appliances, it is proposed to reduce the amount of heat leakage of the heat insulating box by adopting a vacuum heat insulating material in the heat insulating box of the refrigerator. ing. In order to promote the application development of this vacuum heat insulating material, the deformability and shape retainability should be improved so that the vacuum heat insulating material can be arranged along the shape of the mounted part without incurring cost increase or deterioration of heat insulating performance. Granting has become an important issue.

しかしながら、特許文献1の真空断熱材(従来技術1)では、圧縮成型により真空断熱材に厚み方向に垂直な側面部に溝を形成し、厚さ方向に薄くなった溝部で真空断熱材を折り曲げるようにするものであるので、真空断熱材としての厚さが溝部で薄くなり、この溝部での断熱性能が低下してしまう、という問題があった。そして、特許文献1には、真空断熱材を被取付け部の形状に沿って変形させた場合における真空断熱材の形状保持性に関しては開示されていない。   However, in the vacuum heat insulating material (prior art 1) of Patent Document 1, a groove is formed in the side surface perpendicular to the thickness direction in the vacuum heat insulating material by compression molding, and the vacuum heat insulating material is bent at the groove portion thinned in the thickness direction. As a result, the thickness of the vacuum heat insulating material is reduced at the groove, and the heat insulating performance at the groove is reduced. Patent Document 1 does not disclose the shape retention of the vacuum heat insulating material when the vacuum heat insulating material is deformed along the shape of the attached portion.

また、特許文献2の真空断熱材(従来技術2)では、芯材と熱溶着部の間には芯材を間に含まない外被材のみから構成される部分が残るため、その部分での断熱性能が低下してしまう、という問題があった。そして、特許文献2には、真空断熱材を被取付け部の形状に沿って変形させた場合における真空断熱材の形状保持性に関しては開示されていない。   Moreover, in the vacuum heat insulating material (prior art 2) of patent document 2, since the part comprised only from the jacket material which does not contain a core material remains between a core material and a heat welding part, in the part There was a problem that the heat insulation performance deteriorated. Patent Document 2 does not disclose the shape retention of the vacuum heat insulating material when the vacuum heat insulating material is deformed along the shape of the attached portion.

また、特許文献3の真空断熱材(従来技術3)では、被取付け部の形状に沿って真空断熱材を変形させた場合に、真空断熱材が元に戻ろうとする力(スプリングバック力)により、被取付け部の取付け面から離れてしまう、という問題があった。なお、特許文献3の真空断熱材では、繊維径分布のピーク値が1μm以下0.1μm以上の超極細無機繊維を用いるため、単品でも生産性が低く高価であると共に、繊維集合体を重ねて厚みを稼ぐ必要があり、真空断熱材のコストアップを招いていた。   Moreover, in the vacuum heat insulating material (prior art 3) of patent document 3, when a vacuum heat insulating material is deformed along the shape of a to-be-attached part, by the force (spring back force) which a vacuum heat insulating material tries to return to the original. There was a problem that it was separated from the mounting surface of the mounted portion. In addition, in the vacuum heat insulating material of patent document 3, since the ultrafine inorganic fiber having a peak value of the fiber diameter distribution of 1 μm or less and 0.1 μm or more is used, even a single product is low in productivity and expensive, and the fiber aggregate is overlapped. It was necessary to increase the thickness, leading to an increase in the cost of the vacuum heat insulating material.

本発明の目的は、断熱性能を確保しつつ、被取付け部に沿って変形された形状を保持できる真空断熱材及びそれを用いた冷蔵庫を提供することにある。   The objective of this invention is providing the vacuum heat insulating material which can hold | maintain the shape deform | transformed along the to-be-attached part, ensuring a heat insulation performance, and a refrigerator using the same.

前述の目的を達成するための本発明の第1の態様は、ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材であって、前記芯材は結合剤を含まない無機もしくは有機の繊維重合体で形成すると共に、前記外被材内に前記芯材と共に変形可能で且つ曲げ荷重を加えて曲げたときの圧縮応力或いは引っ張り応力により前記芯材とずれを生じさせ変形後の前記曲げ荷重が解除された該芯材形状を保持可能な変形保持部材が配置されたものである。 A first aspect of the present invention for achieving the above object is a vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having a gas barrier property, wherein the core material does not contain a binder. Alternatively, it is formed of an organic fiber polymer, and can be deformed together with the core material in the jacket material, and after being deformed by causing a deviation from the core material due to a compressive stress or a tensile stress when bent by applying a bending load. The deformation holding member capable of holding the core material shape released from the bending load is disposed.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記芯材を板状の有機の繊維重合体で形成し、前記変形保持部材をフィルム状に形成して前記芯材の内部に設置したこと。
(2)前記芯材を複数層の繊維重合体で形成し、前記変形保持部材を前記繊維重合体の層間に介在させたこと。
(3)前記フィルム状の変形保持部材の大きさを前記芯材の大きさより小さくしたこと。
(4)真空断熱材が平面形状の状態から曲面半径10mm以上の被取付け部の曲げ部に設置可能な曲げた形状の状態とされたものであること。
(5)熱遮蔽性を有するアルミニウムで前記フィルム状の変形保持部材を形成したこと。
(6)前記芯材を脱気圧縮して前記変形保持部材と共に内袋の内部に収納し、この内袋を収納した前記外被材における内袋内を含む内部を減圧し密封してなること。
A more preferable specific configuration example in the first aspect of the present invention is as follows.
(1) The core material is formed of a plate-like organic fiber polymer, and the deformation holding member is formed in a film shape and installed inside the core material.
(2) The core material is formed of a plurality of layers of fiber polymers, and the deformation holding member is interposed between the layers of the fiber polymers.
(3) The size of the film-shaped deformation holding member is made smaller than the size of the core material.
(4) The vacuum heat insulating material is in a bent shape that can be installed in a bent portion of a mounted portion having a curved surface radius of 10 mm or more from a flat shape .
(5) The film-shaped deformation holding member is formed of aluminum having heat shielding properties.
(6) The core material is degassed and compressed, and stored in the inner bag together with the deformation holding member, and the inside including the inner bag in the outer jacket material storing the inner bag is decompressed and sealed. .

また、本発明の第2の態様は、ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材を外箱と内箱とによって形成される空間に配設すると共に、その真空断熱材の周囲の前記空間に発泡断熱材を充填してなる冷蔵庫において、前記芯材は結合剤を含まない無機もしくは有機の繊維重合体で形成すると共に、前記外被材内に前記芯材と共に変形し且つ曲げ荷重を加えて曲げたときの圧縮応力或いは引っ張り応力により該芯材とずれを生じさせ変形後の前記曲げ荷重が解除された該芯材形状を保持する変形保持部材を配置して前記真空断熱材を構成し、前記真空断熱材を前記外箱または前記内箱の変形部に沿って変形して配置したものである。 Further, according to the second aspect of the present invention, a vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties is disposed in a space formed by an outer box and an inner box, and the vacuum In the refrigerator in which the space around the heat insulating material is filled with the foam heat insulating material, the core material is formed of an inorganic or organic fiber polymer not containing a binder, and the core material is combined with the core material. by placing a compressive stress or tensile deformation holding member for holding the bending core material shaped load is released after deformation is produced core material and displaced by stress when bent by adding the deformed and bending load The vacuum heat insulating material is configured, and the vacuum heat insulating material is deformed and arranged along the deformed portion of the outer box or the inner box.

係る本発明の第2の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記外箱または前記内箱の2つの面が交差する角部に前記真空断熱材を折り曲げて設置したこと。
(2)前記内箱の角部の曲面半径の大きさが10mm以上であること。
(3)前記内箱の角部に沿うように折り曲げて設置した真空断熱材の端部と、前記外箱の平坦面を延びる真空断熱材の端部とを投影面で重合させたこと。
A more preferable specific configuration example in the second aspect of the present invention is as follows.
(1) The vacuum heat insulating material is bent and installed at a corner where two surfaces of the outer box or the inner box intersect.
(2) The magnitude | size of the curved-surface radius of the corner | angular part of the said inner box is 10 mm or more.
(3) The end of the vacuum heat insulating material that is bent and installed along the corner of the inner box and the end of the vacuum heat insulating material that extends the flat surface of the outer box are superposed on the projection surface.

本発明によれば、断熱性能を確保しつつ、被取付け部に沿って変形された形状を保持できる真空断熱材及びそれを用いた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which can hold | maintain the shape deform | transformed along the to-be-attached part, ensuring a heat insulation performance, and a refrigerator using the same can be provided.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。なお、本発明は、それぞれの実施形態を必要に応じて適宜に組み合わせることにより、さらに効果的なものとすることを含むものである。
(第1実施形態)
本発明の第1実施形態の真空断熱材及びそれを用いた冷蔵庫を図1から図5を用いて説明する。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent. In addition, this invention includes making it more effective by combining each embodiment suitably as needed.
(First embodiment)
The vacuum heat insulating material of 1st Embodiment of this invention and the refrigerator using the same are demonstrated using FIGS. 1-5.

まず、本実施形態の冷蔵庫の全体に関して図1を参照しながら説明する。図1は本発明の第1実施形態の真空断熱材及びそれを用いた冷蔵庫を示す縦断面図である。   First, the whole refrigerator of this embodiment is demonstrated, referring FIG. FIG. 1 is a longitudinal sectional view showing a vacuum heat insulating material according to a first embodiment of the present invention and a refrigerator using the same.

冷蔵庫は、箱状に形成された冷蔵庫の箱体20と、冷蔵庫の箱体20の前面開口を開閉する扉6とを備えて構成されている。冷蔵庫の箱体20は、外箱23と、内箱21と、外箱23と内箱21とによって形成される断熱壁中に設置された後述する真空断熱材30,80と、前記外箱23や内箱21および前記真空断熱材30,80と接着可能な、それ自身に接着力を有するウレタン等の発泡断熱材22とにより構成されている。この断熱壁は、底壁、両側壁、上壁及び背壁から構成されている。最下部の扉6は、外箱と、内箱と、外箱と内箱とによって形成される断熱壁中に設置された後述する真空断熱材80と、外箱や内箱および前記真空断熱材80と接着可能な、それ自身に接着力を有するウレタン等の発泡断熱材とにより構成されている。上部の扉6に真空断熱材80を設置しても良い。   The refrigerator includes a refrigerator box 20 formed in a box shape and a door 6 that opens and closes a front opening of the refrigerator box 20. The refrigerator box 20 includes an outer box 23, an inner box 21, vacuum heat insulating materials 30 and 80 (described later) installed in a heat insulating wall formed by the outer box 23 and the inner box 21, and the outer box 23. Further, it is constituted by a foam heat insulating material 22 such as urethane which can be bonded to the inner box 21 and the vacuum heat insulating materials 30 and 80 and has an adhesive force to itself. The heat insulating wall is composed of a bottom wall, side walls, a top wall, and a back wall. The lowermost door 6 includes an outer box, an inner box, a vacuum heat insulating material 80 described later installed in a heat insulating wall formed by the outer box and the inner box, the outer box, the inner box, and the vacuum heat insulating material. 80 and a foamed heat insulating material such as urethane having an adhesive force to itself. A vacuum heat insulating material 80 may be installed on the upper door 6.

また、冷蔵庫の箱体20は、温度の異なる貯蔵室10〜12を複数形成しており、各貯蔵室10〜12間には区画壁(図示せず)が設けられている。貯蔵室10は、温度の低い貯蔵室(具体的には冷凍室)であり、複数の貯蔵室における最下部に配置されている。貯蔵室11は、温度の低い貯蔵室10より温度が高い貯蔵室(具体的には野菜室)であり、複数の貯蔵室における中間部に配置されている。貯蔵室12は、温度の低い貯蔵室10より温度が高い貯蔵室(具体的には冷蔵室)であり、複数の貯蔵室における最上部に配置されている。貯蔵室10〜12は、圧縮機13、凝縮器14、減圧装置及び冷却器などからなる冷凍サイクル及び冷却ファンなどを用いて冷却される。   Moreover, the box 20 of the refrigerator forms a plurality of storage chambers 10 to 12 having different temperatures, and partition walls (not shown) are provided between the storage chambers 10 to 12. The storage room 10 is a low temperature storage room (specifically, a freezing room), and is arranged at the lowermost part of the plurality of storage rooms. The storage room 11 is a storage room (specifically a vegetable room) whose temperature is higher than that of the low temperature storage room 10, and is arranged in an intermediate part of the plurality of storage rooms. The storage room 12 is a storage room (specifically, a refrigeration room) having a higher temperature than the storage room 10 having a low temperature, and is disposed at the top of the plurality of storage rooms. The storage chambers 10 to 12 are cooled using a refrigeration cycle including a compressor 13, a condenser 14, a decompression device, a cooler, and the like, and a cooling fan.

内箱21は、貯蔵室10〜12を形成する壁面を構成するものであり、底面、両側面、上面及び背面からなっている。外箱23は、冷蔵庫の箱体20の外観を形成する壁面を構成するものであり、底面、両側面、上面及び背面からなっている。なお、冷蔵庫の箱体20の底壁の背面側には、圧縮機を収納する機械室を形成するための段部を有しており、内箱21及び外箱23の底面はこれに伴う段部を有している。   The inner box 21 constitutes a wall surface that forms the storage chambers 10 to 12 and includes a bottom surface, both side surfaces, a top surface, and a back surface. The outer box 23 constitutes a wall surface that forms the appearance of the box 20 of the refrigerator, and includes a bottom surface, both side surfaces, a top surface, and a back surface. In addition, it has the step part for forming the machine room which accommodates a compressor in the back side of the bottom wall of the box 20 of a refrigerator, and the bottom face of the inner box 21 and the outer box 23 is a step accompanying this. Has a part.

真空断熱材30は、断熱壁の曲げ部24に沿って配設した真空断熱材であり、曲げ部24の内箱21側に設置する場合は、内箱21の形状に沿って内箱21に密着するように設置してある。また、真空断熱材30は、曲げ部24の外箱23側に設置する場合は、外箱23の形状に沿って設置してある。   The vacuum heat insulating material 30 is a vacuum heat insulating material disposed along the bent portion 24 of the heat insulating wall. When the vacuum heat insulating material 30 is installed on the inner box 21 side of the bent portion 24, the vacuum heat insulating material 30 is formed on the inner box 21 along the shape of the inner box 21. It is installed in close contact. Further, when the vacuum heat insulating material 30 is installed on the outer box 23 side of the bent portion 24, it is installed along the shape of the outer box 23.

前記断熱壁の曲げ部24は断熱壁の変形部を構成する部分である。そして、断熱壁の変形部は、内箱21または外箱23における二つの面が交差する角部である曲げ部24の他に、内箱21または外箱23における凹凸部などである変形部が含まれる。   The bent portion 24 of the heat insulating wall is a portion constituting a deformed portion of the heat insulating wall. And the deformation | transformation part which is an uneven | corrugated | grooved part etc. in the inner box 21 or the outer box 23 other than the bending part 24 which is a corner | angular part where the two surfaces in the inner box 21 or the outer box 23 cross | intersect the deformation | transformation part of the heat insulation wall. included.

真空断熱材80は、断熱壁の平面部に配設した真空断熱材であり、図3にて後述するように、真空断熱材30を折り曲げることをしないで、平面形状のままで、断熱壁内に配設した真空断熱材である。外箱23の一面(背面)に沿って設置された真空断熱材80の端部は、内箱21の一面(上面)から曲げ部24を経て他の面(背面)に沿って延びる真空断熱材30の端部と投影面で重合している。係る構成によって、発泡断熱材22の充填性を確保しつつ、真空断熱材80、30の設置面積を増大することができ、断熱性能を向上することができる。   The vacuum heat insulating material 80 is a vacuum heat insulating material disposed on the flat surface portion of the heat insulating wall, and as described later with reference to FIG. It is the vacuum heat insulating material arrange | positioned. An end portion of the vacuum heat insulating material 80 installed along one surface (back surface) of the outer box 23 extends from the one surface (upper surface) of the inner box 21 through the bent portion 24 along the other surface (back surface). It is superposed at the end of 30 and the projection surface. With such a configuration, the installation area of the vacuum heat insulating materials 80 and 30 can be increased while ensuring the filling property of the foam heat insulating material 22, and the heat insulating performance can be improved.

次に、本実施形態における曲げ部24への真空断熱材の設置例を図2により説明する。図2は図1のC部を拡大した断面図である。図2では真空断熱材30の理解を容易にするため、真空断熱材30を図1より強調して示してある。   Next, an installation example of the vacuum heat insulating material on the bending portion 24 in the present embodiment will be described with reference to FIG. FIG. 2 is an enlarged cross-sectional view of a portion C in FIG. In FIG. 2, in order to facilitate understanding of the vacuum heat insulating material 30, the vacuum heat insulating material 30 is emphasized from FIG.

図2において、真空断熱材30は断熱壁の曲げ部24の内箱面21aの形状に沿って該内箱面21aに密着するように配設された真空断熱材であり、ガスバリア性を有する外被材31中に、結合剤を含まない無機繊維重合体もしくは有機繊維重合体にて形成された芯材を32及びガスを吸着するゲッタ剤と共に収納し、所定の真空度にて真空封止して構成してある。無機繊維重合体もしくは有機繊維重合体は、平均繊維径3μmから5μmの汎用性の高いものが用いられており、従来技術3の真空断熱材に用いられる繊維径分布のピーク値が1μm以下、0.1μm以上の超極細無機繊維と比較して安価なものとすることができる。   In FIG. 2, a vacuum heat insulating material 30 is a vacuum heat insulating material disposed so as to be in close contact with the inner box surface 21a along the shape of the inner box surface 21a of the bent portion 24 of the heat insulating wall. A core material formed of an inorganic fiber polymer or organic fiber polymer that does not contain a binder is housed in the material 31 together with 32 and a getter agent that adsorbs gas, and is vacuum-sealed at a predetermined degree of vacuum. Configured. As the inorganic fiber polymer or the organic fiber polymer, a highly versatile polymer having an average fiber diameter of 3 μm to 5 μm is used, and the peak value of the fiber diameter distribution used in the vacuum heat insulating material of the prior art 3 is 1 μm or less, 0 It can be made cheaper than ultra fine inorganic fibers of 0.1 μm or more.

真空断熱材30は、その製造時は、真空断熱材30自身の生産性の向上が図れるように、図3にて後述するように略平面形状として製造される。そして、略平面形状として製造された真空断熱材30を冷蔵庫の箱体20に組み込む際には、前述したように、曲げ部24の内箱面21aの形状に沿って密着するように、真空断熱材30を曲げた状態で設置する。   The vacuum heat insulating material 30 is manufactured in a substantially planar shape as described later with reference to FIG. 3 so that the productivity of the vacuum heat insulating material 30 itself can be improved at the time of manufacturing. And when incorporating the vacuum heat insulating material 30 manufactured as a substantially planar shape into the box body 20 of the refrigerator, as described above, the vacuum heat insulation is performed so as to closely adhere to the shape of the inner box surface 21a of the bent portion 24. The material 30 is installed in a bent state.

従って、本実施形態においては、略平面形状として製造された真空断熱材を、図2に示すように、所定の曲面半径R1で、所定の角度Θ1に曲げられるように、且つ、曲げた形状を保持できるように、無機繊維重合体もしくは有機繊維重合体にて形成された芯材32中に、例えば、アルミニウム等の金属製或いは、ポリエチレンテレフタレート樹脂やポリアミド樹脂等の合成樹脂製の変形保持部材であるフィルム33を介在させてある。   Therefore, in this embodiment, the vacuum heat insulating material manufactured as a substantially planar shape is bent at a predetermined curved surface radius R1 and at a predetermined angle Θ1 as shown in FIG. In the core material 32 formed of an inorganic fiber polymer or an organic fiber polymer so that it can be held, for example, with a deformation holding member made of metal such as aluminum or synthetic resin such as polyethylene terephthalate resin or polyamide resin A film 33 is interposed.

変形保持部材であるフィルム33を心材32内に有する構成としたことによって、このフィルム33が、いわば骨材として機能し、真空断熱材30の形状が保持される。   By having the structure which has the film 33 which is a deformation | transformation holding member in the core material 32, this film 33 functions as an aggregate so to speak, and the shape of the vacuum heat insulating material 30 is hold | maintained.

フィルム33を芯材32中に介在させる方式例としては、図2に示すように、所定の厚さt1寸法を有する芯材32中に、該t1寸法より厚さの小さいt2寸法若しくはt3寸法の複数の層32a、32bを作り、該複数の層32aと32bとの間に、フィルム33を設置することにより、真空断熱材30を所定の曲面半径R1で、所定の角度Θ1に曲げても、芯材32の層32a、32bを構成する無機繊維重合体もしくは有機繊維重合体が破壊する程度が少なく、且つ、該無機繊維重合体もしくは有機繊維重合体による外被材31の損傷が少なくなるように構成されている。   As an example of a method of interposing the film 33 in the core material 32, as shown in FIG. 2, the core material 32 having a predetermined thickness t1 has a t2 size or a t3 size smaller than the t1 size. Even if the vacuum heat insulating material 30 is bent at a predetermined curved surface radius R1 and a predetermined angle Θ1 by making a plurality of layers 32a and 32b and installing a film 33 between the plurality of layers 32a and 32b, The inorganic fiber polymer or organic fiber polymer constituting the layers 32a and 32b of the core material 32 is less damaged, and damage to the jacket material 31 by the inorganic fiber polymer or organic fiber polymer is reduced. It is configured.

つまり、図2において、前述したフィルム33を設置しない場合は、厚さt1寸法を有する芯材32を曲げた場合、その内面半径R1と、外面半径R3とが成す曲面の長さL1寸法(L1=2π×R1×Θ1/360)と、L3寸法(L3=2π×(R1+t1)×Θ1/360)との差ΔL3寸法(ΔL3=L3−L1)分が、その内面半径R1の部分において強制的に圧縮されるか、或いは、その外面半径R3の部分において強制的に引っ張り力を受けるので、芯材32を形成する無機繊維重合体もしくは有機繊維重合体が有る程度の割合で破壊してしまう恐れがある。   That is, in FIG. 2, when the film 33 described above is not installed, when the core member 32 having the thickness t1 is bent, the length L1 of the curved surface formed by the inner surface radius R1 and the outer surface radius R3 (L1). = 2π × R1 × Θ1 / 360) and the L3 size (L3 = 2π × (R1 + t1) × Θ1 / 360) are forcibly a difference ΔL3 size (ΔL3 = L3−L1) in the inner radius R1. Or the outer surface radius R3 is forcibly subjected to a tensile force, so that the inorganic fiber polymer or organic fiber polymer forming the core member 32 may be broken at a certain rate. There is.

そこで、本実施形態においては、所定の厚さt1寸法を有する芯材32が、該t1寸法より厚さの小さいt2寸法若しくはt3寸法の複数の層32aと32bとに、フィルム33により分離されているので、芯材32を曲げた場合には、前記複数の層32a或いは32bがそれぞれ単独に曲がるので、層32aにおいては、その内面半径R1と、外面半径R2とが成す曲面の長さL1寸法(L1=2π×R1×Θ1/360)と、L2寸法(L2=2π×(R1+t2)×Θ1/360)との差ΔL1寸法(ΔL1=L2−L1)分が、前述したΔL3寸法より小さく成り、また、層32bにおいては、その内面半径R2と外面半径R3とが成す曲面の長さL2寸法(L2=2π×R2×Θ1/360)と、L3寸法(L3=2π×(R2+t3)×Θ1/360)との差ΔL2寸法(ΔL2=L3−L2)分が、前述したΔL3寸法より小さく成る。これによって、夫々の内面半径R1の部分或いは外面半径R2の部分において強制的に圧縮される圧縮量が、前述したΔL3寸法時より小さくなるので、或いは、その内面半径R2の部分或いは外面半径R3の部分において強制的に引っ張られる量が、前述したΔL3寸法時より少なくなるので、層32aや層32bを形成する無機繊維重合体もしくは有機繊維重合体が破壊する程度が少なくなり、該無機繊維重合体もしくは有機繊維重合体による外被材31の損傷が少なくなるように構成されている。   Therefore, in the present embodiment, the core material 32 having a predetermined thickness t1 is separated by the film 33 into a plurality of layers 32a and 32b having a thickness t2 or t3 smaller than the thickness t1. Therefore, when the core member 32 is bent, the plurality of layers 32a or 32b are individually bent. Therefore, in the layer 32a, the length L1 of the curved surface formed by the inner surface radius R1 and the outer surface radius R2 is measured. The difference ΔL1 size (ΔL1 = L2−L1) between (L1 = 2π × R1 × Θ1 / 360) and the L2 size (L2 = 2π × (R1 + t2) × Θ1 / 360) is smaller than the above-described ΔL3 size. In the layer 32b, the length L2 of the curved surface formed by the inner surface radius R2 and the outer surface radius R3 (L2 = 2π × R2 × Θ1 / 360) and the L3 size (L3 = 2π × (R2 + t3) × Θ1 The difference between the 360) [Delta] L2 dimension (ΔL2 = L3-L2) component is smaller than ΔL3 dimensions described above. As a result, the amount of compression that is forcibly compressed in each inner radius R1 portion or outer radius R2 portion becomes smaller than that in the above-described dimension ΔL3, or the inner radius R2 portion or outer radius R3 becomes smaller. Since the amount that is forcibly pulled in the portion is smaller than that in the above-described dimension ΔL3, the degree of destruction of the inorganic fiber polymer or organic fiber polymer forming the layer 32a and the layer 32b is reduced, and the inorganic fiber polymer is reduced. Or it is comprised so that the damage of the jacket material 31 by an organic fiber polymer may decrease.

また、芯材32の厚さt1寸法より厚さの小さい層32aと32bとを形成し、該層間に、これらの層を形成する無機繊維重合体もしくは有機繊維重合体との間で、曲げたときの圧縮応力或いは引っ張り応力により、ずれを生じることのできるフィルム状部材、例えば、アルミニウム等の金属製或いはポリエチレンテレフタレート樹脂やポリアミド樹脂等の合成樹脂製のフィルム33を介在させることにより、前述した所定の曲面半径R1で、所定の角度Θ1に曲げるときに、芯材32の層32a、32bと、フィルム33とが互いにずれることにより、所定の曲げ荷重に対する、芯材32の弾性変形量が大きくなるように構成されている。   Further, the layers 32a and 32b having a thickness smaller than the thickness t1 of the core material 32 are formed, and the layers are bent between the inorganic fiber polymer or the organic fiber polymer forming these layers. A film-like member that can be displaced due to compression stress or tensile stress, for example, a film 33 made of a metal such as aluminum or a synthetic resin such as polyethylene terephthalate resin or polyamide resin is interposed. When the film is bent to a predetermined angle Θ1 with a curved surface radius R1, the amount of elastic deformation of the core material 32 with respect to a predetermined bending load increases because the layers 32a and 32b of the core material 32 and the film 33 are displaced from each other. It is configured as follows.

なお、フィルム33と層32a或いは32bとのずれを抑制しないためには、図2に示す曲面部R1、R2、R3より、フィルム33のはみ出す寸法L4、L5を零より大きく設定する事が望ましい。   In order not to suppress the deviation between the film 33 and the layer 32a or 32b, it is desirable to set the dimensions L4 and L5 that protrude from the curved surface portions R1, R2, and R3 shown in FIG. 2 to be larger than zero.

次に、曲げる前の真空断熱材30を図3により説明する。図3は図2の真空断熱材30の曲げる前の状態を示す断面図である。   Next, the vacuum heat insulating material 30 before bending will be described with reference to FIG. FIG. 3 is a cross-sectional view showing a state before the vacuum heat insulating material 30 of FIG. 2 is bent.

図3において、真空断熱材30は、真空断熱材30自身の生産性の向上を図れるように、所定の面30aを略平面形状として製造される。図中のW3寸法は、前述したフィルム33の大きさを示すものであり、該フィルム33の大きさ寸法W3を、芯材32の大きさ寸法W1より小さくすることにより、フィルム33と外被材31との間にヒートブリッジが生じ難いように構成してある。つまり、真空断熱材30の外被材31は、ガスバリア性を向上するために、通常はアルミニウム等の金属箔或いは金属蒸着層を中間層として、その表裏に合成樹脂等のフィルムをラミネートした複合ラミネートフィルムを使用してあるので、外被材31とフィルム33との離間距離が小さいと、金属箔或いは金属蒸着層の熱伝導性により該部でヒートブリッジが生じる恐れがある。従って、本実施形態においては、前記フィルム33と前記外被材31との間に、前記ヒートブリッジが生じ難い寸法W2、W4を形成するように構成してある。   In FIG. 3, the vacuum heat insulating material 30 is manufactured with a predetermined surface 30 a having a substantially planar shape so that the productivity of the vacuum heat insulating material 30 itself can be improved. The dimension W3 in the figure indicates the size of the film 33 described above. By making the dimension W3 of the film 33 smaller than the dimension W1 of the core material 32, the film 33 and the jacket material are shown. 31 is configured so that a heat bridge is less likely to occur. In other words, the envelope 31 of the vacuum heat insulating material 30 is a composite laminate in which a metal foil such as aluminum or a metal vapor deposition layer is usually used as an intermediate layer, and a film such as a synthetic resin is laminated on the front and back surfaces in order to improve gas barrier properties. Since a film is used, if the separation distance between the jacket material 31 and the film 33 is small, there is a possibility that a heat bridge may occur at the portion due to the thermal conductivity of the metal foil or the metal vapor deposition layer. Accordingly, in the present embodiment, the dimensions W <b> 2 and W <b> 4 are formed between the film 33 and the jacket material 31 so that the heat bridge is less likely to occur.

なお、フィルム33に、熱反射性を有するアルミニウム等の金属フィルムを使用する場合は、フィルム33の大きさ寸法W3が大きいほど熱反射効果が大きいので、その場合は、上記W2、W4寸法を確保しつつ、W3寸法を出来るだけ大きく設定することが望ましい。   When a metal film such as aluminum having heat reflectivity is used for the film 33, the larger the size dimension W3 of the film 33, the greater the heat reflection effect. In that case, the dimensions W2 and W4 are ensured. However, it is desirable to set the W3 dimension as large as possible.

次に、真空断熱材の変形量と曲げ荷重との関係について図4により説明する。図4は本実施形態及び比較例の真空断熱材の曲げ特性説明図であり、例えば、前述した図3の略平面形状を成す真空断熱材を、図2に示したように曲げた場合における特性説明図である。図4において、縦軸は真空断熱材を曲げるために付加する曲げ荷重を示し、横軸はその変形量を、例えば、図2にて前述したΔL3寸法(図2の内面半径R1と外面半径R3とが成す曲面の長さの差)相当を示す。   Next, the relationship between the amount of deformation of the vacuum heat insulating material and the bending load will be described with reference to FIG. FIG. 4 is an explanatory view of bending characteristics of the vacuum heat insulating materials of the present embodiment and the comparative example. For example, the characteristics when the vacuum heat insulating material having the substantially planar shape of FIG. 3 described above is bent as shown in FIG. It is explanatory drawing. In FIG. 4, the vertical axis represents the bending load applied to bend the vacuum heat insulating material, and the horizontal axis represents the amount of deformation, for example, the ΔL3 dimension described above with reference to FIG. 2 (inner radius R1 and outer radius R3 in FIG. 2). Difference in the length of the curved surface formed by

図4中の点線にて示す曲線Aはフィルムを有しない比較例の真空断熱材を曲げた場合の特性であり、初期荷重下においては、曲げ荷重と変形量がほぼ比例する比例曲線A1を描き、ある荷重N2を超えると、芯材を形成する無機繊維重合体もしくは有機繊維重合体の一部に破壊が生じて変形量が急増する曲線A2を描く。そして、それ以上の曲げ荷重を加えると、繊維がほとんど破壊するため、微荷重の増加により変形量が増大する曲線A3を描く。   A curve A shown by a dotted line in FIG. 4 is a characteristic when the vacuum heat insulating material of the comparative example having no film is bent. Under an initial load, a proportional curve A1 in which the bending load and the deformation amount are approximately proportional is drawn. When a certain load N2 is exceeded, a curve A2 is drawn in which a part of the inorganic fiber polymer or organic fiber polymer that forms the core material breaks down and the amount of deformation rapidly increases. When a bending load of more than that is applied, the fiber is almost broken, so that a curve A3 in which the amount of deformation increases due to an increase in the fine load is drawn.

一方、図4中の実線にて示す曲線Bは本実施形態の真空断熱材30を曲げた場合の特性であり、例えば、図2にて前述したように、芯材32中に複数の層を形成し、該層間に前述したフィルム33を介在させた場合である。図4に示すように、初期荷重下においては、曲げ荷重と変形量がほぼ比例する比例曲線B1を描くが、その勾配は前述した曲線A1よりなだらかに成る。つまり、所定の曲げ荷重に対する変形量が大きく成る。これは、前述したフィルム33により、芯材の厚さが、芯材の厚さより薄い複数層に分割された効果であり、その変形量(δ2)は、発明者らの実験によれば、従来の変形量(δ1)より約2割程度増加した。   On the other hand, a curve B shown by a solid line in FIG. 4 is a characteristic when the vacuum heat insulating material 30 of the present embodiment is bent. For example, as described above with reference to FIG. In this case, the film 33 described above is interposed between the layers. As shown in FIG. 4, under an initial load, a proportional curve B1 in which the bending load and the amount of deformation are approximately proportional is drawn, and the gradient is gentler than the curve A1 described above. That is, the amount of deformation for a predetermined bending load increases. This is an effect in which the thickness of the core material is divided into a plurality of layers thinner than the thickness of the core material by the film 33 described above, and the deformation amount (δ2) is based on the experiments of the inventors. The amount of deformation (δ1) increased by about 20%.

なお、本実施形態の真空断熱材30においても、曲げ荷重を増加して、ある荷重N1を超えると、芯材32を形成する無機繊維重合体もしくは有機繊維重合体の一部に破壊が生じて変形量が急増する曲線B2を描く。そして、それ以上の曲げ荷重を加えると、繊維がほとんど破壊するため、微荷重の増加により変形量が増大する曲線B3を描く。このように、芯材32を形成する無機繊維重合体もしくは有機繊維重合体に破壊が生じると、該繊維が形成していた真空空間も破壊されて、繊維同士の接触が増加するので、断熱性能の低下を招く恐れがあるのは、従来の真空断熱材と同様である。   In addition, also in the vacuum heat insulating material 30 of this embodiment, when the bending load is increased and exceeds a certain load N1, the inorganic fiber polymer or the organic fiber polymer forming the core material 32 is partially broken. A curve B2 in which the deformation amount increases rapidly is drawn. When a bending load of more than that is applied, the fiber is almost broken, so that a curve B3 in which the amount of deformation increases due to an increase in the fine load is drawn. As described above, when the inorganic fiber polymer or the organic fiber polymer forming the core material 32 is broken, the vacuum space formed by the fiber is also broken and the contact between the fibers is increased. It is the same as that of the conventional vacuum heat insulating material that may cause a decrease in the temperature.

従って、本実施形態においては、図2にて説明したΔL1寸法(ΔL1=L2−L1)やΔL2寸法(ΔL2=L3−L2)を上記した変形量(δ2)以下に設定するのが望ましい。   Therefore, in the present embodiment, it is desirable to set the ΔL1 dimension (ΔL1 = L2-L1) and the ΔL2 dimension (ΔL2 = L3-L2) described in FIG. 2 to be equal to or less than the above-described deformation amount (δ2).

上述した実施形態によれば、ガスバリア性を有する外被材31中に、芯材32を真空封止した真空断熱材30を曲げ部24に沿って配設し、芯材32を無機繊維重合体もしくは有機繊維重合体にて形成し、フィルム33を芯材32の厚みの中で、しかも、曲げ部24に対向するように介在させたので、真空断熱材30を曲げるときに、所定の曲げ荷重に対する、芯材32の弾性変形量が大きくなり、且つ、芯材32を構成する無機繊維重合体もしくは有機繊維重合体が破壊する程度が少ないので、該無機繊維重合体もしくは有機繊維重合体による外被材31の損傷が少なくなり、優れた断熱性能を保持したまま、形状折り曲げ性を有する真空断熱材30を提供できる。なお、真空断熱材30を曲げたときに、該曲げ部の、芯材32とフィルム33とが互いにずれるようになるので、曲げた状態を保持する形状保持性を有する真空断熱材30を提供できる。   According to the above-described embodiment, the vacuum heat insulating material 30 in which the core material 32 is vacuum-sealed is disposed along the bent portion 24 in the jacket material 31 having gas barrier properties, and the core material 32 is made of the inorganic fiber polymer. Alternatively, it is formed of an organic fiber polymer, and the film 33 is interposed in the thickness of the core member 32 so as to face the bending portion 24. Therefore, when the vacuum heat insulating material 30 is bent, a predetermined bending load is applied. In contrast, the amount of elastic deformation of the core material 32 increases, and the inorganic fiber polymer or the organic fiber polymer constituting the core material 32 is less damaged. It is possible to provide the vacuum heat insulating material 30 having the shape bendability while maintaining the excellent heat insulating performance with less damage to the workpiece 31. In addition, when the vacuum heat insulating material 30 is bent, the core material 32 and the film 33 of the bent portion are displaced from each other. Therefore, it is possible to provide the vacuum heat insulating material 30 having shape retaining property that holds the bent state. .

また、芯材32を複数層32a、32bの無機繊維重合体もしくは有機繊維重合体にて構成し、その層間にフィルム33を介在させたので、真空断熱材30を曲げるときに、該曲げ部の、無機繊維重合体もしくは有機繊維重合体で構成された層32a、32bと、フィルム33とが互いにずれるようになるので、形状折り曲げ性と形状保持性を有する真空断熱材30を提供できる。   Further, since the core material 32 is composed of an inorganic fiber polymer or an organic fiber polymer of a plurality of layers 32a and 32b and the film 33 is interposed between the layers, when the vacuum heat insulating material 30 is bent, Since the layers 32a and 32b made of an inorganic fiber polymer or an organic fiber polymer and the film 33 are displaced from each other, the vacuum heat insulating material 30 having a shape bendability and a shape retainability can be provided.

また、芯材32を複数層32a、32bで構成し、その層間にフィルム33を介在させると共に、フィルム33の大きさを、芯材32の大きさより小さくしたので、ガスバリア性を有する外被材31中に設けられた熱伝導性の良い部分と、フィルム33との間にヒートブリッジが発生し難いので、優れた断熱性能を保持したまま、形状折り曲げ性と形状保持性を有する真空断熱材を提供できる。   Further, the core material 32 is composed of a plurality of layers 32a and 32b, the film 33 is interposed between the layers, and the size of the film 33 is made smaller than the size of the core material 32. Therefore, the jacket material 31 having gas barrier properties is provided. Since a heat bridge is unlikely to occur between the portion having good thermal conductivity provided in the film 33 and the film 33, a vacuum heat insulating material having a shape bendability and a shape retainability is provided while maintaining an excellent heat insulation performance. it can.

また、芯材32を、結合剤を含まない無機繊維重合体もしくは有機繊維重合体にて形成したので、真空断熱材を曲げるときに、芯材が弾性変形する変形量が大きいので、形状折り曲げ性と形状保持性に優れた真空断熱材を提供できる。   In addition, since the core material 32 is formed of an inorganic fiber polymer or an organic fiber polymer that does not contain a binder, when the vacuum heat insulating material is bent, the amount of deformation that the core material elastically deforms is large. It is possible to provide a vacuum heat insulating material excellent in shape retention.

また、フィルム33を、熱遮蔽性を有するアルミニウムとしたので、該アルミニウムフィルムが熱遮断と熱反射を行うこととなり、優れた断熱性能を保持したまま、形状折り曲げ性と形状保持性を有する真空断熱材30を提供できる。   In addition, since the film 33 is made of aluminum having heat shielding properties, the aluminum film performs heat shielding and heat reflection, and vacuum insulation having shape folding and shape retaining properties while maintaining excellent heat insulation performance. The material 30 can be provided.

また、ガスバリア性を有する外被材31中に芯材32を真空封止した真空断熱材30を曲げ部に沿って配設した冷蔵庫において、曲げ部の曲面半径の大きさを10mm以上としたので、真空断熱材30を曲げるときに、芯材32を構成する無機繊維重合体もしくは有機繊維重合体が破壊する程度が少ないので、該無機繊維重合体もしくは有機繊維重合体による外被材31の損傷が少ないので、長期間優れた断熱性能を保持する冷蔵庫を提供できる。   Further, in the refrigerator in which the vacuum heat insulating material 30 in which the core material 32 is vacuum-sealed in the jacket material 31 having gas barrier properties is disposed along the bent portion, the curved surface radius of the bent portion is set to 10 mm or more. When the vacuum heat insulating material 30 is bent, the inorganic fiber polymer or the organic fiber polymer constituting the core material 32 is less likely to be destroyed, so that the covering material 31 is damaged by the inorganic fiber polymer or the organic fiber polymer. Therefore, it is possible to provide a refrigerator that retains excellent heat insulation performance for a long period of time.

また、ガスバリア性を有する外被材31中に芯材32を真空封止した真空断熱材30を曲げ部に沿って配設した冷蔵庫において、芯材32を無機繊維重合体もしくは有機繊維重合体で形成し、フィルム33を芯材32の厚みの中で、しかも、曲げ部に対向するように介在させたので、優れた断熱性能を保持したまま、曲げ部にも効率よく真空断熱材30を設置できるので、省エネ上優れた冷蔵庫を提供できる。   Further, in the refrigerator in which the vacuum heat insulating material 30 in which the core material 32 is vacuum-sealed is disposed along the bent portion in the jacket material 31 having gas barrier properties, the core material 32 is made of an inorganic fiber polymer or an organic fiber polymer. Since the film 33 is interposed in the thickness of the core member 32 so as to face the bent portion, the vacuum heat insulating material 30 is efficiently installed in the bent portion while maintaining excellent heat insulating performance. As a result, it is possible to provide an energy-saving refrigerator.

次に、表1及び図5を参照しながら説明する。表1は本実施形態の真空断熱材の実験例1〜3及びその比較例1の各種試験データ説明表であり、図5は表1に示す真空断熱材の熱漏洩量を測定した断熱壁の説明図である。   Next, description will be made with reference to Table 1 and FIG. Table 1 is an explanatory table of various test data of Experimental Examples 1 to 3 and Comparative Example 1 of the vacuum heat insulating material of this embodiment, and FIG. It is explanatory drawing.

図5において、50は冷蔵庫等の箱体の一部としてモデル的に作製した略逆L字状に形成した断熱壁であり、曲げ角度Θ2をほぼ直角にした曲げ部51aの曲げ半径R4を有する内箱51と、外箱53と、該外箱53と内箱51とによって形成される断熱壁中に設けた硬質ウレタン52と、後述する真空断熱材パネル40と、により構成してある。真空断熱材パネル40は、ガスバリア性を有する外被材41中に、平均繊維径3μmから5μmのグラスウール{JISA9504の「人造鉱物繊維保温材」}から成る芯材42を所定の真空度にて真空封止して構成してあり、芯材42中に、表1で後述するフィルム43を挟んで形成してある。54は前記断熱壁50を設置して、前記断熱壁50の熱漏洩量を測定できるように構成された測定冶具である。   In FIG. 5, reference numeral 50 denotes a heat insulating wall formed in a substantially inverted L shape as a model of a box of a refrigerator or the like, and has a bending radius R4 of a bending portion 51a having a bending angle Θ2 substantially perpendicular. An inner box 51, an outer box 53, a hard urethane 52 provided in a heat insulating wall formed by the outer box 53 and the inner box 51, and a vacuum heat insulating material panel 40 described later are configured. The vacuum heat insulating material panel 40 vacuums a core material 42 made of glass wool {JIS M 9504 “artificial mineral fiber heat insulating material”} having an average fiber diameter of 3 μm to 5 μm in a jacket 41 having a gas barrier property at a predetermined degree of vacuum. It is configured to be sealed, and is formed by sandwiching a film 43 described later in Table 1 in the core material 42. Reference numeral 54 denotes a measuring jig configured to install the heat insulating wall 50 and measure the amount of heat leakage of the heat insulating wall 50.

図5における真空断熱材パネル40内に介在させたフィルム43を変化した場合の実験例1〜3及びフィルムのない比較例1について表1により説明する。なお、表1に示す数値は、何れも、図5中のL6寸法を140mm、t6寸法を50mmとし、真空断熱材40の大きさを250mm×250mmとし、該真空断熱材の厚さを8mmから10mmとした時の実験データ値である。   The experimental examples 1 to 3 and the comparative example 1 without a film when the film 43 interposed in the vacuum heat insulating material panel 40 in FIG. In addition, all the numerical values shown in Table 1 are such that the L6 dimension in FIG. 5 is 140 mm, the t6 dimension is 50 mm, the size of the vacuum heat insulating material 40 is 250 mm × 250 mm, and the thickness of the vacuum heat insulating material is from 8 mm. It is an experimental data value when it is 10 mm.

Figure 0004580843
Figure 0004580843

(実験例1)
実験例1では、真空断熱材40の芯材として、平均繊維径3μmから5μmの結合剤を含まないグラスウール中に、大きさ200mm×200mm、厚さ30μmのアルミニウム製フィルムを挟み、更に180℃で1時間のエージング処理を行って作製した。その後、ガスバリア性を有する外被材41中にガスを吸着するゲッタ剤(モレキュラ−シ−ブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.3Paになるまで排気した後、外被材41の端部をヒートシールで封止した。なお、実験例1〜3は、第1実施形態に適用する具体的な形態である。
(Experimental example 1)
In Experimental Example 1, an aluminum film having a size of 200 mm × 200 mm and a thickness of 30 μm is sandwiched between glass wool not containing a binder having an average fiber diameter of 3 μm to 5 μm as a core material of the vacuum heat insulating material 40, and further at 180 ° C. It was produced by performing an aging treatment for 1 hour. After that, a getter agent (molecular sieves 13X / activated carbon) that adsorbs gas is filled in the jacket material 41 having gas barrier properties, and 10 minutes by a rotary pump of a vacuum packaging machine, 10 minutes by a diffusion pump, and a vacuum heat insulating material After exhausting until the internal pressure became 1.3 Pa, the end portion of the covering material 41 was sealed with heat sealing. Experimental Examples 1 to 3 are specific forms applied to the first embodiment.

このようにして得られた真空断熱材40の熱伝導率について、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。また、形状折り曲げ性は、図5に示した曲げ部の曲げ半径R4を10mmになるように、曲げ試験機を用いて、試験条件(速度:10mm/min、支点間距離:100mm(支持台及び圧子はΦ20mmの丸棒)、変位量:80mm)での最大曲げ荷重(N)を測定し評価した。更に、形状保持性は4h経過後の保持状態を見た。その結果、形状折り曲げ性は96Nで、形状保持性は良好であった。また、熱伝導率が2.6mW/m・Kを示し、真空断熱材40を挿入しなかった場合と比べて、熱漏洩量で28%低減できるデータを得た。   The thermal conductivity of the vacuum heat insulating material 40 thus obtained was measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. Further, the shape bendability is determined by using a bending tester so that the bending radius R4 of the bending portion shown in FIG. 5 is 10 mm (speed: 10 mm / min, distance between fulcrums: 100 mm) The indenter was a round bar of Φ20 mm), and the maximum bending load (N) at a displacement amount: 80 mm) was measured and evaluated. Further, the shape retention was observed after 4 hours. As a result, the shape bendability was 96 N, and the shape retention was good. Moreover, the heat conductivity was 2.6 mW / m · K, and data that could reduce the amount of heat leakage by 28% compared to the case where the vacuum heat insulating material 40 was not inserted were obtained.

このことから、実験例1の形態の真空断熱材は、形状折り曲げ性と形状保持性と熱伝導率の向上の併立化が図れ、冷蔵庫の箱体に実験例1の形態の真空断熱材を挿入することにより熱漏洩量の低減及び省エネ化が期待できる。
(実験例2)
実験例2の真空断熱材40を実験例1と同様に作製した。実験例2の真空断熱材40の芯材として、平均繊維径3μmから5μmの結合剤を含まないグラスウール中に、大きさ200mm×200mm、厚さ50μmのポリエチレンテレフタレート製フィルムを挟み、更に180℃で1時間のエージング処理を行って作製した。その後、ガスバリア性を有する外被材41中にガスを吸着するゲッタ剤(モレキュラ−シ−ブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.3Paになるまで排気した後、外被材41の端部をヒートシールで封止した。
From this, the vacuum heat insulating material in the form of Experimental Example 1 can achieve the simultaneous improvement of shape bendability, shape retention and thermal conductivity, and the vacuum heat insulating material in the form of Experimental Example 1 is inserted into the refrigerator box. By doing so, reduction of heat leakage and energy saving can be expected.
(Experimental example 2)
The vacuum heat insulating material 40 of Experimental Example 2 was produced in the same manner as Experimental Example 1. As a core material of the vacuum heat insulating material 40 of Experimental Example 2, a polyethylene terephthalate film having a size of 200 mm × 200 mm and a thickness of 50 μm is sandwiched in glass wool not containing a binder having an average fiber diameter of 3 μm to 5 μm, and further at 180 ° C. It was produced by performing an aging treatment for 1 hour. After that, a getter agent (molecular sieves 13X / activated carbon) that adsorbs gas is filled in the jacket material 41 having gas barrier properties, and 10 minutes by a rotary pump of a vacuum packaging machine, 10 minutes by a diffusion pump, and a vacuum heat insulating material After exhausting until the internal pressure became 1.3 Pa, the end portion of the covering material 41 was sealed with heat sealing.

このようにして得られた実験例2の真空断熱材40について、実験例1と同様の条件で測定した。その結果、形状折り曲げ性は95Nで、形状保持性は良好であった。また、熱伝導率が2.8mW/m・Kを示し、真空断熱材40を挿入しなかった場合と比べて、熱漏洩量で26%低減できるデータを得た。   The vacuum heat insulating material 40 of Experimental Example 2 obtained in this way was measured under the same conditions as in Experimental Example 1. As a result, the shape bendability was 95 N, and the shape retention was good. Moreover, the thermal conductivity was 2.8 mW / m · K, and data was obtained that could reduce the amount of heat leakage by 26% compared to the case where the vacuum heat insulating material 40 was not inserted.

このことから、実験例2の真空断熱材は形状折り曲げ性と形状保持性と熱伝導率の向上の併立化が図れ、冷蔵庫の箱体に実験例2の真空断熱材を挿入することにより熱漏洩量の低減及び省エネ化が期待できる。
(実験例3)
実験例3の真空断熱材40を実験例1と同様に作製した。実験例3の真空断熱材40の芯材として、平均繊維径3μmから5μmの結合剤を含まないグラスウール中に、大きさ200mm×200mm、厚さ50μmのポリアミド樹脂製フィルムを挟み、更に180℃で1時間のエージング処理を行って作製した。その後、ガスバリア性を有する外被材41中にガスを吸着するゲッタ剤(モレキュラ−シ−ブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.3Paになるまで排気した後、外被材41の端部をヒートシールで封止した。
Therefore, the vacuum heat insulating material of Experimental Example 2 can improve the shape bendability, shape retention, and thermal conductivity, and heat leakage can be achieved by inserting the vacuum heat insulating material of Experimental Example 2 into the refrigerator box. Reduction of amount and energy saving can be expected.
(Experimental example 3)
The vacuum heat insulating material 40 of Experimental Example 3 was produced in the same manner as Experimental Example 1. As a core material of the vacuum heat insulating material 40 of Experimental Example 3, a polyamide resin film having a size of 200 mm × 200 mm and a thickness of 50 μm is sandwiched in glass wool not containing a binder having an average fiber diameter of 3 μm to 5 μm, and further at 180 ° C. It was produced by performing an aging treatment for 1 hour. After that, a getter agent (molecular sieves 13X / activated carbon) that adsorbs gas is filled in the jacket material 41 having gas barrier properties, and 10 minutes by a rotary pump of a vacuum packaging machine, 10 minutes by a diffusion pump, and a vacuum heat insulating material After exhausting until the internal pressure became 1.3 Pa, the end portion of the covering material 41 was sealed with heat sealing.

このようにして得られた実験例3の真空断熱材40について、実験例1と同様の条件で測定した。その結果、形状折り曲げ性は94Nで、形状保持性は良好であった。また、熱伝導率が2.8mW/m・Kを示し、真空断熱材40を挿入しなかった場合と比べて、熱漏洩量で26%低減できるデータを得た。   The vacuum heat insulating material 40 of Experimental Example 3 obtained in this way was measured under the same conditions as in Experimental Example 1. As a result, the shape bendability was 94N and the shape retention was good. Moreover, the thermal conductivity was 2.8 mW / m · K, and data was obtained that could reduce the amount of heat leakage by 26% compared to the case where the vacuum heat insulating material 40 was not inserted.

このことから、実験例3の真空断熱材は形状折り曲げ性と形状保持性と熱伝導率の向上併立化が図れ、冷蔵庫の箱体に実験例3の真空断熱材を挿入することにより熱漏洩量の低減及び省エネ化が期待できる。
(比較例1)
比較例1の真空断熱材40の芯材として、平均繊維径3μmから5μmの結合剤を含まないグラスウールを使用して、該芯材中にフィルム等を挟まない状態で、180℃で1時間のエージング処理を行って作製した。その後、ガスバリア性を有する外被材41中にガスを吸着するゲッタ剤(モレキュラ−シ−ブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.3Paになるまで排気した後、外被材41の端部をヒートシールで封止した。
Therefore, the vacuum heat insulating material of Experimental Example 3 can improve the shape bendability, shape retention and thermal conductivity, and the amount of heat leakage can be obtained by inserting the vacuum heat insulating material of Experimental Example 3 into the refrigerator box. Reduction and energy saving can be expected.
(Comparative Example 1)
As a core material of the vacuum heat insulating material 40 of Comparative Example 1, glass wool not containing a binder having an average fiber diameter of 3 μm to 5 μm was used, and the film was not sandwiched in the core material at 180 ° C. for 1 hour. An aging treatment was performed. After that, a getter agent (molecular sieves 13X / activated carbon) that adsorbs gas is filled in the jacket material 41 having gas barrier properties, and 10 minutes by a rotary pump of a vacuum packaging machine, 10 minutes by a diffusion pump, and a vacuum heat insulating material After exhausting until the internal pressure became 1.3 Pa, the end portion of the covering material 41 was sealed with heat sealing.

このようにして得られた真空断熱材40について、実験例1と同様の条件で測定した。その結果、形状折り曲げ性は125Nと大きくなり、更に、形状保持性はやや不良であった。また、熱伝導率が3.5mW/m・Kを示し、曲げる前の熱伝導率に対し約40%高い値となった。   The vacuum heat insulating material 40 thus obtained was measured under the same conditions as in Experimental Example 1. As a result, the shape bendability was as large as 125N, and the shape retention was somewhat poor. Further, the thermal conductivity was 3.5 mW / m · K, which was about 40% higher than the thermal conductivity before bending.

このことから、芯材中にフィルム等を挟まない状態では、曲げる時に、芯材全体の厚さ(約8mmから10mm)を一度に曲げることになるため、その剛性により、曲げ荷重が大きくなり、且つ、曲げた時に、芯材中にフィルム等を挟まない状態では、グラスウールで構成された芯材の一部が曲げ応力により破壊し、該破壊によりグラスウール繊維で構成されていた真空空間が破壊されて熱伝導率が上昇するものと思われる。   From this, in a state where no film or the like is sandwiched in the core material, the thickness of the entire core material (about 8 mm to 10 mm) is bent at a time when bending, so the bending load increases due to its rigidity, In addition, when the film is not sandwiched in the core material when bent, a part of the core material made of glass wool is broken by bending stress, and the vacuum space made of glass wool fiber is broken by the breakage. It seems that the thermal conductivity increases.

そして、比較例1の真空断熱材40を図5の断熱壁50内に設置して、熱漏洩量を測定した結果、真空断熱材40を挿入しなかった場合と比べて、熱漏洩量で16%低減できるデータを得たが、前述したように、曲げ部において、グラスウール繊維が破壊し該破壊によりグラスウール繊維が保持していた真空空間が減少したことにより、その効果が減少したものと思われる。
(第2実施形態)
次に、本発明の第2実施形態について図6を用いて説明する。図6は本発明の第2実施形態の真空断熱材及びそれを用いた冷蔵庫の要部断面図である。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
And as a result of installing the vacuum heat insulating material 40 of the comparative example 1 in the heat insulation wall 50 of FIG. 5, and measuring the amount of heat leaks, compared with the case where the vacuum heat insulating material 40 is not inserted, it is 16 in heat leak amount. % Data was obtained, but as described above, the glass wool fiber was broken in the bent portion, and the vacuum space held by the glass wool fiber was reduced due to the breakage. .
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of a main part of a vacuum heat insulating material and a refrigerator using the same according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, so that the duplicate description is omitted.

図6において、真空断熱材60は冷蔵庫等の断熱壁の曲げ部24の内箱面21aの形状に沿って内箱面21aに密着するように配設されており、ガスバリア性を有する外被材61中に、後述する芯材62を所定の真空度にて真空封止して構成してある。   In FIG. 6, the vacuum heat insulating material 60 is disposed so as to be in close contact with the inner box surface 21a along the shape of the inner box surface 21a of the bent portion 24 of the heat insulating wall of a refrigerator or the like, and has a gas barrier property. In 61, a core material 62 described later is vacuum-sealed at a predetermined degree of vacuum.

芯材62は、真空断熱材60自身を曲げやすいように、芯材62の全体厚さt7より薄い複数の層62a、62b、62c、62d、62eに分割されており、その層間に、例えば、アルミニウム等の金属製フィルム或いは、ポリエチレンテレフタレート樹脂等の合成樹脂製のフィルム63a、63b、63c、63dを複数介在させてある。   The core material 62 is divided into a plurality of layers 62a, 62b, 62c, 62d, 62e thinner than the total thickness t7 of the core material 62 so that the vacuum heat insulating material 60 itself can be easily bent. A plurality of films 63a, 63b, 63c, 63d made of metal such as aluminum or synthetic resin such as polyethylene terephthalate resin are interposed.

芯材62を厚さ方向に分割した層の内、最外層の62aと62eは、結合剤を含んだ無機繊維重合体もしくは有機繊維重合体にて構成することにより、真空断熱材60の表面剛性を確保し、それ以外の層62b、62c,62dは、結合剤を含まない無機繊維重合体もしくは有機繊維重合体にて構成することにより、該真空断熱材60の製造時における真空引き時間の短縮化を図れるように構成してある。   Out of the layers obtained by dividing the core material 62 in the thickness direction, the outermost layers 62a and 62e are made of an inorganic fiber polymer or an organic fiber polymer containing a binder, so that the surface rigidity of the vacuum heat insulating material 60 is increased. The other layers 62b, 62c, and 62d are made of an inorganic fiber polymer or an organic fiber polymer that does not contain a binder, thereby shortening the evacuation time when the vacuum heat insulating material 60 is manufactured. It is configured so that it can be realized.

なお、結合剤を含んだ無機繊維重合体もしくは有機繊維重合体にて構成した層62a或いは62eは、結合剤で結合された繊維によりある程度硬化してしまい、真空断熱材60を曲げるときの曲げ応力が増加するので、その場合は該層62aや62eの厚さをより薄く構成するか、或いは、曲げ曲面の半径R6をより大きく設定することが望ましい。   The layer 62a or 62e composed of an inorganic fiber polymer or an organic fiber polymer containing a binder is cured to some extent by fibers bonded with the binder, and bending stress when the vacuum heat insulating material 60 is bent. In this case, it is desirable to make the thickness of the layers 62a and 62e thinner, or to set the radius R6 of the bending curved surface to be larger.

また、図6は、芯材62を5層に分割した例を示したが、真空断熱材の用途により、芯材の厚さt7寸法が大きい場合、或いは、曲げ部24の曲げ曲面の半径R6が小さい場合は、芯材62を6層以上に分割し、夫々の層間に前記フィルムを介在させると共に、夫々の層を構成する無機繊維重合体もしくは有機繊維重合体に、結合剤を添加するか、否かを、生産性と剛性とのからみにより設定することが望ましい。   FIG. 6 shows an example in which the core material 62 is divided into five layers. However, depending on the use of the vacuum heat insulating material, when the thickness t7 of the core material is large, or the radius R6 of the bending curved surface of the bending portion 24 is shown. Is small, the core material 62 is divided into 6 or more layers, and the film is interposed between the layers, and a binder is added to the inorganic fiber polymer or the organic fiber polymer constituting each layer. It is desirable to set whether or not based on productivity and rigidity.

また、真空断熱材60は、その製造時は、該真空断熱材60自身の生産性の向上を図れるように、図3にて前述したように略平面形状として製造されることが望ましいが、図6に示す曲げ部24の曲げ角度Θ3の角度や曲げ曲面の半径R6或いは芯材の全体厚さt7寸法の大きさによって、該真空断熱材60の製造時における状態を所定の角度に予め曲げて製造しても良い。   In addition, the vacuum heat insulating material 60 is desirably manufactured in a substantially planar shape as described above with reference to FIG. 3 so that the productivity of the vacuum heat insulating material 60 itself can be improved. The state at the time of manufacturing the vacuum heat insulating material 60 is bent in advance to a predetermined angle according to the angle of the bending angle Θ3 of the bending portion 24 shown in FIG. 6, the radius R6 of the bending curved surface, or the overall thickness t7 of the core material. It may be manufactured.

以上のように構成されているので、第2実施形態は、芯材62を複数層の無機繊維重合体もしくは有機繊維重合体にて構成し、その層間にフィルムを介在させたので、真空断熱材を曲げるときに、該曲げ部の、無機繊維重合体もしくは有機繊維重合体で構成された層62a、62b、62c、62d、62eと、フィルム63a、63b、63c、63dとが互いにずれるようになるので、優れた断熱性能を保持したまま、形状折り曲げ性と形状保持性を有する真空断熱材及び真空断熱材を用いた冷蔵庫を提供できる。
(第3実施形態)
次に、本発明の第3実施形態について図7を用いて説明する。図7は本発明の第3実施形態の真空断熱材及びそれを用いた冷蔵庫の要部断面図である。この第3実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
Since it is comprised as mentioned above, since 2nd Embodiment comprised the core material 62 with the inorganic fiber polymer of multiple layers or the organic fiber polymer, and interposed the film between the layers, a vacuum heat insulating material When the film is bent, the layers 62a, 62b, 62c, 62d, 62e made of an inorganic fiber polymer or an organic fiber polymer and the films 63a, 63b, 63c, 63d of the bent part are displaced from each other. Therefore, it is possible to provide a vacuum heat insulating material having shape bendability and shape retaining property and a refrigerator using the vacuum heat insulating material while maintaining excellent heat insulating performance.
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 7: is principal part sectional drawing of the vacuum heat insulating material of 3rd Embodiment of this invention, and a refrigerator using the same. The third embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

図7において、真空断熱材70は冷蔵庫等の断熱壁の曲げ部24の内箱面21aの形状に沿って該内箱面21aに密着するように配設された真空断熱材であり、ガスバリア性を有する外被材71中に、後述する複数の内袋74a、74bを設置して、該外被材71中を所定の真空度にて真空封止して構成してある。   In FIG. 7, a vacuum heat insulating material 70 is a vacuum heat insulating material disposed so as to be in close contact with the inner box surface 21a along the shape of the inner box surface 21a of the bent portion 24 of the heat insulating wall of a refrigerator or the like, and has a gas barrier property. A plurality of inner bags 74a and 74b, which will be described later, are installed in the outer jacket material 71 having the above structure, and the outer jacket material 71 is vacuum-sealed at a predetermined degree of vacuum.

内袋74a、74bは、夫々、金属製フィルム或いは合成樹脂製フィルム73a、73bを挟んだ芯材72a、72bを脱気圧縮して収納するように構成されている。また、内袋74a、74bは、真空断熱材70を曲げたときに、曲げ応力により、外被材71との間で互いにずれることが出来るように、例えば、高密度ポリエチレン樹脂等の表面が滑らかな合成樹脂フィルムにより形成されている。   The inner bags 74a and 74b are configured so as to store the core materials 72a and 72b sandwiched between the metal films or the synthetic resin films 73a and 73b by deaeration and compression. Further, the inner bags 74a and 74b have smooth surfaces such as high-density polyethylene resin so that the inner bags 74a and 74b can be displaced from each other by the bending stress when the vacuum heat insulating material 70 is bent. It is formed of a simple synthetic resin film.

なお、図7は、外被材71中に、2個の内袋74a、74bを設けて、内袋74a、74bと外被材71とのずれを利用して曲げ易くしているが、真空断熱材の用途によっては、1個の内袋として、内袋内に、例えば、図6に例示したように複数枚のフィルムを介在しても良く、或いは、外被材71中に3個以上の内袋を設けても良い。   In FIG. 7, two inner bags 74 a and 74 b are provided in the jacket material 71 to make it easy to bend using the deviation between the inner bags 74 a and 74 b and the jacket material 71. Depending on the use of the heat insulating material, as an inner bag, for example, a plurality of films may be interposed in the inner bag as illustrated in FIG. An inner bag may be provided.

また、真空断熱材70は、その製造時は、該真空断熱材70自身の生産性の向上を図れるように、図3にて前述したように略平面形状として製造されることが望ましいが、図7に示す曲げ部24の曲げ角度Θ4の角度や曲げ曲面の半径R7或いは芯材の全体厚さt8寸法の大きさによっては、該真空断熱材70の製造時における状態を所定の角度に予め曲げて製造しても良い。   In addition, the vacuum heat insulating material 70 is desirably manufactured in a substantially planar shape as described above with reference to FIG. 3 so that the productivity of the vacuum heat insulating material 70 itself can be improved at the time of manufacture. Depending on the bending angle Θ4 of the bending portion 24 shown in FIG. 7 and the radius R7 of the bending curved surface or the overall thickness t8 of the core material, the vacuum heat insulating material 70 is bent in advance at a predetermined angle. May be manufactured.

以上のように構成されているので、この第3実施形態は、フィルム73a、73bを挟んだ芯材72a、72bを脱気圧縮して収納する内袋74a、74bと、この内袋74a、74bを収納し、該内袋74a、74bとの間でずれが生じる外被材71とから構成したので、真空断熱材70を曲げるときに、内袋74a、74bと外被材71とのずれが生じ易いので、優れた断熱性能を保持したまま、形状折り曲げ性と形状保持性を有する真空断熱材及び真空断熱材を用いた冷蔵庫を提供できる。   Since it is configured as described above, in the third embodiment, the inner bags 74a and 74b for storing the core materials 72a and 72b sandwiching the films 73a and 73b by deaeration and storing, and the inner bags 74a and 74b are stored. And the outer cover material 71 that is displaced between the inner bags 74a and 74b. Therefore, when the vacuum heat insulating material 70 is bent, the inner bag 74a and 74b and the outer cover material 71 are displaced. Since it is easy to occur, the vacuum heat insulating material which has shape bendability and shape retainability, and the refrigerator using a vacuum heat insulating material can be provided, maintaining the outstanding heat insulation performance.

本発明の第1実施形態の真空断熱材及びそれを用いた冷蔵庫を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vacuum heat insulating material of 1st Embodiment of this invention, and a refrigerator using the same. 図1のC部を拡大した断面図である。It is sectional drawing to which the C section of FIG. 1 was expanded. 図2の真空断熱材の曲げる前の状態を示す断面図である。It is sectional drawing which shows the state before bending of the vacuum heat insulating material of FIG. 第1実施形態及び比較例の真空断熱材の曲げ特性説明図である。It is bending characteristic explanatory drawing of the vacuum heat insulating material of 1st Embodiment and a comparative example. 表1に示す真空断熱材の熱漏洩量を測定した断熱壁の説明図である。It is explanatory drawing of the heat insulation wall which measured the amount of heat leaks of the vacuum heat insulating material shown in Table 1. 本発明の第2実施形態の真空断熱材及びそれを用いた冷蔵庫の要部断面図である。It is principal part sectional drawing of the vacuum heat insulating material of 2nd Embodiment of this invention, and a refrigerator using the same. 本発明の第3実施形態の真空断熱材及びそれを用いた冷蔵庫の要部断面図である。It is principal part sectional drawing of the vacuum heat insulating material of 3rd Embodiment of this invention, and a refrigerator using the same.

符号の説明Explanation of symbols

20…冷蔵庫の箱体、21…内箱、22…発泡断熱材、23…外箱、24…曲げ部(変形部)、30、40、60、70…真空断熱材、31、41、61、71…外被材、32、42、62a、62b、62c、62d、62e、72a、72b…芯材、33、43、63a、63b、63c、63d、73a、73b…フィルム(変形保持部材)、50…断熱壁、54…測定冶具、74a、74b…内袋。   20 ... Refrigerator box, 21 ... Inner box, 22 ... Foam insulation, 23 ... Outer box, 24 ... Bending part (deformation part), 30, 40, 60, 70 ... Vacuum insulation, 31, 41, 61, 71 ... Cover material, 32, 42, 62a, 62b, 62c, 62d, 62e, 72a, 72b ... Core material, 33, 43, 63a, 63b, 63c, 63d, 73a, 73b ... Film (deformation holding member), 50 ... heat insulation wall, 54 ... measuring jig, 74a, 74b ... inner bag.

Claims (11)

ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材であって、
前記芯材は結合剤を含まない無機もしくは有機の繊維重合体で形成すると共に、
前記外被材内に前記芯材と共に変形可能で且つ曲げ荷重を加えて曲げたときの圧縮応力或いは引っ張り応力により前記芯材とずれを生じさせ変形後の前記曲げ荷重が解除された該芯材形状を保持可能な変形保持部材が配置された
ことを特徴とする真空断熱材。
A vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties,
The core material is formed of an inorganic or organic fiber polymer containing no binder ,
The core material wherein the bending load after deformation is caused the core material and the deviation by compression stress or tensile stress when the and bending load deformable together with the core material bent in addition to the outer covering material within is released A vacuum heat insulating material characterized in that a deformation holding member capable of holding a shape is disposed.
請求項1に記載の真空断熱材において、前記芯材を板状の有機の繊維重合体で形成し、前記変形保持部材をフィルム状に形成して前記芯材の内部に設置したことを特徴とする真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the core material is formed of a plate-like organic fiber polymer, and the deformation holding member is formed in a film shape and installed inside the core material. Vacuum insulation. 請求項1または2に記載の真空断熱材において、前記芯材を複数層の繊維重合体で形成し、前記変形保持部材を前記繊維重合体の層間に介在させたことを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the core material is formed of a plurality of layers of fiber polymer, and the deformation holding member is interposed between layers of the fiber polymer. . 請求項2に記載の真空断熱材において、前記フィルム状の変形保持部材の大きさを前記芯材の大きさより小さくしたことを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 2, wherein the size of the film-shaped deformation holding member is smaller than the size of the core material. 請求項に記載の真空断熱材において、該真空断熱材が平面形状の状態から曲面半径10mm以上の被取付け部の曲げ部に設置可能な曲げた形状の状態とされたものであることを特徴とする真空断熱材。 The vacuum heat insulating material according to claim 3 , wherein the vacuum heat insulating material is in a bent shape that can be installed in a bent portion of a mounted portion having a curved surface radius of 10 mm or more from a flat shape. Vacuum insulation material. 請求項2に記載の真空断熱材において、熱遮蔽性を有するアルミニウムで前記フィルム状の変形保持部材を形成したことを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 2, wherein the film-shaped deformation holding member is formed of aluminum having heat shielding properties. 請求項1または2に記載の真空断熱材において、前記芯材を脱気圧縮して前記変形保持部材と共に内袋の内部に収納し、この内袋を収納した前記外被材における内袋内を含む内部を減圧し密封してなることを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the core material is degassed and compressed and stored together with the deformation holding member in an inner bag, and the inner bag in the outer jacket material storing the inner bag. A vacuum heat insulating material characterized in that the inside is reduced in pressure and sealed. ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材を外箱と内箱とによって形成される空間に配設すると共に、その真空断熱材の周囲の前記空間に発泡断熱材を充填してなる冷蔵庫において、
前記芯材は結合剤を含まない無機もしくは有機の繊維重合体で形成すると共に、
前記外被材内に前記芯材と共に変形し且つ曲げ荷重を加えて曲げたときの圧縮応力或いは引っ張り応力により該芯材とずれを生じさせ変形後の前記曲げ荷重が解除された該芯材形状を保持する変形保持部材を配置して前記真空断熱材を構成し、
前記真空断熱材を前記外箱または前記内箱の変形部に沿って変形して配置した
ことを特徴とする冷蔵庫。
A vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having a gas barrier property is disposed in a space formed by the outer box and the inner box, and a foam heat insulating material is provided in the space around the vacuum heat insulating material. In a refrigerator filled with
The core material is formed of an inorganic or organic fiber polymer containing no binder ,
Core material shape the bending load after deformation is produced core material and the deviation is canceled by the compression stress or tensile stress when the bent adding deformed and bending load with the core material in the outer covering material in The vacuum heat insulating material is configured by arranging a deformation holding member that holds
The refrigerator, wherein the vacuum heat insulating material is deformed and arranged along a deformed portion of the outer box or the inner box.
請求項8に記載の冷蔵庫において、前記外箱または前記内箱の2つの面が交差する角部に前記真空断熱材を折り曲げて設置したことを特徴とする冷蔵庫。   The refrigerator according to claim 8, wherein the vacuum heat insulating material is bent and installed at a corner where two surfaces of the outer box or the inner box intersect. 請求項9に記載の冷蔵庫において、前記内箱の角部の曲面半径の大きさが10mm以上であることを特徴とする冷蔵庫。   The refrigerator according to claim 9, wherein the curved surface radius of the corner of the inner box is 10 mm or more. 請求項9に記載の冷蔵庫において、前記内箱の角部に沿うように折り曲げて設置した真空断熱材の端部と、前記外箱の平坦面を延びる真空断熱材の端部とを投影面で重合させたことを特徴とする冷蔵庫。   The refrigerator according to claim 9, wherein an end portion of the vacuum heat insulating material that is bent and installed along a corner portion of the inner box and an end portion of the vacuum heat insulating material that extends the flat surface of the outer box are projected on the projection surface. A refrigerator characterized by polymerization.
JP2005242277A 2005-08-24 2005-08-24 Vacuum heat insulating material and refrigerator using the same Expired - Fee Related JP4580843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005242277A JP4580843B2 (en) 2005-08-24 2005-08-24 Vacuum heat insulating material and refrigerator using the same
CNB2006101159415A CN100441932C (en) 2005-08-24 2006-08-18 Vacuum thermal insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242277A JP4580843B2 (en) 2005-08-24 2005-08-24 Vacuum heat insulating material and refrigerator using the same

Publications (3)

Publication Number Publication Date
JP2007056972A JP2007056972A (en) 2007-03-08
JP2007056972A5 JP2007056972A5 (en) 2009-08-20
JP4580843B2 true JP4580843B2 (en) 2010-11-17

Family

ID=37778151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242277A Expired - Fee Related JP4580843B2 (en) 2005-08-24 2005-08-24 Vacuum heat insulating material and refrigerator using the same

Country Status (2)

Country Link
JP (1) JP4580843B2 (en)
CN (1) CN100441932C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448355B2 (en) 2021-01-12 2022-09-20 Whirlpool Corporation Vacuum insulated refrigerator structure with feature for controlling deformation and improved air withdrawal
US11614271B2 (en) 2020-12-29 2023-03-28 Whirlpool Corporation Vacuum insulated structure with sheet metal features to control vacuum bow

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685828B2 (en) * 2007-04-18 2011-05-18 シャープ株式会社 refrigerator
JP2009228886A (en) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp Vacuum heat insulating material and heat insulating box using the same
JP5193713B2 (en) * 2008-07-17 2013-05-08 日立アプライアンス株式会社 Freezer refrigerator
JP5162377B2 (en) * 2008-08-28 2013-03-13 日立アプライアンス株式会社 Vacuum heat insulating material, heat insulating box using the same, and refrigerator
WO2010073762A1 (en) 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
JP5312605B2 (en) 2009-10-16 2013-10-09 三菱電機株式会社 Vacuum insulation, refrigerator and equipment
JP5241925B2 (en) 2009-10-16 2013-07-17 三菱電機株式会社 Vacuum heat insulating material manufacturing apparatus, vacuum heat insulating material manufacturing method, vacuum heat insulating material, refrigerator and equipment
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
CN101900473A (en) * 2010-07-27 2010-12-01 王欣南 Built-in integral L-shaped vacuum heat insulation slab for refrigerator and processing method thereof
JP2013088036A (en) * 2011-10-19 2013-05-13 Hitachi Appliances Inc Thermal insulation box, refrigerator, and storage type water heater
JP5886017B2 (en) * 2011-12-06 2016-03-16 株式会社東芝 Vacuum insulation panel and refrigerator using the same
CN103542234A (en) * 2012-07-16 2014-01-29 苏州维艾普新材料有限公司 Dry method extra-fine glass wool vacuum insulated panel core material and preparation method thereof
JP6892414B2 (en) * 2013-06-25 2021-06-23 東芝ライフスタイル株式会社 refrigerator
JP6184841B2 (en) * 2013-11-13 2017-08-23 日立アプライアンス株式会社 Vacuum insulation material and equipment using the same
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
KR102442069B1 (en) * 2015-10-19 2022-09-13 삼성전자주식회사 Refrigerator amd producing method of same
CN108058919A (en) * 2017-12-28 2018-05-22 兰考县鸿运运输有限公司 Attemperator in a kind of transportational process
JP7215202B2 (en) * 2019-02-13 2023-01-31 日本製鉄株式会社 vacuum insulation panel
JP2019109042A (en) * 2019-03-04 2019-07-04 東芝ライフスタイル株式会社 refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081596A (en) * 2000-09-06 2002-03-22 Matsushita Refrig Co Ltd Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2002179158A (en) * 2000-12-15 2002-06-26 Honda Access Corp Heat insulating container
JP2007046628A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Heat insulating material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747506Y2 (en) * 1975-06-17 1982-10-19
JPS61241594A (en) * 1985-04-19 1986-10-27 松下電器産業株式会社 Vacuum heat-insulating material
JPS6210580A (en) * 1985-07-08 1987-01-19 凸版印刷株式会社 Heat-insulating panel
JPH04337195A (en) * 1991-05-14 1992-11-25 Hitachi Ltd Vacuum heat insulator
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2002317897A (en) * 2001-04-19 2002-10-31 Matsushita Refrig Co Ltd Vacuum heat insulation material, heat insulated container, refrigerator, and rice cooker
JP2004197954A (en) * 2002-12-05 2004-07-15 Matsushita Refrig Co Ltd Vacuum heat insulating material
JP3559035B2 (en) * 2002-12-05 2004-08-25 松下冷機株式会社 Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof
WO2005003618A1 (en) * 2003-07-04 2005-01-13 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material and equipment using the same
JP2005127409A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, freezing device and cooling-warming device using vacuum heat insulation material
JP2005163989A (en) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd Vacuum insulating material and using method of same
JP3578172B1 (en) * 2003-12-19 2004-10-20 松下電器産業株式会社 Vacuum insulation, refrigerators and refrigerators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081596A (en) * 2000-09-06 2002-03-22 Matsushita Refrig Co Ltd Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2002179158A (en) * 2000-12-15 2002-06-26 Honda Access Corp Heat insulating container
JP2007046628A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Heat insulating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614271B2 (en) 2020-12-29 2023-03-28 Whirlpool Corporation Vacuum insulated structure with sheet metal features to control vacuum bow
US11808514B2 (en) 2020-12-29 2023-11-07 Whirlpool Corporation Vacuum insulated structure with sheet metal features to control vacuum bow
US11448355B2 (en) 2021-01-12 2022-09-20 Whirlpool Corporation Vacuum insulated refrigerator structure with feature for controlling deformation and improved air withdrawal
US11708935B2 (en) 2021-01-12 2023-07-25 Whirlpool Corporation Vacuum insulated refrigerator structure with feature for controlling deformation and improved air withdrawal

Also Published As

Publication number Publication date
JP2007056972A (en) 2007-03-08
CN100441932C (en) 2008-12-10
CN1920367A (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP4580843B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100540522B1 (en) Vacuum insulating material and device using the same
JP5624305B2 (en) Insulated container
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
US20120132659A1 (en) Vacuum insulation member, regisrator having vacuum insulation member, and method for fabricating vacuum insulation member
JP2009228917A (en) Refrigerator
JP2007056972A5 (en)
JP2009024922A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2007113748A (en) Method of manufacturing heat insulating wall, heat insulating unit, and heat insulating material
CN104455935A (en) Vacuum heat-insulating material, thermal-insulating case and a manufacturing method of the vacuum heat-insulating material
KR100691917B1 (en) Refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP5646241B2 (en) refrigerator
JP6469232B2 (en) refrigerator
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP5372878B2 (en) Vacuum heat insulating material and refrigerator equipped with the same
KR101714569B1 (en) Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
JP2017002949A (en) Vacuum heat insulation material and equipment using the same
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
JP2010001922A (en) Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method
JP5984022B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees