JP6132826B2 - Vacuum insulation and insulation box - Google Patents

Vacuum insulation and insulation box Download PDF

Info

Publication number
JP6132826B2
JP6132826B2 JP2014216442A JP2014216442A JP6132826B2 JP 6132826 B2 JP6132826 B2 JP 6132826B2 JP 2014216442 A JP2014216442 A JP 2014216442A JP 2014216442 A JP2014216442 A JP 2014216442A JP 6132826 B2 JP6132826 B2 JP 6132826B2
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
adsorbent
packaging material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216442A
Other languages
Japanese (ja)
Other versions
JP2016084833A (en
Inventor
一正 藤村
一正 藤村
犬塚 隆之
隆之 犬塚
貴祥 向山
貴祥 向山
尚平 安孫子
尚平 安孫子
浩明 高井
浩明 高井
洋輔 藤森
洋輔 藤森
靖 増田
靖 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014216442A priority Critical patent/JP6132826B2/en
Priority to CN201520827243.2U priority patent/CN205173861U/en
Priority to CN201510695769.4A priority patent/CN105546279B/en
Publication of JP2016084833A publication Critical patent/JP2016084833A/en
Application granted granted Critical
Publication of JP6132826B2 publication Critical patent/JP6132826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • F25D23/066Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、真空断熱材及び断熱箱に関するものである。   The present invention relates to a vacuum heat insulating material and a heat insulating box.

冷蔵庫等の断熱材として用いられている従来の真空断熱材としては、「吸着剤と外被材の間に保護シートを設けたもの」(例えば、特許文献1参照)がある。   As a conventional vacuum heat insulating material used as a heat insulating material for a refrigerator or the like, there is “a protective sheet provided between an adsorbent and a jacket material” (for example, see Patent Document 1).

特開2004−218747号公報(請求項1、3〜5、段落[0015]〜[0016])JP 2004-218747 A (Claims 1, 3 to 5, paragraphs [0015] to [0016])

特許文献1では、吸着剤と外包材との間にアルミ箔を含むラミネートフィルム又はアルミ蒸着層を含むラミネートフィルムを保護シートとして、吸着剤及び外包材が直に接触しないように配置し、減圧密封(真空包装)時のピンホール発生を防止している。しかしながら、特許文献1のように保護シートとしてラミネートフィルムを用いると、減圧密封時のピンホール発生を抑制することはできるが、ラミネートフィルムにより吸着剤への通気が阻害されるため、真空断熱材内部に残留するガス及び外包材を通過し真空断熱材に侵入するガス(例えば、水、窒素、酸素、二酸化炭素等。以降、「熱伝導ガス」と称する。)の吸着速度が低下し、長期間にわたって熱伝導率の低い真空断熱材を得られないという課題があった。また、保護シートとしてラミネートフィルムを用いることにより、真空断熱材の部材価格が増加し、安価な真空断熱材を得られないという課題があった。   In Patent Document 1, a laminate film containing an aluminum foil or a laminate film containing an aluminum vapor deposition layer is used as a protective sheet between the adsorbent and the outer packaging material, so that the adsorbent and the outer packaging material are not in direct contact with each other, and sealed under reduced pressure. Prevents pinholes during vacuum packaging. However, when a laminate film is used as a protective sheet as in Patent Document 1, the generation of pinholes at the time of vacuum sealing can be suppressed. However, since the laminate film impedes ventilation to the adsorbent, The adsorption rate of the gas remaining in the gas and the gas that passes through the outer packaging material and enters the vacuum heat insulating material (for example, water, nitrogen, oxygen, carbon dioxide, etc., hereinafter referred to as “heat conduction gas”) decreases, and the There was a problem that a vacuum heat insulating material with low thermal conductivity could not be obtained. Moreover, by using a laminate film as the protective sheet, there is a problem that the material price of the vacuum heat insulating material increases, and an inexpensive vacuum heat insulating material cannot be obtained.

本発明は、上述のような課題を解決するためになされたものであり、耐久性が高く、長期間にわたり使用可能であり、かつ安価な真空断熱材及び断熱箱を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a vacuum heat insulating material and a heat insulating box that have high durability, can be used for a long period of time, and are inexpensive. .

本発明に係る真空断熱材は、真空空間を保持する芯材と、前記芯材を被覆する外包材と、粉末形状の第1の吸着剤及び前記第1の吸着剤を被覆する第1の包材を備え、前記外包材の内表面に接触して配置される第1の吸着部材と、前記第1の吸着剤よりも粒径が大きい第2の吸着剤を備え、前記第1の吸着部材及び前記芯材で包囲される第2の吸着部材とを備える。   The vacuum heat insulating material according to the present invention includes a core material that holds a vacuum space, an outer packaging material that covers the core material, a first adsorbent in powder form, and a first package that covers the first adsorbent. A first adsorbing member disposed in contact with the inner surface of the outer packaging material, and a second adsorbent having a particle size larger than that of the first adsorbent, the first adsorbing member And a second adsorbing member surrounded by the core material.

また、本発明に係る断熱箱は上述の真空断熱材を備える。   Moreover, the heat insulation box which concerns on this invention is equipped with the above-mentioned vacuum heat insulating material.

本発明によれば、粉末形状の第1の吸着剤よりも粒径が大きい第2の吸着剤を備える第2の吸着部材を第1の吸着部材及び芯材で包囲することによって、外包材におけるピンホール発生を防止することができる。また、本発明によれば、第2の吸着部材が第1の吸着部材及び芯材で包囲されているため、第2の吸着剤への通気が阻害されることがない。更に、本発明によれば、第2の吸着部材を第1の吸着部材及び芯材で包囲するという簡易な方法で真空断熱材が構成される。したがって、耐久性が高く、長期間にわたり使用可能であり、かつ安価な真空断熱材及び断熱箱を得ることができる。   According to the present invention, by enclosing the second adsorbing member including the second adsorbent having a particle size larger than that of the powder-shaped first adsorbent with the first adsorbing member and the core material, Generation of pinholes can be prevented. Further, according to the present invention, since the second adsorbing member is surrounded by the first adsorbing member and the core material, the ventilation to the second adsorbent is not hindered. Furthermore, according to this invention, a vacuum heat insulating material is comprised by the simple method of surrounding a 2nd adsorption member with a 1st adsorption member and a core material. Therefore, it is possible to obtain a vacuum heat insulating material and a heat insulating box that have high durability, can be used for a long period of time, and are inexpensive.

本発明の実施の形態1に係る真空断熱材1の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vacuum heat insulating material 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る真空断熱材1の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vacuum heat insulating material 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る真空断熱材1の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vacuum heat insulating material 1 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る断熱箱100の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat insulation box 100 which concerns on Embodiment 4 of this invention.

実施の形態1.
本発明の実施の形態1に係る真空断熱材1について説明する。図1は、本実施の形態1に係る真空断熱材1の概略構成を示す断面図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。各構成部材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
Embodiment 1 FIG.
The vacuum heat insulating material 1 which concerns on Embodiment 1 of this invention is demonstrated. FIG. 1 is a cross-sectional view showing a schematic configuration of the vacuum heat insulating material 1 according to the first embodiment. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may differ from the actual ones. Specific dimensions and the like of each component should be determined in consideration of the following description.

図1に示すように、真空断熱材1は、真空空間を保持する芯材2と、ガスバリア性を有し、芯材2を被覆する外包材3と、芯材2と外包材3との間に挿入され、外包材3の内表面に接触して配置される第1の吸着部材4と、第1の吸着部材4及び芯材2で包囲される第2の吸着部材5とを備えている。外包材3で規定される内部空間は、1〜3Pa程度の真空度に減圧された状態で開口部が密封されることにより減圧密封されている。開口部の密封は、ヒートシール等によって外包材3の周縁部を溶着することにより行われる。真空断熱材1は、全体として概略長方形平板状の形状を有している。   As shown in FIG. 1, the vacuum heat insulating material 1 includes a core material 2 that holds a vacuum space, an outer packaging material 3 that has a gas barrier property and covers the core material 2, and between the core material 2 and the outer packaging material 3. And a first suction member 4 disposed in contact with the inner surface of the outer packaging material 3, and a second suction member 5 surrounded by the first suction member 4 and the core material 2. . The internal space defined by the outer packaging material 3 is sealed under reduced pressure by sealing the opening in a state where the pressure is reduced to a degree of vacuum of about 1 to 3 Pa. The opening is sealed by welding the peripheral edge of the outer packaging material 3 by heat sealing or the like. The vacuum heat insulating material 1 has a substantially rectangular flat plate shape as a whole.

芯材2は、グラスウールなどの繊維集合体が積層された構成を有している。繊維集合体は、グラスウールであれば遠心法により製造され、樹脂繊維であればスパンボンド法により製造されることが一般的であるが、繊維集合体の製造方法は、特に限定されるものではない。また、芯材2を構成する繊維集合体は加熱加圧成形したものであっても、内包材を用いて密閉封止したものであっても、結合剤により結着したものであってもよい。   The core material 2 has a configuration in which fiber assemblies such as glass wool are laminated. The fiber aggregate is generally manufactured by a centrifugal method if it is glass wool, and is manufactured by a spunbond method if it is a resin fiber, but the manufacturing method of the fiber aggregate is not particularly limited. . Further, the fiber aggregate constituting the core material 2 may be one formed by heating and pressing, one hermetically sealed using an inner packaging material, or one bound with a binder. .

外包材3は、既存の真空断熱材に使用されている外包材であり、多層構造をなすラミネートフィルムである。この多層構造は、例えば、内表面側(芯材2側)から順にポリエチレン層、アルミ蒸着エチレン−ビニルアルコール層、アルミ蒸着ポリエチレンテレフタレート層、及び最外層にナイロン層が積層された構成を有する。外包材3の構成は、上述の構成に限定されず、ポリプロピレン層が含まれていてもよい。また蒸着層はアルミ蒸着層に限定されず、アルミナ蒸着層やシリカ蒸着層を用いてもよい。   The outer packaging material 3 is an outer packaging material used for an existing vacuum heat insulating material, and is a laminated film having a multilayer structure. This multilayer structure has, for example, a structure in which a polyethylene layer, an aluminum-deposited ethylene-vinyl alcohol layer, an aluminum-deposited polyethylene terephthalate layer, and a nylon layer are laminated on the outermost layer in order from the inner surface side (core material 2 side). The configuration of the outer packaging material 3 is not limited to the above-described configuration, and a polypropylene layer may be included. Moreover, a vapor deposition layer is not limited to an aluminum vapor deposition layer, You may use an alumina vapor deposition layer or a silica vapor deposition layer.

外包材3は、ガスバリア性を有するものであれば特に構成が限定されるものではない。例えば、外包材3を構成する各層の厚みは10〜30μm程度にできるが、これに限定されるものではない。   The configuration of the outer packaging material 3 is not particularly limited as long as it has gas barrier properties. For example, although the thickness of each layer which comprises the outer packaging material 3 can be about 10-30 micrometers, it is not limited to this.

第1の吸着部材4は、水分を少なくとも吸着することができる粉末形状の第1の吸着剤40と、第1の吸着剤40を被覆する第1の包材41とを備える。本実施の形態1においては、第1の吸着剤40の粒径は平均0.1mm未満にしてもよい。   The first adsorbing member 4 includes a powder-form first adsorbent 40 capable of adsorbing at least moisture, and a first packaging material 41 that covers the first adsorbent 40. In the first embodiment, the average particle size of the first adsorbent 40 may be less than 0.1 mm.

第2の吸着部材5は、水分を少なくとも吸着することができる第2の吸着剤50と、第2の吸着剤50を被覆する第2の包材51とを備える。本実施の形態1においては、第2の吸着剤50の粒径は第1の吸着剤40の粒径よりも大きくなるように構成される。第2の吸着剤50の粒径は平均0.1mm以上100mm以下にしてもよい。   The second adsorbing member 5 includes a second adsorbent 50 that can adsorb at least moisture, and a second packaging material 51 that covers the second adsorbent 50. In the first embodiment, the particle size of the second adsorbent 50 is configured to be larger than the particle size of the first adsorbent 40. The particle size of the second adsorbent 50 may be an average of 0.1 mm to 100 mm.

本実施の形態1の真空断熱材1においては、第2の吸着部材5における熱伝導ガスの吸着速度は第1の吸着部材4の熱伝導ガスの吸着速度よりも高くなるように構成しても良い。   In the vacuum heat insulating material 1 of the first embodiment, the heat conduction gas adsorption rate of the second adsorption member 5 may be configured to be higher than the heat conduction gas adsorption rate of the first adsorption member 4. good.

第1の吸着剤40及び第2の吸着剤50は、例えば酸化カルシウム(CaO)等の水分吸着性のある材料で構成されるが、これに限定されない。例えば、第1の吸着剤40及び第2の吸着剤50はシリカゲルやゼオライトで構成してもよい。また、第1の吸着剤40及び第2の吸着剤50は2以上の材料を組み合わせて構成してもよい。また、第1の吸着剤40及び第2の吸着剤50の構成成分は同じであっても異なっていてもよい。   Although the 1st adsorbent 40 and the 2nd adsorbent 50 are comprised with materials with moisture adsorption property, such as calcium oxide (CaO), for example, it is not limited to this. For example, the first adsorbent 40 and the second adsorbent 50 may be made of silica gel or zeolite. Further, the first adsorbent 40 and the second adsorbent 50 may be configured by combining two or more materials. Further, the constituent components of the first adsorbent 40 and the second adsorbent 50 may be the same or different.

第1の包材41及び第2の包材51は、紙、不織布、プラスチックフィルム(例えば、ポリエチレンフィルム)、又は網目状の布等の通気性のある部材で構成されている。第1の包材41及び第2の包材51は、通気性を有するものであれば特に構成が限定されるものではない。例えば、第1の包材41及び第2の包材51は、紙、不織布、プラスチックフィルム、及び網目状の布からなる群より選択される通気性を有する部材であっても、2種類以上の部材を積層した通気性のある積層材(例えば、積層フィルム)として構成してもよい。また、第1の包材41及び第2の包材51の構成は同じであっても異なっていてもよい。   The first wrapping material 41 and the second wrapping material 51 are made of air-permeable members such as paper, non-woven fabric, plastic film (for example, polyethylene film), or mesh cloth. The first packaging material 41 and the second packaging material 51 are not particularly limited in configuration as long as they have air permeability. For example, the first wrapping material 41 and the second wrapping material 51 may be two or more types of members having air permeability selected from the group consisting of paper, non-woven fabric, plastic film, and mesh cloth. You may comprise as a breathable laminated material (for example, laminated film) which laminated the member. Moreover, the structure of the 1st packaging material 41 and the 2nd packaging material 51 may be the same, or may differ.

次に、本実施の形態1に係る真空断熱材1の製造工程について説明する。   Next, the manufacturing process of the vacuum heat insulating material 1 which concerns on this Embodiment 1 is demonstrated.

本実施の形態1に係る真空断熱材1の製造工程においては、まず、芯材2及び外包材3の乾燥が行われる。外包材3で被覆した芯材2を100℃で2時間加熱処理を行うことによって、水分が芯材2及び外包材3から除去される。   In the manufacturing process of the vacuum heat insulating material 1 according to the first embodiment, first, the core material 2 and the outer packaging material 3 are dried. Water is removed from the core material 2 and the outer packaging material 3 by subjecting the core material 2 covered with the outer packaging material 3 to heat treatment at 100 ° C. for 2 hours.

次に、第1の吸着部材4が外包材3の内表面と接触するように配置され、第2の吸着部材5は第1の吸着部材4と芯材2とで包囲されるように、第1の吸着部材4と芯材2との間に配置される。第1の吸着部材4及び第2の吸着部材5はあらかじめ重ねた状態で配置してもよい。   Next, the first adsorption member 4 is disposed so as to contact the inner surface of the outer packaging material 3, and the second adsorption member 5 is surrounded by the first adsorption member 4 and the core material 2. 1 between the adsorption member 4 and the core material 2. You may arrange | position the 1st adsorption member 4 and the 2nd adsorption member 5 in the state accumulated previously.

次に、外包材3の内部を1〜3Pa程度の真空度に減圧し、その減圧状態で開口部をヒートシール等で溶着し、外包材3の内部を減圧密封する。以上の工程を経て、真空断熱材1が得られる。   Next, the inside of the outer packaging material 3 is decompressed to a degree of vacuum of about 1 to 3 Pa, and the opening is welded by heat sealing or the like in the decompressed state, and the interior of the outer packaging material 3 is sealed under reduced pressure. The vacuum heat insulating material 1 is obtained through the above steps.

次に、本実施の形態1の効果について説明する。   Next, the effect of this Embodiment 1 is demonstrated.

本実施の形態1の真空断熱材1は、粉末形状の第1の吸着剤40を備える第1の吸着部材4が外包材3の内表面に接触して配置され、第1の吸着剤40よりも粒径が大きい第2の吸着剤50を備える第2の吸着部材5が、第1の吸着部材4及び前記芯材2で包囲されている。よって、粒径が大きい第2の吸着剤50が外包材3に直接接触することがないため、減圧密封時の外包材3におけるピンホールの発生を抑制することができる。したがって、本実施の形態1では耐久性の高い真空断熱材1を提供できる。   In the vacuum heat insulating material 1 of the first embodiment, the first adsorbing member 4 including the first adsorbent 40 in the form of a powder is arranged in contact with the inner surface of the outer packaging material 3. A second adsorbing member 5 having a second adsorbent 50 having a large particle size is surrounded by the first adsorbing member 4 and the core material 2. Therefore, since the second adsorbent 50 having a large particle size does not directly contact the outer packaging material 3, it is possible to suppress the occurrence of pinholes in the outer packaging material 3 at the time of vacuum sealing. Therefore, in this Embodiment 1, the highly durable vacuum heat insulating material 1 can be provided.

また、本実施の形態1の真空断熱材1では、第2の吸着部材5が、第1の吸着部材4及び芯材2で包囲されているため、第2の吸着部材5の通気を阻害されることがない。したがって、本実施の形態1の真空断熱材1では熱伝導ガスの吸着速度が低下しないため、長期間にわたって熱伝導率を低く維持できる真空断熱材1を提供できる。また、本実施の形態1においては、保護シートを用いないことによって安価な真空断熱材1を提供できる。   Moreover, in the vacuum heat insulating material 1 of this Embodiment 1, since the 2nd adsorption member 5 is surrounded by the 1st adsorption member 4 and the core material 2, ventilation of the 2nd adsorption member 5 is inhibited. There is nothing to do. Therefore, in the vacuum heat insulating material 1 of this Embodiment 1, since the adsorption rate of heat conductive gas does not fall, the vacuum heat insulating material 1 which can maintain heat conductivity low over a long period of time can be provided. Moreover, in this Embodiment 1, the cheap vacuum heat insulating material 1 can be provided by not using a protection sheet.

また、本実施の形態1の真空断熱材1は、第2の吸着部材5における熱伝導ガスの吸着速度を第1の吸着部材4における熱伝導ガスの吸着速度よりも高くすることで、熱伝導率が長期間にわたって更に低くなる真空断熱材1を得ることができる。   Moreover, the vacuum heat insulating material 1 of this Embodiment 1 is heat-conductive by making the adsorption rate of the heat conduction gas in the 2nd adsorption member 5 higher than the adsorption rate of the heat conduction gas in the 1st adsorption member 4. The vacuum heat insulating material 1 whose rate is further lowered over a long period of time can be obtained.

また、本実施の形態1では、第1の吸着部材4を外包材3の内表面と接触するように配置し、第2の吸着部材5が第1の吸着部材4と芯材2とで包囲されるように、第2の吸着部材5を第1の吸着部材4と芯材2との間に配置するという簡易な方法で製造することができる。したがって、本実施の形態1の真空断熱材1では、保護シート等の部材を用いることなく真空断熱材1を製造することができるため、製造工程におけるエネルギーを削減でき、生産工程での環境負荷を低減できる安価な真空断熱材1を得ることができる。   In the first embodiment, the first adsorption member 4 is disposed so as to be in contact with the inner surface of the outer packaging material 3, and the second adsorption member 5 is surrounded by the first adsorption member 4 and the core material 2. As described above, the second adsorption member 5 can be manufactured by a simple method in which the second adsorption member 5 is disposed between the first adsorption member 4 and the core material 2. Therefore, in the vacuum heat insulating material 1 of this Embodiment 1, since the vacuum heat insulating material 1 can be manufactured without using members, such as a protection sheet, the energy in a manufacturing process can be reduced and the environmental load in a production process can be reduced. An inexpensive vacuum heat insulating material 1 that can be reduced can be obtained.

以下、例1〜3を用いて、本実施の形態1の効果について具体的に説明する。   Hereinafter, the effects of the first embodiment will be specifically described using Examples 1 to 3.

〈例1〉
例1は、本実施の形態1の真空断熱材1のピンホールの発生について試験したものである。
<Example 1>
Example 1 is a test for the generation of pinholes in the vacuum heat insulating material 1 of the first embodiment.

本実施の形態1の真空断熱材1において、芯材2はグラスウールで構成した。外包材3はポリエチレン層、アルミ蒸着エチレン−ビニルアルコール層、アルミ蒸着ポリエチレンテレフタレート層、及びナイロン層が積層されたラミネートフィルムで構成した。第1の吸着剤40は平均0.1mm未満の粉末形状の酸化カルシウムで構成した。第1の包材41は、通気性を有する紙とポリエチレンフィルムとの積層フィルムで構成した。第2の吸着剤50は粒径が平均3mmの酸化カルシウムで構成した。第2の包材51は紙とポリエチレンフィルムとの積層フィルムで構成した。   In the vacuum heat insulating material 1 of the first embodiment, the core material 2 is made of glass wool. The outer packaging material 3 was composed of a laminate film in which a polyethylene layer, an aluminum-deposited ethylene-vinyl alcohol layer, an aluminum-deposited polyethylene terephthalate layer, and a nylon layer were laminated. The first adsorbent 40 was composed of calcium oxide in powder form with an average of less than 0.1 mm. The first wrapping material 41 was composed of a laminated film of paper having air permeability and a polyethylene film. The second adsorbent 50 was composed of calcium oxide having an average particle size of 3 mm. The second packaging material 51 was composed of a laminated film of paper and polyethylene film.

比較例の真空断熱材は、粒径が平均3mmの酸化カルシウムが外包材に直接接触する構成とした。   The vacuum heat insulating material of the comparative example was configured such that calcium oxide having an average particle size of 3 mm was in direct contact with the outer packaging material.

本実施の形態1の真空断熱材1と比較例の真空断熱材とを100枚ずつ製造した。比較例の真空断熱材は、外包材のピンホール発生による真空不良が18枚発生した。これに対して、本実施の形態1の真空断熱材1は、外包材3のピンホール発生による真空不良が発生しなかった。したがって、本実施の形態1の真空断熱材1によれば、粒径が大きい第2の吸着剤50が外包材3に直接接触することがないため、減圧密封時のピンホールの発生を抑制することができる。   100 pieces of the vacuum heat insulating material 1 of Embodiment 1 and the vacuum heat insulating material of the comparative example were manufactured. In the vacuum heat insulating material of the comparative example, 18 vacuum defects due to the occurrence of pinholes in the outer packaging material occurred. On the other hand, the vacuum heat insulating material 1 of the first embodiment did not cause a vacuum failure due to the pinhole generation of the outer packaging material 3. Therefore, according to the vacuum heat insulating material 1 of the first embodiment, the second adsorbent 50 having a large particle size is not in direct contact with the outer packaging material 3, thereby suppressing the generation of pinholes at the time of vacuum sealing. be able to.

〈例2〉
例2は、本実施の形態1の真空断熱材1の吸着速度について試験したものである。
<Example 2>
Example 2 is a test on the adsorption rate of the vacuum heat insulating material 1 of the first embodiment.

本実施の形態1の真空断熱材1の構成は例1のものと同一の構成とした。比較例の真空断熱材の構成は、本実施の形態1の真空断熱材1における外包材3と第1の吸着部材4との間に、保護シートとして外包材3と同一構成のラミネートフィルムを有する構成とし、第1の吸着部材4及び第2の吸着部材5と外包材3とが直に接触しないようにした。   The configuration of the vacuum heat insulating material 1 of Embodiment 1 was the same as that of Example 1. The configuration of the vacuum heat insulating material of the comparative example has a laminated film having the same configuration as that of the outer packaging material 3 as a protective sheet between the outer packaging material 3 and the first adsorption member 4 in the vacuum heat insulating material 1 of the first embodiment. The first adsorbing member 4 and the second adsorbing member 5 and the outer packaging material 3 are not directly in contact with each other.

本実施の形態1の真空断熱材1及び比較例の真空断熱材を作製した直後における真空断熱材の熱伝導率はいずれも1.8mW/(m・K)と同値であった。その後、これらの真空断熱材を気温25℃、相対湿度60%の環境下で30日保管した場合の熱伝導率の増加量は、比較例の真空断熱材で0.4mW/(m・K)であったのに対し、本実施の形態1の真空断熱材1では0.2mW/(m・K)であった。   The thermal conductivity of the vacuum heat insulating material immediately after producing the vacuum heat insulating material 1 of this Embodiment 1 and the vacuum heat insulating material of a comparative example was all equivalent to 1.8 mW / (m · K). After that, when these vacuum heat insulating materials are stored for 30 days in an environment of an air temperature of 25 ° C. and a relative humidity of 60%, the increase in thermal conductivity is 0.4 mW / (m · K) in the vacuum heat insulating material of the comparative example. On the other hand, in the vacuum heat insulating material 1 of Embodiment 1, it was 0.2 mW / (m · K).

本実施の形態1の真空断熱材1では、比較例の真空断熱材で用いられている保護シートとしてのラミネートフィルムを有しておらず、第2の吸着部材5が、第1の吸着部材4及び前記芯材2で包囲されている。よって、第2の吸着部材5の通気が阻害されることはない。したがって、本実施の形態1においては、真空断熱材1内の熱伝導ガスの吸着速度が低下しないため、長期間にわたって熱伝導率を低く維持できる真空断熱材1を得ることができる。   In the vacuum heat insulating material 1 of this Embodiment 1, it does not have the laminate film as a protective sheet used with the vacuum heat insulating material of a comparative example, and the 2nd adsorption member 5 is the 1st adsorption member 4 And surrounded by the core material 2. Therefore, the ventilation of the second adsorption member 5 is not hindered. Therefore, in this Embodiment 1, since the adsorption | suction speed | rate of the heat conductive gas in the vacuum heat insulating material 1 does not fall, the vacuum heat insulating material 1 which can maintain heat conductivity low over a long period of time can be obtained.

〈例3〉
例3は、本実施の形態1の真空断熱材1において、第2の吸着剤50の水分の吸着速度を第1の吸着剤40の4倍にした場合の吸着速度を試験したものである。
<Example 3>
Example 3 is a test of the adsorption rate when the moisture adsorption rate of the second adsorbent 50 is four times that of the first adsorbent 40 in the vacuum heat insulating material 1 of the first embodiment.

本実施の形態1の真空断熱材1では、第2の吸着剤50を、粒径が平均3mmであり、水分の吸着速度が第1の吸着剤40の4倍である生石灰(酸化カルシウム)として構成したこと以外は例1〜2と同一の構成である。本実施の形態1の真空断熱材1を作製した直後の真空断熱材1の熱伝導率は1.8mW/(m・K)であった。その後、本実施の形態1の真空断熱材1を、気温25℃、相対湿度60%の環境下に30日保管した場合の熱伝導率の増加量は0.1mW/(m・K)であった。   In the vacuum heat insulating material 1 of this Embodiment 1, the 2nd adsorption agent 50 is made into quick lime (calcium oxide) whose particle size is 3 mm on average and whose moisture adsorption speed is 4 times the 1st adsorption agent 40. Except for the configuration, the configuration is the same as in Examples 1-2. The thermal conductivity of the vacuum heat insulating material 1 immediately after producing the vacuum heat insulating material 1 of Embodiment 1 was 1.8 mW / (m · K). Thereafter, the amount of increase in thermal conductivity when the vacuum heat insulating material 1 of Embodiment 1 was stored for 30 days in an environment of an air temperature of 25 ° C. and a relative humidity of 60% was 0.1 mW / (m · K). It was.

したがって、本実施の形態1の真空断熱材1によれば、第2の吸着剤50の熱伝導ガスの吸着速度を第1の吸着剤40の吸着速度よりも高くすることによって、長期間にわたって熱伝導率を更に低く維持できる真空断熱材1を得ることができる。   Therefore, according to the vacuum heat insulating material 1 of the first embodiment, the heat conduction gas adsorption rate of the second adsorbent 50 is made higher than the adsorption rate of the first adsorbent 40, so that heat can be generated over a long period of time. The vacuum heat insulating material 1 which can maintain a conductivity further low can be obtained.

実施の形態2.
以下に、本発明の実施の形態2に係る真空断熱材1について説明する。図2は、本発明の実施の形態2に係る真空断熱材1の概略構成を示す断面図である。
Embodiment 2. FIG.
Below, the vacuum heat insulating material 1 which concerns on Embodiment 2 of this invention is demonstrated. FIG. 2 is a cross-sectional view showing a schematic configuration of the vacuum heat insulating material 1 according to Embodiment 2 of the present invention.

本実施の形態2の真空断熱材1では、第2の包材51の表面積を第1の包材41の表面積よりも大きくした場合(例えば、真空断熱材1の厚み方向に直交する面内で、第2の包材51の縦横の長さを第1の包材41よりも10mmずつ大きくした場合)を考える。本実施の形態2では、第2の包材51の表面積を大きくすることで、第2の包材51を通過する熱伝導ガスの量が増加する。したがって、上述の実施の形態1の例3と同様に、第2の吸着剤50の熱伝導ガスの吸着速度を第1の吸着剤40の熱伝導ガスの吸着速度よりも高くできる。また、本実施の形態2においては、減圧密封時に外包材3の外部から第2の包材51の形状が確認できるため、第2の吸着部材5の挿入忘れを確認することができる。   In the vacuum heat insulating material 1 of this Embodiment 2, when the surface area of the 2nd packaging material 51 is made larger than the surface area of the 1st packaging material 41 (for example, in the surface orthogonal to the thickness direction of the vacuum heat insulating material 1). Consider a case in which the length and width of the second packaging material 51 are made 10 mm larger than the first packaging material 41). In the second embodiment, the amount of heat conduction gas passing through the second packaging material 51 is increased by increasing the surface area of the second packaging material 51. Therefore, similarly to Example 3 of the first embodiment described above, the adsorption rate of the heat conduction gas of the second adsorbent 50 can be made higher than the adsorption rate of the heat conduction gas of the first adsorbent 40. Further, in the second embodiment, since the shape of the second packaging material 51 can be confirmed from the outside of the outer packaging material 3 at the time of vacuum sealing, it is possible to confirm that the second suction member 5 has been forgotten to be inserted.

実施の形態3.
以下に、本発明の実施の形態3に係る真空断熱材1について説明する。図3は、本発明の実施の形態3に係る真空断熱材1の概略構成を示す断面図である。
Embodiment 3 FIG.
Below, the vacuum heat insulating material 1 which concerns on Embodiment 3 of this invention is demonstrated. FIG. 3 is a cross-sectional view showing a schematic configuration of the vacuum heat insulating material 1 according to Embodiment 3 of the present invention.

本実施の形態3の真空断熱材1では、第2の吸着部材5において第2の包材51を有しない、すなわち第2の吸着剤50が剥き出しの状態で、第1の吸着部材4及び芯材2で包囲されている場合を考える。本実施の形態3では、第2の吸着部材5が第2の包材51を有しないことにより、第2の吸着剤50での熱伝導ガス(例えば、水、窒素、酸素、二酸化炭素等)の吸着速度は、第2の包材51で被覆されている場合と比較して増加する。したがって、上述の実施の形態1の例3と同様に、第2の吸着剤50の熱伝導ガスの吸着速度を第1の吸着剤40の熱伝導ガスの吸着速度よりも高くできる。   In the vacuum heat insulating material 1 according to the third embodiment, the second adsorbing member 5 does not have the second packaging material 51, that is, the second adsorbent 50 is exposed, and the first adsorbing member 4 and the core are exposed. Consider the case of being surrounded by material 2. In the third embodiment, since the second adsorbing member 5 does not have the second packaging material 51, the heat conduction gas in the second adsorbent 50 (for example, water, nitrogen, oxygen, carbon dioxide, etc.). The adsorption speed increases as compared with the case of being covered with the second packaging material 51. Therefore, similarly to Example 3 of the first embodiment described above, the adsorption rate of the heat conduction gas of the second adsorbent 50 can be made higher than the adsorption rate of the heat conduction gas of the first adsorbent 40.

実施の形態4.
本発明の実施の形態4に係る断熱箱100について説明する。本実施の形態4においては、上述の実施の形態1に係る真空断熱材1を断熱箱100に使用することで、耐久性が高く、長期間にわたり使用可能であり、かつ安価な断熱箱100を得ることができる。図4は、本実施の形態4に係る断熱箱100の概略構成を示す断面図である。本実施の形態4では、冷蔵庫の断熱箱100を例に挙げて説明する。
Embodiment 4 FIG.
A heat insulation box 100 according to Embodiment 4 of the present invention will be described. In the fourth embodiment, by using the vacuum heat insulating material 1 according to the above-described first embodiment for the heat insulation box 100, the heat insulation box 100 which has high durability, can be used for a long period of time, and is inexpensive. Can be obtained. FIG. 4 is a cross-sectional view illustrating a schematic configuration of the heat insulation box 100 according to the fourth embodiment. In the fourth embodiment, a heat insulating box 100 of a refrigerator will be described as an example.

図4に示すように、断熱箱100は、内箱110と外箱120とを有している。内箱110と外箱120との間の空間には、真空断熱材1が配置されている。真空断熱材1は、例えば内箱110の外壁面に密着して配置されている。内箱110と外箱120との間の空間において真空断熱材1以外の部分には、発泡ウレタン断熱材130が充填されている。断熱箱100のその他の部分は、一般的な冷蔵庫の断熱箱と同様であるため、図示及び説明を省略する。   As shown in FIG. 4, the heat insulating box 100 has an inner box 110 and an outer box 120. The vacuum heat insulating material 1 is disposed in the space between the inner box 110 and the outer box 120. The vacuum heat insulating material 1 is disposed in close contact with the outer wall surface of the inner box 110, for example. In the space between the inner box 110 and the outer box 120, a portion other than the vacuum heat insulating material 1 is filled with a urethane foam heat insulating material 130. Since the other part of the heat insulation box 100 is the same as that of a general refrigerator heat insulation box, its illustration and description are omitted.

本実施の形態4では、耐久性が高く、長期間にわたり使用可能であり、かつ安価な真空断熱材1が用いられているため、耐久性が高く、長期間にわたり使用可能であり、かつ安価な断熱箱100を得ることができる。また、本実施の形態4では、発泡ウレタン断熱材130等と比較して高い断熱性能を有する真空断熱材1が用いられているため、断熱材として発泡ウレタン断熱材のみが用いられた断熱箱と比較して、断熱性能の高い断熱箱100を得ることができる。したがって、断熱箱100を備えた冷蔵庫において消費電力を削減することができる。   In the fourth embodiment, since the vacuum heat insulating material 1 that has high durability, can be used for a long time, and is inexpensive is used, the durability is high, it can be used for a long time, and is inexpensive. The heat insulation box 100 can be obtained. Moreover, in this Embodiment 4, since the vacuum heat insulating material 1 which has high heat insulation performance compared with the urethane foam heat insulating material 130 grade | etc., Is used, the heat insulation box which used only the urethane foam heat insulating material as a heat insulating material, In comparison, the heat insulation box 100 with high heat insulation performance can be obtained. Therefore, power consumption can be reduced in the refrigerator provided with the heat insulating box 100.

なお、本実施の形態4の断熱箱100では、真空断熱材1が内箱110の外壁面に密着しているが、真空断熱材1は外箱120の内壁面に密着していてもよい。また、真空断熱材1は、スペーサなどを用いることにより、内箱110と外箱120との間の空間に、内箱110及び外箱120のいずれにも密着しないように配置されていてもよい。   In the heat insulating box 100 of the fourth embodiment, the vacuum heat insulating material 1 is in close contact with the outer wall surface of the inner box 110, but the vacuum heat insulating material 1 may be in close contact with the inner wall surface of the outer box 120. Moreover, the vacuum heat insulating material 1 may be arrange | positioned so that it may not contact | adhere to any of the inner box 110 and the outer box 120 in the space between the inner box 110 and the outer box 120 by using a spacer etc. .

その他の実施の形態.
本発明は、上述の実施の形態に限らず種々の変形が可能である。
Other embodiments.
The present invention is not limited to the above-described embodiment, and various modifications can be made.

例えば、上述の実施の形態1に係る真空断熱材1の製造工程においては、芯材2及び外包材3の乾燥は100℃で2時間の加熱処理により行われているが、加熱処理の温度及び時間は、芯材2及び外包材3の水分が除去できる温度及び時間であればこれに限定されない。   For example, in the manufacturing process of the vacuum heat insulating material 1 according to Embodiment 1 described above, the core material 2 and the outer packaging material 3 are dried by heat treatment at 100 ° C. for 2 hours. The time is not limited to this as long as the temperature and time allow the moisture of the core material 2 and the outer packaging material 3 to be removed.

また、芯材2及び外包材3の乾燥は芯材2を外包材3で被覆した状態で行っているが、芯材2と外包材3の乾燥を別々に行った後に、芯材2を外包材3で被覆してもよい。   The core material 2 and the outer packaging material 3 are dried in a state where the core material 2 is covered with the outer packaging material 3. However, after the core material 2 and the outer packaging material 3 are separately dried, the core material 2 is encapsulated. You may coat | cover with the material 3. FIG.

また、上述の実施の形態1に係る真空断熱材1の製造工程においては、芯材2及び外包材3を乾燥した後に第1の吸着部材4及び第2の吸着部材5を芯材2と外包材3との間に配置しているが、芯材2及び外包材3を乾燥する前に第1の吸着部材4及び第2の吸着部材5を配置してもよい。   Moreover, in the manufacturing process of the vacuum heat insulating material 1 which concerns on the above-mentioned Embodiment 1, after drying the core material 2 and the outer packaging material 3, the 1st adsorption | suction member 4 and the 2nd adsorption member 5 are the core material 2 and an outer packaging. The first adsorbing member 4 and the second adsorbing member 5 may be arranged before the core material 2 and the outer packaging material 3 are dried.

また、上述の実施の形態1の例1〜3では、第1の包材41及び第2の包材51は紙とポリエチレンフィルムとの積層材(積層フィルム)で構成するものとしたが、不織布、ポリエチレンフィルム以外のプラスチックフィルム、又は網目状の布といった他の通気性のある部材を用いて構成してもよい。紙又はポリエチレンフィルムよりも通気性の良い部材を用いて第1の包材41及び第2の包材51を構成することで、上述の実施の形態1の例3と同様に、第2の吸着剤50の熱伝導ガスの吸着速度を第1の吸着剤40の熱伝導ガスの吸着速度よりも高くできる。   In Examples 1 to 3 of the first embodiment, the first wrapping material 41 and the second wrapping material 51 are made of a laminated material (laminated film) of paper and a polyethylene film. Alternatively, other breathable members such as a plastic film other than a polyethylene film, or a mesh cloth may be used. By configuring the first packaging material 41 and the second packaging material 51 using members having better air permeability than paper or polyethylene film, the second adsorption is performed in the same manner as in Example 3 of the first embodiment. The adsorption rate of the heat conduction gas of the agent 50 can be made higher than the adsorption rate of the heat conduction gas of the first adsorbent 40.

また、上述の実施の形態4では、冷熱源を備える冷蔵庫の断熱箱100に真空断熱材1が用いられた構成を例に挙げたが、本発明はこれに限られない。真空断熱材1は、温熱源を備える保温庫の断熱箱や、冷熱源及び温熱源を備えない断熱箱(例えば、クーラーボックス等)に用いることもできる。   Moreover, in the above-mentioned Embodiment 4, although the structure in which the vacuum heat insulating material 1 was used for the heat insulation box 100 of the refrigerator provided with a cold heat source was mentioned as an example, this invention is not limited to this. The vacuum heat insulating material 1 can also be used for a heat insulating box with a heat source or a heat insulating box without a cold heat source and a heat source (for example, a cooler box).

また、真空断熱材1は、断熱箱100だけでなく、空調機、車両用空調機、給湯機などの冷熱機器又は温熱機器の断熱部材として用いることもできる。また、真空断熱材1は、断熱箱のように所定の形状を備えた箱体だけでなく、変形自在な外袋及び内袋を備えた断熱袋や、その他の断熱容器にも用いることができる。   Moreover, the vacuum heat insulating material 1 can also be used as a heat insulating member for not only the heat insulating box 100 but also a cooling device or a heating device such as an air conditioner, a vehicle air conditioner, or a water heater. Moreover, the vacuum heat insulating material 1 can be used not only for a box having a predetermined shape like a heat insulating box, but also for a heat insulating bag including a deformable outer bag and an inner bag, and other heat insulating containers. .

また、上述の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。   In addition, the above-described embodiments and modifications can be implemented in combination with each other.

1 真空断熱材、2 芯材、3 外包材、4 第1の吸着部材、5 第2の吸着部材、40 第1の吸着剤、41 第1の包材、50 第2の吸着剤、51 第2の包材、100 断熱箱、110 内箱、120 外箱、130 発泡ウレタン断熱材。   DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material, 2 core material, 3 outer packaging material, 1st adsorption member, 5 2nd adsorption member, 40 1st adsorption agent, 41 1st packaging material, 50 2nd adsorption agent, 51 1st adsorption agent 2 packaging materials, 100 heat insulation box, 110 inner box, 120 outer box, 130 urethane foam heat insulation material.

Claims (10)

真空空間を保持する芯材と、
前記芯材を被覆する外包材と、
粉末形状の第1の吸着剤及び前記第1の吸着剤を被覆する第1の包材を備え、前記外包材の内表面に接触して配置される第1の吸着部材と、
前記第1の吸着剤よりも粒径が大きい第2の吸着剤を備え、前記第1の吸着部材及び前記芯材で包囲される第2の吸着部材と
を備える真空断熱材。
A core that holds the vacuum space;
An outer packaging material covering the core material;
A first adsorbent having a powder-form first adsorbent and a first packaging material covering the first adsorbent, and arranged in contact with an inner surface of the outer packaging material;
A vacuum heat insulating material comprising a second adsorbent having a particle size larger than that of the first adsorbent, and comprising the first adsorbing member and a second adsorbing member surrounded by the core material.
前記第1の吸着剤の粒径は平均0.1mm未満であり、前記第2の吸着剤の粒径は平均0.1mm以上100mm以下である請求項1に記載の真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the first adsorbent has an average particle size of less than 0.1 mm and the second adsorbent has an average particle size of 0.1 mm to 100 mm. 前記第2の吸着部材における熱伝導ガスの吸着速度は、前記第1の吸着部材における熱伝導ガスの吸着速度よりも大きい請求項1又は請求項2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein an adsorption rate of the heat conduction gas in the second adsorption member is larger than an adsorption rate of the heat conduction gas in the first adsorption member. 前記第1の包材は、紙、不織布、プラスチックフィルム、及び網目状の布からなる第1の群より選択される通気性を有する部材、又は前記第1の群より選択される2種類以上の部材を積層した通気性を有する積層材からなる請求項1〜請求項3のいずれか一項に記載の真空断熱材。   The first packaging material is a breathable member selected from the first group consisting of paper, non-woven fabric, plastic film, and mesh-like cloth, or two or more types selected from the first group The vacuum heat insulating material as described in any one of Claims 1-3 which consists of a laminated material which has the air permeability which laminated | stacked the member. 前記第2の吸着部材は前記第2の吸着剤を被覆する第2の包材を有しており、前記第2の包材の表面積は前記第1の包材の表面積よりも大きいことを特徴とする請求項1〜請求項4のいずれか一項に記載の真空断熱材。   The second adsorbing member has a second packaging material that covers the second adsorbent, and the surface area of the second packaging material is larger than the surface area of the first packaging material. The vacuum heat insulating material according to any one of claims 1 to 4. 前記第2の包材は、紙、不織布、プラスチックフィルム、及び網目状の布からなる第2の群より選択される通気性を有する部材、又は前記第2の群より選択される2種類以上の部材を積層した通気性を有する積層材からなる請求項5に記載の真空断熱材。   The second packaging material is a breathable member selected from the second group consisting of paper, non-woven fabric, plastic film, and mesh cloth, or two or more types selected from the second group The vacuum heat insulating material according to claim 5, wherein the vacuum heat insulating material is made of a laminated material having air permeability in which members are laminated. 前記第2の吸着部材は前記第2の吸着剤を被覆する包材を有しない請求項1〜請求項4のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein the second adsorbing member does not include a packaging material that covers the second adsorbent. 前記芯材は繊維集合体である請求項1〜請求項7のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 7, wherein the core material is a fiber assembly. 前記繊維集合体はグラスウールである請求項8に記載の真空断熱材。   The vacuum heat insulating material according to claim 8, wherein the fiber assembly is glass wool. 請求項1〜請求項9のいずれか一項に記載の真空断熱材を備える断熱箱。   A heat insulation box provided with the vacuum heat insulating material as described in any one of Claims 1-9.
JP2014216442A 2014-10-23 2014-10-23 Vacuum insulation and insulation box Active JP6132826B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014216442A JP6132826B2 (en) 2014-10-23 2014-10-23 Vacuum insulation and insulation box
CN201520827243.2U CN205173861U (en) 2014-10-23 2015-10-23 High vacuum insulation spare and adiabatic case
CN201510695769.4A CN105546279B (en) 2014-10-23 2015-10-23 Vacuum insulation part and insulated cabinet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216442A JP6132826B2 (en) 2014-10-23 2014-10-23 Vacuum insulation and insulation box

Publications (2)

Publication Number Publication Date
JP2016084833A JP2016084833A (en) 2016-05-19
JP6132826B2 true JP6132826B2 (en) 2017-05-24

Family

ID=55737853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216442A Active JP6132826B2 (en) 2014-10-23 2014-10-23 Vacuum insulation and insulation box

Country Status (2)

Country Link
JP (1) JP6132826B2 (en)
CN (2) CN205173861U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132826B2 (en) * 2014-10-23 2017-05-24 三菱電機株式会社 Vacuum insulation and insulation box
JP7079063B2 (en) * 2016-05-30 2022-06-01 東芝ライフスタイル株式会社 refrigerator
JP6830408B2 (en) * 2017-06-07 2021-02-17 日立グローバルライフソリューションズ株式会社 Vacuum heat insulating material
AU2017424996B2 (en) * 2017-07-25 2021-03-11 Mitsubishi Electric Corporation Vacuum insulation material, heat insulation box, and method for producing vacuum insulation material
JP2020076426A (en) * 2018-11-06 2020-05-21 日立グローバルライフソリューションズ株式会社 Vacuum heat insulating material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544521B2 (en) * 1990-12-27 1996-10-16 シャープ株式会社 Vacuum insulation panel
IT1271207B (en) * 1994-07-07 1997-05-27 Getters Spa DEVICE FOR THE MAINTENANCE OF THE VACUUM IN THERMALLY INSULATING SPACES AND PROCEDURE FOR ITS PRODUCTION
JP4649953B2 (en) * 2004-11-01 2011-03-16 パナソニック株式会社 Vacuum insulation
JP2007016929A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Heat insulating body
JP2009063033A (en) * 2007-09-05 2009-03-26 Panasonic Corp Heat insulator
JP5493706B2 (en) * 2009-10-28 2014-05-14 パナソニック株式会社 Gas adsorption device and method of using gas adsorption device
CN201787277U (en) * 2010-06-24 2011-04-06 王欣南 Super vacuum insulation panel
JP2012102758A (en) * 2010-11-08 2012-05-31 Panasonic Corp Vacuum heat insulation material
CN102095049B (en) * 2011-03-11 2013-01-16 苏州维艾普新材料有限公司 Vacuum heat-insulating plate capable of reducing price and preventing gas permeation and package method thereof
CN103759098B (en) * 2014-01-23 2015-04-15 青岛科瑞新型环保材料有限公司 Composite getter device for vacuum insulated panel and method for manufacturing composite getter device
JP6132826B2 (en) * 2014-10-23 2017-05-24 三菱電機株式会社 Vacuum insulation and insulation box

Also Published As

Publication number Publication date
CN105546279B (en) 2017-12-29
CN105546279A (en) 2016-05-04
CN205173861U (en) 2016-04-20
JP2016084833A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6132826B2 (en) Vacuum insulation and insulation box
JP4671897B2 (en) Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation
TWI647106B (en) Vacuum insulation panel and method of manufacturing the same
KR101283728B1 (en) Vacuum isolation panel and manufacturing method thereof
JP5129279B2 (en) Insulation
KR101560442B1 (en) Covering material for vacuum insulation panel, vacuum insulation panel and insulation wall
JP2015052337A (en) Vacuum heat insulation material, heat insulation box, and method of manufacturing vacuum heat insulation material
JP2015059642A (en) Vacuum heat insulation material and refrigerator using the same
JP2012042011A (en) Vacuum heat insulating material and manufacturing method thereof
TWI604150B (en) Vacuum heat insulation material and heat insulation box
JP2014113524A (en) Adsorbent, adsorption device and vacuum heat insulating material
JP2006316872A (en) Vacuum heat insulating material and heat retaining equipment adopting the same
JP6286900B2 (en) Insulation member and cold insulation box
JP2007032622A (en) Vacuum heat insulating material and manufacturing method thereof
JP2012159144A (en) Vacuum thermal insulating material and holder using the same
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP6095598B2 (en) Vacuum heat insulating material, heat insulating box, and method for manufacturing vacuum heat insulating material
JP6874529B2 (en) Vacuum heat insulating material
JP2014109334A (en) Vacuum insulation material and external capsule material for the same
WO2019171566A1 (en) Vacuum heat-insulation material and heat-insulating box
JP2020056454A (en) Gas adsorption device and vacuum heat insulating material
JP2007155087A (en) Vacuum heat insulating material
WO2018025399A1 (en) Vacuum heat insulation material and heat insulation box
JP2013194885A (en) Vacuum heat insulating material and manufacturing method thereof
JP2014213240A (en) Gas absorption device and vacuum insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170418

R150 Certificate of patent or registration of utility model

Ref document number: 6132826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250