JP6184841B2 - Vacuum insulation material and equipment using the same - Google Patents

Vacuum insulation material and equipment using the same Download PDF

Info

Publication number
JP6184841B2
JP6184841B2 JP2013234893A JP2013234893A JP6184841B2 JP 6184841 B2 JP6184841 B2 JP 6184841B2 JP 2013234893 A JP2013234893 A JP 2013234893A JP 2013234893 A JP2013234893 A JP 2013234893A JP 6184841 B2 JP6184841 B2 JP 6184841B2
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
separator
outer packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013234893A
Other languages
Japanese (ja)
Other versions
JP2015094442A (en
Inventor
大五郎 嘉本
大五郎 嘉本
荒木 邦成
邦成 荒木
越後屋 恒
恒 越後屋
祐志 新井
祐志 新井
一輝 柏原
一輝 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013234893A priority Critical patent/JP6184841B2/en
Publication of JP2015094442A publication Critical patent/JP2015094442A/en
Application granted granted Critical
Publication of JP6184841B2 publication Critical patent/JP6184841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)
  • Details Of Fluid Heaters (AREA)

Description

本発明は、冷蔵庫等に使用する真空断熱材に係り、例えば、高い断熱性を有する真空断熱材と、それを用いた冷凍冷蔵庫、貯湯式給湯器等の機器に関する。   The present invention relates to a vacuum heat insulating material used for a refrigerator or the like, and relates to, for example, a vacuum heat insulating material having high heat insulating properties and a device such as a refrigerator-freezer and a hot water storage hot water heater using the same.

近年、地球環境保護の観点、また省エネルギー化の観点から家電製品や産業機器の断熱性向上が検討されている。機器を断熱する断熱材としては、樹脂フォームや有機、無機の繊維が用いられているが、断熱性を向上しようとした場合、断熱材の厚さを厚くする必要がある。断熱材の厚さが厚くなると機器全体の容積が増大し、容積を変更しない場合には部品等を実装できるスペースの割合が低くなってしまう等の課題が生じる。   In recent years, improvement in heat insulation of home appliances and industrial equipment has been studied from the viewpoint of global environmental protection and energy saving. Resin foam, organic, and inorganic fibers are used as the heat insulating material for heat insulating the device. However, in order to improve heat insulating properties, it is necessary to increase the thickness of the heat insulating material. When the thickness of the heat insulating material is increased, the volume of the entire device is increased, and when the volume is not changed, there is a problem that a ratio of a space where components and the like can be mounted is reduced.

このような課題を解決するために、樹脂フォームや無機繊維などより断熱性に優れる真空断熱材が提案されている。真空断熱材はガスバリア性を有する外包材を袋状にし、内部に繊維集合体からなる芯材およびガス吸着用のゲッター剤を入れ、袋内部を減圧した後、袋の端部を封止して作製する。従来の樹脂フォームや無機繊維等の断熱材と比較して、20から40倍の断熱性を持つことから、断熱材の厚さを薄くしても十分な断熱を行うことが可能であり、家庭用の冷凍冷蔵庫等の断熱として適用されている。   In order to solve such a problem, a vacuum heat insulating material having better heat insulating properties than resin foam and inorganic fibers has been proposed. A vacuum heat insulating material is a bag-like outer packaging material with gas barrier properties, a core material made of a fiber assembly and a getter agent for gas adsorption are put inside, the inside of the bag is decompressed, and the end of the bag is sealed Make it. Compared to conventional heat insulating materials such as resin foam and inorganic fibers, it has 20 to 40 times higher heat insulating properties, so it is possible to provide sufficient heat insulation even if the thickness of the heat insulating material is reduced. It is applied as heat insulation for refrigerator-freezers for the use.

断熱材の伝熱は、固体と気体成分の熱伝導、輻射、対流熱伝達により引き起こされる。常温以下の温度領域での使用においては、輻射の寄与がほとんどないことから、固体成分の熱伝導を抑制することが重要となり、芯材に極細の無機繊維を用いた真空断熱材が開発されている。真空断熱材は内部を減圧して作製されるが、内部に残存した気体による対流熱伝達があると考えられる。また、低減された内部の圧力を保持し、断熱性能を保つためガス吸着剤を内包した真空断熱材の開発も進められている。   The heat transfer of the heat insulating material is caused by heat conduction, radiation, and convective heat transfer of solid and gas components. In the use in the temperature range below room temperature, there is almost no contribution of radiation, so it is important to suppress the heat conduction of solid components, and vacuum insulation materials using ultrafine inorganic fibers as the core material have been developed. Yes. The vacuum heat insulating material is produced by reducing the pressure inside, but it is thought that there is convective heat transfer due to the gas remaining inside. In addition, vacuum heat insulating materials containing gas adsorbents are being developed in order to maintain a reduced internal pressure and maintain heat insulating performance.

従来の真空断熱材として、芯材を積層フィルムからなる外被材で覆い、内部を減圧密閉してなるものがある。この真空断熱材は、芯材としてガラス短繊維からなる積層体等を用いる構造となっており、良好な断熱特性を示すものである(例えば、特許文献1参照)。   As a conventional vacuum heat insulating material, there is one in which a core material is covered with a covering material made of a laminated film and the inside is sealed under reduced pressure. This vacuum heat insulating material has a structure using a laminated body made of short glass fibers as a core material, and exhibits good heat insulating properties (see, for example, Patent Document 1).

特開2007−56922号公報JP 2007-56922 A

しかしながら、このような手法で作製した前記特許文献1に記載の真空断熱材の内部には、減圧によって除去しきれなかったガスが残存しており、残存したガスが芯材を構成する繊維で形成される空間中を対流する。ガス対流することで熱の伝達が発生し、断熱特性が悪化するという課題を有している。   However, inside the vacuum heat insulating material described in Patent Document 1 produced by such a method, gas that could not be removed by decompression remains, and the remaining gas is formed by fibers constituting the core material. Convection through the space. Heat transfer occurs due to gas convection, and there is a problem that heat insulation properties deteriorate.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、真空断熱材に用いる芯材中に残存するガスによる、芯材を構成する繊維で形成される空間内のガス対流を抑制し、対流による熱伝達を低減することで断熱性能を向上できる真空断熱材を提供することにある。また、断熱性能を向上した真空断熱材を用いた機器を提供することにある。   The present invention has been made in view of such problems, and the object thereof is a space formed by fibers constituting the core material by gas remaining in the core material used for the vacuum heat insulating material. An object of the present invention is to provide a vacuum heat insulating material capable of improving heat insulation performance by suppressing gas convection inside and reducing heat transfer by convection. Moreover, it is providing the apparatus using the vacuum heat insulating material which improved the heat insulation performance.

前記目的を達成すべく、本発明に係る真空断熱材は、芯材をガスバリア性を有する外包材で包み、該外包材の内部空間を減圧して封止し、前記芯材の内部に該芯材よりガス透過性の低いセパレータを設け、該セパレータは金属材を除く無機材又は有機材で形成されることを特徴とする。ガスバリア性とは気体を透過させにくい性質であり、ガス透過性が低いとは気体透過率の低いことである。   In order to achieve the above object, the vacuum heat insulating material according to the present invention wraps a core material with an outer packaging material having a gas barrier property, and seals the inner space of the outer packaging material by reducing the pressure, and the core material is sealed inside the core material. A separator having a lower gas permeability than the material is provided, and the separator is formed of an inorganic material or an organic material excluding a metal material. The gas barrier property is a property that hardly allows gas to pass therethrough, and that the gas permeability is low means that the gas permeability is low.

前記のごとく構成された本発明の真空断熱材は、外包材の内部空間を減圧しても残存する気体が存在するが、外包材の内部に残存する気体は芯材の内部に設けられたガス透過性の低いセパレータで対流することが抑制されると共に、セパレータは金属材を除く無機材又は有機材で形成され熱伝導が抑制されるため、ガス対流による熱の伝熱を防止でき、断熱特性を向上させることができる。   The vacuum heat insulating material of the present invention configured as described above has a gas remaining even when the internal space of the outer packaging material is depressurized, but the gas remaining inside the outer packaging material is a gas provided inside the core material. Convection is suppressed by a low-permeability separator, and the separator is formed of an inorganic or organic material excluding metallic materials and heat conduction is suppressed, so heat transfer due to gas convection can be prevented, and heat insulation properties Can be improved.

本発明の真空断熱材によれば、芯材の内部に残存するガスは、芯材の内部に設けられた金属材を除く無機材又は有機材で形成されるセパレータで対流が抑制され、ガス対流による熱の伝熱が防止され、断熱性を向上させることができる。   According to the vacuum heat insulating material of the present invention, the convection of the gas remaining in the core material is suppressed by the separator formed of an inorganic material or an organic material excluding the metal material provided in the core material, and the gas convection Heat transfer due to is prevented, and the heat insulation can be improved.

本発明に係る真空断熱材の第1の実施形態の断面を示す模式図。The schematic diagram which shows the cross section of 1st Embodiment of the vacuum heat insulating material which concerns on this invention. 本発明に係る真空断熱材の第2の実施形態の断面を示す模式図。The schematic diagram which shows the cross section of 2nd Embodiment of the vacuum heat insulating material which concerns on this invention. 図1に示す真空断熱材を用いた冷凍冷蔵庫の断面を示す模式図。The schematic diagram which shows the cross section of the refrigerator-freezer using the vacuum heat insulating material shown in FIG. 図1に示す真空断熱材を用いたヒートポンプ給湯器の断面を示す模式図。The schematic diagram which shows the cross section of the heat pump water heater using the vacuum heat insulating material shown in FIG. 本発明に係る真空断熱材と従来の真空断熱材の断熱特性の比較を示す表図。The table | surface which shows the comparison of the heat insulation characteristic of the vacuum heat insulating material which concerns on this invention, and the conventional vacuum heat insulating material. 従来の真空断熱材の断面を示す模式図。The schematic diagram which shows the cross section of the conventional vacuum heat insulating material.

以下、本発明に係る真空断熱材の実施形態を図面に基づき詳細に説明する。図1は、真空断熱材の第1の実施形態の断面を示す模式図、図2は、第2の実施形態の断面を示す模式図である。   Hereinafter, embodiments of a vacuum heat insulating material according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing a cross section of the first embodiment of the vacuum heat insulating material, and FIG. 2 is a schematic view showing a cross section of the second embodiment.

図1において、第1の実施形態に係る真空断熱材1は、繊維集合体からなる2層の芯材2,2をガスバリア性を有する外包材3で包み、外包材3の内部空間を減圧して封止したものであり、外包材3の内部空間にガス吸着剤4を配置している。そして、芯材2の内部に該芯材よりガス透過性の低いセパレータ5を設けたものである。セパレータ5は金属材を除く無機材又は有機材で形成される1枚の板であり、2層の芯材2,2の中間に位置している。この構成により、芯材2,2により形成される空間はセパレータ5で2つに分割され、真空断熱材1の外包材3中に残存したガスが、芯材2を構成する繊維で形成される空間内でガス対流を起こすのを抑制し、対流による熱伝達を低減することで真空断熱材1の断熱性能を向上することができる。この実施形態に係る真空断熱材1は全体の厚みが、15〜18mmに設定されることが好ましい。   In FIG. 1, a vacuum heat insulating material 1 according to the first embodiment wraps two layers of core materials 2 and 2 made of a fiber assembly with an outer packaging material 3 having a gas barrier property, and depressurizes the internal space of the outer packaging material 3. The gas adsorbent 4 is arranged in the internal space of the outer packaging material 3. A separator 5 having a lower gas permeability than the core material is provided inside the core material 2. The separator 5 is a single plate formed of an inorganic material or an organic material excluding a metal material, and is located between the two layers of core materials 2 and 2. With this configuration, the space formed by the core materials 2 and 2 is divided into two by the separator 5, and the gas remaining in the outer packaging material 3 of the vacuum heat insulating material 1 is formed by the fibers constituting the core material 2. The heat insulation performance of the vacuum heat insulating material 1 can be improved by suppressing the occurrence of gas convection in the space and reducing the heat transfer by convection. The vacuum heat insulating material 1 according to this embodiment preferably has an overall thickness of 15 to 18 mm.

図2において、第2の実施形態に係る真空断熱材1’は、繊維集合体からなる3層の芯材2,2…をガスバリア性を有する外包材3で包み、外包材3の内部空間を減圧して封止したものであり、外包材3の内部空間にガス吸着剤4を配置している。そして、芯材2の内部に該芯材よりガス透過性の低いセパレータ5を設けたものである。セパレータ5は金属材を除く無機材又は有機材で形成される2枚の板で構成され、3層の芯材2,2…の間に位置している。この構成により、芯材2,2…により形成される空間はセパレータ5で3つに分割され、真空断熱材1’の外包材3中に残存したガスが、芯材2を構成する繊維で形成される空間内でガス対流を起こすのを抑制し、対流による熱伝達を低減することで真空断熱材1’の断熱性能を向上することができる。この実施形態に係る真空断熱材1’は全体の厚みが、40mm程度に設定されることが好ましい。   In FIG. 2, a vacuum heat insulating material 1 ′ according to the second embodiment wraps a three-layer core material 2 made of a fiber assembly with an outer packaging material 3 having a gas barrier property, and an inner space of the outer packaging material 3. The gas adsorbent 4 is disposed in the inner space of the outer packaging material 3. A separator 5 having a lower gas permeability than the core material is provided inside the core material 2. The separator 5 is composed of two plates formed of an inorganic material or an organic material excluding a metal material, and is positioned between three layers of core materials 2, 2,. With this configuration, the space formed by the core materials 2, 2... Is divided into three by the separator 5, and the gas remaining in the outer packaging material 3 of the vacuum heat insulating material 1 ′ is formed by the fibers constituting the core material 2. It is possible to improve the heat insulation performance of the vacuum heat insulating material 1 ′ by suppressing the occurrence of gas convection in the space to be reduced and reducing the heat transfer by convection. The overall thickness of the vacuum heat insulating material 1 ′ according to this embodiment is preferably set to about 40 mm.

芯材2として用いる繊維集合体に用いる繊維は、真空断熱材1,1’とした際にかかる大気の圧力に対抗するスペーサ材となれば良いが、特に高性能な真空断熱材を得る場合には、繊維用材料としてガラス繊維を用いたグラスウールとすると良い。ガラス繊維の形成方法としては、溶融遠心法、火炎法等を用いることが可能であるが、繊維径の均一性、未繊維化のガラス粒の混入を考慮すると溶融遠心法が特に好ましい。ガラス繊維の繊維径はマイクロネア繊度または走査型電子顕微鏡等により測定され、繊維径の平均値は人体への影響、工業的な生産性を考慮して10μm以下であることが望ましく、更には、平均繊維径で5μm以下であることがより好ましい。   The fiber used for the fiber assembly used as the core material 2 may be a spacer material that counteracts the atmospheric pressure applied when the vacuum heat insulating materials 1 and 1 ′ are used. In particular, when obtaining a high performance vacuum heat insulating material. Is preferably glass wool using glass fiber as the fiber material. As a method for forming the glass fiber, a melt centrifugation method, a flame method, or the like can be used, but the melt centrifugation method is particularly preferable in consideration of the uniformity of the fiber diameter and the mixing of unfibered glass particles. The fiber diameter of the glass fiber is measured with a micronaire fineness or a scanning electron microscope, and the average value of the fiber diameter is preferably 10 μm or less in consideration of the influence on the human body and industrial productivity. The fiber diameter is more preferably 5 μm or less.

前記、種々の方法で繊維化されたガラス繊維は、吸引機能つきのコンベア上に積層集綿されグラスウールマットとなる。グラスウールマットは所定の形状に切断され断熱材、真空断熱材用芯材となるが、ぞれぞれの用途に用いる前に熱プレスによる成形等の工程を加えて、形を整えることも可能である。   The glass fibers fiberized by the various methods are laminated and collected on a conveyor having a suction function to form a glass wool mat. Glass wool mat is cut into a predetermined shape to become a core material for heat insulating materials and vacuum heat insulating materials, but it is also possible to adjust the shape by adding a process such as molding by hot press before using for each application. is there.

真空断熱材1,1’の芯材2を包む外包材3にはガスバリア性を有する、すなわちガス透過率の低い樹脂フィルムをベースとした外包材を使用する。外包材3は表面保護層、ガスバリア層、および熱溶着層を積層して構成することが好ましく、それぞれ1種類以上のフィルムを積層して用いることができる。表面保護層としては、ポリエチレンテレフタレートフィルム、ポリアミドフィルム、ポリプロピレンフィルム等の延伸加工品、ガスバリア層としては、金属蒸着フィルム、無機質蒸着フィルム、金属箔等、熱溶着層としては、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンレテレフタレートフィルム、直鎖状低密度ポリエチレンフィルム等を用いることができる。   As the outer packaging material 3 for wrapping the core material 2 of the vacuum heat insulating materials 1 and 1 ′, an outer packaging material having a gas barrier property, that is, a resin film having a low gas permeability is used. The outer packaging material 3 is preferably formed by laminating a surface protective layer, a gas barrier layer, and a heat welding layer, and each of them can be used by laminating one or more kinds of films. The surface protective layer is a stretched product such as a polyethylene terephthalate film, a polyamide film, or a polypropylene film, the gas barrier layer is a metal vapor-deposited film, an inorganic vapor-deposited film, a metal foil, or the like, and the thermal welding layer is a low-density polyethylene film, high A density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, a linear low density polyethylene film, or the like can be used.

芯材2中に配置されるセパレータ5は、芯材2が2層の場合は肉厚の中間部に設置されることが好ましい。すなわち、芯材2の厚さの半分の位置にセパレータ5が設置され、芯材2が形成する空間を2等分すると好適である。また、セパレータ5は、芯材2が3層の場合は均等な間隔で設置されることが好ましい。すなわち、3枚の芯材2の厚さが均等になるように設置され、芯材2が形成する空間を3等分すると好適である。   It is preferable that the separator 5 disposed in the core material 2 is installed at a thick intermediate portion when the core material 2 has two layers. That is, it is preferable that the separator 5 is installed at a position half the thickness of the core material 2 and the space formed by the core material 2 is divided into two equal parts. Moreover, it is preferable that the separator 5 is installed at equal intervals when the core material 2 has three layers. That is, it is preferable that the three core members 2 are installed so that their thicknesses are uniform, and the space formed by the core member 2 is divided into three equal parts.

セパレータ5は、芯材2が形成する空間内に残存するガスの移動を抑制できれば良く、そのため芯材2よりガス透過性の低い材料であれば良い。ガス透過性の低い材料としては、無機材として無機粒子の圧縮成形体等のものがあげられる。例えば、グラスウールを粉砕後、所定の形状に圧縮成形し作製することができる。微小なガラス粒子を成形し、ガス透過性の低い材料とすることができる。また、薄いガラス板を用いることも可能である。このように、セパレータ5は金属等と比較して熱伝導率の低い無機材から形成することが好ましく、芯材2内の熱伝導や熱の対流を抑制することができる。   The separator 5 only needs to be capable of suppressing the movement of the gas remaining in the space formed by the core material 2, and therefore may be any material having a lower gas permeability than the core material 2. Examples of the material having low gas permeability include a compression molded body of inorganic particles as an inorganic material. For example, glass wool can be pulverized and then compression molded into a predetermined shape. Fine glass particles can be formed into a material with low gas permeability. A thin glass plate can also be used. Thus, it is preferable to form the separator 5 from an inorganic material having a low thermal conductivity compared to a metal or the like, and to suppress heat conduction and heat convection in the core material 2.

このような、無機成分からなるセパレータ5の厚さは薄い方が好ましく、特に、真空断熱材1,1’の圧縮封止後の厚さに対して、一定の厚さを超えるとセパレータ自体が熱を伝搬する固体となるため薄いものであることが好ましい。さらに、セパレータ5としては、有機材として有機物をフィルム化したものを用いることもできる。   It is preferable that the thickness of the separator 5 made of an inorganic component is small. In particular, when the thickness exceeds a certain thickness after the compression sealing of the vacuum heat insulating materials 1 and 1 ′, the separator itself is Since it is a solid that propagates heat, it is preferably thin. Further, as the separator 5, an organic material made into a film can be used.

有機フィルムの種類としては、ポリエチレンテレフタレートフィルム、ポリアミドフィルム、ポリプロピレンフィルム等の延伸フィルム、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンレテレフタレートフィルム、直鎖状低密度ポリエチレンフィルム等が挙げられる。さらには、これらの有機フィルム表面に金属蒸着、無機蒸着等の蒸着膜を形成したものを用いることもでき、蒸着膜を形成することによりガス透過性を非常に低いものとすることができる。このように、セパレータ5は金属等と比較して熱伝導率の低い有機材から形成することが好ましく、芯材2内の熱伝導や熱の対流を抑制することができる。   Types of organic films include stretched films such as polyethylene terephthalate film, polyamide film, polypropylene film, low density polyethylene film, high density polyethylene film, polypropylene film, polyacrylonitrile film, unstretched polyethylene reterephthalate film, linear low density A polyethylene film etc. are mentioned. Furthermore, what formed vapor deposition films, such as metal vapor deposition and inorganic vapor deposition, on the surface of these organic films can also be used, and gas permeability can be made very low by forming a vapor deposition film. Thus, it is preferable to form the separator 5 from an organic material having a lower thermal conductivity than a metal or the like, and the heat conduction and heat convection in the core material 2 can be suppressed.

真空断熱材1,1’の外包材3の減圧封止後の残存ガスおよび水分を吸着する吸着剤としては、モレキュラーシーブス、シリカゲル、酸化ストロンチウム、酸化カルシウム、合成ゼオライト、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のものを使用することができる。ガス吸着剤4は、図1の真空断熱材1では、外包材3中の下層の芯材2中に配置されているが上層の芯材中に配置してもよく、両方の芯材中に配置してもよい。   Adsorbents that adsorb residual gas and moisture after vacuum sealing of the outer packaging material 3 of the vacuum heat insulating materials 1 and 1 ′ include molecular sieves, silica gel, strontium oxide, calcium oxide, synthetic zeolite, potassium hydroxide, and sodium hydroxide. In addition, lithium hydroxide or the like can be used. In the vacuum heat insulating material 1 of FIG. 1, the gas adsorbent 4 is disposed in the lower core material 2 in the outer packaging material 3, but may be disposed in the upper core material. You may arrange.

本実施形態に係る真空断熱材1,1’は、芯材2中に配置されたセパレータ5として金属材を除く無機材又は有機材で形成されるものとしたため、断熱性に優れた真空断熱材1,1’を形成することができた。セパレータの材質を、例えば厚さ0.5mm程度の金属板とした場合、真空断熱材の厚さ方向すなわち断熱方向に対して熱伝導の高い物質を配置することとなり、真空断熱材の断熱特性を悪化させてしまう。本発明では、セパレータ材質を粉体成形品などの無機材料、PETフィルム(金属蒸着品を含む)などの有機物としており、セパレータ自体の熱伝導は芯材に用いる無機繊維と同等かそれ以下となり、真空断熱材の熱伝導率を悪化させることはない。   Since the vacuum heat insulating materials 1 and 1 ′ according to the present embodiment are formed of an inorganic material or an organic material excluding a metal material as the separator 5 disposed in the core material 2, the vacuum heat insulating material excellent in heat insulating properties. 1,1 ′ could be formed. If the separator material is, for example, a metal plate with a thickness of about 0.5 mm, a material with high thermal conductivity is disposed in the thickness direction of the vacuum heat insulating material, that is, the heat insulating direction, and the heat insulating property of the vacuum heat insulating material is reduced. It gets worse. In the present invention, the separator material is an inorganic material such as a powder molded product, an organic material such as a PET film (including a metal vapor-deposited product), and the thermal conductivity of the separator itself is equal to or less than the inorganic fiber used for the core material, The thermal conductivity of the vacuum heat insulating material is not deteriorated.

以下、本発明による真空断熱材の実施例について図1の形態について詳細に説明する。なお、この実施例によって発明が限定されるものではない。   Hereinafter, the embodiment of the vacuum heat insulating material according to the present invention will be described in detail with respect to the form of FIG. The invention is not limited to the embodiments.

[実施例1]
実施例1の真空断熱材1Aは芯材として繊維集合体2を用いている。組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行った。紡糸した繊維は吸引機構を有するコンベア上に目付けが1200g/mとなるように集めた。目付けとは、単位からわかるように集めた繊維を1mの大きさにした際の重量を規定したものである。また、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径は4.9μmであった。作製したグラスウールを幅500mm×長さ1000mmの大きさに切断した。
[Example 1]
The vacuum heat insulating material 1A of Example 1 uses a fiber assembly 2 as a core material. The glass whose composition was adjusted was melted at a temperature of about 1200 ° C. in a melting furnace, and then spun by a centrifugal method using a metal spinner. The spun fibers were collected on a conveyor having a suction mechanism so that the basis weight was 1200 g / m 2 . The basis weight is defined as the weight when the collected fibers are sized to 1 m 2 as can be seen from the unit. Moreover, in order to investigate the thickness of the spun fiber, when the micronea fineness was measured, the average fiber diameter was 4.9 micrometers. The produced glass wool was cut into a size of width 500 mm × length 1000 mm.

切断したグラスウールを複数枚重ね、その中間にセパレータ5を配置した。セパレータ5はグラスウールを粉砕した粉末を圧縮成形により作製した無機材のシートで、厚さは0.5mmである。セパレータ5のガス透過性は、芯材2であるグラスウールのガス透過性を100として10であり、芯材2のガス透過率よりセパレータ5のガス透過率が低いものであった。次に、グラスウールを200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材1Aとした。   A plurality of the cut glass wools were stacked, and a separator 5 was disposed between them. The separator 5 is a sheet of inorganic material prepared by compression molding a powder obtained by pulverizing glass wool, and has a thickness of 0.5 mm. The gas permeability of the separator 5 was 10 with the gas permeability of the glass wool as the core material 2 being 100, and the gas permeability of the separator 5 was lower than the gas permeability of the core material 2. Next, after drying glass wool for 30 minutes in a drying oven at 200 ° C., a gas adsorbent 4 (Union Showa, Molecular Sieves 5A) is added, and the whole glass wool is further sealed in a quadrilateral bag shape. Put it in the outer packaging material 3, vacuum the inside of the outer packaging material 3 for 10 minutes with a rotary pump, then vacuum for 5 minutes with a diffusion pump, and seal the opening on the other side of the outer packaging material 3 with heat seal A vacuum heat insulating material 1A was obtained.

真空断熱材1A(厚み:約15mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。断熱特性は110(指数)であった。断熱特性は指数で示し、高くなるほど断熱特性は良好となる。本実施例の真空断熱材1Aはセパレータを配置していない後述の比較例1で作製した真空断熱材6Aの断熱特性(100)と比較して高い値となっており、非常に断熱性に優れる真空断熱材である。   The heat insulating properties of the vacuum heat insulating material 1A (thickness: about 15 mm) were measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The heat insulating property was 110 (index). The heat insulating property is indicated by an index. The higher the heat insulating property, the better the heat insulating property. The vacuum heat insulating material 1A of the present example has a high value as compared with the heat insulating property (100) of the vacuum heat insulating material 6A manufactured in Comparative Example 1 described later in which no separator is disposed, and is extremely excellent in heat insulating properties. It is a vacuum insulation material.

更に同様の方法で種々の大きさの真空断熱材1Aを作製し、これを用いて冷凍機器として冷凍冷蔵庫7を作製した。冷凍冷蔵庫7の断面模式図を図3に示す。冷蔵庫内箱9または、冷蔵庫外箱10に真空断熱材1Aを張り付けた後、冷蔵庫外箱と冷蔵庫内箱を組合せ、形成された隙間に発泡ウレタン8を注入し冷蔵庫箱体を作製した。扉については必要な箇所に真空断熱材1Aを張り付けて同様に作製した。作製した冷蔵庫箱体および扉とコンプレッサー11、熱交換機等の部品とを用いて冷凍冷蔵庫を作製し消費電力を測定した所、真空断熱材1Aを用いない場合と比較して、約30%低い結果となった。このことより、本発明の真空断熱材1Aを用いることで、機器の消費電力を低く抑えることができることが明らかとなった。   Furthermore, various sizes of vacuum heat insulating materials 1A were produced by the same method, and a refrigerator-freezer 7 was produced as a refrigeration equipment using the vacuum insulation material 1A. A schematic cross-sectional view of the refrigerator-freezer 7 is shown in FIG. After attaching the vacuum heat insulating material 1A to the refrigerator inner box 9 or the refrigerator outer box 10, the refrigerator outer box and the refrigerator inner box were combined, and the urethane foam 8 was injected into the formed gap to produce a refrigerator box. The door was manufactured in the same manner by attaching the vacuum heat insulating material 1A to a necessary portion. Refrigerated refrigerator was made using the produced refrigerator box and door and parts such as compressor 11, heat exchanger, etc., and the power consumption was measured. As a result, the result was about 30% lower than when vacuum insulation 1A was not used. It became. From this, it became clear that the power consumption of the equipment can be kept low by using the vacuum heat insulating material 1A of the present invention.

[実施例2]
実施例2の真空断熱材1Bは、実施例1の真空断熱材1Aと同様に、組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行い、紡糸した繊維は吸引機構を有するコンベア上に目付けが1200g/mとなるように集めた繊維集合体の芯材2を用いている。そして、マイクロネア繊度を測定したところ、実施例1と同様に、平均繊維径は4.9μmであった。
[Example 2]
As in the vacuum heat insulating material 1A of Example 1, the vacuum heat insulating material 1B of Example 2 was melted at a temperature of about 1200 ° C. in a melting furnace with a glass whose composition was adjusted, and then spun by a centrifugal method using a metal spinner. The core material 2 of the fiber assembly collected for the spun fibers on a conveyor having a suction mechanism so that the basis weight is 1200 g / m 2 is used. And when the micronaire fineness was measured, the average fiber diameter was 4.9 μm as in Example 1.

作製した、グラスウールを幅500mm×長さ1000mmの大きさに切断した。切断したグラスウールを複数枚重ね、その中間にセパレータ5を配置した。セパレータ5は有機材として、ポリエチレンテレフタレートを延伸してフィルム状とした有機フィルムであり、厚さは50×10−3mmである。そして、このセパレータ5のガス透過性は芯材2であるグラスウールのガス透過性を100として1.0以下であった。 The produced glass wool was cut into a size of width 500 mm × length 1000 mm. A plurality of the cut glass wools were stacked, and a separator 5 was disposed between them. The separator 5 is an organic film formed by stretching polyethylene terephthalate as an organic material, and has a thickness of 50 × 10 −3 mm. And the gas permeability of this separator 5 was 1.0 or less when the gas permeability of the glass wool which is the core material 2 was set to 100.

次に、実施例1と同様に、グラスウールを200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材1Bとした。   Next, after drying glass wool for 30 minutes in a drying oven at 200 ° C., as in Example 1, gas adsorbent 4 (Union Showa, Molecular Sieves 5A) was added, and the entire glass wool was sealed on three sides. The outer packaging material 3 is put into a quadrangular bag-shaped outer packaging material 3, and the inside of the outer packaging material 3 is evacuated for 10 minutes with a rotary pump, then evacuated with a diffusion pump for 5 minutes, and an opening on the other side of the outer packaging material 3 Was sealed with a heat seal to obtain a vacuum heat insulating material 1B.

実施例1と同様に、実施例2の真空断熱材1B(厚み:約15mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定したところ、断熱特性は111(指数)であった。実施例2の真空断熱材1Bは、実施例1の真空断熱材1Aと比較して、さらに高い値となっており、実施例2ではセパレータ5の厚さが薄く、ガス透過性が低いものであり、非常に断熱性に優れる真空断熱材である。   In the same manner as in Example 1, when the heat insulating property of the vacuum heat insulating material 1B (thickness: about 15 mm) of Example 2 was measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd., the heat insulating property was 111. (Index). The vacuum heat insulating material 1B of Example 2 has a higher value than the vacuum heat insulating material 1A of Example 1, and in Example 2, the separator 5 is thin and has low gas permeability. It is a vacuum heat insulating material that has excellent heat insulating properties.

更に同様の方法で大きさ800mm×1200mm、厚さ15mmの真空断熱材1Bを作製し、給湯機器としてヒートポンプ給湯器の貯湯タンクの断熱材として適用した。ヒートポンプ給湯器の断面模式図を図4に示す。ヒートポンプ給湯器15の貯湯タンク16にはヒートポンプユニット17で暖められたお湯が貯められており、貯湯タンク16の外周を真空断熱材1Bで覆っており、外側の外装ケースと共に貯湯タンクユニット18を構成している。   Further, a vacuum heat insulating material 1B having a size of 800 mm × 1200 mm and a thickness of 15 mm was produced by the same method, and applied as a heat insulating material for a hot water storage tank of a heat pump water heater as a hot water supply device. A schematic cross-sectional view of the heat pump water heater is shown in FIG. Hot water heated by the heat pump unit 17 is stored in the hot water storage tank 16 of the heat pump water heater 15, the outer periphery of the hot water storage tank 16 is covered with the vacuum heat insulating material 1B, and the hot water storage tank unit 18 is configured together with the outer exterior case. doing.

貯湯タンク16の上部に逃し弁19が設けられている。貯湯タンク16の側面には漏電遮断器20が設置され、上部には逃し弁操作バルブ21が設置されている。貯湯タンク16の下部には排水操作バルブ22が設置され、ヒートポンプユニット17の下部に連結された排水管23からの排水操作を行う。元栓24が連結された給水管25から止水バルブ26を通して貯湯タンク16に給水され、貯湯タンク内の温水は給湯配管27を通して各種給湯機器に供給される構成となっている。   A relief valve 19 is provided in the upper part of the hot water storage tank 16. An earth leakage breaker 20 is installed on the side surface of the hot water storage tank 16, and a relief valve operating valve 21 is installed on the top. A drainage operation valve 22 is installed in the lower part of the hot water storage tank 16, and drainage operation is performed from a drainage pipe 23 connected to the lower part of the heat pump unit 17. Water is supplied to the hot water storage tank 16 through a water stop valve 26 from a water supply pipe 25 to which a main plug 24 is connected, and the hot water in the hot water storage tank is supplied to various hot water supply devices through a hot water supply pipe 27.

貯湯タンク16内のお湯を使用しない場合にタンク内の湯温が低下すると沸かし直しを行う必要があるため、給湯器の成績係数(COP:Coefficient of Performance)が低下してしまう。本発明の真空断熱材1Bを適用した場合と、従来の断熱を用いた場合のCOPを比較した所、約10%の改善が確認された。このことから、機器の消費電力を低く抑えられることが明らかとなった。   When the hot water in the hot water storage tank 16 is not used, if the hot water temperature in the tank decreases, it is necessary to perform re-boiling, so that the coefficient of performance (COP) of the water heater decreases. When the COP between the case where the vacuum heat insulating material 1B of the present invention was applied and the case where the conventional heat insulation was used was compared, an improvement of about 10% was confirmed. From this, it became clear that the power consumption of the device can be kept low.

[実施例3]
実施例3の真空断熱材1Cは、実施例1、実施例2の真空断熱材と同様に、組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行い、紡糸した繊維は吸引機構を有するコンベア上に目付けが1200g/mとなるように集めた繊維集合体の芯材2を用いている。そして、マイクロネア繊度を測定したところ、実施例1,2と同様に、平均繊維径は4.9μmであった。
[Example 3]
The vacuum heat insulating material 1C of Example 3 is the same as the vacuum heat insulating material of Example 1 and Example 2, after melting the glass whose composition was adjusted at a temperature of about 1200 ° C. in a melting furnace, and then using a metal spinner The core material 2 of the fiber assembly collected using a spinning method is collected on a conveyor having a suction mechanism so that the basis weight is 1200 g / m 2 . And when the micronaire fineness was measured, the average fiber diameter was 4.9 μm, as in Examples 1 and 2.

作製した、グラスウールを幅500mm×長さ1000mmの大きさに切断した。切断したグラスウールを複数枚重ね、その中間にセパレータ5を配置した。セパレータ5は、グラスウールを粉砕した粉末を圧縮成形により作製した無機材で、厚さは0.8mmである。セパレータ5のガス透過性は、芯材2であるグラスウールのガス透過性を100として10であった。次に、グラスウールを200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材1Cとした。   The produced glass wool was cut into a size of width 500 mm × length 1000 mm. A plurality of the cut glass wools were stacked, and a separator 5 was disposed between them. The separator 5 is an inorganic material produced by compression molding powder obtained by pulverizing glass wool, and has a thickness of 0.8 mm. The gas permeability of the separator 5 was 10 with the gas permeability of the glass wool as the core material 2 being 100. Next, after drying glass wool for 30 minutes in a drying oven at 200 ° C., a gas adsorbent 4 (Union Showa, Molecular Sieves 5A) is added, and the whole glass wool is further sealed in a quadrilateral bag shape. Put it in the outer packaging material 3, vacuum the inside of the outer packaging material 3 for 10 minutes with a rotary pump, then vacuum for 5 minutes with a diffusion pump, and seal the opening on the other side of the outer packaging material 3 with heat seal A vacuum heat insulating material 1C was obtained.

真空断熱材1C(厚み:約15mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。断熱特性は102(指数)であった。本実施例3の真空断熱材1Cはセパレータを配置していない比較例1で作製した真空断熱材6Aの断熱特性(100)と比較して高い値となっており、断熱性に優れる真空断熱材であるが、セパレータの厚さが厚いため実施例1と比較すると断熱特性が低くなっている。   The heat insulating properties of the vacuum heat insulating material 1C (thickness: about 15 mm) were measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The heat insulating property was 102 (index). The vacuum heat insulating material 1C of Example 3 has a high value compared to the heat insulating property (100) of the vacuum heat insulating material 6A produced in Comparative Example 1 in which no separator is disposed, and is excellent in heat insulating properties. However, since the thickness of the separator is large, the heat insulating properties are low as compared with Example 1.

[実施例4]
実施例4の真空断熱材1Dは、実施例1〜3の真空断熱材と同様に、組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行い、紡糸した繊維は吸引機構を有するコンベア上に目付けが1200g/mとなるように集めた繊維集合体の芯材2を用いている。そして、マイクロネア繊度を測定したところ、実施例1〜3と同様に、平均繊維径は4.9μmであった。
[Example 4]
The vacuum heat insulating material 1D of Example 4 is the same as the vacuum heat insulating materials of Examples 1 to 3, after melting the glass whose composition has been adjusted in a melting furnace at a temperature of about 1200 ° C., and then using a metal spinner to centrifuge. The core material 2 of the fiber aggregate collected by spinning and collecting the spun fibers on a conveyor having a suction mechanism so that the basis weight is 1200 g / m 2 is used. And when the micronea fineness was measured, the average fiber diameter was 4.9 micrometers similarly to Examples 1-3.

作製した、グラスウールを幅500mm×長さ1000mmの大きさに切断した。切断したグラスウールを複数枚重ね、その中間にセパレータ5を配置した。セパレータ5は有機材として、ポリエチレンテレフタレートを延伸してフィルム状とした有機フィルム表面にアルミを蒸着した金属蒸着膜付き有機フィルムであり、厚さは50×10−3mmである。そして、このセパレータ5のガス透過性は芯材であるグラスウールのガス透過性を100として1.0以下であった。 The produced glass wool was cut into a size of width 500 mm × length 1000 mm. A plurality of the cut glass wools were stacked, and a separator 5 was disposed between them. The separator 5 is an organic film with a metal vapor deposition film in which aluminum is vapor-deposited on the surface of an organic film formed by stretching polyethylene terephthalate as an organic material, and has a thickness of 50 × 10 −3 mm. And the gas permeability of this separator 5 was 1.0 or less by setting the gas permeability of glass wool as a core to 100.

次に、実施例1と同様に、グラスウールを200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材1Dとした。   Next, after drying glass wool for 30 minutes in a drying oven at 200 ° C., as in Example 1, gas adsorbent 4 (Made by Union Showa, Molecular Sieves 5A) was added, and the whole glass wool was sealed on three sides. The outer packaging material 3 is put into a quadrangular bag-shaped outer packaging material 3, and the inside of the outer packaging material 3 is evacuated for 10 minutes with a rotary pump, then evacuated with a diffusion pump for 5 minutes, and an opening on the other side of the outer packaging material 3 Was sealed with a heat seal to obtain a vacuum heat insulating material 1D.

実施例1と同様に、実施例4の真空断熱材1D(厚み:約15mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定したところ、断熱特性は111(指数)であった。本実施例4の真空断熱材1Dは、セパレータを配置していない比較例1で作製した真空断熱材6Aの断熱特性(100)と比較して高い値となっており、非常に断熱性に優れる真空断熱材である。   In the same manner as in Example 1, when the heat insulating properties of the vacuum heat insulating material 1D (thickness: about 15 mm) of Example 4 were measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd., the heat insulating properties were 111 (Index). The vacuum heat insulating material 1D of this Example 4 has a high value as compared with the heat insulating property (100) of the vacuum heat insulating material 6A produced in Comparative Example 1 in which no separator is disposed, and is extremely excellent in heat insulating properties. It is a vacuum insulation material.

[実施例5]
実施例5の真空断熱材1Eは、実施例1の真空断熱材1Aと同様に、組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行い、本実施例5では紡糸した繊維は吸引機構を有するコンベア上に目付けが1400g/mとなるように集めた繊維集合体の芯材2を用いている。そして、マイクロネア繊度を測定したところ、平均繊維径は4.9μmであった。
[Example 5]
As in the vacuum heat insulating material 1A of Example 1, the vacuum heat insulating material 1E of Example 5 was spun by a centrifugal method using a metal spinner after melting the glass whose composition was adjusted at a temperature of about 1200 ° C. in a melting furnace. In Example 5, the core material 2 of the fiber assembly was used in which the spun fibers were collected on a conveyor having a suction mechanism so that the basis weight was 1400 g / m 2 . And when the micronea fineness was measured, the average fiber diameter was 4.9 μm.

作製した、グラスウールを幅500mm×長さ1000mmの大きさに切断した。切断したグラスウールを複数枚重ね、その中間にセパレータ5を配置した。セパレータ5は有機材として、ポリエチレンテレフタレートを延伸してフィルム状とした有機フィルム表面にアルミを蒸着した金属蒸着膜付き有機フィルムであり、厚さは50×10−3mmである。そして、このセパレータ5のガス透過性は芯材であるグラスウールのガス透過性を100として1.0以下であった。 The produced glass wool was cut into a size of width 500 mm × length 1000 mm. A plurality of the cut glass wools were stacked, and a separator 5 was disposed between them. The separator 5 is an organic film with a metal vapor deposition film in which aluminum is vapor-deposited on the surface of an organic film formed by stretching polyethylene terephthalate as an organic material, and has a thickness of 50 × 10 −3 mm. And the gas permeability of this separator 5 was 1.0 or less by setting the gas permeability of glass wool as a core to 100.

次に、実施例1と同様に、グラスウールを200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材1Eとした。   Next, after drying glass wool for 30 minutes in a drying oven at 200 ° C., as in Example 1, gas adsorbent 4 (Made by Union Showa, Molecular Sieves 5A) was added, and the whole glass wool was sealed on three sides. The outer packaging material 3 is put into a quadrangular bag-shaped outer packaging material 3, and the inside of the outer packaging material 3 is evacuated for 10 minutes with a rotary pump, then evacuated with a diffusion pump for 5 minutes, and an opening on the other side of the outer packaging material 3 Was sealed with a heat seal to obtain a vacuum heat insulating material 1E.

実施例1と同様に、実施例5の真空断熱材1E(厚み:約18mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定したところ、断熱特性は111(指数)であった。本実施例5の真空断熱材1Eは、セパレータを配置していない比較例1で作製した真空断熱材6Aの断熱特性(100)と比較して高い値となっており、非常に断熱性に優れる真空断熱材である。   In the same manner as in Example 1, when the heat insulating properties of the vacuum heat insulating material 1E of Example 5 (thickness: about 18 mm) were measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd., the heat insulating properties were 111. (Index). The vacuum heat insulating material 1E of Example 5 has a high value compared to the heat insulating property (100) of the vacuum heat insulating material 6A produced in Comparative Example 1 in which no separator is disposed, and is extremely excellent in heat insulating properties. It is a vacuum insulation material.

更に同様の方法で種々の大きさの真空断熱材1Eを作製し、これを用いて実施例1と同様に図3に示す冷凍冷蔵庫7を作製した。実施例5の真空断熱材1Eを冷蔵庫内箱9または、冷蔵庫外箱10に張り付けるとともに、扉の必要箇所に張り付けた冷凍冷蔵庫7の消費電力を測定した所、真空断熱材を用いない場合と比較して、約30%低い結果となった。このことより、本実施例5の真空断熱材1Eを用いることで、機器の消費電力を低く抑えることができることが明らかとなった。   Further, various sizes of vacuum heat insulating materials 1E were produced by the same method, and the refrigerator-freezer 7 shown in FIG. When the vacuum heat insulating material 1E of Example 5 is attached to the refrigerator inner box 9 or the refrigerator outer box 10 and the power consumption of the refrigerator-freezer 7 attached to a necessary portion of the door is measured, the vacuum heat insulating material is not used. In comparison, the result was about 30% lower. From this, it became clear that the power consumption of the device can be kept low by using the vacuum heat insulating material 1E of the fifth embodiment.

[比較例1]
比較例1の真空断熱材6Aは、図6に示されるように、繊維集合体からなる芯材2を外包材3で包み、外包材3の内部空間を減圧して封止したものであり、基本的には本発明に係る真空断熱材1からセパレータ5を除去した構成となっており、芯材2は1層構成となっている。この構成により、比較例1の真空断熱材6Aの芯材2はセパレータで分割されない1つの空間となっている。
[Comparative Example 1]
As shown in FIG. 6, the vacuum heat insulating material 6 </ b> A of Comparative Example 1 is obtained by wrapping the core material 2 made of the fiber assembly with the outer packaging material 3, reducing the internal space of the outer packaging material 3 and sealing it. Basically, the separator 5 is removed from the vacuum heat insulating material 1 according to the present invention, and the core material 2 has a one-layer structure. With this configuration, the core material 2 of the vacuum heat insulating material 6A of Comparative Example 1 is one space that is not divided by the separator.

真空断熱材6Aは、芯材2として繊維集合体を用いており、この繊維集合体は組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行い、紡糸した繊維は吸引機構を有するコンベア上に目付けが1400g/mとなるように集めたものである。この芯材2を構成する繊維集合体の紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径は5.0μmであった。 The vacuum heat insulating material 6A uses a fiber assembly as the core material 2. The fiber assembly is prepared by melting glass having a adjusted composition in a melting furnace at a temperature of about 1200 ° C., and then using a metal spinner to centrifuge. Spinning was performed, and the spun fibers were collected on a conveyor having a suction mechanism so that the basis weight was 1400 g / m 2 . In order to examine the thickness of the spun fiber of the fiber aggregate constituting the core material 2, the micronaire fineness was measured, and the average fiber diameter was 5.0 μm.

作製した、グラスウールを幅500mm×長さ1000mmの大きさに切断した。切断したグラスウールを複数枚重ね、セパレータのない状態で200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材6Aとした。   The produced glass wool was cut into a size of width 500 mm × length 1000 mm. After stacking a plurality of cut glass wool and drying in a drying oven at 200 ° C for 30 minutes without a separator, put gas adsorbent 4 (Union Showa, Molecular Sieves 5A), and seal the whole glass wool on three sides. The outer packaging material 3 is placed in the outer packaging material 3 and the inside of the outer packaging material 3 is evacuated for 10 minutes with a rotary pump, and then evacuated for 5 minutes with a diffusion pump, and the other side of the outer packaging material 3 is opened. The part was sealed by heat sealing to obtain a vacuum heat insulating material 6A.

比較例1の真空断熱材6A(厚み:約15mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。断熱特性は100(指数)であった。すなわち、比較例1の真空断熱材6Aでは、芯材2の繊維で構成される空間にセパレータのない構成であるため、外包材3の内部に残存したガスが芯材2の空間内でガス対流を起こし、このガス対流で熱の伝達が発生し断熱性能が低下したと考えられる。   The heat insulating properties of the vacuum heat insulating material 6A (thickness: about 15 mm) of Comparative Example 1 were measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The heat insulating property was 100 (index). That is, in the vacuum heat insulating material 6A of Comparative Example 1, since the separator is not provided in the space formed by the fibers of the core material 2, the gas remaining inside the outer packaging material 3 is gas convection in the space of the core material 2. It is thought that heat transfer was generated by this gas convection and the heat insulation performance was lowered.

[比較例2]
比較例2の真空断熱材6Bは、図6に示されるように、芯材2として繊維集合体を用いており、この繊維集合体は組成を調整したガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用い遠心法で紡糸を行い、紡糸した繊維は吸引機構を有するコンベア上に目付けが1400g/mとなるように集めた。この芯材2を構成する繊維集合体の紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径は5.0μmであった。
[Comparative Example 2]
As shown in FIG. 6, the vacuum heat insulating material 6 </ b> B of Comparative Example 2 uses a fiber assembly as the core material 2, and this fiber assembly is a glass whose composition is adjusted at a temperature of about 1200 ° C. in a melting furnace. After melting, spinning was performed by a centrifugal method using a metal spinner, and the spun fibers were collected on a conveyor having a suction mechanism so that the basis weight was 1400 g / m 2 . In order to examine the thickness of the spun fiber of the fiber aggregate constituting the core material 2, the micronaire fineness was measured, and the average fiber diameter was 5.0 μm.

作製した、グラスウールを幅500mm×長さ1000mmの大きさに切断した。切断したグラスウールを複数枚重ね、セパレータのない状態で200℃の乾燥炉で30分間乾燥した後、ガス吸着剤4(ユニオン昭和製、モレキュラシーブス5A)を入れ、さらにグラスウール全体を3辺が封止された四辺形の袋状の外包材3中に入れ、外包材3の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで5分真空引きし、外包材3の他の1辺の開口部をヒートシールで封止し、真空断熱材6Bとした。   The produced glass wool was cut into a size of width 500 mm × length 1000 mm. After stacking a plurality of cut glass wool and drying in a drying oven at 200 ° C for 30 minutes without a separator, put gas adsorbent 4 (Union Showa, Molecular Sieves 5A), and seal the whole glass wool on three sides. The outer packaging material 3 is put into the outer packaging material 3 and the inside of the outer packaging material 3 is evacuated for 10 minutes with a rotary pump, and then evacuated for 5 minutes with a diffusion pump, and the opening on the other side of the outer packaging material 3 is opened. The part was sealed by heat sealing to obtain a vacuum heat insulating material 6B.

比較例2の真空断熱材6B(厚み:約18mm)について断熱特性を、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。断熱特性は98(指数)であった。比較例2の真空断熱材6Bでも、芯材2の繊維で構成される空間にセパレータのない構成であるため、外包材3の内部に残存したガスが芯材2の空間内でガス対流を起こし、このガス対流で熱の伝達が発生して断熱性能が低下したと考えられる。   The heat insulating properties of the vacuum heat insulating material 6B (thickness: about 18 mm) of Comparative Example 2 were measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The heat insulating property was 98 (index). Even in the vacuum heat insulating material 6B of the comparative example 2, since there is no separator in the space constituted by the fibers of the core material 2, the gas remaining inside the outer packaging material 3 causes gas convection in the space of the core material 2. It is thought that heat transfer occurred due to this gas convection and the heat insulation performance deteriorated.

このように、比較例1,2の真空断熱材6A,6Bの断熱特性が98乃至100であったのに対して、実施例1の真空断熱材1Aの断熱特性は110であり、実施例2の真空断熱材1Bの断熱特性は111であり、実施例3の真空断熱材1Cの断熱特性は102であり、実施例4の真空断熱材1Dの断熱特性は111であり、実施例5の真空断熱材1Eの断熱特性は111であり、比較例1,2に比べて断熱特性が向上したものとなっている。   Thus, while the heat insulation characteristics of the vacuum heat insulating materials 6A and 6B of Comparative Examples 1 and 2 were 98 to 100, the heat insulating characteristic of the vacuum heat insulating material 1A of Example 1 was 110, and Example 2 The heat insulating property of the vacuum heat insulating material 1B is 111, the heat insulating property of the vacuum heat insulating material 1C of Example 3 is 102, the heat insulating property of the vacuum heat insulating material 1D of Example 4 is 111, and the vacuum of Example 5 is used. The heat insulating property of the heat insulating material 1E is 111, and the heat insulating property is improved as compared with Comparative Examples 1 and 2.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、芯材として繊維集合体からなる芯材の例を示したが、これに限られるものでなく、真空断熱材の外包材の内部に空間を形成できるものであれば他の材質のものでもよい。繊維集合体としてグラスウールの例を示したが、セラミックウール等の他の繊維体を用いることもできる。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, an example of a core material made of a fiber assembly has been shown as the core material, but the present invention is not limited to this, and any other material can be used as long as a space can be formed inside the outer packaging material of the vacuum heat insulating material. Good. Although the example of glass wool was shown as a fiber assembly, other fiber bodies, such as ceramic wool, can also be used.

また、セパレータとして、グラスウールを粉砕した粉末を圧縮成形により作製した圧縮成形無機粉体の例、及びポリエチレンテレフタレートを延伸してフィルム状とした有機フィルム表面にアルミを蒸着した金属蒸着膜着き有機フィルムの例を示したが、金属薄膜を形成していない有機フィルムや、アルミニウム以外の金属薄膜を形成したフィルム等、芯材内部のガス対流を抑制できれば種々のものを用いることができる。   Also, as separators, examples of compression-molded inorganic powders produced by compression molding glass wool pulverized powders, and metal-deposited organic films deposited with aluminum deposited on the surface of organic films drawn into a film by stretching polyethylene terephthalate Although an example was shown, various things can be used if the gas convection inside a core material can be controlled, such as an organic film in which a metal thin film is not formed, and a film in which a metal thin film other than aluminum is formed.

セパレータは芯材の内部に1枚設ける例を示したが、芯材を3層に形成し、中間に2枚のセパレータを設ける等、複数枚のセパレータを用いて芯材内のガス対流を抑制するように構成してもよい。また、セパレータの形状は平板状に限られるものでなく、断熱を必要とする部品に合わせた形状に形成してもよい。例えば、図4に示される給湯機器の貯湯タンクの外周面に合わせてセパレータを湾曲面で形成すると好適である。   Although an example in which one separator is provided inside the core material has been shown, the core material is formed in three layers, and two separators are provided in the middle, etc. By using multiple separators, gas convection in the core material is suppressed. You may comprise. Further, the shape of the separator is not limited to a flat plate shape, and may be formed in a shape that matches a component that requires heat insulation. For example, it is preferable to form the separator with a curved surface in accordance with the outer peripheral surface of the hot water storage tank of the hot water supply apparatus shown in FIG.

本発明による真空断熱材は断熱が必要な種々の機器や、住宅、倉庫等の断熱が必要な建築部材等への適用、例えば屋根材、壁材等への適用も可能である。   The vacuum heat insulating material according to the present invention can be applied to various devices that require heat insulation, building members that require heat insulation such as houses and warehouses, for example, roof materials, wall materials, and the like.

1,1’,1A,1B,1C,1D,1E…本発明の真空断熱材、2…芯材(グラスウール繊維集合体)、3…外包材、4…ゲッター剤(ガス吸着剤)、5…セパレータ、6…従来の真空断熱材、7…冷凍冷蔵庫、8…発泡ウレタン、9…冷蔵庫内箱、10…冷蔵庫外箱、11…コンプレッサー、15…ヒートポンプ給湯器、16…貯湯タンク、17…ヒートポンプユニット、18…貯湯タンクユニット、19…逃し弁、20…漏電遮断器、21…逃し弁操作バルブ、22…排水操作バルブ、23…排水管、24…元栓、25…給水管、26…止水バルブ、27…給湯配管   DESCRIPTION OF SYMBOLS 1,1 ', 1A, 1B, 1C, 1D, 1E ... Vacuum heat insulating material of this invention, 2 ... Core material (glass wool fiber aggregate), 3 ... Outer packaging material, 4 ... Getter agent (gas adsorbent), 5 ... Separator, 6 ... conventional vacuum insulation, 7 ... refrigerated refrigerator, 8 ... urethane foam, 9 ... refrigerator inner box, 10 ... refrigerator outer box, 11 ... compressor, 15 ... heat pump water heater, 16 ... hot water storage tank, 17 ... heat pump Unit: 18 ... Hot water storage tank unit, 19 ... Relief valve, 20 ... Earth leakage breaker, 21 ... Relief valve operation valve, 22 ... Drainage operation valve, 23 ... Drain pipe, 24 ... Main plug, 25 ... Water supply pipe, 26 ... Water stop Valve, 27 ... Hot water supply piping

Claims (3)

芯材をガスバリア性を有する外包材で包み、該外包材の内部空間を減圧して封止した真空断熱材であって、
前記芯材の内部に該芯材より10倍以上ガス透過性の低いセパレータを設け、該セパレータは金属材を除く無機材又は有機材で形成され
前記芯材は、繊維集合体で形成され、
前記外包材は、樹脂フィルムをベースとして形成され、表面保護層、ガスバリア層、および熱溶着層を積層して構成され、
前記外包材の内部空間に、ガス吸着剤が配置され、
前記セパレータは、前記芯材の中間位置に配置され、圧縮成形無機粉体または有機フィルムまたは金属蒸着層を含む有機フィルムからなり、
減圧封止後の全体の厚さが、15以上かつ18mm以下であることを特徴とする真空断熱材。
A vacuum heat insulating material in which a core material is wrapped with an outer packaging material having a gas barrier property, and the internal space of the outer packaging material is decompressed and sealed,
A separator having a gas permeability of 10 times or more lower than that of the core material is provided inside the core material, and the separator is formed of an inorganic material or an organic material excluding a metal material ,
The core material is formed of a fiber assembly,
The outer packaging material is formed on the basis of a resin film, and is formed by laminating a surface protective layer, a gas barrier layer, and a heat welding layer,
A gas adsorbent is disposed in the internal space of the outer packaging material,
The separator is disposed at an intermediate position of the core material, and is made of a compression molded inorganic powder or an organic film or an organic film including a metal vapor deposition layer,
Vacuum sealing the entire thickness after stopping the vacuum heat insulator to 15 or more and wherein der Rukoto below 18 mm.
請求項1に記載の真空断熱材を用いたことを特徴とする冷蔵機器。 A refrigeration apparatus using the vacuum heat insulating material according to claim 1 . 請求項1に記載の真空断熱材を用いたことを特徴とする給湯機器。 A water heater using the vacuum heat insulating material according to claim 1 .
JP2013234893A 2013-11-13 2013-11-13 Vacuum insulation material and equipment using the same Expired - Fee Related JP6184841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234893A JP6184841B2 (en) 2013-11-13 2013-11-13 Vacuum insulation material and equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234893A JP6184841B2 (en) 2013-11-13 2013-11-13 Vacuum insulation material and equipment using the same

Publications (2)

Publication Number Publication Date
JP2015094442A JP2015094442A (en) 2015-05-18
JP6184841B2 true JP6184841B2 (en) 2017-08-23

Family

ID=53196971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234893A Expired - Fee Related JP6184841B2 (en) 2013-11-13 2013-11-13 Vacuum insulation material and equipment using the same

Country Status (1)

Country Link
JP (1) JP6184841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566759A (en) * 2019-09-15 2019-12-13 芜湖聚创新材料有限责任公司 Multilayer core material supported by woven fiber framework and vacuum insulation panel prepared by multilayer core material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241594A (en) * 1985-04-19 1986-10-27 松下電器産業株式会社 Vacuum heat-insulating material
JPS6321475A (en) * 1986-07-15 1988-01-29 松下冷機株式会社 Heat insulator
JPH0788987A (en) * 1993-09-21 1995-04-04 Sanyo Electric Co Ltd Vacuum thermal insulating board
JP2007046628A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Heat insulating material
JP4580843B2 (en) * 2005-08-24 2010-11-17 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP4580844B2 (en) * 2005-08-24 2010-11-17 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP4671895B2 (en) * 2006-03-28 2011-04-20 日立アプライアンス株式会社 Insulation panel, insulation box and method for producing insulation panel
JP2008215492A (en) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd Vacuum heat insulation material
JP5798942B2 (en) * 2011-09-12 2015-10-21 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator and equipment using the same

Also Published As

Publication number Publication date
JP2015094442A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
KR101821473B1 (en) Method for Manufacturing Vacuum Insulation Panels
US20180266620A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
US9151435B2 (en) Vacuum insulation material including an inner bag, and method for manufacturing same
KR20060032656A (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
CN102652061A (en) Vacuum insulation panel and method for manufacturing same
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP2009041592A (en) Vacuum heat insulating material and insulation box
WO2015115149A1 (en) Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
JP6132826B2 (en) Vacuum insulation and insulation box
JP6184841B2 (en) Vacuum insulation material and equipment using the same
KR101330743B1 (en) Core material for vacuum insulator using glass fiber fabric and vacuum insulator using the same
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
US20150354744A1 (en) Core material for vacuum insulation panel, method for manufacturing thereof, and vacuum insulation panel using same
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
KR20130133984A (en) Core material using a glass fiber, method for fabricating the same and vacuum insulation panel using the same
KR101452211B1 (en) Core material for vacuum insulator and vacuum insulator using the same
JPWO2017029727A1 (en) Vacuum insulation and insulation box
JP2014025494A (en) Heat insulation material, method for manufacturing heat insulation material, and heat insulation box using heat insulation material
JP2018115755A (en) Vacuum heat-insulating material, method of manufacturing vacuum heat-insulating material, and refrigerator
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
WO2019171566A1 (en) Vacuum heat-insulation material and heat-insulating box
JP6598715B2 (en) Vacuum insulation panel and method for manufacturing the same, gas adsorption pack
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
US20190001651A1 (en) Method for Manufacturing Vacuum Insulation Panels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170726

R150 Certificate of patent or registration of utility model

Ref document number: 6184841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees