JP5162377B2 - Vacuum heat insulating material, heat insulating box using the same, and refrigerator - Google Patents

Vacuum heat insulating material, heat insulating box using the same, and refrigerator Download PDF

Info

Publication number
JP5162377B2
JP5162377B2 JP2008220355A JP2008220355A JP5162377B2 JP 5162377 B2 JP5162377 B2 JP 5162377B2 JP 2008220355 A JP2008220355 A JP 2008220355A JP 2008220355 A JP2008220355 A JP 2008220355A JP 5162377 B2 JP5162377 B2 JP 5162377B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
vacuum
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008220355A
Other languages
Japanese (ja)
Other versions
JP2010053979A (en
Inventor
崇 井関
久男 横倉
邦成 荒木
恒 越後屋
孝行 中川路
大五郎 嘉本
俊光 鶴賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008220355A priority Critical patent/JP5162377B2/en
Priority to KR1020090076463A priority patent/KR101164306B1/en
Priority to CN2009101670546A priority patent/CN101660648B/en
Publication of JP2010053979A publication Critical patent/JP2010053979A/en
Application granted granted Critical
Publication of JP5162377B2 publication Critical patent/JP5162377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、保温・保冷機能を向上させるとともに、環境負荷が小さくリサイクル性の優れた真空断熱材およびこれを用いた断熱箱体並びに冷蔵庫等に関する。   The present invention relates to a vacuum heat insulating material that improves a heat retaining / cooling function and has low environmental burden and excellent recyclability, a heat insulating box using the same, a refrigerator, and the like.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が望まれている。その中でも冷蔵庫、エアコン等は特に消費電力量の多い製品であり、消費電力量削減が地球温暖化対策として必要な状況にある。冷蔵庫を例に挙げると、冷蔵庫の消費電力は庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と、庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まる。そのため、冷蔵庫の技術開発においては、圧縮機の効率と共に断熱材の性能向上が求められている。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances is desired. Among them, refrigerators, air conditioners, and the like are products with particularly high power consumption, and the reduction of power consumption is necessary as a countermeasure against global warming. Taking a refrigerator as an example, if the load in the refrigerator is constant, the power consumption of the refrigerator will depend on the efficiency of the compressor for cooling in the refrigerator and the insulation performance of the heat insulating material related to the amount of heat leakage from the refrigerator. Mostly decided. Therefore, in the technical development of the refrigerator, improvement in the performance of the heat insulating material is required together with the efficiency of the compressor.

このような課題を解決する断熱材の一つとして真空断熱材がある。真空断熱材はガスバリア性を有する外包材中に断熱性に優れた芯材を入れ、内部を真空にすることで作製される。真空断熱材の芯材には、無機繊維のグラスウールが用いられ、極細繊維(平均繊維径:3〜5μm)で製品化されている。   One of the heat insulating materials for solving such problems is a vacuum heat insulating material. A vacuum heat insulating material is produced by putting a core material excellent in heat insulating properties into an outer packaging material having gas barrier properties and evacuating the inside. Glass wool, an inorganic fiber, is used for the core material of the vacuum heat insulating material, and it is commercialized with ultrafine fibers (average fiber diameter: 3 to 5 μm).

一方、有機繊維の芯材としては、次に示すような公開公報等に開示されている。例えば、特許文献1には、グラスウールと熱可塑性樹脂の繊維とを含有する真空断熱材用コア材において、熱可塑性樹脂繊維としてのポリプロピレン、アクリル、ポリエチレンテレフタレート、ポリアミド、ポリエチレンを加熱溶融および加圧でグラスウールと接着した構成とすることで吸着剤を封入させずに、耐圧性が高い形状維持の優れた断熱性能を有する真空断熱材が記載されている。   On the other hand, organic fiber core materials are disclosed in the following publications and the like. For example, in Patent Document 1, in a core material for a vacuum heat insulating material containing glass wool and thermoplastic resin fibers, polypropylene, acrylic, polyethylene terephthalate, polyamide, and polyethylene as thermoplastic resin fibers are heated and melted and pressurized. There is described a vacuum heat insulating material having a heat insulating performance excellent in maintaining a shape with high pressure resistance without enclosing an adsorbent by adopting a structure bonded to glass wool.

また、特許文献2には、ポリエステル繊維を含有する芯材を収容する内包材が減圧状態の外包材に収容した真空断熱材において、ポリエステル繊維の太さが1〜6デニール、内包材がポリエチレンテレフタレート、芯材の密度が150〜300Kg/m3とすることにより、製造時およびリサイクル時において環境負荷が低く、取り扱い性や生産効率に優れ長期にわたり良好な断熱性の真空断熱材が記載されている。 Patent Document 2 discloses a vacuum heat insulating material in which an inner packaging material containing a core material containing polyester fibers is contained in a decompressed outer packaging material, wherein the polyester fiber has a thickness of 1 to 6 denier, and the inner packaging material is polyethylene terephthalate. In addition, by setting the density of the core material to 150 to 300 Kg / m 3 , a vacuum insulating material having a low thermal burden at the time of production and recycling, excellent in handleability and production efficiency, and good heat insulation over a long period of time is described. .

また、特許文献3には、融点の異なる少なくとも2種類のポリエステル繊維を含む繊維集合体をシート状の真空断熱材用芯材において、繊維集合体がサーマルボンド法、ニードルパンチ法でシート状に加工して、低融点ポリエステル繊維が110〜170℃、高融点ポリエステル繊維がさらに20℃以上高く、繊維太さが1〜6デニールで配合割合が重量比10:90〜30:70とすることにより、製造時やリサイクル時に環境負荷が低く、作業性に優れる良好な断熱性の真空断熱材が記載されている。   In Patent Document 3, a fiber assembly containing at least two types of polyester fibers having different melting points is processed into a sheet form by a thermal bond method or a needle punch method in a sheet-like core material for a vacuum heat insulating material. The low melting point polyester fiber is 110 to 170 ° C., the high melting point polyester fiber is further 20 ° C. or higher, the fiber thickness is 1 to 6 denier, and the blending ratio is 10:90 to 30:70, A good heat insulating vacuum heat insulating material is described which has a low environmental impact during manufacturing and recycling and is excellent in workability.

また、特許文献4には、芯材が繊維太さ1〜6デニールのポリエステル繊維を50重量%以上含有するシート状繊維集合体であり、平均繊維径が9〜25μm、繊維集合体がニードルパンチでシート状に加工され、芯材の密度が150〜300Kg/m3とすることにより、製造時およびリサイクル時の環境負荷が低く、取り扱い性に優れる良好な断熱性の真空断熱材が記載されている。 Patent Document 4 discloses a sheet-like fiber assembly in which the core material contains 50% by weight or more of a polyester fiber having a fiber thickness of 1 to 6 denier, an average fiber diameter of 9 to 25 μm, and the fiber assembly is a needle punch. Is described, and the density of the core material is set to 150 to 300 kg / m 3 , which describes a vacuum insulating material with good thermal insulation that has low environmental impact during manufacturing and recycling and excellent handling properties. Yes.

また、特許文献5には、芯材が有機繊維からなるシート状繊維集合体であり、芯材の真空引き後の真空断熱材厚みが0.1〜5mm、ガス吸着物質が軟質包袋のポリエステル繊維不織布、その目付けが30〜200g/m2、芯材がポリエステル繊維とすることにより、製造時およびリサイクル時における取り扱い性が容易で、真空引き後の曲面加工性や断熱性に優れる真空断熱材が記載されている。
特開2003-155651号公報 特開2006-283817号公報 特開2006-57213号公報 特開2006-29505号公報 特開2006-153199号公報
Patent Document 5 discloses a polyester sheet in which the core material is a sheet-like fiber assembly made of organic fibers, the vacuum heat insulating material thickness after vacuuming of the core material is 0.1 to 5 mm, and the gas adsorbing material is a soft wrapping bag. A non-woven fabric with a fabric weight of 30 to 200 g / m 2 and a core material made of polyester fiber, making it easy to handle at the time of production and recycling and having excellent curved surface workability and heat insulation after evacuation. Is described.
Japanese Patent Laid-Open No. 2003-155651 JP 2006-283817 A JP 2006-57213 A JP 2006-29505 A JP 2006-153199 A

しかしながら、上記の公開公報である特許文献1〜5に開示された技術には、次のような解決すべき課題が存在する。例えば、上記特許文献1に記載された真空断熱材では、グラスウールと熱可塑性樹脂繊維を加熱溶融(約180〜220℃)および加圧(約1Kg/cm2)することで、グラスウールに接着する芯材としたものである。そのため、熱可塑性樹脂の繊維が有機バインダーの機能を有するため、アウトガスの影響で断熱性能が低下する。 However, the techniques disclosed in Patent Documents 1 to 5 which are the above-mentioned publications have the following problems to be solved. For example, in the vacuum heat insulating material described in Patent Document 1, a core that adheres to glass wool by heating and melting (about 180 to 220 ° C.) and pressing (about 1 kg / cm 2 ) glass wool and thermoplastic resin fibers. It is a material. Therefore, since the fiber of a thermoplastic resin has a function of an organic binder, the heat insulation performance is lowered due to the influence of outgas.

また、適量のグラスウールと熱可塑性樹脂を満遍なく混合開繊して綿状混合物の積層体を芯材とした場合、熱可塑性樹脂繊維の混合では、繊維同士の接合点面積が増加して熱移動経路が増し、断熱性能が低下する課題がある。即ち、グラスウールと熱可塑性樹脂繊維の場合、芯材が混合の繊維積層体と各々の繊維積層体では熱伝導率が異なり、明細書中に記載される混合繊維積層体では断熱性が大きく劣る。   In addition, when an appropriate amount of glass wool and thermoplastic resin are mixed and opened evenly and a laminate of a cotton-like mixture is used as the core material, the mixing area of the thermoplastic resin fibers increases the joint area between the fibers, and the heat transfer path However, there is a problem that heat insulation performance decreases. That is, in the case of glass wool and thermoplastic resin fibers, the thermal conductivity is different between the fiber laminate in which the core material is mixed and each fiber laminate, and the heat insulation is greatly inferior in the mixed fiber laminate described in the specification.

さらに、真空断熱材の折り曲げは述べられていないが、グラスウールの芯材では被取り付け部の形状に沿う曲げが困難で、無理に曲げるとグラスウールの切断と曲げ部で起こる芯材厚みの減少により断熱性能が劣る。近年では、ガラス繊維のグラスウール含有の芯材では、人体への粉塵影響、CO2排出量の低減、循環型エコリサイクルを考慮した環境負荷への課題を有する。 Furthermore, although bending of the vacuum insulation material is not described, it is difficult to bend the glass wool core material along the shape of the attached part, and if it is bent forcibly, it is insulated by cutting the glass wool and reducing the thickness of the core material that occurs at the bent part. The performance is inferior. In recent years, glass fiber glass-wool-containing core materials have problems with respect to environmental impact in consideration of dust influence on the human body, reduction of CO 2 emissions, and recycling-type eco-recycling.

上記特許文献2に記載された真空断熱材では、環境負荷が小さくリサイクル性が優れる。しかし、芯材がポリエステル繊維では分子中にエステル結合の極性基を有するため、吸水率が約0.4〜0.5%と高い値を示す。真空断熱材では減圧後の総ガス量の大部分が水分であり、ポリエステル繊維の芯材を組み立てる間に空気中の水分を徐々に吸着(吸湿)する。芯材の水分量が熱伝導率に大きく影響するため、真空断熱材を組み立てる直前に水分の除去および水分の再吸着を防ぐ管理処理が必要になる。   In the vacuum heat insulating material described in Patent Document 2, the environmental load is small and the recyclability is excellent. However, when the core material is a polyester fiber, the molecule has an ester bond polar group in the molecule, and therefore the water absorption is as high as about 0.4 to 0.5%. In the vacuum heat insulating material, most of the total gas amount after decompression is moisture, and moisture in the air is gradually adsorbed (absorbed) while assembling the core material of the polyester fiber. Since the moisture content of the core material greatly affects the thermal conductivity, a management process is required to prevent moisture removal and moisture re-adsorption immediately before assembling the vacuum heat insulating material.

また、ポリエステル繊維の芯材を用いた真空断熱材では、明細書中に記載されるように熱伝導率が3mW/m・K以上と高く断熱性能が劣る。現製品に使用のグラスウールは、平均繊維径が3〜5μmの極細繊維を用い、熱伝導率が約2mW/m・Kと低い。従って、新たな有機繊維の真空断熱材であっても、グラスウール並みの断熱性能が求められる。その理由として、例えば冷蔵庫等に熱伝導率が劣るポリエステル繊維の真空断熱材を搭載すると、冷蔵庫の熱漏洩量が高く消費電力量の低減が小さいという課題が発生する。   Moreover, in the vacuum heat insulating material using the core material of the polyester fiber, as described in the specification, the heat conductivity is as high as 3 mW / m · K or more and the heat insulating performance is inferior. The glass wool used in the current product uses ultrafine fibers having an average fiber diameter of 3 to 5 μm, and has a low thermal conductivity of about 2 mW / m · K. Therefore, even if it is a vacuum insulation material of a new organic fiber, the heat insulation performance like glass wool is calculated | required. As a reason, for example, when a polyester fiber vacuum heat insulating material having poor thermal conductivity is mounted on a refrigerator or the like, there arises a problem that the amount of heat leakage of the refrigerator is high and the reduction in power consumption is small.

さらに、真空断熱材の折り曲げの内容は述べられていないが、ポリエステル繊維の芯材では被取り付け部の形状に沿って曲げが困難で、無理に曲げると繊維が切断され、曲げ部で真空断熱材厚みの減少により断熱性能が劣る課題を有する。   Furthermore, although the details of the bending of the vacuum heat insulating material are not described, it is difficult to bend the polyester fiber core material along the shape of the attached part, and the fiber is cut when bent forcibly, and the vacuum heat insulating material is cut at the bent part. It has the subject that heat insulation performance is inferior by thickness reduction.

上記特許文献3に記載された真空断熱材では、環境負荷が小さくリサイクル性が優れる。しかし、芯材が融点の異なる2種類のポリエステル繊維集合体では、分子中にエステル結合の極性基を有するため、吸水率が約0.4〜0.5%と高い値を示す。真空断熱材では減圧後の総ガス量の大部分が水分であり、ポリエステル繊維の芯材を組み立てられるまでの間に空気中の水分を徐々に吸着(吸湿)する。芯材の水分量が熱伝導率に大きく影響するため、真空断熱材を組み立てる直前に水分の除去および水分の再吸着を防ぐ管理処理が必要になる。   In the vacuum heat insulating material described in Patent Document 3, the environmental load is small and the recyclability is excellent. However, the two types of polyester fiber aggregates having different melting points as the core material have polar groups of ester bonds in the molecule, and therefore the water absorption is as high as about 0.4 to 0.5%. In the vacuum heat insulating material, most of the total gas amount after decompression is moisture, and moisture in the air is gradually adsorbed (absorbed) until the core material of the polyester fiber is assembled. Since the moisture content of the core material greatly affects the thermal conductivity, a management process is required to prevent moisture removal and moisture re-adsorption immediately before assembling the vacuum heat insulating material.

また、繊維集合集合体がサーマルボンド法でシート状に加工され、低融点ポリエステル繊維が110〜170℃の加温と高融点ポリエステル繊維がさらに20℃以上高い加温処理を行う。2種のポリエステル繊維の真空断熱材では、明細書中に記載されているように熱伝導率がいずれも4mW/m・K以上と高く断熱性能が劣る。現製品に使用のグラスウールでは、平均繊維径が3〜5μmの極細繊維で熱伝導率が約2mW/m・Kと低い。従って、新たな有機繊維の真空断熱材であっても、グラスウール並みの断熱性能が求められる。その理由として、例えば冷蔵庫等に熱伝導率が劣るポリエステル繊維の真空断熱材を搭載すると、冷蔵庫の熱漏洩量が高く消費電力量の低減が小さいという課題が起こる。   Further, the fiber assembly is processed into a sheet by a thermal bond method, and the low melting polyester fiber is heated at 110 to 170 ° C. and the high melting polyester fiber is further heated at 20 ° C. or higher. In the two types of polyester fiber vacuum heat insulating materials, as described in the specification, the thermal conductivity is as high as 4 mW / m · K or more, and the heat insulating performance is inferior. The glass wool used in the current product is an ultrafine fiber having an average fiber diameter of 3 to 5 μm and has a low thermal conductivity of about 2 mW / m · K. Therefore, even if it is a vacuum insulation material of a new organic fiber, the heat insulation performance like glass wool is calculated | required. For example, when a vacuum heat insulating material of polyester fiber having poor thermal conductivity is mounted on a refrigerator or the like, for example, there is a problem that the amount of heat leakage of the refrigerator is high and the reduction in power consumption is small.

さらに、真空断熱材の折り曲げの内容は述べられていないが、ポリエステル繊維芯材では被取り付け部の形状に沿って曲げが困難で、無理に曲げると繊維が切断され、曲げ部で厚みの減少により真空断熱材の断熱性能が劣る課題を有する。   Furthermore, although the details of the bending of the vacuum heat insulating material are not described, it is difficult to bend along the shape of the attached part with the polyester fiber core material, and the fiber is cut if it is bent forcibly, and the thickness is reduced at the bent part. It has the subject that the heat insulation performance of a vacuum heat insulating material is inferior.

上記特許文献4に記載された真空断熱材では、環境負荷が小さくリサイクル性が優れる。しかし、芯材の繊維太さが1〜6デニールのポリエステル繊維を50重量%以上含有するシート状繊維集合体では分子中にエステル結合の極性基を有するため、吸水率が約0.4〜0.5%と高い値を示す。真空断熱材では減圧後の総ガス量の大部分が水分であり、ポリエステル繊維の芯材を組み立てられるまでの間に空気中の水分を徐々に吸着(吸湿)する。芯材の水分量が熱伝導率に大きく影響するため、真空断熱材を組み立てる直前に水分の除去および水分の再吸着を防ぐ管理処理が必要になる。   In the vacuum heat insulating material described in Patent Document 4, the environmental load is small and the recyclability is excellent. However, in the sheet-like fiber aggregate containing 50% by weight or more of polyester fiber having a core fiber thickness of 1 to 6 denier, the molecule has an ester bond polar group, so that the water absorption is about 0.4 to 0. High value of .5%. In the vacuum heat insulating material, most of the total gas amount after decompression is moisture, and moisture in the air is gradually adsorbed (absorbed) until the core material of the polyester fiber is assembled. Since the moisture content of the core material greatly affects the thermal conductivity, a management process is required to prevent moisture removal and moisture re-adsorption immediately before assembling the vacuum heat insulating material.

また、ポリエステル繊維集合体に含有される他の繊維はポリエチレン、ポリプロピレン、アクリル、アラミド、ナイロン、ポリビニルアルコール、ポリウレタンの合成繊維や無機繊維や天然繊維等があり、この芯材を用いた真空断熱材では明細書中に記載されるように、熱伝導率がいずれも3mW/m・K以上で断熱性能が劣る。現製品に使用のグラスウールでは、平均繊維径が3〜5μmの極細繊維では熱伝導率が約2mW/m・Kと低い。従って、新たな有機繊維の真空断熱材であってもグラスウール並みの断熱性能が求められる。その理由として、例えば冷蔵庫等に熱伝導率が劣るポリエステル繊維の真空断熱材を搭載すると、冷蔵庫の熱漏洩量が高く消費電力量の低減が小さいという課題が起こる。   Other fibers contained in the polyester fiber aggregate include polyethylene, polypropylene, acrylic, aramid, nylon, polyvinyl alcohol, polyurethane synthetic fibers, inorganic fibers, natural fibers, etc., and vacuum insulation using this core material Then, as described in the specification, the thermal conductivity is 3 mW / m · K or more, and the heat insulation performance is inferior. The glass wool used in the current product has a low thermal conductivity of about 2 mW / m · K for ultrafine fibers having an average fiber diameter of 3 to 5 μm. Therefore, even a new organic fiber vacuum heat insulating material is required to have a heat insulating performance equivalent to that of glass wool. For example, when a vacuum heat insulating material of polyester fiber having poor thermal conductivity is mounted on a refrigerator or the like, for example, there is a problem that the amount of heat leakage of the refrigerator is high and the reduction in power consumption is small.

さらに、真空断熱材の折り曲げの内容は述べられていないが、ポリエステルの繊維芯材では被取り付け部の形状に沿って曲げが困難で、無理に曲げると繊維が切断され、曲げ部で厚みの減少により真空断熱材の断熱性能が劣る課題を有する。   Furthermore, although the details of the bending of the vacuum heat insulating material are not described, it is difficult to bend the polyester fiber core along the shape of the attached part, and if it is forcibly bent, the fiber is cut and the thickness is reduced at the bent part. Therefore, the heat insulation performance of the vacuum heat insulating material is inferior.

上記特許文献5に記載された真空断熱材では、環境負荷が小さくリサイクル性が優れる。しかし、芯材が有機繊維からなるシート状繊維集合体であり、芯材の真空引き後の厚みが0.1〜5mmでガス吸着材の包袋がポリエステル繊維製不織布、芯材がポリエステル繊維であり分子中にエステル結合の極性基を有するため、吸水率が約0.4〜0.5%と高い値を示す。真空断熱材では減圧後の総ガス量の大部分が水分であり、ポリエステル繊維の包袋および芯材は組み立てられるまでの間に空気中の水分を徐々に吸着(吸湿)する。芯材の水分量が熱伝導率に大きく影響するため、真空断熱材を組み立てる直前に水分の除去および水分の再吸着を防ぐ管理処理が必要になる。   In the vacuum heat insulating material described in Patent Document 5, the environmental load is small and the recyclability is excellent. However, the core material is a sheet-like fiber assembly made of organic fibers, the core material has a thickness of 0.1 to 5 mm after evacuation, the gas adsorbent bag is a polyester fiber nonwoven fabric, and the core material is polyester fiber. A certain molecule has an ester bond polar group, so that the water absorption is as high as about 0.4 to 0.5%. In the vacuum heat insulating material, most of the total gas amount after decompression is moisture, and the polyester fiber wrapping bag and the core material gradually adsorb moisture (absorb moisture) until they are assembled. Since the moisture content of the core material greatly affects the thermal conductivity, a management process is required to prevent moisture removal and moisture re-adsorption immediately before assembling the vacuum heat insulating material.

また、真空断熱材の真空引き後の厚みが0.1〜5mmでは非常に薄く断熱性が不十分で、明細書中に記載されているように熱伝導率がいずれも4mW/m・K以上と高い値を示す。現製品に使用のグラスウールでは、平均繊維径が3〜5μmの極細繊維では熱伝導率が約2mW/m・Kと低い。   Further, when the thickness of the vacuum heat insulating material after evacuation is 0.1 to 5 mm, it is very thin and the heat insulating property is insufficient, and the thermal conductivity is 4 mW / m · K or more as described in the specification. And high values. The glass wool used in the current product has a low thermal conductivity of about 2 mW / m · K for ultrafine fibers having an average fiber diameter of 3 to 5 μm.

従って、新たな有機繊維の真空断熱材であっても、グラスウール並みの断熱性能が求められる。その理由として、冷蔵庫等に厚さが薄いポリエステル繊維の真空断熱材を搭載すると、断熱性が不十分な問題がおこる。グラスウールの真空断熱材では消費電力量の観点から、通常の場合には真空引き後の厚みが約10mmである。薄い真空断熱材では折り曲げ性は優れるが、冷蔵庫の断熱材に用いた場合、消費電力量を低減させる効果が小さい課題を有する。   Therefore, even if it is a vacuum insulation material of a new organic fiber, the heat insulation performance like glass wool is calculated | required. The reason for this is that when a polyester fiber vacuum heat insulating material having a small thickness is mounted in a refrigerator or the like, the problem of insufficient heat insulation occurs. In the glass wool vacuum heat insulating material, from the viewpoint of power consumption, the thickness after evacuation is usually about 10 mm from the viewpoint of power consumption. A thin vacuum heat insulating material has excellent bendability, but when used as a heat insulating material for a refrigerator, there is a problem that the effect of reducing the power consumption is small.

本発明の目的は、炭素と水素からなる環境に優しく、吸湿性が低いポリスチレン素材の長繊維ウェブを真空断熱材の芯材とすることにより、グラスウールを用いた場合と同等の熱伝導率(2mW/m・K)を示す高性能な真空断熱材を提供することにある。さらに、従来、グラスウールやポリエステル繊維を用いた際に、環境負荷と断熱性の両立が課題であった熱伝導率、折り曲げ性、水分除去、粉塵度合、CO2排出量が改良され、循環型エコリサイクルが可能な真空断熱材の断熱箱体並びに冷蔵庫を提供することにある。 The object of the present invention is to provide a thermal conductivity equivalent to that when glass wool is used (2 mW) by using, as a core material of a vacuum heat insulating material, a long fiber web of a polystyrene material that is friendly to the environment consisting of carbon and hydrogen and has low hygroscopicity. / M · K) is to provide a high-performance vacuum heat insulating material. In addition, when using glass wool or polyester fiber, heat conductivity, bendability, moisture removal, degree of dust, and CO 2 emissions have been improved, which have been the issues of both environmental impact and heat insulation. An object of the present invention is to provide a heat insulating box of a vacuum heat insulating material and a refrigerator that can be recycled.

前記課題を解決するために、本発明は次のような構成を採用する。
有機繊維集合体からなる芯材と、ガス又は水蒸気を吸着するゲッター剤と、前記芯材及び前記ゲッター剤を収納するガスバリア性をもつ外包材と、を備え、前記外包材の内部を真空封止した真空断熱材であって、前記芯材は、非晶性でガラス転移温度付近で軟化するポリスチレン樹脂を溶融紡糸で直接形成した長繊維の配向ウェブであり、前記芯材は、曲げ弾性率が3000MPa以上であり、初期の熱伝導率が2.0mW/mKから2.8mW/mK、60℃の恒温槽中に30日間放置後の熱伝導率が3.2mW/mKから4.4mW/mKである構成とする。
In order to solve the above problems, the present invention adopts the following configuration.
A core material composed of an organic fiber assembly; a getter agent that adsorbs gas or water vapor; and an outer packaging material having a gas barrier property that houses the core material and the getter agent, and the interior of the outer packaging material is vacuum-sealed. The core material is an oriented web of long fibers directly formed by melt spinning a polystyrene resin that is amorphous and softens near the glass transition temperature , and the core material has a bending elastic modulus. The thermal conductivity is 3000 MPa or more, the initial thermal conductivity is 2.0 mW / mK to 2.8 mW / mK, and the thermal conductivity after standing in a constant temperature bath at 60 ° C. for 30 days is 3.2 mW / mK to 4.4 mW / mK. It is set as the structure which is .

また、外箱と内箱とで形成される空間に、真空断熱材を設置するとともに発泡断熱材を充填した断熱箱体であって、前記真空断熱材は、有機繊維集合体からなる芯材、ガス又は水蒸気を吸着するゲッター剤、前記芯材及び前記ゲッター剤を収納するガスバリア性をもつ外包材、を有して前記外包材の内部を真空封止したものであり、前記真空断熱材の芯材は、非晶性でガラス転移温度付近で軟化するポリスチレン樹脂の長繊維の配向ウェブであり、前記芯材は、曲げ弾性率が3000MPa以上であり、初期の熱伝導率が2.0mW/mKから2.8mW/mK、60℃の恒温槽中に30日間放置後の熱伝導率が3.2mW/mKから4.4mW/mKである構成とする。さらに、前記真空断熱材は、前記空間を形成した前記外箱上または前記内箱上に設置されている。さらに、前記真空断熱材は、前記外箱または前記内箱の2つの面が交差する角部に折り曲げて設置されている。 Further, in a space formed by the outer box and the inner box, a heat insulating box body in which a vacuum heat insulating material is installed and filled with a foam heat insulating material, the vacuum heat insulating material is a core material made of an organic fiber assembly, An outer packaging material having a gas barrier property that contains a getter agent that adsorbs gas or water vapor, the core material, and the getter agent, and the inside of the outer packaging material is vacuum-sealed, and the core of the vacuum heat insulating material The material is an oriented web of polystyrene fiber long fibers that is amorphous and softens near the glass transition temperature , and the core material has a flexural modulus of 3000 MPa or more and an initial thermal conductivity of 2.0 mW / mK. To 2.8 mW / mK, and the thermal conductivity after standing for 30 days in a constant temperature bath at 60 ° C. is 3.2 mW / mK to 4.4 mW / mK . Further, the vacuum heat insulating material is installed on the outer box or the inner box in which the space is formed. Furthermore, the said vacuum heat insulating material is bent and installed in the corner | angular part where two surfaces of the said outer box or the said inner box cross | intersect.

本発明によれば、炭素と水素からなる環境に優しいポリスチレン素材の長繊維ウェブを新たな芯材とすることで、グラスウールの真空断熱材と同等な熱伝導率(2mW/m・K)を示す高性能な真空断熱材を提供することができる。   According to the present invention, by using an environmentally friendly polystyrene long fiber web made of carbon and hydrogen as a new core material, the thermal conductivity (2 mW / m · K) equivalent to that of glass wool vacuum heat insulating material is exhibited. A high-performance vacuum heat insulating material can be provided.

さらに、グラスウールやポリエステル繊維で課題であった断熱性能と環境負荷の両立が図れる真空断熱材として、熱伝導率、折り曲げ性、水分除去、CO2排出量が改良され、循環型エコリサイクルが可能な真空断熱材およびそれを用いた断熱箱体並びに冷蔵庫を提供することができる。 Furthermore, as a vacuum heat insulating material that can achieve both heat insulation performance and environmental impact, which was a problem with glass wool and polyester fibers, thermal conductivity, bendability, moisture removal, and CO 2 emissions are improved, enabling recycling-type eco-recycling. A vacuum heat insulating material, a heat insulating box using the same, and a refrigerator can be provided.

本発明の実施形態に係る真空断熱材について、その構成上の特徴、並びにその機能又は作用を以下詳細に説明する。図1は本発明の実施形態に係る真空断熱材の構成を示す断面図である。図1において、1は真空断熱材、2は外包材、3はポリスチレン長繊維の芯材、4はゲッター剤、をそれぞれ表す。   About the vacuum heat insulating material which concerns on embodiment of this invention, the characteristic on the structure, the function, or an effect | action are demonstrated in detail below. FIG. 1 is a cross-sectional view showing a configuration of a vacuum heat insulating material according to an embodiment of the present invention. In FIG. 1, 1 is a vacuum heat insulating material, 2 is an outer packaging material, 3 is a core material of polystyrene long fiber, and 4 is a getter agent.

まず、本発明の実施形態に係る真空断熱材について、主として断熱性能と環境負荷の観点でその特徴を順を追って説明する。本実施形態の特徴は、有機繊維の芯材、ゲッター剤(後述するが、ガスや水蒸気を吸収するもの)、外包材を有し、外包材が減圧封止される真空断熱材において、有機繊維が炭素と水素からなる環境に優しい、ポリスチレン素材の長繊維ウェブを配したことにある。真空断熱材の芯材は、大気圧からその形状を保持するスペーサの機能を持ち、減圧時の圧縮応力を受けても高空隙を有する繊維が好ましい。また、断熱性能の指標である熱伝導率が芯材の種類で大きく異なるため、安価な汎用品で吸湿性が低い高剛性の繊維体として、ポリスチレン繊維の芯材を新たに選定したことを特徴とする。   First, the characteristics of the vacuum heat insulating material according to the embodiment of the present invention will be described step by step mainly from the viewpoint of heat insulating performance and environmental load. The feature of this embodiment is an organic fiber core material, a getter agent (which will be described later, which absorbs gas or water vapor), an outer packaging material, and the outer packaging material is sealed under reduced pressure. Lies in the provision of an environmentally friendly long-fiber web made of polystyrene and made of carbon and hydrogen. The core material of the vacuum heat insulating material has a function of a spacer that maintains its shape from atmospheric pressure, and is preferably a fiber having high voids even when subjected to compressive stress during decompression. In addition, since the thermal conductivity, which is an index of heat insulation performance, varies greatly depending on the type of core material, a new core material of polystyrene fiber has been newly selected as an inexpensive general-purpose product and a highly rigid fiber body with low hygroscopicity. And

本実施形態で使用するポリスチレンは、側鎖のベンゼン環が嵩高くて分子鎖が剛直で絡み難くて脆く、曲げ弾性率が約3000MPa以上の汎用品であるポリスチレンが好ましい。ポリスチレンは疎水性の非極性基を有し、吸湿性が低く、分子量は繊維化されれば制限はなく約20万〜40万が好ましい。例えば、ポリスチレン繊維の代りに汎用のポリエチレンやポリプロピレンの繊維を用いると、吸湿性は低いが曲げ弾性率が低くクリープ現象も大きいため、減圧時の圧縮応力で高空隙を得ることが難しく熱伝導率が5mW/m・K以上と高く、断熱性能が劣る。   The polystyrene used in the present embodiment is preferably a general-purpose polystyrene having a bulky side chain benzene ring, a rigid molecular chain that is difficult to entangle and brittle, and a flexural modulus of about 3000 MPa or more. Polystyrene has a hydrophobic nonpolar group, has a low hygroscopic property, and the molecular weight is not limited as long as it is fiberized, and is preferably about 200,000 to 400,000. For example, when general-purpose polyethylene or polypropylene fibers are used instead of polystyrene fibers, the hygroscopicity is low, but the flexural modulus is low and the creep phenomenon is large. Is as high as 5 mW / m · K or more, and the heat insulation performance is poor.

繊維の状態としては、短繊維のようにポイント繊維集合体で長さが短いと熱伝導率が高くなるため、連続した長繊維(連続した不定の長さの繊維)で平均繊維径が約20μm以下、特に5〜20μmが熱伝導率の観点から好ましい。例えば、繊維の剛さは繊維直径の4乗とヤング率の積に比例することから、長径を1/2にした際に剛さが1/16まで小さくなり、非常に柔らかくなり約5μm以上が好ましい。   As the state of the fiber, if the length is short as a short fiber and the heat conductivity is high, the continuous fiber (continuous indefinite length fiber) and the average fiber diameter are about 20 μm. Hereinafter, 5 to 20 μm is particularly preferable from the viewpoint of thermal conductivity. For example, the stiffness of the fiber is proportional to the product of the fourth power of the fiber diameter and the Young's modulus. Therefore, when the major axis is halved, the stiffness is reduced to 1/16 and becomes very soft and about 5 μm or more. preferable.

逆に、繊維径が大きすぎると繊維の接触が線に近くなり接触熱抵抗の低減で熱伝導率が高くなり、約20μm以下が好ましい。なお、平均繊維径は走査式電子顕微鏡を用いて、約10本の繊維を含む視野の繊維直径を測定した。   On the contrary, if the fiber diameter is too large, the contact of the fiber becomes close to a line, the thermal conductivity is increased by reducing the contact thermal resistance, and is preferably about 20 μm or less. In addition, the average fiber diameter measured the fiber diameter of the visual field containing about 10 fibers using the scanning electron microscope.

さらに、芯材の密度が150Kg/m3以下では芯材の強度が低下して、熱伝導率が高くなる傾向にある。また、逆に300Kg/m3以上では重くなり空隙率等の観点から熱伝導率が高くなる。即ち、芯材の密度は軽すぎても重すぎても、断熱性が低下する傾向にあり前記平均繊維径では、好ましい密度が150〜300Kg/m3である。なお、芯材の密度は外包材に収容した真空引き後の密度で、真空断熱材を作製した重量から外包材とゲッター剤の重量を差し引き後の芯材重量および真空断熱材の体積から密度を算出した。 Furthermore, when the density of the core material is 150 Kg / m 3 or less, the strength of the core material decreases and the thermal conductivity tends to increase. On the contrary, if it is 300 kg / m 3 or more, it becomes heavier and the thermal conductivity becomes higher from the viewpoint of porosity and the like. That is, if the density of the core material is too light or too heavy, the heat insulating property tends to decrease, and the preferred density is 150 to 300 Kg / m 3 at the average fiber diameter. The density of the core material is the density after vacuuming contained in the outer packaging material, and the density is calculated from the weight of the core material after subtracting the weight of the outer packaging material and the getter agent from the weight of the vacuum insulation material and the volume of the vacuum insulation material. Calculated.

有機繊維集合体の形成は、ポリスチレン樹脂を溶融紡糸で、ノズルから押し出し延伸で直接形成した長繊維ウェブである。ポリスチレン繊維は、押出し温度が約200〜320℃で紡糸され、温度が低いと押し出しトルクが増大し、温度が高いとゲル化しやすく繊維化しにくい。長繊維集合体は、サーマルボンドやニードルパンチ等で接着結合されていない芯材が好ましく、配向したウェブが生ずるように形成捕集される。   The organic fiber aggregate is formed by a long fiber web formed by melt spinning a polystyrene resin, directly extruding from a nozzle and drawing. Polystyrene fibers are spun at an extrusion temperature of about 200 to 320 ° C. When the temperature is low, the extrusion torque increases, and when the temperature is high, the fiber is easily gelled and hardly fiberized. The long fiber aggregate is preferably a core material that is not adhesively bonded by thermal bonding, needle punching, or the like, and is formed and collected so as to produce an oriented web.

具体的には、メルトブローンでポリスチレンをノズル先端から押出し、空気の噴射で繊維を延伸してコレクター上に捕集させてウェブを形成する。スパンボンドでは、複数の紡糸ノズル先端から連続的に押出し、空気の噴射でエジェクターから繊維をコレクター上に捕集させて、同様にウェブを形成する。なお、繊維形状としては円形に限らず、略円形状、略Y形状、略楕円形状、略星形状、略多角形状等であってもよく、ポリスチレンは成形収縮率が小さいため、繊維径のバラツキが比較的少ない繊維集合体が提供できる。当然ながら、リサイクル材のポリスチレン樹脂を用いて、上記と同様な長繊維ウェブを単独もしくは併用させても真空断熱材に使用できる。また、ポリスチレン長繊維の真空断熱材をさらに高温化するには、スキン層部等に少し変形温度の高い長繊維(例えばポリカーボネート、ポリサルホン等)を併用させて複合化して使用することも可能である。   Specifically, polystyrene is extruded from the tip of a nozzle with a melt blown, and fibers are drawn by air jetting and collected on a collector to form a web. In spunbonding, a web is formed in the same manner by continuously extruding from a plurality of spinning nozzle tips and collecting fibers from an ejector on a collector by jetting air. The fiber shape is not limited to a circle, and may be a substantially circular shape, a substantially Y shape, a substantially elliptical shape, a substantially star shape, a substantially polygonal shape, or the like. Can provide a fiber assembly having a relatively small amount. Of course, even if the same long-fiber web as mentioned above is used alone or in combination using a recycled polystyrene resin, it can be used as a vacuum heat insulating material. Further, in order to further increase the temperature of the vacuum heat insulating material of polystyrene long fibers, it is also possible to use a long fiber (for example, polycarbonate, polysulfone, etc.) having a slightly high deformation temperature in combination with the skin layer portion and the like. .

ポリスチレン長繊維を芯材に用いた真空断熱材では、従来のグラスウールやポリエステル繊維の芯材に比べ、折り曲げ部を加温しながら変形させることが可能で形状曲げができる真空断熱材が得られる。その理由として、ポリスチレン繊維が非晶性でありガラス転移温度付近で軟化し易くなる。   In a vacuum heat insulating material using polystyrene long fibers as a core material, a vacuum heat insulating material that can be deformed while heating a bent portion and can be bent is obtained as compared with a conventional glass wool or polyester fiber core material. The reason is that polystyrene fibers are amorphous and tend to soften near the glass transition temperature.

一方、グラスウールは折り曲げ難く、ポリエステル繊維は結晶性でガラス転移温度付近でも、非晶領域の鎖状分子が結晶領域に連結して拘束されることで加温による軟化が難しい。即ち、非晶性のポリスチレンは、ガラス転移温度付近で軟化し易くなり、結晶性のポリエステルはガラス転移温度付近でも結晶が融解する温度まで軟化しにくい。有機繊維は温度上昇により、ガラス転移温度付近でヤング率や強さが低下して伸度が増加するため、加温による形状曲げが容易になる傾向が見られる。   On the other hand, glass wool is difficult to bend, and polyester fibers are crystalline, and even in the vicinity of the glass transition temperature, chain molecules in an amorphous region are connected to and constrained to a crystalline region, so that softening by heating is difficult. That is, amorphous polystyrene tends to soften near the glass transition temperature, and crystalline polyester hardly softens to a temperature at which crystals melt even near the glass transition temperature. The organic fiber tends to be easily bent by heating because the Young's modulus and strength decrease and the elongation increases near the glass transition temperature due to temperature rise.

また、グラスウールやポリエステル繊維の芯材では、吸水性が高く熱伝導率への影響が顕著であるため、例えば、外包材へ挿入する前にグラスウールの際には約300℃の乾燥処理、ポリエステル繊維の際には約120℃の乾燥処理が不可欠であり、これに対して、本実施形態のポリスチレン繊維の芯材では、吸水性が低いため、乾燥処理が特に必要なものではない。   In addition, since the core material of glass wool or polyester fiber has high water absorption and has a significant effect on thermal conductivity, for example, when it is glass wool before being inserted into an outer packaging material, a drying treatment of about 300 ° C., polyester fiber In this case, a drying treatment at about 120 ° C. is indispensable. On the other hand, the polystyrene fiber core material of this embodiment has a low water absorption, so that the drying treatment is not particularly necessary.

外包材は内部に気密部を設ける芯材を覆う材料構成であり、減圧封止で芯材形状を反映する材質が好ましい。例えば、外包材に剛性の高いものを用いると折り曲げが困難になり、曲げ加工後にピンホールが発生する原因となる。従って、外包材としてはラミネートフィルムを袋状とするものが用いられる。衝撃対応の最外層とガスバリア性確保の中間層と、熱融着によって密閉できる最内層が好ましい。   The outer packaging material has a material structure that covers the core material provided with an airtight portion therein, and a material that reflects the shape of the core material by vacuum sealing is preferable. For example, if a material having high rigidity is used as the outer packaging material, it becomes difficult to bend, and a pinhole is generated after bending. Accordingly, the outer packaging material is a bag made of a laminate film. The outermost layer corresponding to impact, the intermediate layer ensuring gas barrier properties, and the innermost layer that can be sealed by heat fusion are preferable.

最外層にポリアミドフィルムを用いることで耐突き刺し性を向上させ、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体フィルムを設け、最内層は高密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリプロピレンが挙げられ、シール性やケミカルアタック性から高密度ポリエチレンが好ましい。例えば、具体的には、最外層にポリエチレンテレフタレート、中間層にアルミニウム箔、最内層に高密度ポリエチレンからなるプラスチックラミネートフィルムや最外層にポリエチレンテレフタレート、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体、最内層に高密度ポリエチレンからなるプラスチックラミネートフィルム等である。   The outermost layer uses a polyamide film to improve puncture resistance, and an intermediate layer is provided with an ethylene-vinyl alcohol copolymer film having an aluminum vapor deposition layer. The innermost layer is a high density polyethylene, a linear low density polyethylene, a high A density polypropylene is mentioned, A high density polyethylene is preferable from a sealing performance and chemical attack property. For example, a plastic laminate film composed of polyethylene terephthalate as the outermost layer, aluminum foil as the intermediate layer, high-density polyethylene as the innermost layer, polyethylene terephthalate as the outermost layer, and ethylene-vinyl alcohol having an aluminum vapor deposition layer as the intermediate layer. Polymer, plastic laminate film made of high-density polyethylene in the innermost layer, and the like.

真空断熱材の信頼性向上にゲッター剤を用いる。ゲッター剤は、二酸化炭素、酸素、窒素等のガス、水蒸気を吸収するものであればよく、ドーソナイト、ハイドロタルサイト、金属水酸化物のゲッター剤、あるいはモレキュラーシーブス、シリカゲル、酸化カルシウム、ゼオライト、疎水性ゼオライト、活性炭、水酸化カリウム、水酸化リチウムの吸収剤を使用する。その際、ゲッター剤の突起による突き刺しで外包材にピンホールが発生し易いため、ポリスチレン長繊維に挟めて用いることで外包材のピンホール発生が抑制でき好ましい。   A getter agent is used to improve the reliability of the vacuum heat insulating material. The getter agent only needs to absorb gases such as carbon dioxide, oxygen and nitrogen, and water vapor. The getter agent of dawsonite, hydrotalcite, metal hydroxide, molecular sieves, silica gel, calcium oxide, zeolite, hydrophobic Use absorbents of water-soluble zeolite, activated carbon, potassium hydroxide and lithium hydroxide. At that time, pinholes are likely to be generated in the outer packaging material due to the piercing by the getter agent projection, and therefore pinhole generation in the outer packaging material can be preferably suppressed by using it sandwiched between polystyrene long fibers.

上述した真空断熱材は、断熱箱体を有する冷蔵庫等に使用することができる。冷蔵庫等は外箱と内箱とで空間を作製し、その空間内に発泡樹脂フォームを充填されているものであり、発泡樹脂フォームを充填する空間に真空断熱材を挿入できる。真空断熱材と発泡樹脂の挿入方法は、あらかじめ内箱と外箱とで形成した空間に真空断熱材を設置しておき、その後、発泡樹脂フォームを注入して一体成型する方法、あるいは真空断熱材と発泡樹脂フォームをあらかじめ一体成型した真空断熱材を作製しておき、その真空断熱材を内箱あるいは外箱に貼り付けまたは両者で挟持する方法がある。これらの方法は、断熱性能を必要とする物品に応じて適宜使用される。   The vacuum heat insulating material mentioned above can be used for the refrigerator etc. which have a heat insulation box. A refrigerator or the like has a space formed by an outer box and an inner box and is filled with a foamed resin foam, and a vacuum heat insulating material can be inserted into the space filled with the foamed resin foam. The method for inserting the vacuum heat insulating material and the foamed resin is a method in which the vacuum heat insulating material is previously installed in the space formed by the inner box and the outer box, and then the foamed resin foam is injected and integrally molded, or the vacuum heat insulating material There is a method in which a vacuum heat insulating material in which a foamed resin foam is integrally molded in advance is produced and the vacuum heat insulating material is attached to an inner box or an outer box or sandwiched between both. These methods are appropriately used depending on an article that requires heat insulation performance.

上述した真空断熱材は保温・保冷の必要な各製品に適用できる。例示すれば、冷蔵庫、車両、建築物建材、自動車、医療用機器等である。特に、熱交換部を含み断熱が必要な製品全般に有効である。冷蔵庫へ本発明の真空断熱材を適用することにより保温・保冷機能を向上させ、熱漏洩量の低減および省エネルギー化が期待できる。冷蔵庫等には、家庭用や業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、保冷庫、クーラーボックス等が含まれる。また、車両に適用することにより、省スペース化の真空断熱材の設置により車内空間が拡大され、十分な断熱効果を持たせ結露等の問題解決が期待できる。   The vacuum heat insulating material described above can be applied to each product that needs to be kept warm. Examples include refrigerators, vehicles, building materials, automobiles, medical equipment, and the like. In particular, it is effective for all products that include a heat exchange section and require heat insulation. By applying the vacuum heat insulating material of the present invention to the refrigerator, it is possible to improve the heat insulation / cooling function and reduce the amount of heat leakage and save energy. Refrigerators and the like include vending machines, product display shelves, refrigerators, cooler boxes and the like in addition to refrigerators and freezers for home use and commercial use. Moreover, by applying it to a vehicle, the space inside the vehicle can be expanded by installing a space-saving vacuum heat insulating material, and a sufficient heat insulating effect can be provided to solve problems such as condensation.

次に、本発明の実施形態に係る真空断熱材及びこれを適用した冷蔵庫に関する構成と作製手法について、図1〜図5を参照しながら以下説明する。図1は本発明の実施形態に係る真空断熱材の構成を示す断面図である。図2は従来技術における真空断熱材の構成を示す断面図である。図3は本実施形態に係る真空断熱材を適用した断熱箱体の構成を示す断面図である。図4は本実施形態に係る真空断熱材を適用した冷蔵庫の構成を示す断面図である。図5は本発明の実施形態に係る真空断熱材の具体例である複数の実施例について、比較例と対比してその属性を表す図である。   Next, the structure and manufacturing method regarding the vacuum heat insulating material which concerns on embodiment of this invention, and the refrigerator which applied this are demonstrated below, referring FIGS. FIG. 1 is a cross-sectional view showing a configuration of a vacuum heat insulating material according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a configuration of a vacuum heat insulating material in the prior art. FIG. 3 is a cross-sectional view showing a configuration of a heat insulating box to which the vacuum heat insulating material according to the present embodiment is applied. FIG. 4 is a cross-sectional view showing a configuration of a refrigerator to which the vacuum heat insulating material according to this embodiment is applied. FIG. 5 is a diagram showing attributes of a plurality of examples, which are specific examples of the vacuum heat insulating material according to the embodiment of the present invention, in comparison with the comparative example.

図面において、1は真空断熱材、2は外包材、3はポリスチレン長繊維の芯材、3’は芯材曲げ部、4はゲッター剤、5はグラスウール又はポリエステル繊維、6は従来の真空断熱材、7は断熱箱体、8は硬質ポリウレタンフォーム、9は箱体、10は冷蔵庫、11は冷蔵庫内箱、12は冷蔵庫外箱、をそれぞれ表す。   In the drawings, 1 is a vacuum heat insulating material, 2 is an outer packaging material, 3 is a core material of polystyrene long fiber, 3 'is a core material bending portion, 4 is a getter agent, 5 is glass wool or polyester fiber, and 6 is a conventional vacuum heat insulating material. , 7 represents a heat insulating box, 8 represents a rigid polyurethane foam, 9 represents a box, 10 represents a refrigerator, 11 represents a refrigerator inner box, and 12 represents a refrigerator outer box.

本実施形態に係る真空断熱材1は、ポリスチレン長繊維の芯材(コア材)3にゲッター剤4と共に外包材2で減圧封止される構成のものである。本実施形態の真空断熱材1によれば、ポリスチレン長繊維の芯材3を用いて、断熱性能と環境負荷が両立できる熱伝導率の低い平面形状の真空断熱材1が得られる。また、この真空断熱材1を、外包材2の溶着温度以下の約60〜80℃で加温しながら曲げることにより、外包材2への歪みが少なく熱伝導率が低い曲げ形状の真空断熱材1も作製可能である。その結果、平面形状や曲げ形状の真空断熱材1を組み合わせて、箱体並びに冷蔵庫に使用できる優れた真空断熱材1を提供する。   The vacuum heat insulating material 1 according to the present embodiment has a configuration in which a core material (core material) 3 of polystyrene long fiber is sealed under reduced pressure with an outer packaging material 2 together with a getter agent 4. According to the vacuum heat insulating material 1 of this embodiment, the planar vacuum heat insulating material 1 having a low thermal conductivity capable of achieving both heat insulating performance and environmental load can be obtained by using the core material 3 of polystyrene long fiber. In addition, by bending the vacuum heat insulating material 1 while heating at about 60 to 80 ° C. which is lower than the welding temperature of the outer packaging material 2, the vacuum heat insulating material having a bent shape with less distortion to the outer packaging material 2 and low thermal conductivity. 1 can also be produced. As a result, an excellent vacuum heat insulating material 1 that can be used in a box and a refrigerator is provided by combining the vacuum heat insulating material 1 having a planar shape or a bent shape.

一方、図2に従来の真空断熱材6の断面模式図を示す。グラスウールの芯材やポリエステル繊維の芯材5をゲッター剤4と共に外包材2で減圧封止する構成の真空断熱材である。従来の真空断熱材6は、グラスウールでは断熱性が良いものの環境負荷が劣り、ポリエステル繊維では環境負荷が良いものの断熱性が劣り、断熱性能と環境負荷を両立される芯材が得られず、芯材5の折り曲げ性もグラスウールやポリエステル繊維では難しく、無理に曲げると繊維の切断や曲げ部で厚み減少や外包材2の外側部分の薄膜化で起こるピンホールが生じ易くなり、真空断熱材への断熱性能を悪化させる。   On the other hand, the cross-sectional schematic diagram of the conventional vacuum heat insulating material 6 is shown in FIG. It is a vacuum heat insulating material having a configuration in which a glass wool core material or a polyester fiber core material 5 is sealed under reduced pressure with an outer packaging material 2 together with a getter agent 4. The conventional vacuum heat insulating material 6 is good in heat insulation in glass wool, but inferior in environmental load, but in polyester fiber, it has good environmental load but inferior in heat insulation, and a core material that achieves both heat insulation performance and environmental load cannot be obtained. The bendability of the material 5 is also difficult with glass wool or polyester fiber, and if it is bent forcibly, pinholes that occur when the fiber is cut or the thickness is reduced at the bent portion or the outer portion of the outer packaging material 2 becomes thin are likely to occur. Deteriorates thermal insulation performance.

図3に本実施形態の真空断熱材1を備えた断熱箱体7の斜視模式図を示す。この断熱箱体7は、鉄板をプレス成型した箱体9の内面側の一部に、ポリスチレン長繊維を入れた真空断熱材1を挿入し、さらに、空隙部分に硬質ポリウレタンフォーム8を発泡充填した構成のものである。真空断熱材1を作製する際には、芯材3の一部を加温部3’で折り曲げた曲げ形状の真空断熱材を使用している。   The perspective schematic diagram of the heat insulation box 7 provided with the vacuum heat insulating material 1 of this embodiment in FIG. 3 is shown. In this heat insulating box 7, the vacuum heat insulating material 1 in which polystyrene long fibers are put is inserted into a part of the inner surface side of the box 9 obtained by press-molding an iron plate, and the rigid polyurethane foam 8 is foam-filled in the gap portion. It is a thing of composition. When the vacuum heat insulating material 1 is manufactured, a vacuum heat insulating material having a bent shape in which a part of the core material 3 is bent by the heating portion 3 ′ is used.

本実施形態の真空断熱材は、ポリスチレン長繊維の条件等を変えて作製し、熱伝導率および熱伝導率の経時劣化、折り曲げ性、水分除去、CO2排出量、エコリサイクルを確認した。また、ポリスチレン長繊維以外の繊維芯材を用いたものを比較例1〜4として作製し同様に確認した。その確認の結果を図5に示す。 The vacuum heat insulating material of this embodiment was produced by changing the conditions of polystyrene long fibers, and the like, and confirmed thermal conductivity and thermal conductivity deterioration with time, bendability, moisture removal, CO 2 emission, and eco-recycling. Moreover, what used fiber core materials other than a polystyrene long fiber was produced as Comparative Examples 1-4, and it confirmed similarly. The result of the confirmation is shown in FIG.

図5によると、本実施形態に係る真空断熱材の具体例である実施例1〜5が、比較例1〜4と対比して挙げられており、以下これらについて具体的に説明する。   According to FIG. 5, Examples 1 to 5, which are specific examples of the vacuum heat insulating material according to the present embodiment, are listed in comparison with Comparative Examples 1 to 4, and these will be specifically described below.

「実施例1」
本実施形態の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂(分子量:約20万、曲げ弾性率:約3000MPa)を用い、スパンボンド紡糸でポリスチレンを複数のノズル先端を通しながら、約290℃の温度で連続的に押出し、空気噴射で制御されたエジェクターから繊維をコレクター上に捕集させて、略円形状の長繊維ウェブを形成した。その平均繊維径が約15.6μmで密度が約230Kg/m3である。
"Example 1"
The flat plate-shaped vacuum heat insulating material of this embodiment was produced as follows. A general-purpose polystyrene resin (molecular weight: about 200,000, flexural modulus: about 3000 MPa) is used to continuously extrude polystyrene at a temperature of about 290 ° C while passing through the tip of multiple nozzles by spunbond spinning, and control by air injection. The fibers were collected on the collector from the ejector thus formed to form a substantially circular long fiber web. The average fiber diameter is about 15.6 μm and the density is about 230 Kg / m 3 .

さらに、ガスバリア性フィルムからなる外包材の中に形成した長繊維ウェブの芯材を重ねて入れ、ガス吸着のゲッター剤(モレキュラーシーブス13X)を挟めて、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れてチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止した。   Furthermore, the core material of the long fiber web formed in the outer packaging material made of a gas barrier film is put on top, and the gas adsorption getter agent (Molecular Sieves 13X) is sandwiched between them and diffused for 10 minutes with the rotary pump of the vacuum packaging machine. After pumping in a vacuum chamber for 10 minutes and evacuating until the internal pressure of the chamber became 1.3 Pa, the end of the outer packaging material was vacuum-sealed by heat sealing.

得られた真空断熱材(大きさ:500mm×500mm×10mm)の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。熱伝導率が2.5mW/m・K、さらに、真空断熱材を60℃の恒温槽中に30日間放置後、熱伝導率を再測定した結果4.2mW/m・Kであった。このことから、ポリスチレンの長繊維ウェブを有した真空断熱材では、環境負荷に優れ吸湿性が低く、ガスバリア性および内部の真空度が維持される高性能な真空断熱材が提供できる。   The thermal conductivity of the obtained vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm) was measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The thermal conductivity was 2.5 mW / m · K, and the vacuum heat insulating material was allowed to stand in a constant temperature bath at 60 ° C. for 30 days, and the thermal conductivity was measured again. The result was 4.2 mW / m · K. From this, the vacuum heat insulating material having a polystyrene long fiber web can provide a high-performance vacuum heat insulating material that is excellent in environmental load and has low hygroscopicity, and that maintains gas barrier properties and internal vacuum.

「比較例1」
実施例1のポリスチレン繊維の代りに、ポリエステル繊維集合体(平均繊維径:約16.5μm、密度:約180Kg/m3)は吸湿性が高いために、水分除去(120℃/1h乾燥)の処理をした芯材を用い、ガスバリア性の外包材にガス吸着のゲッター剤(モレキュラーシーブス13X)と共に入れ、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールして真空封止により真空断熱材(大きさ:500mm×500mm×10mm)を作製した。このようにして得られた実施例1と同様の真空断熱材は熱伝導率が4.2mW/m・K、真空断熱材を60℃の恒温槽中に30日間放置後の熱伝導率を再測定した結果、8.2mW/m・Kであった。
“Comparative Example 1”
Instead of the polystyrene fiber of Example 1, the polyester fiber aggregate (average fiber diameter: about 16.5 μm, density: about 180 Kg / m 3 ) has high hygroscopicity, so that moisture is removed (dried at 120 ° C./1 h). Using the treated core material, put it in a gas barrier outer packaging material with a gas adsorption getter agent (Molecular Sieves 13X), put it in the vacuum chamber for 10 minutes with the rotary pump of the vacuum packaging machine, 10 minutes with the diffusion pump, After exhausting until the internal pressure became 1.3 Pa, the end portion of the outer packaging material was heat sealed, and a vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm) was produced by vacuum sealing. The vacuum heat insulating material obtained in the same manner as in Example 1 has a thermal conductivity of 4.2 mW / m · K, and the heat conductivity after leaving the vacuum heat insulating material in a constant temperature bath at 60 ° C. for 30 days is restored. The measurement result was 8.2 mW / m · K.

このことから、ポリエステル繊維を用いた芯材では環境負荷に対する問題(粉塵度合、CO2排出量、エコリサイクル)は見られないが、吸湿性が高くてガスバリア性および内部の真空度が低下する真空断熱材では、熱伝導率が高く断熱性能の低下が見られる。 For this reason, the core material using polyester fiber does not have any environmental impact problems (degree of dust, CO 2 emissions, eco-recycling), but it has a high hygroscopic property and lowers the gas barrier property and internal vacuum. In the heat insulating material, the heat conductivity is high and the heat insulating performance is reduced.

「実施例2」
本実施形態の曲げ形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂(分子量:約30万、曲げ弾性率:約3200MPa)を用い、メルトブローン紡糸でポリスチレンをノズル先端から通しながら約260℃の温度で連続的に押出し、空気の噴射で繊維を延伸して、コレクター上に捕集させた略Y形状の長繊維ウェブを形成した。平均繊維径は約8.0μmで密度が約150Kg/m3である。
"Example 2"
The bent-shaped vacuum heat insulating material of this embodiment was produced as follows. Using general-purpose polystyrene resin (molecular weight: about 300,000, flexural modulus: about 3200 MPa), polystyrene is continuously extruded at a temperature of about 260 ° C. while passing through the nozzle tip by meltblown spinning, and the fibers are drawn by air injection. Thus, a substantially Y-shaped long fiber web collected on the collector was formed. The average fiber diameter is about 8.0 μm and the density is about 150 Kg / m 3 .

さらに、ガスバリア性の外包材に形成した長繊維ウェブの芯材を重ねて入れ、ガス吸着のゲッター剤(疎水性ゼオライトHiSiv−3000)を挟め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールして真空封止で真空断熱材(大きさ:500mm×500mm×10mm)を得た。その後、曲げ試験機の支持台圧子に真空断熱材を挟み、約60〜80℃の温度で加温しながら曲げ形状の真空断熱材を作製した。   Furthermore, the core material of the long fiber web formed on the gas barrier outer packaging material is put on top, and the gas adsorption getter agent (hydrophobic zeolite HiSiv-3000) is sandwiched between the rotary pump of the vacuum packaging machine for 10 minutes and the diffusion pump. Place in the vacuum chamber for 10 minutes, exhaust until the internal pressure of the chamber reaches 1.3 Pa, heat seal the end of the outer packaging material, and vacuum seal with vacuum sealing (size: 500 mm x 500 mm x 10 mm) Got. Then, the vacuum heat insulating material was pinched | interposed into the support stand indenter of the bending tester, and the bending-shaped vacuum heat insulating material was produced, heating at the temperature of about 60-80 degreeC.

熱伝導率を測定した結果、2.0mW/m・Kを示した。また、折り曲げ性を評価するため、曲げ試験機を用い試験条件(速度が10mm/min、支点間距離が100mmで支持台および圧子がφ20mmの丸棒を加温)、変位量40mmでの最大曲げ荷重(N)を測定した。その結果、折り曲げ性は70.5Nと低く、さらに、その真空断熱材を60℃の恒温槽中に30日間放置後の熱伝導率を再測定した結果、3.2mW/m・Kであった。   As a result of measuring thermal conductivity, it was 2.0 mW / m · K. In addition, in order to evaluate bendability, a bending tester is used to test conditions (speed is 10 mm / min, the distance between fulcrums is 100 mm, the support and indenter is a round bar with a diameter of φ20 mm), and the maximum bending with a displacement of 40 mm The load (N) was measured. As a result, the bendability was as low as 70.5 N, and the heat conductivity after leaving the vacuum heat insulating material in a constant temperature bath at 60 ° C. for 30 days was 3.2 mW / m · K. .

このことから、ポリスチレンの長繊維ウェブを有した真空断熱材では、折り曲げても熱伝導率の劣化が抑制されている。曲げ形状の真空断熱材は、加温される芯材を反映して曲げても外包材に過度の応力が加わることなく、熱伝導率が優れる高性能な真空断熱材を提供できる。   From this, in the vacuum heat insulating material having the long fiber web of polystyrene, deterioration of the thermal conductivity is suppressed even when it is bent. The bent-shaped vacuum heat insulating material can provide a high-performance vacuum heat insulating material with excellent thermal conductivity without applying excessive stress to the outer packaging material even if it is bent reflecting the core material to be heated.

「比較例2」
実施例2のポリスチレン繊維の代りに、ポリエステル繊維集合体(平均繊維径:約17.2μm、密度:約210Kg/m3)は吸湿性が高いために、水分除去(120℃/1h乾燥)の処理をした芯材を用い、ガスバリア性の外包材にガス吸着のゲッター剤(疎水性ゼオライトHiSiv−3000)と共に入れて、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止して、真空断熱材(大きさ:500mm×500mm×10mm)を得た。
"Comparative Example 2"
Instead of the polystyrene fiber of Example 2, the polyester fiber aggregate (average fiber diameter: about 17.2 μm, density: about 210 Kg / m 3 ) is highly hygroscopic, so that moisture removal (120 ° C./1 h drying) Using the treated core material, put it in a gas barrier outer packaging material together with a gas adsorption getter agent (hydrophobic zeolite HiSiv-3000), 10 minutes with the rotary pump of the vacuum packaging machine, 10 minutes with the diffusion pump, inside the vacuum chamber After evacuating until the internal pressure of the chamber became 1.3 Pa, the end of the outer packaging material was vacuum-sealed by heat sealing to obtain a vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm).

その後、実施例2と同様に曲げ試験機で加温しながら、曲げ形状の真空断熱材を形成したが曲げ難い。また、実施例2と同様に最大曲げ荷重(N)を測定した結果、折り曲げ性が120Nで、熱伝導率が5.2mW/m・Kを示した。その後、真空断熱材を60℃の恒温槽中に30日間放置後に熱伝導率を再測定した結果、9.5mW/m・Kまで高くなった。   After that, while heating with a bending tester as in Example 2, a bent vacuum heat insulating material was formed, but it is difficult to bend. Moreover, as a result of measuring the maximum bending load (N) as in Example 2, the bending property was 120 N, and the thermal conductivity was 5.2 mW / m · K. Thereafter, the thermal insulation was re-measured after leaving the vacuum heat insulating material in a constant temperature bath at 60 ° C. for 30 days, and as a result, the temperature increased to 9.5 mW / m · K.

このことから、ポリエステル繊維の芯材では曲げにくいため、真空断熱材の芯材および外包材に応力が加わりガスバリア性および内部の真空度低下により、熱伝導率の経時劣化が高く断熱性能の低下が見られる。   Because of this, it is difficult to bend with the polyester fiber core material. It can be seen.

「実施例3」
本実施形態の平板形状の真空断熱材は以下のように作製した。汎用のポリスチレン樹脂を用い、スパンボンド紡糸で形成した略円形状の平均繊維径が約20μmの長繊維ウェブ、および汎用のポリスチレン樹脂を用い、メルトブローン紡糸で形成した略Y形状の平均繊維径が約9.2μmの長繊維ウェブの両者を芯材に用いた。密度は約300Kg/m3である。まず、薄いポリエチレン等の内袋を用いて、スパンボンド紡糸とメルトブローン紡糸で形成した両者の長繊維ウェブをガス吸着のゲッター剤(モレキュラーシーブス13X)と共に入れて仮真空封止後、さらに、ガスバリア性の外包材に挿入して内袋を開封後、直ちに真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールにより真空封止して真空断熱材(大きさ:500mm×500mm×10mm)を作製した。
"Example 3"
The flat-plate-shaped vacuum heat insulating material of this embodiment was produced as follows. A general-purpose polystyrene resin is used and a long-fiber web having an approximately circular average fiber diameter of about 20 μm formed by spunbond spinning, and an approximately Y-shaped average fiber diameter formed by meltblown spinning using a general-purpose polystyrene resin is about Both 9.2 μm long fiber webs were used as the core material. The density is about 300 Kg / m 3 . First, using an inner bag of thin polyethylene or the like, both long fiber webs formed by spunbond spinning and meltblown spinning are put together with a gas adsorption getter agent (Molecular Sieves 13X), and after temporary vacuum sealing, further gas barrier properties After opening the inner bag by inserting it into the outer packaging material, immediately put it in the vacuum chamber for 10 minutes with the rotary pump of the vacuum packaging machine and 10 minutes with the diffusion pump, exhaust it until the internal pressure of the chamber becomes 1.3 Pa, and then The edge part of the material was vacuum-sealed by heat sealing to produce a vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm).

なお、実施例3では外包材に芯材を挿入する際に非常に入れ易い方法として、熱伝導率に影響を与えない内袋を用いたものである。熱伝導率を測定した結果、2.4mW/m・K、さらに、真空断熱材を60℃の恒温槽中に入れ30日間放置後に熱伝導率を再測定した結果、3.8mW/m・Kであった。   In Example 3, an inner bag that does not affect the thermal conductivity is used as a very easy method for inserting the core material into the outer packaging material. As a result of measuring the thermal conductivity, 2.4 mW / m · K. Furthermore, after placing the vacuum heat insulating material in a thermostat at 60 ° C. and leaving it for 30 days, the thermal conductivity was measured again, and the result was 3.8 mW / m · K. Met.

このことから、繊維径が異なる2種のポリスチレン長繊維を用いた真空断熱材でも、吸湿性が低くてガスバリア性および内部の真空度が維持され高性能な真空断熱材を提供できる。   Therefore, even a vacuum heat insulating material using two types of polystyrene long fibers having different fiber diameters can provide a high-performance vacuum heat insulating material that has low hygroscopicity and maintains gas barrier properties and internal vacuum.

「実施例4」
実施例3の平板形状の真空断熱材(大きさ:500mm×500mm×10mm)を、曲げ試験機の支持台圧子に真空断熱材を挟み、約60〜80℃の温度で加温しながら曲げ形状の真空断熱材を作製した。熱伝導率を測定した結果、2.8mW/m・Kであり、平板形状の真空断熱材とほぼ同等の熱伝導率を示した。
"Example 4"
The plate-shaped vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm) of Example 3 is bent while the vacuum heat insulating material is sandwiched between the support table indenters of the bending tester and heated at a temperature of about 60 to 80 ° C. The vacuum heat insulating material was produced. As a result of measuring the thermal conductivity, it was 2.8 mW / m · K, which was almost the same as that of a flat plate-shaped vacuum heat insulating material.

また、折り曲げ性の評価として、曲げ試験機を用い試験条件(速度が10mm/min、支点間距離が100mmで支持台および圧子がφ20mmの丸棒を加温)、変位量40mmでの最大曲げ荷重(N)を測定した。その結果、折り曲げ性は72.9Nと低く、さらに、その真空断熱材を60℃の恒温槽中に30日間放置後の熱伝導率を再測定した結果、4.4mW/m・Kであった。   In addition, as a bendability evaluation, a bending tester is used to test conditions (speed is 10 mm / min, distance between fulcrums is 100 mm, a support bar and an indenter is a round bar having a diameter of 20 mm), and a maximum bending load at a displacement of 40 mm. (N) was measured. As a result, the bendability was as low as 72.9 N. Further, the heat conductivity after leaving the vacuum heat insulating material in a constant temperature bath at 60 ° C. for 30 days was 4.4 mW / m · K. .

このことから、ポリスチレン長繊維ウェブを2種有した真空断熱材でも、折り曲げても熱伝導率の劣化が抑制されている。曲げ形状の真空断熱材は、加温される芯材を反映して曲げても外包材に過度の応力が加わることなく、熱伝導率が優れる高性能な真空断熱材を提供できる。   From this, even if it is a vacuum heat insulating material which has two types of polystyrene long fiber webs, even if it bends, deterioration of thermal conductivity is controlled. The bent-shaped vacuum heat insulating material can provide a high-performance vacuum heat insulating material with excellent thermal conductivity without applying excessive stress to the outer packaging material even if it is bent reflecting the core material to be heated.

「実施例5」
本実施形態の平板形状の真空断熱材は、以下のように作製した。冷蔵庫のトレー等からリサイクル材のポリスチレン樹脂(分子量:約23万、曲げ弾性率:約3500MPa)をスパンボンド紡糸により、複数のノズル先端を通しながら約300℃の温度で連続的に押出し、空気噴射で制御されたエジェクターから繊維をコレクター上に捕集させて、略円形状の平均繊維径が約14.2μmの長繊維ウェブを用いた。芯材の密度は約210Kg/m3である。
"Example 5"
The flat plate-shaped vacuum heat insulating material of this embodiment was produced as follows. Recycled polystyrene resin (molecular weight: approx. 230,000, flexural modulus: approx. 3500 MPa) is continuously extruded from a refrigerator tray, etc. at a temperature of approx. Fibers were collected on a collector from an ejector controlled by the above, and a substantially circular long fiber web having an average fiber diameter of about 14.2 μm was used. The density of the core material is about 210 kg / m 3 .

さらに、ガスバリア性の外包材中に形成した長繊維ウェブの芯材を重ねて入れ、ガス吸着のゲッター剤(モレキュラーシーブス13X)を挟め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバー内部の圧力が1.3Paになるまで排気後、外包材の端部をヒートシールにより真空封止した。得られた真空断熱材(大きさ:500mm×500mm×10mm)の熱伝導率は、2.6mW/m・K、さらに、真空断熱材を60℃の恒温槽中に30日間放置後に熱伝導率を再測定した結果、4.1mW/m・Kであった。   Furthermore, the core material of the long fiber web formed in the gas barrier outer packaging material is put on top, and the gas adsorption getter agent (Molecular Sieves 13X) is sandwiched between the rotary pump of the vacuum packaging machine and 10 minutes with the diffusion pump. Then, after putting in a vacuum chamber and evacuating until the pressure inside the chamber became 1.3 Pa, the end of the outer packaging material was vacuum-sealed by heat sealing. The heat conductivity of the obtained vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm) is 2.6 mW / m · K, and the heat conductivity after leaving the vacuum heat insulating material in a constant temperature bath at 60 ° C. for 30 days. Was 4.1 mW / m · K.

このことから、リサイクル材のポリスチレン長繊維を用いた真空断熱材では、吸湿性が低くガスバリア性および内部の真空度が維持されることで、熱伝導率が優れる高性能な真空断熱材を提供できる。   From this, the vacuum heat insulating material using the polystyrene long fiber of the recycled material can provide a high performance vacuum heat insulating material having excellent heat conductivity by maintaining low gas absorption and low internal gas barrier property. .

「実施例6」
本実施形態の実施例6は、図4に示すように、本実施形態の真空断熱材を冷蔵庫に用いた例である。冷蔵庫は、真空断熱材およびその他の断熱材により断熱されている。冷蔵庫において、外気温との温度差が特に大きいのは、コンプレッサー周辺部と、冷蔵庫背面の内箱の外面側である。この部位に本実施形態の真空断熱材1を使用することが有効である。真空断熱材にはポリスチレン長繊維の芯材を設け、変形部と平面部を組み合わせて作製したものを用いた。
"Example 6"
Example 6 of this embodiment is an example in which the vacuum heat insulating material of this embodiment is used in a refrigerator, as shown in FIG. The refrigerator is insulated by a vacuum heat insulating material and other heat insulating materials. In the refrigerator, the temperature difference from the outside air temperature is particularly large between the peripheral portion of the compressor and the outside surface of the inner box on the back of the refrigerator. It is effective to use the vacuum heat insulating material 1 of this embodiment for this part. As the vacuum heat insulating material, a core material of polystyrene long fiber was provided, and a material produced by combining the deformed portion and the flat portion was used.

真空断熱材は、断熱壁の曲げ部に沿って配設した真空断熱材である。真空断熱材を曲げ部の内箱側に設置する場合は、内箱の形状に沿って内箱に密着するように設置してある。また、真空断熱材は、曲げ部の外箱側に設置する場合は、外箱の形状に沿って設置してある。断熱壁の曲げ部は断熱壁の変形部を構成する部分である。なお、外箱の背面部および冷蔵庫扉の1つにも真空断熱材を配置してある(図4を参照)。   The vacuum heat insulating material is a vacuum heat insulating material disposed along the bent portion of the heat insulating wall. When installing a vacuum heat insulating material in the inner box side of a bending part, it has installed so that it may closely_contact | adhere to an inner box along the shape of an inner box. Moreover, the vacuum heat insulating material is installed along the shape of the outer box, when installing in the outer box side of a bending part. The bent part of the heat insulating wall is a part constituting the deformed part of the heat insulating wall. In addition, the vacuum heat insulating material is arrange | positioned also at the back part of an outer box, and the refrigerator door (refer FIG. 4).

箱体にポリオールとイソシアネートとを、高圧発泡機を用い注入充填して冷蔵庫の断熱材を作製した。発泡断熱材の硬質ポリウレタンフォームは、ポリオールとして、平均水酸基価が450のm−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを40重量部、平均水酸基価が470のオルト‐トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、平均水酸基価が380のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部の混合ポリオール成分100重量部に、シクロペンタン15重量部に水1.5部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、イソシアネート成分としてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて発泡充填した。   A box and a polyol and isocyanate were injected and filled using a high-pressure foaming machine to prepare a heat insulating material for the refrigerator. Rigid polyurethane foam foam insulation is 40 parts by weight of a polyether polyol obtained by adding propylene oxide to m-tolylenediamine having an average hydroxyl value of 450 as a polyol, and propylene in ortho-tolylenediamine having an average hydroxyl value of 470. 30 parts by weight of polyether polyol with oxide added, 30 parts by weight of polyether polyol with propylene oxide added to o-tolylenediamine having an average hydroxyl value of 380, and 100 parts by weight of mixed polyol component, 15 parts by weight of cyclopentane 1.5 parts of water and 1.2 parts of tetramethylhexamethylenediamine as a reaction catalyst and 2 parts of trimethylaminoethylpiperazine, 2 parts by weight of an organic silicone compound X-20-1614 as a foam stabilizer, and a millionate as an isocyanate component Diphenylmethane diisocyanate polynuclear of R was foam filling with 125 parts.

断熱後の冷蔵庫の熱漏洩量および消費電力量を測定した。冷蔵庫の熱漏洩量は、冷蔵庫の動作状態と反対の温度条件を設定し庫内からの熱漏洩量として測定を行った。具体的には、−10℃の恒温室内に冷蔵庫を設置し、庫内温度を所定の測定条件(温度差)になるようにヒータにそれぞれ通電し冷蔵庫の消費電力と冷却性能を比較する温度条件で測定した。冷蔵庫の消費電力量はJIS測定基準で行った。   The heat leakage amount and power consumption of the refrigerator after heat insulation were measured. The amount of heat leakage of the refrigerator was measured as the amount of heat leakage from the interior by setting the temperature condition opposite to the operation state of the refrigerator. Specifically, a temperature condition in which a refrigerator is installed in a thermostatic chamber of −10 ° C. and the heater temperature is set to a predetermined measurement condition (temperature difference) to compare the power consumption and cooling performance of the refrigerator. Measured with The power consumption of the refrigerator was performed according to JIS measurement standards.

その結果、真空断熱材を挿入しなかった冷蔵庫に比べて、熱漏洩量で8.5%、消費電力量で12%低減可能な冷蔵庫を提供できた。なお、前記の硬質ポリウレタンフォームは、本実施形態の真空断熱材1と共に、冷蔵庫および断熱箱体に使用することが可能であり、硬質ポリウレタンフォーム以外にフェノールフォームやスチレンフォーム等が例示されるが、シクロペンタンおよび水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。   As a result, it was possible to provide a refrigerator capable of reducing the amount of heat leakage by 8.5% and the power consumption by 12% as compared with a refrigerator in which no vacuum heat insulating material was inserted. In addition, the said rigid polyurethane foam can be used for a refrigerator and a heat insulation box with the vacuum heat insulating material 1 of this embodiment, A phenol foam, a styrene foam, etc. are illustrated other than a rigid polyurethane foam, A rigid polyurethane foam containing cyclopentane and water as a mixed foaming agent is preferred.

「実施例7」
本実施形態の実施例7は、真空断熱材をダブルスキン構造材の車両の断熱材として使用する例である。ダブルスキン構造を有する車両においては、軽量化と耐圧性向上を図るため、その側面および屋根構造体が曲面を有する構造となっており、従来の真空断熱材では貼り付けが困難である。また、貼り付けると外包材に歪みが生じ、内部の真空度が低下して断熱性能が劣る。真空断熱材はポリスチレン長繊維ウェブの芯材を有し、平板形状と曲げ形状を組み合わせて作製したものを用いた。
"Example 7"
Example 7 of this embodiment is an example in which a vacuum heat insulating material is used as a heat insulating material for a vehicle having a double skin structure material. In a vehicle having a double skin structure, the side surface and the roof structure have a curved surface in order to reduce the weight and improve the pressure resistance, and it is difficult to attach the conventional vacuum heat insulating material. Moreover, when it sticks, a distortion will arise in an outer packaging material, an internal vacuum degree will fall and heat insulation performance will be inferior. The vacuum heat insulating material has a core material of a polystyrene long-fiber web, and was prepared by combining a flat plate shape and a bent shape.

本実施形態の真空断熱材1を用いた場合は、構造体の曲面に沿って貼り付けることが可能となり、車両の断熱効果を有し、車両内の結露等の問題も発生しなかった。また、断熱特性に優れる真空断熱材であり、断熱材の厚さを低減することにより車両の室内空間が広くなる効果も見られ、本実施形態の真空断熱材は車両用断熱材としても有効である。   When the vacuum heat insulating material 1 of the present embodiment is used, it can be attached along the curved surface of the structure, has a heat insulating effect on the vehicle, and does not cause problems such as condensation in the vehicle. In addition, it is a vacuum heat insulating material with excellent heat insulating properties, and the effect of widening the interior space of the vehicle by reducing the thickness of the heat insulating material is also seen, and the vacuum heat insulating material of this embodiment is also effective as a heat insulating material for vehicles. is there.

「実施例8」
本実施形態の実施例8は、真空断熱材を自動販売機の断熱材として使用する例である。自動販売機においても省エネ化と空間容積向上を図るため、その側面の平板形状真空断熱材、下面の曲げ形状真空断熱材を有する構造となっており、従来の真空断熱材では曲げ難く、無理に曲げると外包材に歪みが生じ、内部の真空度が低下して断熱性能が悪化する。
"Example 8"
Example 8 of this embodiment is an example using a vacuum heat insulating material as a heat insulating material of a vending machine. In vending machines, in order to save energy and improve the space volume, it has a structure with a flat plate vacuum heat insulating material on its side and a bent shape vacuum heat insulating material on the bottom surface. When bent, the outer packaging material is distorted, the internal vacuum is lowered, and the heat insulation performance is deteriorated.

そこで、実施例8においては、真空断熱材1はポリスチレンの長繊維ウェブを用いた芯材を有し、平板形状と曲げ形状を組み合わせて作製したものを用いた。   Therefore, in Example 8, the vacuum heat insulating material 1 has a core material using a polystyrene long fiber web, and is manufactured by combining a flat plate shape and a bent shape.

本実施形態の真空断熱材1を用いることにより、構造体の曲面に沿っても貼り付けることが可能で、冷蔵庫と同様に硬質ポリウレタンフォームを箱体に充填する。真空断熱材は、平板および曲げ形状共に、内部の真空度が低下せず断熱特性に優れるため、省エネ化と空間容積が向上して本発明の真空断熱材は、自動販売機用断熱材としても有効である。   By using the vacuum heat insulating material 1 of this embodiment, it can be affixed along the curved surface of the structure, and the rigid polyurethane foam is filled in the box like the refrigerator. Since the vacuum insulation material is flat and bent in shape and has excellent heat insulation characteristics without lowering the internal vacuum, the energy saving and space volume are improved, and the vacuum insulation material of the present invention can be used as a heat insulation material for vending machines. It is valid.

「比較例3」
実施例1,2のポリスチレン繊維の代りに、極細繊維で平均繊維径が4.1μmのグラスウール集合体(密度:250Kg/m3)は吸湿性が高いために、水分除去(約300℃/1h乾燥)の処理をした芯材を用い、ガスバリア性の外包材にガス吸着のゲッター剤4(モレキュラーシーブス13X)と共に入れ、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールして真空封止により真空断熱材(大きさ:500mm×500mm×10mm)を作製した。
“Comparative Example 3”
Instead of the polystyrene fibers of Examples 1 and 2, glass wool aggregates (density: 250 Kg / m 3 ) with an ultrafine fiber and an average fiber diameter of 4.1 μm have a high hygroscopic property, so moisture removal (about 300 ° C./1 h Using a core material that has been treated with (drying), put it in a gas barrier outer packaging material together with a gas adsorption getter agent 4 (Molecular Sieves 13X), 10 minutes with a rotary pump of a vacuum packaging machine, 10 minutes with a diffusion pump, Then, after exhausting until the internal pressure of the chamber became 1.3 Pa, the end portion of the outer packaging material was heat-sealed, and a vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm) was produced by vacuum sealing.

このようにして得られた平板状の真空断熱材は、熱伝導率が2.0mW/m・Kを示し、60℃の恒温槽中で30日間放置後に熱伝導率を再測定した結果、3.2mW/m・Kと優れていた。しかし、曲げ形状の真空断熱材を形成したが曲げ難く、折り曲げ性を実施例2,4と同様に測定をした結果、最大曲げ荷重が134Nと高い値を示した。   The plate-like vacuum heat insulating material thus obtained has a thermal conductivity of 2.0 mW / m · K. As a result of re-measurement of the thermal conductivity after being left in a constant temperature bath at 60 ° C. for 30 days, 3 Excellent 2 mW / m · K. However, although a bending-shaped vacuum heat insulating material was formed, it was difficult to bend and the bending property was measured in the same manner as in Examples 2 and 4. As a result, the maximum bending load was as high as 134 N.

このことから、グラスウールを用いた芯材では、水分除去の乾燥工程を取り入れることで熱伝導率は低く断熱性能が優れる。しかし、形状曲げ性や環境負荷(粉塵度合、CO2排出量、エコリサイクル)が劣る課題を有する。 For this reason, in the core material using glass wool, the heat conductivity is low and the heat insulation performance is excellent by incorporating a drying process for removing moisture. However, the shape bendability and the environmental burden (the degree of dust, CO 2 emissions, eco-recycling) are inferior.

「比較例4」
実施例1,2のポリスチレン繊維の代りに、ポリプロピレン繊維集合体(平均繊維径:16.5μm、密度:180Kg/m3)の芯材を用い、ガスバリア性の外包材にガス吸着のゲッター剤4(モレキュラーシーブス13X)と共に入れ、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止により真空断熱材(大きさ:500mm×500mm×10mm)を作製した。
“Comparative Example 4”
Instead of the polystyrene fibers of Examples 1 and 2, a core material of polypropylene fiber aggregate (average fiber diameter: 16.5 μm, density: 180 Kg / m 3 ) is used, and a gas-adsorbing getter agent 4 is used as a gas barrier outer packaging material. (Molecular Sieves 13X), 10 minutes with the rotary pump of the vacuum packaging machine, 10 minutes with the diffusion pump, put into the vacuum chamber, evacuate until the internal pressure of the chamber becomes 1.3 Pa, then heat the end of the outer packaging material A vacuum heat insulating material (size: 500 mm × 500 mm × 10 mm) was prepared by vacuum sealing with a seal.

このようにして得られた真空断熱材は、熱伝導率が5.8mW/m・Kで、さらに、60℃の恒温槽中に30日間放置後の熱伝導率を再測定した結果、10.5mW/m・Kであった。また、曲げ形状の真空断熱材を形成したが曲げ難く、折り曲げ性を実施例2,4と同様に測定をした結果、最大曲げ荷重が124Nと高い。   The vacuum heat insulating material thus obtained had a thermal conductivity of 5.8 mW / m · K. Further, as a result of remeasurement of the thermal conductivity after being left in a constant temperature bath at 60 ° C. for 30 days, 10. It was 5 mW / m · K. Moreover, although the bending-shaped vacuum heat insulating material was formed, it was difficult to bend and the bending property was measured in the same manner as in Examples 2 and 4. As a result, the maximum bending load was as high as 124N.

このことから、ポリプロピレン繊維を用いた芯材では環境負荷に対する問題(粉塵度合、CO2排出量、エコリサイクル)は見られないが、ポリプロピレン繊維の芯材では柔らかくて空隙率が低く、内部の真空度低下により熱伝導率が高く断熱性能が劣る課題を有する。 For this reason, the core material using polypropylene fiber has no problems with environmental load (degree of dust, CO 2 emissions, eco-recycling), but the core material of polypropylene fiber is soft and has a low porosity, and the internal vacuum Due to the decrease in the degree of heat, the thermal conductivity is high and the heat insulation performance is poor.

以上説明したように、本発明の実施形態によると、炭素と水素からなる環境に優しいポリスチレン素材の長繊維ウェブを新たな芯材とすることで、グラスウールの真空断熱材と同等の熱伝導率(2mW/m・K)を示す高性能な真空断熱材とすることができる。さらに、グラスウールやポリエステル繊維で課題であった断熱性能と環境負荷の両立を図ることのできる真空断熱材とすることができる。また、真空断熱材を冷蔵庫に搭載して、硬質ポリウレタンフォームを発泡充填することにより、熱漏洩量および消費電力量が低減できる。特に、ポリスチレン長繊維の真空断熱材は、保温・保冷等の熱交換部を含む断熱箱体や冷蔵庫等に有効である。   As described above, according to the embodiment of the present invention, by using a long fiber web of an environmentally friendly polystyrene material made of carbon and hydrogen as a new core material, a thermal conductivity equivalent to that of a glass wool vacuum heat insulating material ( 2 mW / m · K). Furthermore, it can be set as the vacuum heat insulating material which can aim at coexistence of the heat insulation performance and environmental load which were a subject with glass wool or polyester fiber. Moreover, the amount of heat leakage and power consumption can be reduced by mounting the vacuum heat insulating material in the refrigerator and foaming and filling the hard polyurethane foam. In particular, a polystyrene long fiber vacuum heat insulating material is effective for a heat insulating box including a heat exchanging part such as heat insulation and cold insulation, a refrigerator, and the like.

敷衍して、本発明の実施形態に係る真空断熱材を取り纏めると、次のような特徴を備えるものである。すなわち、有機繊維集合体からなる芯材と、ガス又は水蒸気を吸着し芯材中に配されたゲッター剤と、前記芯材および前記ゲッター剤を収納するガスバリア性をもつ外包材と、を備え、前記外包材の内部を真空封止した真空断熱材において、その芯材が、炭素と水素からなる環境に優しい素材を直接紡糸で形成した(溶融紡糸で直接形成した)長繊維ウェブを有するものである。そして、より好ましい構成例として次のものを挙げることができる。すなわち、前記芯材が炭素と水素からなる素材がポリスチレン樹脂であること。また、前記ポリスチレン樹脂が汎用品でメルトブローンおよび/またはスパンボンドの溶融紡糸により形成してなること。さらに、前記芯材の平均繊維径が8μm〜20μmおよび密度が150〜300Kg/m3であること。さらに、前記芯材の長繊維ウェブが内袋内部に収納され、この内袋を収納した前記外包材における内袋を含む内部を減圧し密封してなること。 When the vacuum heat insulating material according to the embodiment of the present invention is put together, the following features are provided. That is, a core material composed of an organic fiber assembly, a getter agent that adsorbs gas or water vapor and is disposed in the core material, and an outer packaging material having a gas barrier property that stores the core material and the getter agent, In the vacuum heat insulating material in which the inside of the outer packaging material is vacuum-sealed, the core material has a long fiber web formed by directly spinning an environmentally friendly material composed of carbon and hydrogen (directly formed by melt spinning). is there. And the following can be mentioned as a more preferable structural example. That is, the core material made of carbon and hydrogen is a polystyrene resin. The polystyrene resin is a general-purpose product formed by melt spinning of melt blown and / or spunbond. Further, the core has an average fiber diameter of 8 μm to 20 μm and a density of 150 to 300 Kg / m 3 . Further, the long fiber web of the core material is accommodated inside the inner bag, and the inside including the inner bag in the outer packaging material containing the inner bag is decompressed and sealed.

また、本発明の他の実施形態では、外箱と内箱とで形成される空間に真空断熱材を設置し発泡断熱材を充填してなる断熱箱体であって、前記真空断熱材は芯材に少なくともポリスチレンの長繊維ウェブを有し、前記芯材とゲッター剤を内包し、内部を減圧して封止したガスバリア性をもつ外包材を有するものである。そして、より好ましい構成例として次のものを挙げることができる。すなわち、前記断熱箱体において、前記外箱または前記内箱に前記真空断熱材を設置する構成とすること。さらに、前記断熱箱体において、前記外箱または前記内箱の2つの面が交差する角部に前記真空断熱材を折り曲げて設置する構成とすること。   In another embodiment of the present invention, a heat insulating box is formed by installing a vacuum heat insulating material in a space formed by an outer box and an inner box and filling with a foam heat insulating material, and the vacuum heat insulating material is a core. The material has at least a polystyrene long-fiber web, and includes an outer packaging material having a gas barrier property in which the core material and the getter agent are encapsulated and the interior is depressurized and sealed. And the following can be mentioned as a more preferable structural example. That is, in the heat insulation box, the vacuum heat insulating material is installed in the outer box or the inner box. Furthermore, in the said heat insulation box, it shall be set as the structure which bends and installs the said vacuum heat insulating material in the corner | angular part where two surfaces of the said outer box or the said inner box cross | intersect.

本発明の実施形態に係る真空断熱材の構成を示す断面図である。It is sectional drawing which shows the structure of the vacuum heat insulating material which concerns on embodiment of this invention. 従来技術における真空断熱材の構成を示す断面図である。It is sectional drawing which shows the structure of the vacuum heat insulating material in a prior art. 本実施形態に係る真空断熱材を適用した断熱箱体の構成を示す断面図である。It is sectional drawing which shows the structure of the heat insulation box which applied the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材を適用した冷蔵庫の構成を示す断面図である。It is sectional drawing which shows the structure of the refrigerator to which the vacuum heat insulating material which concerns on this embodiment is applied. 本発明の実施形態に係る真空断熱材の具体例である複数の実施例について、比較例と対比してその属性を表す図である。It is a figure showing the attribute about the several Example which is a specific example of the vacuum heat insulating material which concerns on embodiment of this invention compared with a comparative example.

符号の説明Explanation of symbols

1 真空断熱材
2 外包材
3 ポリスチレン長繊維の芯材
3’ 芯材曲げ部
4 ゲッター剤
5 グラスウール又はポリエステル繊維
6 従来の真空断熱材
7 断熱箱体
8 硬質ポリウレタンフォーム
9 箱体
10 冷蔵庫
11 冷蔵庫内箱
12 冷蔵庫外箱
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Outer packaging material 3 Core material of polystyrene long fiber 3 'Core material bending part 4 Getter agent 5 Glass wool or polyester fiber 6 Conventional vacuum heat insulating material 7 Heat insulation box 8 Hard polyurethane foam 9 Box 10 Refrigerator 11 In refrigerator Box 12 Refrigerator outer box

Claims (8)

有機繊維集合体からなる芯材と、ガス又は水蒸気を吸着するゲッター剤と、前記芯材及び前記ゲッター剤を収納するガスバリア性をもつ外包材と、を備え、前記外包材の内部を真空封止した真空断熱材であって、
前記芯材は、非晶性でガラス転移温度付近で軟化するポリスチレン樹脂を溶融紡糸で直接形成した長繊維の配向ウェブであり、
前記芯材は、曲げ弾性率が3000MPa以上であり、初期の熱伝導率が2.0mW/mKから2.8mW/mK、60℃の恒温槽中に30日間放置後の熱伝導率が3.2mW/mKから4.4mW/mKである
ことを特徴とする真空断熱材。
A core material composed of an organic fiber assembly; a getter agent that adsorbs gas or water vapor; and an outer packaging material having a gas barrier property that houses the core material and the getter agent, and the interior of the outer packaging material is vacuum-sealed. Vacuum insulation material,
The core material is an oriented web of long fibers directly formed by melt spinning a polystyrene resin that is amorphous and softens near the glass transition temperature .
The core material has a flexural modulus of 3000 MPa or more, an initial thermal conductivity of 2.0 mW / mK to 2.8 mW / mK, and a thermal conductivity of 3 days after standing in a 60 ° C. constant temperature bath for 3 days. A vacuum heat insulating material characterized by being 2 mW / mK to 4.4 mW / mK .
請求項において、
前記ポリスチレン樹脂は、汎用品であって、メルトブローンおよび/またはスパンボンドの溶融紡糸により形成してなることを特徴とする真空断熱材。
In claim 1 ,
The said polystyrene resin is a general purpose product, Comprising: It forms by melt spinning of a melt blown and / or a spun bond, The vacuum heat insulating material characterized by the above-mentioned.
請求項1または2において、
前記芯材の平均繊維径が8μm〜20μmであり、前記芯材の密度が150〜300Kg/mであることを特徴とする真空断熱材。
In claim 1 or 2 ,
The vacuum heat insulating material, wherein an average fiber diameter of the core material is 8 μm to 20 μm, and a density of the core material is 150 to 300 Kg / m 3 .
請求項1ないし3のいずれか1つの請求項において、
前記芯材の長繊維ウェブは内袋の内部に収納され、前記内袋は前記外包材に収納され、
前記外包材における内袋を含む内部を減圧し密封してなる
ことを特徴とする真空断熱材。
In any one of claims 1 to 3 ,
The long fiber web of the core material is stored in an inner bag, the inner bag is stored in the outer packaging material,
The vacuum heat insulating material characterized by depressurizing and sealing the inside including the inner bag in the outer packaging material.
外箱と内箱とで形成される空間に、真空断熱材を設置するとともに発泡断熱材を充填した断熱箱体であって、
前記真空断熱材は、有機繊維集合体からなる芯材、ガス又は水蒸気を吸着するゲッター剤、前記芯材及び前記ゲッター剤を収納するガスバリア性をもつ外包材、を有して前記外包材の内部を真空封止したものであり、
前記真空断熱材の芯材は、非晶性でガラス転移温度付近で軟化するポリスチレン樹脂の長繊維の配向ウェブであり、
前記芯材は、曲げ弾性率が3000MPa以上であり、初期の熱伝導率が2.0mW/mKから2.8mW/mK、60℃の恒温槽中に30日間放置後の熱伝導率が3.2mW/mKから4.4mW/mKである
ことを特徴とする断熱箱体。
A heat insulating box body in which a vacuum heat insulating material is installed and filled with a foam heat insulating material in a space formed by an outer box and an inner box,
The vacuum heat insulating material has a core material made of an organic fiber aggregate, a getter agent that adsorbs gas or water vapor, an outer packaging material having a gas barrier property that houses the core material and the getter agent, and the interior of the outer packaging material Is vacuum sealed,
The core material of the vacuum heat insulating material is an oriented web of long fibers of polystyrene resin that is amorphous and softens near the glass transition temperature ,
The core material has a flexural modulus of 3000 MPa or more, an initial thermal conductivity of 2.0 mW / mK to 2.8 mW / mK, and a thermal conductivity of 3 days after standing in a 60 ° C. constant temperature bath for 3 days. A heat insulation box characterized by being 2 mW / mK to 4.4 mW / mK .
請求項において、
前記真空断熱材は、前記空間を形成した前記外箱上または前記内箱上に設置されていることを特徴とする断熱箱体。
In claim 5 ,
The heat insulating box body, wherein the vacuum heat insulating material is installed on the outer box or the inner box in which the space is formed.
請求項において、
前記真空断熱材は、前記外箱または前記内箱の2つの面が交差する角部に折り曲げて設置されていることを特徴とする断熱箱体。
In claim 5 ,
The said heat insulation box is bent and installed in the corner | angular part where the two surfaces of the said outer box or the said inner box cross | intersect, The heat insulation box characterized by the above-mentioned.
請求項5、6または7に記載の断熱箱体を備えていることを特徴とする冷蔵庫。 A refrigerator comprising the heat insulating box according to claim 5, 6 or 7 .
JP2008220355A 2008-08-28 2008-08-28 Vacuum heat insulating material, heat insulating box using the same, and refrigerator Expired - Fee Related JP5162377B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008220355A JP5162377B2 (en) 2008-08-28 2008-08-28 Vacuum heat insulating material, heat insulating box using the same, and refrigerator
KR1020090076463A KR101164306B1 (en) 2008-08-28 2009-08-19 Vacuum heat insulating material, heat-insulating box body using the same and refrigerator
CN2009101670546A CN101660648B (en) 2008-08-28 2009-08-19 Vacuum heat insulation material, heat insulation box body using the same, and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220355A JP5162377B2 (en) 2008-08-28 2008-08-28 Vacuum heat insulating material, heat insulating box using the same, and refrigerator

Publications (2)

Publication Number Publication Date
JP2010053979A JP2010053979A (en) 2010-03-11
JP5162377B2 true JP5162377B2 (en) 2013-03-13

Family

ID=41788841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220355A Expired - Fee Related JP5162377B2 (en) 2008-08-28 2008-08-28 Vacuum heat insulating material, heat insulating box using the same, and refrigerator

Country Status (3)

Country Link
JP (1) JP5162377B2 (en)
KR (1) KR101164306B1 (en)
CN (1) CN101660648B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390265B2 (en) * 2009-05-29 2014-01-15 日立アプライアンス株式会社 Vacuum heat insulating material, heat insulating box and apparatus using the same
JP5426445B2 (en) * 2010-03-25 2014-02-26 株式会社東芝 Vacuum insulation panel
DE102011014293A1 (en) * 2011-03-17 2012-09-20 Liebherr-Hausgeräte Ochsenhausen GmbH Cooling-and/or freezing apparatus for cooling and/or freezing food, has vacuum insulation panel arranged within inner space and forming wall that surrounds region of inner space, where inner space is surrounded by inner container
US9791202B2 (en) 2011-08-31 2017-10-17 Panasonic Intellectual Property Management Co., Ltd. Refrigerator and vacuum heat insulating material for use in refrigerator
JP5356491B2 (en) * 2011-11-16 2013-12-04 シャープ株式会社 Vacuum heat insulating material, equipment provided with the same, and manufacturing method thereof
JP6577848B2 (en) * 2014-12-26 2019-09-18 三星電子株式会社Samsung Electronics Co.,Ltd. Gas adsorbent and vacuum heat insulating material using the same
KR102455230B1 (en) * 2014-12-26 2022-10-18 삼성전자주식회사 Adsorbent, vacuum heat insulating material having the same and refrigerator
WO2016105077A1 (en) * 2014-12-26 2016-06-30 삼성전자주식회사 Adsorbent, and vacuum insulation material and refrigerator including same
JP2016173150A (en) * 2015-03-17 2016-09-29 株式会社東芝 Vacuum heat insulation panel for refrigerator and method for recycling refrigerator
EP3270030A4 (en) * 2015-03-10 2018-10-10 Kabushiki Kaisha Toshiba Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
CN110770490B (en) * 2017-06-27 2022-01-18 株式会社可乐丽 Vacuum heat insulation material
JP6910975B2 (en) * 2018-02-08 2021-07-28 日立グローバルライフソリューションズ株式会社 refrigerator
WO2019167666A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Vacuum heat insulating material, heat insulating structure using vacuum heat insulating material, and home electric appliance, house wall, and transport device using vacuum heat insulating material and heat insulating structure
CN113752586A (en) * 2020-06-02 2021-12-07 青岛海尔电冰箱有限公司 Vacuum insulation panel application device and method
JP2023128857A (en) * 2022-03-04 2023-09-14 三星電子株式会社 Resin component for refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437909A (en) * 1994-05-20 1995-08-01 Minnesota Mining And Manufacturing Company Multilayer nonwoven thermal insulating batts
JP2006283817A (en) * 2005-03-31 2006-10-19 Kurabo Ind Ltd Vacuum heat insulation material
JP4012903B2 (en) * 2004-11-30 2007-11-28 倉敷紡績株式会社 Vacuum insulation
JP4215745B2 (en) * 2005-05-20 2009-01-28 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material
JP5239134B2 (en) * 2005-08-10 2013-07-17 東レ株式会社 Sponge-like structure comprising fiber dispersion and method for producing the same
JP4580843B2 (en) * 2005-08-24 2010-11-17 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP4814684B2 (en) * 2006-04-20 2011-11-16 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator and vehicle using the same

Also Published As

Publication number Publication date
KR101164306B1 (en) 2012-07-09
JP2010053979A (en) 2010-03-11
CN101660648A (en) 2010-03-03
CN101660648B (en) 2013-02-13
KR20100026993A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP5162377B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP2011002033A (en) Vacuum heat insulating material, and heat insulating box and refrigerator using the same
JP5372029B2 (en) Vacuum heat insulating material, heat insulation box using vacuum heat insulating material, refrigerator, freezing / air conditioning device, hot water supply device and equipment
JP4580844B2 (en) Vacuum heat insulating material and refrigerator using the same
EP2462393B1 (en) Vacuum insulation member and refrigerator having a vacuum insulation member
US20060234006A1 (en) Vacuum thermally insulating material and method for production thereof thermally insulated equipment having the vacuum thermally insulating material and thermally insulated board
JP2006336722A (en) Vacuum heat insulating material and refrigerator using the same
JP2011241988A (en) Heat insulation box and refrigerator
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
CN205173861U (en) High vacuum insulation spare and adiabatic case
JP2012047211A (en) Vacuum heat insulating material and refrigerator using the same
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP2005220954A (en) Vacuum heat insulating material and method for manufacturing the same, insulation appliance provided with vacuum heat insulating material and heat insulating board
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP5414569B2 (en) Vacuum insulation material and equipment using the same
JP2013019475A (en) Insulating container
JP2004251304A (en) Manufacturing method for vacuum insulator, vacuum insulator, insulating box body and insulation appliance using the vacuum insulator
JP5390265B2 (en) Vacuum heat insulating material, heat insulating box and apparatus using the same
JP2003314786A (en) Vacuum heat insulating material as well as refrigerating equipment and cooling equipment using vacuum heat insulating material
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
JP2012057745A (en) Vacuum heat insulation material
JP5216510B2 (en) Vacuum insulation material and equipment using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5162377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees