JP2005273696A - Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board - Google Patents

Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board Download PDF

Info

Publication number
JP2005273696A
JP2005273696A JP2004084381A JP2004084381A JP2005273696A JP 2005273696 A JP2005273696 A JP 2005273696A JP 2004084381 A JP2004084381 A JP 2004084381A JP 2004084381 A JP2004084381 A JP 2004084381A JP 2005273696 A JP2005273696 A JP 2005273696A
Authority
JP
Japan
Prior art keywords
heat insulating
core material
insulating material
vacuum heat
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004084381A
Other languages
Japanese (ja)
Inventor
Tomonao Amayoshi
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004084381A priority Critical patent/JP2005273696A/en
Priority to CN2005100064574A priority patent/CN1657282A/en
Priority to EP05709926.9A priority patent/EP1653146B1/en
Priority to US10/595,081 priority patent/US7638181B2/en
Priority to PCT/JP2005/001874 priority patent/WO2005075878A1/en
Priority to CA002539448A priority patent/CA2539448C/en
Priority to KR1020067002899A priority patent/KR20060032656A/en
Publication of JP2005273696A publication Critical patent/JP2005273696A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance vacuum heat insulating material applying glass fiber shaped body not using bonding agent in a core material to reduce heat conduction of core material solid composition in the core material for vacuum heat insulation for reducing heat conductivity of the vacuum heat insulating material and improving deterioration of heat insulating performance with time. <P>SOLUTION: This vacuum heat insulating material 1 consists of a board shape core material 2 and outer wrapping material 3 of plastic laminate film covering the core material 2 and an inside thereof is decompressed and sealed. The board shaped core material 2 consists of laminated body of glass short fiber webs and webs are combined by physical interengagement, the board shaped core material 2 is plastically deformed in a density range of 100-400 kg/m<SP>3</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空断熱材、および真空断熱材を適用した保温保冷機器、更には断熱ボードに関するものである。   The present invention relates to a vacuum heat insulating material, a heat and cold insulation device to which the vacuum heat insulating material is applied, and further to a heat insulating board.

近年、地球温暖化の防止を目的に省エネルギー化が望まれており、民生用機器に対しても省エネルギー化の推進が行われている。特に、冷凍冷蔵庫に関しては、冷熱を効率的に利用するという観点から、優れた断熱性を有する断熱材が求められている。   In recent years, energy saving has been desired for the purpose of preventing global warming, and energy saving has been promoted for consumer devices. In particular, with respect to a refrigerator-freezer, a heat insulating material having excellent heat insulating properties is required from the viewpoint of efficiently using cold heat.

一般的な断熱材としては、グラスウールなどの繊維体やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性を向上するには断熱材の厚みを増大して適用する必要がある。よって、断熱材を設置できる空間に制限がある場合や、省スペース化や空間の有効利用が必要な場合には従来断熱材の適用は望ましくない。   As a general heat insulating material, a fiber body such as glass wool or a foam body such as urethane foam is used. However, it is necessary to increase the thickness of the heat insulating material in order to improve the heat insulating properties of these heat insulating materials. Therefore, when there is a limit to the space where the heat insulating material can be installed, or when space saving or effective use of the space is necessary, the conventional heat insulating material is not desirable.

このような課題を解決する一手段として、多孔体からなる芯材と、芯材を外包材によって覆い内部を減圧密閉して構成した真空断熱材がある。真空断熱材は、近年、省エネ競争が激化するなか、より一層、断熱性能の優れた真空断熱材が求められている。   As a means for solving such a problem, there are a core material made of a porous body and a vacuum heat insulating material configured by covering the core material with an outer packaging material and sealing the inside under reduced pressure. In recent years, vacuum heat insulating materials that are further superior in heat insulating performance have been demanded in the face of intensifying competition for energy saving in recent years.

一般に、断熱材の伝熱は、固体と気体成分の熱伝導、輻射、対流熱伝達により引き起こされる。一方、外包材内部を減圧してなる真空断熱材は、気体成分の熱伝導と対流熱伝達に関してはその影響は小さい。   In general, heat transfer of a heat insulating material is caused by heat conduction, radiation, and convective heat transfer between a solid and a gas component. On the other hand, the vacuum heat insulating material formed by reducing the pressure inside the outer packaging material has little effect on the heat conduction and convective heat transfer of the gas component.

また、常温以下の温度領域での使用においては、輻射の寄与もほとんどない。よって、常温以下で使用する保冷機器等に適用する真空断熱材においては、固体成分の熱伝導を抑制することが重要となる。そこで、断熱性能に優れる真空断熱用の芯材として、種々の繊維材料が報告されている。   In addition, there is almost no contribution of radiation when used in a temperature range below room temperature. Therefore, it is important to suppress the heat conduction of the solid component in the vacuum heat insulating material applied to a cold insulation device used at room temperature or lower. Thus, various fiber materials have been reported as a core material for vacuum heat insulation excellent in heat insulation performance.

例えば、繊維材料の全体にわたって低溶融ガラス組成物やホウ酸のような熱可塑性の性質を有する無機バインダー材料を分散させた圧縮繊維マットを芯材とした真空断熱材が提案されている。   For example, a vacuum heat insulating material has been proposed in which a compressed fiber mat in which an inorganic binder material having thermoplastic properties such as a low-melting glass composition or boric acid is dispersed throughout the fiber material is used as a core material.

これは、図7のように、2本の隣接したガラス繊維71とガラス繊維72が無機バインダー材料により、交点73で結合部74を形成することで繊維材料を圧縮繊維マットに成形するものである(例えば、特許文献1参照)。   As shown in FIG. 7, two adjacent glass fibers 71 and glass fibers 72 are made of an inorganic binder material, and a bonding portion 74 is formed at an intersection 73 to form the fiber material into a compressed fiber mat. (For example, refer to Patent Document 1).

本構成により、個々の繊維を一体化させることが可能となり、かつバインダーからの揮発性化合物の発生がないため真空断熱材の内圧を増大させることがない。。   With this configuration, individual fibers can be integrated, and since no volatile compound is generated from the binder, the internal pressure of the vacuum heat insulating material is not increased. .

一方、平均繊維径2μm以下、好ましくは1μm以下の無機質繊維に酸性水溶液処理、および圧縮脱水処理を施し、無機質繊維の溶出成分を無機質繊維の交点に集め、結合材として作用させ、無機繊維に一体性を持たせたものを芯材とする真空断熱材が提案されている(例えば、特許文献2参照)。   On the other hand, an inorganic aqueous fiber having an average fiber diameter of 2 μm or less, preferably 1 μm or less, is subjected to an acidic aqueous solution treatment and compression dehydration treatment, and the elution components of the inorganic fibers are collected at the intersections of the inorganic fibers to act as a binder and are integrated with the inorganic fibers. There has been proposed a vacuum heat insulating material using a material having a property as a core (see, for example, Patent Document 2).

本構成の効果としては、繊維同士を結着させる結合材を含まないため、外被材中の真空条件下で結合材から発生するガス成分が少なく、経時的な断熱性能の劣化が小さいため、断熱性能に優れていることが報告されている。   As an effect of this configuration, since it does not include a binding material that binds fibers together, there are few gas components generated from the binding material under vacuum conditions in the jacket material, and the deterioration of the heat insulation performance over time is small, It has been reported that heat insulation performance is excellent.

更に、平均繊維径1μmのガラス繊維をそのまま芯材として利用した真空断熱材が提案されている(例えば、特許文献3参照)。   Furthermore, a vacuum heat insulating material using glass fibers having an average fiber diameter of 1 μm as a core material has been proposed (see, for example, Patent Document 3).

本構成では、真空断熱材において、水分吸着性物質が添加含有されていることから、熱伝導率の劣化が抑えられ、長期間、初期の断熱性能を維持できることが報告されている。
特表平11−506708号公報 特開平7−167376号公報 特開昭59−225275号公報
In this configuration, since a moisture adsorbing substance is additionally contained in the vacuum heat insulating material, it is reported that deterioration of thermal conductivity is suppressed and initial heat insulating performance can be maintained for a long time.
Japanese National Patent Publication No. 11-506708 JP 7-167376 A JP 59-225275 A

しかしながら、上記従来の構成では、無機質繊維の交点において結着したバインダーや、無機質繊維からの溶出成分が結合材として作用するため、繊維相互の結着部位において、固形化したバインダーや溶出成分が熱橋として作用することで熱伝導が増大する。この時、バインダーや溶出成分による結着部位のない繊維体からなる芯材と比較すると、真空断熱材の熱伝導率が増大するという課題を有していた。   However, in the above conventional configuration, since the binder bound at the intersection of the inorganic fibers and the elution component from the inorganic fibers act as a binder, the solidified binder and the elution component are heated at the binding site between the fibers. By acting as a bridge, heat conduction increases. At this time, there was a problem that the thermal conductivity of the vacuum heat insulating material was increased as compared with a core material made of a fibrous body having no binding site due to a binder or an elution component.

一方、バインダーや溶出成分による結着部位のない従来構成の繊維体をそのまま芯材として適用した場合は、固体成分の熱伝導は小さいものの、その状態は嵩高い綿状であり、非常に取り扱いが困難である。また、それを真空断熱材の芯材として用いた場合は、大気圧縮により外観表面性が損なわれる等の課題を有していた。特に、平均繊維径が3μmを超えるガラス繊維を適用すると外観不良はより顕著に生じていた。   On the other hand, when a fiber body having a conventional configuration without binding sites due to binders and elution components is applied as it is as a core material, although the heat conduction of the solid component is small, the state is bulky cotton-like and is very easy to handle. Have difficulty. Moreover, when using it as a core material of a vacuum heat insulating material, there existed problems, such as an external appearance surface property being impaired by atmospheric compression. In particular, when glass fibers having an average fiber diameter of more than 3 μm were applied, the appearance defect was more prominent.

本発明は、上記従来の課題を解決するもので、結合材から生じるガス成分による内圧増加による断熱性能の劣化を招かないだけでなく、繊維相互の交点に形成される結着部位が熱橋として作用する熱伝導を抑制することで、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有する高性能な真空断熱材を提供するものである。   The present invention solves the above-mentioned conventional problems, and not only does it not deteriorate the heat insulation performance due to the increase in internal pressure due to the gas component generated from the binder, but also the binding site formed at the intersection of the fibers as a thermal bridge By suppressing the heat conduction which acts, the high performance vacuum heat insulating material which has the heat insulation performance 10 times or more of the conventional rigid urethane foam is provided.

また、低コストで、かつ表面性の優れたボード状の繊維成形体を提供するものである。   In addition, the present invention provides a board-like fiber molded article having a low cost and excellent surface properties.

更には、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有する高性能な真空断熱材を具備することにより、省エネルギーに貢献できる保温保冷機器を提供するものである。   Furthermore, the present invention provides a heat and cold insulation device that can contribute to energy saving by including a high-performance vacuum heat insulating material having an excellent heat insulating performance 10 times or more that of a conventional rigid urethane foam.

上記従来の課題を解決するために、本発明の真空断熱材は、ボード状芯材と、前記芯材を被覆するプラスチックラミネートフィルムの外包材とからなり、内部を減圧密閉した真空断熱材であって、前記ボード状芯材がガラス短繊維のウェブの積層体からなり、前記ウェブ間は物理的交絡により結合され、前記ボード状芯材は100〜400kg/m3の範囲の密度で塑性変形しているものである。 In order to solve the above-described conventional problems, the vacuum heat insulating material of the present invention is a vacuum heat insulating material that includes a board-shaped core material and an outer packaging material of a plastic laminate film that covers the core material, and the inside is sealed under reduced pressure. The board-like core material is made of a laminate of short glass fiber webs, the webs are bonded by physical entanglement, and the board-like core material is plastically deformed at a density in the range of 100 to 400 kg / m 3. It is what.

よって、ガラス繊維の絡み合いによるアンカー効果的作用と、ガラス繊維の熱変形による形状変化との物理的作用により、ガラス繊維からなる集合体は、成形前の弾性が低下し所定のボード形状を保持する。   Therefore, due to the physical effect of the anchor effective action due to the entanglement of the glass fibers and the shape change due to the thermal deformation of the glass fibers, the aggregate made of the glass fibers retains a predetermined board shape with reduced elasticity before molding. .

よって、ガラス繊維の集合体からなる芯材は、繊維相互における結合材がなくとも、芯材を所定のボード形状に保持することができる。   Therefore, the core material made of an aggregate of glass fibers can hold the core material in a predetermined board shape even if there is no binding material between the fibers.

本発明の真空断熱材は、芯材であるガラス繊維相互間に、バインダー成分や繊維からの溶出成分による結合材を用いずに芯材を形成している。よって、繊維相互の交点部には、バインダー成分や繊維からの溶出成分による結合材が存在しない。   In the vacuum heat insulating material of the present invention, the core material is formed between the glass fibers as the core material without using a binder due to a binder component or an elution component from the fiber. Therefore, there is no binder due to the binder component or the eluted component from the fiber at the intersection between the fibers.

その結果、従来、熱橋として作用していた結着部位が存在しないことから、繊維相互の伝熱点が大幅に低減し、伝熱量が抑制される。以上の結果より、本発明の真空断熱材は断熱性能が大幅に改善する。   As a result, since there is no binding site that has conventionally acted as a thermal bridge, the heat transfer point between the fibers is greatly reduced, and the amount of heat transfer is suppressed. From the above results, the heat insulating performance of the vacuum heat insulating material of the present invention is greatly improved.

また、バインダー成分を使用していないため、バインダー成分からの発生ガスも問題にならず、経時的に断熱性能の劣化が小さい真空断熱材を提供することができる。   Moreover, since the binder component is not used, the gas generated from the binder component does not become a problem, and a vacuum heat insulating material with little deterioration in heat insulation performance with time can be provided.

また、芯材成形時にバインダー成分を使用していないため、芯材成形工程の工数削減が可能となり効率的な生産が可能となると共に、ボード状芯材の表面がプレス金型の表面性状と同様に変形するため、表面性の優れたボード状芯材が成形できる。   In addition, since no binder component is used during the molding of the core material, it is possible to reduce the man-hours in the core material molding process, enabling efficient production, and the surface of the board-shaped core material is similar to the surface texture of the press mold. Therefore, a board-like core material having excellent surface properties can be formed.

請求項1に記載の発明は、ボード状芯材と、前記芯材を被覆するプラスチックラミネートフィルムの外包材とからなり、内部を減圧密閉した真空断熱材であって、前記ボード状芯材がガラス短繊維のウェブの積層体からなり、前記ウェブ間は物理的交絡により結合され、前記ボード状芯材の密度が100〜400kg/m3の範囲である真空断熱材である。 The invention according to claim 1 is a vacuum heat insulating material comprising a board-like core material and an outer packaging material of a plastic laminate film covering the core material, wherein the board-like core material is made of glass. It is a vacuum heat insulating material made of a laminate of short fiber webs, wherein the webs are bonded by physical entanglement, and the density of the board-like core material is in the range of 100 to 400 kg / m 3 .

よって、ガラス短繊維のウェブが厚み方向に均質に積層された積層体であることから、成形後のボード状芯材を構成するガラス繊維は厚み方向と垂直の方向に配列され、繊維相互の熱抵抗が増大する。   Therefore, since the web of short glass fibers is a laminated body that is uniformly laminated in the thickness direction, the glass fibers constituting the board-shaped core material after molding are arranged in a direction perpendicular to the thickness direction, and the heat between the fibers Resistance increases.

また、ガラス短繊維のウェブ間は、ガラス繊維の一部が繊維相互で絡み合うことで厚み方向における拘束性と一体性が発現する。   Moreover, between the webs of short glass fibers, a part of the glass fibers are entangled with each other, thereby exhibiting restraint and integrity in the thickness direction.

以上の作用により、ガラス繊維の絡み合いによるアンカー効果的な物理的作用により、ガラス繊維からなる集合体は、成形前の弾性が低下し所定のボード形状を保持する。   As a result of the above action, the aggregate made of glass fibers retains a predetermined board shape due to a decrease in elasticity before molding due to an anchor effective physical action due to the entanglement of the glass fibers.

結果、ガラス繊維の集合体からなる芯材は、繊維相互における結合材がなくとも、芯材を所定のボード形状に保持することができると共に、芯材の取り扱い性が改善され外被材への挿入工程などの作業性が向上する。   As a result, the core material made of an aggregate of glass fibers can maintain the core material in a predetermined board shape without the binding material between the fibers, and the handling property of the core material is improved, so Workability such as insertion process is improved.

請求項2に記載の発明は、ボード状芯材と、前記芯材を被覆するプラスチックラミネートフィルムの外包材とからなり、内部を減圧密閉した真空断熱材であって、前記ボード状芯材がガラス短繊維のウェブの積層体からなり、前記ウェブ間は物理的交絡により結合され、前記ボード状芯材は100〜400kg/m3の範囲の密度で塑性変形している真空断熱材である。 The invention described in claim 2 is a vacuum heat insulating material comprising a board-shaped core material and an outer packaging material of a plastic laminate film covering the core material, wherein the board-shaped core material is made of glass. It consists of a laminate of short fiber webs, the webs are bonded by physical entanglement, and the board-like core material is a vacuum heat insulating material that is plastically deformed at a density in the range of 100 to 400 kg / m 3 .

よって、ガラス繊維の絡み合いによるアンカー効果的作用と、ガラス繊維の熱変形による形状変化との物理的作用により、ガラス繊維からなる集合体は成形前の弾性が低下し所定のボード形状を保持する。   Therefore, due to the physical action of the anchor effect due to the entanglement of the glass fibers and the shape change due to the thermal deformation of the glass fibers, the aggregate made of the glass fibers decreases in elasticity before molding and maintains a predetermined board shape.

よって、ガラス繊維の集合体からなる芯材は、繊維相互における結合材がなくとも、芯材を所定のボード形状に保持することができる。   Therefore, the core material made of an aggregate of glass fibers can hold the core material in a predetermined board shape even if there is no binding material between the fibers.

また、加熱プレス時におけるガラス繊維の熱変形により、繊維を延伸させる効果も期待できるため、ガラス繊維の積層配列がより一層改善されることで、断熱性能が改善することも考えられる。   Moreover, since the effect of extending the fiber can be expected due to thermal deformation of the glass fiber at the time of hot pressing, it is considered that the heat insulation performance is improved by further improving the laminated arrangement of the glass fibers.

以上の作用により、本発明の真空断熱材は断熱性能が大幅に改善する。   With the above action, the heat insulating performance of the vacuum heat insulating material of the present invention is greatly improved.

請求項3に記載の発明は、請求項1または2に記載のボード状芯材が、ウェブの積層体の積層方向における少なくとも片側最表面に平滑な表面層が形成された真空断熱材である。   The invention according to claim 3 is a vacuum heat insulating material in which the board-like core material according to claim 1 or 2 is formed with a smooth surface layer on at least one outermost surface in the laminating direction of the web laminate.

よって、請求項1または2に記載の作用に加えて、ボード状芯材をプラスチックラミネートフィルムでパッケージングし、内部を減圧密閉した真空断熱材とした場合に、少なくとも真空断熱材の伝熱方向の一方のフィルム表面に凹凸がなく、良好な平滑性を有している。   Therefore, in addition to the operation according to claim 1 or 2, when the board-shaped core material is packaged with a plastic laminate film and the inside thereof is a vacuum heat insulating material sealed under reduced pressure, at least in the heat transfer direction of the vacuum heat insulating material. One film surface has no unevenness and has good smoothness.

その結果、真空断熱材を保温保冷機器等に適用する場合において、その貼付性が改善される共に、保温保冷機器の外観に外観不良等の問題を引き起こすことがない。   As a result, when the vacuum heat insulating material is applied to a heat and cold insulation device or the like, its stickability is improved, and problems such as poor appearance are not caused on the appearance of the heat and cold insulation device.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載のガラス短繊維が、含アルカリガラスからなる真空断熱材である。   Invention of Claim 4 is a vacuum heat insulating material in which the glass short fiber as described in any one of Claim 1 to 3 consists of alkali-containing glass.

よって、請求項1から3のいずれか一項に記載の作用に加えて、ガラス繊維の圧縮成形体を熱変させる場合において、より低温での成形加工が可能となる。   Therefore, in addition to the effect | action as described in any one of Claims 1-3, in the case of thermally changing the compression molding body of glass fiber, the shaping | molding process at a lower temperature is attained.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載のボード状芯材がバインダー成分を含まない真空断熱材である。   The invention according to claim 5 is a vacuum heat insulating material in which the board-shaped core material according to any one of claims 1 to 4 does not contain a binder component.

よって、請求項1から4のいずれか一項に記載の作用により、ボード状芯材がその所定形状を保持することができることに加えて、ガラス繊維相互を結着する結合材を含んでいない。   Therefore, in addition to the fact that the board-shaped core member can maintain the predetermined shape by the action according to any one of claims 1 to 4, it does not include a binder that binds the glass fibers.

その結果、従来、熱橋として作用していた繊維相互の結着部位が存在しないことから、伝熱点が低減し伝熱量が低下する。   As a result, since there is no binding site between fibers that has conventionally acted as a thermal bridge, the heat transfer point is reduced and the amount of heat transfer is reduced.

以上の作用により、本発明の真空断熱材は断熱性能が一層改善する。   With the above action, the heat insulating performance of the vacuum heat insulating material of the present invention is further improved.

請求項6に記載の発明の保温保冷機器は、請求項1から5のいずれか一項に記載の真空断熱材を具備するものである。   A heat insulation and cold insulation apparatus according to a sixth aspect of the invention comprises the vacuum heat insulating material according to any one of the first to fifth aspects.

よって、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できる。また、真空断熱材の表面性が良好であるため、取り付け性および保温保冷機器の箱体表面平滑性も良好なものが作製できる。   Therefore, in order to have the heat insulation performance 10 times or more of the conventional rigid urethane foam, high heat insulation is achieved and it can contribute to energy saving. Moreover, since the surface property of a vacuum heat insulating material is favorable, a thing with favorable attachment property and the box body surface smoothness of a thermal insulation apparatus can be produced.

更に、結合材から生じるガス成分による内圧増加により、断熱性能の劣化を招くことないため、経時的な断熱性能の劣化が小さく、継続して省エネルギーに貢献することが可能である。   Further, since the increase in internal pressure due to the gas component generated from the binder does not cause deterioration of the heat insulation performance, the deterioration of the heat insulation performance over time is small, and it is possible to continuously contribute to energy saving.

請求項7に記載の発明の断熱ボードは、請求項1から5のいずれか一項に記載の真空断熱材のボード状芯材からなるものである。   A heat insulating board according to a seventh aspect of the present invention comprises the board-shaped core material of the vacuum heat insulating material according to any one of the first to fifth aspects.

よって、断熱ボードが、ガラス繊維の成形体であり、かつ有機系結合材を含まないため、ガラス繊維の耐熱温度である約400℃前後まで使用が可能であり、耐熱性に優れた高断熱性の断熱ボードとして利用できる。   Therefore, since the heat insulation board is a glass fiber molded body and does not contain an organic binder, it can be used up to about 400 ° C., which is the heat resistant temperature of glass fiber, and has high heat resistance with excellent heat resistance. Can be used as an insulation board.

更には、無機系結合材を含まないため、ボードの柔軟性も高い。   Furthermore, since the inorganic binder is not included, the flexibility of the board is high.

その上、その構造がガラス繊維の積層体であるため粉落ちが少ないこと、結合材を全く含まないことから高温使用時の異臭やガス成分の発生といった問題が生じないという利点も具備する。   In addition, since the structure is a laminated body of glass fibers, there is an advantage that problems such as generation of off-flavors and generation of gas components at the time of high temperature use do not occur because there is little powder falling off and no binder is included.

なお、本発明で使用できるガラス短繊維は特に限定するものではないが、ガラス状態になり得るガラス形成酸化物が望ましく、更には、熱変形温度が低く、厚み方向に均質に積層配列されたものが好適であり、汎用的な工業製品としてはグラスウールが安価、かつ取り扱い性の観点からもより望ましい。   The short glass fibers that can be used in the present invention are not particularly limited, but glass-forming oxides that can be in a glass state are desirable, and furthermore, those that have a low heat distortion temperature and are uniformly laminated in the thickness direction. As a general-purpose industrial product, glass wool is more desirable from the viewpoint of low cost and handleability.

また、繊維径は、特に指定するものではないが、繊維径が微細なものがより優れた断熱性能が得られることは既に公知である。しかしながら、無機繊維の交点で結着部位を有する従来芯材においては、平均繊維径2μm以下の微細繊維でしか得られなかった断熱性能が、本構成においては、平均繊維径3μm以上のガラス繊維でも実現可能であることから、グラスウールの汎用品を使用した場合にも優れた断熱性能が低コストで実現できる。   The fiber diameter is not particularly specified, but it is already known that a finer fiber diameter can provide better heat insulation performance. However, in the conventional core material having the binding site at the intersection of the inorganic fibers, the heat insulation performance obtained only with fine fibers having an average fiber diameter of 2 μm or less can be obtained in this configuration even with glass fibers having an average fiber diameter of 3 μm or more. Since it is feasible, excellent heat insulation performance can be realized at low cost even when a general-purpose glass wool product is used.

また、本発明の外包材は、プラスチックラミネートフィルムが使用できるが、より高いガスバリア性を付与するためには金属箔や蒸着層が適用できる。なお、金属箔、および蒸着層は公知のもが利用でき、特に指定するものではない。   In addition, a plastic laminate film can be used as the outer packaging material of the present invention, but a metal foil or a vapor deposition layer can be applied in order to impart higher gas barrier properties. In addition, a metal foil and a vapor deposition layer can use a well-known thing, and it does not specify it in particular.

また、本発明の真空断熱材には、各種ガス吸着剤が適用できる。一例としては、合成ゼオライト、活性炭、活性アルミナ、シリカゲル、ドーソナイト、ハイドロタルサイトなどの物理吸着剤、アルカリ金属やアルカリ土類金属単体やその酸化物および水酸化物などの化学吸着剤、あるいは空気成分が吸着できるゲッター剤等がある。   Various gas adsorbents can be applied to the vacuum heat insulating material of the present invention. Examples include physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, hydrotalcite, chemical adsorbents such as alkali metals and alkaline earth metals alone and their oxides and hydroxides, or air components. There are getter agents that can adsorb.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面模式図を示すものである。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a vacuum heat insulating material in Embodiment 1 of the present invention.

また、図2は、本発明の実施の形態1における芯材2の芯材成形工程のフローチャートについて示す。更に、図3には、本発明の実施の形態1における真空断熱材の芯材の顕微鏡写真を示す。   Moreover, FIG. 2 shows the flowchart of the core material formation process of the core material 2 in Embodiment 1 of this invention. Furthermore, in FIG. 3, the microscope picture of the core material of the vacuum heat insulating material in Embodiment 1 of this invention is shown.

図1において、真空断熱材1は、芯材2と吸着剤4とを外包材3に挿入し、内部を減圧して構成している。   In FIG. 1, the vacuum heat insulating material 1 is configured by inserting a core material 2 and an adsorbent 4 into an outer packaging material 3 and depressurizing the inside.

真空断熱材1の作製は、芯材2を140℃の乾燥炉で30分間乾燥した後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材3に挿入し、減圧チャンバー内で、外包材内部が10Pa以下になるように減圧し、開口部を熱溶着により密閉封止している。   The vacuum heat insulating material 1 is produced by drying the core material 2 in a drying furnace at 140 ° C. for 30 minutes, and then inserting the three sides of the laminate film into the outer packaging material 3 formed into a bag shape by heat welding. Thus, the pressure is reduced so that the inside of the outer packaging material becomes 10 Pa or less, and the opening is hermetically sealed by heat welding.

この時、外包材3は、最外層にポリエチレンテレフタレートフィルム(12μm)、中間層にはアルミ箔(6μm)、熱溶着層として直鎖状低密度ポリエチレンフィルム(50μm)からなるプラスチックラミネートフィルムにより構成している。   At this time, the outer packaging material 3 is constituted by a plastic laminate film comprising a polyethylene terephthalate film (12 μm) as an outermost layer, an aluminum foil (6 μm) as an intermediate layer, and a linear low density polyethylene film (50 μm) as a heat welding layer. ing.

また、吸着剤は、水分吸着剤として酸化カルシウムを適用している。   Moreover, calcium oxide is applied to the adsorbent as a moisture adsorbent.

一方、芯材2は、ガラス短繊維からなるウェブ間が物理的交絡により結合されたガラス繊維の積層体であり、平均繊維径3.5μmのグラスウールを所定密度になるまで積層したものを使用し、ガラス繊維の品温が熱変形する480℃にて5分間、加熱プレスすることで成形している。   On the other hand, the core material 2 is a laminated body of glass fibers in which webs made of short glass fibers are bonded by physical entanglement, and is obtained by laminating glass wool having an average fiber diameter of 3.5 μm to a predetermined density. The glass fiber is molded by hot pressing at 480 ° C. for 5 minutes, where the product temperature is thermally deformed.

また、この時、ガラス短繊維は含アルカリガラスとして、アルカリ含有率が17重量%のCガラスを適用している。また、このガラスの粘度温度特性をビームベンディング法にて分析した結果、歪点の温度は525℃であった。   At this time, C glass having an alkali content of 17% by weight is applied as the short glass fiber as the alkali-containing glass. Moreover, as a result of analyzing the viscosity temperature characteristic of this glass by the beam bending method, the temperature of the strain point was 525 degreeC.

併せて、図2は芯材成形工程のフローチャートであり、(a)ガラス繊維積層体の成形、(b)加熱プレス、(c)冷却の3つの工程から構成される。   In addition, FIG. 2 is a flowchart of the core material forming step, which is composed of three steps: (a) forming a glass fiber laminate, (b) heating press, and (c) cooling.

更に、工程に沿って詳細に説明すると、(a)ガラス繊維積層体の成形工程は、ガラス短繊維のウェブを厚み方向に積層配列させて積層体を成形する。この時、ガラス繊維積層体はその一部で繊維が絡み合っているため、アンカー効果的な作用からガラス繊維集合体に一体性が付与される。
(b)加熱プレス工程は、ガラス繊維を加熱しながらプレスすることで、ガラス繊維を熱変形させ、ガラス繊維の積層体は加熱プレス時の形状へと熱変形する。
Furthermore, if it demonstrates in detail along a process, (a) The formation process of a glass fiber laminated body will laminate | stack the glass short fiber web on the thickness direction, and will shape | mold a laminated body. At this time, since the fibers are intertwined in a part of the glass fiber laminate, integrity is imparted to the glass fiber aggregate due to the anchor effect.
(B) A heating press process heat-deforms glass fiber by pressing while heating glass fiber, and the laminated body of glass fiber heat-deforms to the shape at the time of hot press.

その後、(c)冷却工程にて、プレス時の状態で熱変形したガラス繊維の集合体を冷却する。この時、ガラス繊維の集合体はプレス時の形状で変形しており、加熱プレス時の形状が保持されたボード状芯材が成形できる。   Thereafter, in the (c) cooling step, the aggregate of glass fibers thermally deformed in the pressed state is cooled. At this time, the aggregate of glass fibers is deformed in the shape at the time of pressing, and a board-like core material that retains the shape at the time of hot pressing can be formed.

よって、ガラス繊維の集合体からなる芯材は、繊維相互における結合材がなくとも、芯材を所定形状に保持することができる。   Therefore, the core material made of an aggregate of glass fibers can hold the core material in a predetermined shape even if there is no binding material between the fibers.

図3は、上記方法にて作製した芯材表面の顕微鏡写真であるが、繊維相互間には結合材は存在していないことが判る。   FIG. 3 is a photomicrograph of the surface of the core material produced by the above method, and it can be seen that there is no binder between the fibers.

なお、ガラス繊維を熱変形させることのできる温度は、プレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であり、ガラス繊維の断面形状が大きく変化しない程度の粘性低下状態となる温度である。このように、ガラス繊維の断面形状が変化するまで加熱すると、ガラス繊維相互間にネックと呼ばれる架橋部が形成され、断熱性能が低下するため望ましくない。   The temperature at which the glass fiber can be thermally deformed is a temperature at which the glass fiber can be deformed by a load from the up and down direction at the time of pressing, and the viscosity is lowered to such an extent that the cross-sectional shape of the glass fiber does not change significantly. Temperature. Thus, when it heats until the cross-sectional shape of glass fiber changes, since the bridge | crosslinking part called a neck is formed between glass fibers, and heat insulation performance falls, it is not desirable.

以上の方法で形成した真空断熱材1の熱伝導率を英弘精機製のオートラムダにて測定した。結果、熱伝導率は、平均温度24℃にて0.002W/mKであり、汎用的な硬質ウレタンフォームの10倍以上の断熱性能を有していた。   The thermal conductivity of the vacuum heat insulating material 1 formed by the above method was measured with an auto lambda manufactured by Hidehiro Seiki. As a result, the thermal conductivity was 0.002 W / mK at an average temperature of 24 ° C., and the thermal conductivity was 10 times or more that of a general-purpose hard urethane foam.

また、芯材の密度が100kg/m3を下回る時は、芯材に十分な剛性が得られず取り扱い性が低下すると共に、形成した真空断熱材の表面に凹凸ができるなどの問題があった。一方、芯材の密度が400kg/m3を超える場合は真空断熱材の熱伝導率が増大する等の問題があった。 In addition, when the density of the core material is less than 100 kg / m 3 , there is a problem that sufficient rigidity cannot be obtained in the core material, handling properties are lowered, and the surface of the formed vacuum heat insulating material is uneven. . On the other hand, when the density of the core material exceeds 400 kg / m 3 , there is a problem that the thermal conductivity of the vacuum heat insulating material increases.

このように、本構成により作製した真空断熱材は、優れた断熱性能を有している。これは、繊維相互の交点部には、バインダー成分や繊維からの溶出成分による結合材が存在しない。   Thus, the vacuum heat insulating material produced by this structure has the outstanding heat insulation performance. This means that there is no binder due to the binder component or the eluted component from the fiber at the intersection between the fibers.

よって、従来、熱橋として作用していた結着部位が存在しないことから、繊維相互の伝熱点が低減することから芯材厚み方向の伝熱量が低減し、断熱性能が改善するものである。   Therefore, conventionally, since there is no binding site that has acted as a thermal bridge, the heat transfer point between the fibers is reduced, so the amount of heat transfer in the thickness direction of the core material is reduced, and the heat insulation performance is improved. .

更には、加熱プレス時におけるガラス繊維集合体の熱変形により、繊維が延伸する効果も期待できるため、ガラス繊維の積層配列がより一層改善されることで、断熱性能が改善することも要因と考えられる。   Furthermore, since the effect of fiber stretching can also be expected due to thermal deformation of the glass fiber aggregate during hot pressing, it is considered that the heat insulation performance is improved by further improving the laminated arrangement of glass fibers. It is done.

加えて、バインダー成分を使用していないため、バインダー成分からの発生ガスも問題にならず、経時的に断熱性能の劣化が小さい真空断熱材を提供することができる。   In addition, since a binder component is not used, a gas generated from the binder component does not become a problem, and a vacuum heat insulating material with little deterioration in heat insulation performance with time can be provided.

また、芯材成形時にバインダー成分を使用する必要がないため、工数削減が可能となり効率的な芯材成形が可能となる。   Further, since it is not necessary to use a binder component at the time of molding the core material, man-hours can be reduced and efficient core material molding becomes possible.

(実施の形態2)
図4は、本発明の実施の形態2における真空断熱材の斜視図である。
(Embodiment 2)
FIG. 4 is a perspective view of the vacuum heat insulating material in Embodiment 2 of the present invention.

以下、本発明の実施の形態2の真空断熱材について説明する。真空断熱材1は、実施の形態1と同様の方法にて成形しているが、芯材2においてガラス短繊維のウェブの積層体の積層方向におけるの最表面に平滑な表面層が形成された真空断熱材である。   Hereinafter, the vacuum heat insulating material of Embodiment 2 of this invention is demonstrated. Although the vacuum heat insulating material 1 is shape | molded by the method similar to Embodiment 1, in the core material 2, the smooth surface layer was formed in the outermost surface in the lamination direction of the laminated body of the short glass fiber web. It is a vacuum insulation material.

芯材2の芯材成形工程は、本発明の実施の形態2と同様であるが、加熱プレス工程において、ガラス繊維を加熱しながらプレスする場合に使用するプレス機のプレス表面を表面粗さRa25μm以下(カットオフ値2.5mm)で仕上げている。   The core material forming step of the core material 2 is the same as that of the second embodiment of the present invention, but the surface roughness Ra25 μm of the press surface of the press used when pressing the glass fiber while heating in the hot press step. Finished with the following (cutoff value 2.5 mm).

よって、このような平滑な表面を有するプレス面でガラス繊維を加熱圧縮して熱変形させることで、ガラス繊維の積層体の表面はプレス機表面とほぼ同等の平面性を有するボード状芯材が成形できる。   Therefore, by heating and compressing the glass fiber with a press surface having such a smooth surface, the surface of the laminated body of glass fibers is a board-like core material having substantially the same flatness as the press machine surface. Can be molded.

なお、平滑な表面層とは、芯材サイズが100×100mmの場合において、芯材表面の局所的な凹凸を除き、平面度が2mm以下であり、目視にて凹凸の有無を判断するのが容易ではなく、かつ表面状態が不織布状になっているものをいう。   The smooth surface layer means that, when the core material size is 100 × 100 mm, the flatness is 2 mm or less except for local irregularities on the core material surface, and the presence or absence of irregularities is judged visually. It is not easy and the surface state is a non-woven fabric.

その結果、このような平滑な表面層を有するボード状芯材を真空断熱材の芯材として適用することで、図4における真空断熱材1の表面31が平滑となり、真空断熱材を保温保冷機器等に適用する場合において、その貼付性が改善される共に、保温保冷機器の外観表面に起こる変形や歪み等の外観不良の問題を引き起こさない。   As a result, by applying the board-like core material having such a smooth surface layer as the core material of the vacuum heat insulating material, the surface 31 of the vacuum heat insulating material 1 in FIG. 4 becomes smooth, and the vacuum heat insulating material is kept warm and cool. In the case of application to the above, the sticking property is improved and the problem of appearance defects such as deformation and distortion occurring on the outer surface of the heat insulation device is not caused.

(実施の形態3)
図5は、本発明の実施の形態3における冷凍冷蔵庫の断面図であり、保温保冷機器の一例として示すものである。
(Embodiment 3)
FIG. 5 is a cross-sectional view of the refrigerator-freezer according to Embodiment 3 of the present invention, and is shown as an example of a heat and cold insulation device.

図5は冷蔵庫41であり、冷蔵庫の筐体を形成する断熱箱体42と冷凍サイクルとからなる。断熱箱体42は、鉄板をプレス成形した外箱43と、ABS樹脂等を成形した内箱44とが、フランジ(図示せず)を介して構成している。前記断熱箱体42の内部には、予め真空断熱材1を配設し、真空断熱材1以外の空間部を、硬質ウレタンフォーム45にて発泡充填したものである。硬質ウレタンフォーム45は、発泡剤としてシクロペンタンを使用している。   FIG. 5 shows a refrigerator 41, which includes a heat insulating box 42 forming a casing of the refrigerator and a refrigeration cycle. The heat insulation box 42 includes an outer box 43 formed by press-molding an iron plate and an inner box 44 formed by molding ABS resin or the like via a flange (not shown). Inside the heat insulating box 42, the vacuum heat insulating material 1 is disposed in advance, and the space other than the vacuum heat insulating material 1 is foam filled with a hard urethane foam 45. The rigid urethane foam 45 uses cyclopentane as a foaming agent.

断熱箱体42は仕切り板46にて区切られており、上部が冷蔵室47、下部が冷凍室48となっている。仕切り板46には電動ダンパー49が、冷凍室48の内箱44には冷却用のファンモーター50とデフヒーター51が取付けられている。   The heat insulating box 42 is partitioned by a partition plate 46, and the upper part is a refrigerator compartment 47 and the lower part is a freezer compartment 48. An electric damper 49 is attached to the partition plate 46, and a cooling fan motor 50 and a differential heater 51 are attached to the inner box 44 of the freezer compartment 48.

一方、冷凍サイクルは、蒸発器52、圧縮機53、凝縮器54、キャピラリチューブ55とを順次環状に接続しこれを形成している。なお、蒸発器52は冷蔵室47と冷凍室48の2カ所に設け、それらを直列に、また並列に繋ぎ冷凍サイクルを形成してもよい。   On the other hand, in the refrigeration cycle, an evaporator 52, a compressor 53, a condenser 54, and a capillary tube 55 are sequentially connected in an annular shape. Note that the evaporator 52 may be provided at two locations of the refrigerator compartment 47 and the freezer compartment 48 and connected in series or in parallel to form a refrigeration cycle.

また、冷蔵庫41にはドア体56が取付けられており、ドア体56の内部には真空断熱材1が配設され、真空断熱材1以外の空間部は硬質ウレタンフォーム45にて発泡充填されている。   In addition, a door body 56 is attached to the refrigerator 41, the vacuum heat insulating material 1 is disposed inside the door body 56, and a space portion other than the vacuum heat insulating material 1 is foam-filled with a hard urethane foam 45. Yes.

なお、真空断熱材1は実施の形態1に示したものと同様の構成のものを用いている。   In addition, the thing of the structure similar to what was shown in Embodiment 1 is used for the vacuum heat insulating material 1. FIG.

このように構成された冷凍冷蔵庫は、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。   The refrigerator-freezer configured as described above has an excellent heat insulation performance that is 10 times or more that of a conventional rigid urethane foam, so that high heat insulation is achieved and it can contribute to energy saving.

また、真空断熱材の芯材は、結合材により結着していないため、結合材から生じるガス成分による内圧増加により、断熱性能の劣化を招くことないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   In addition, since the core material of the vacuum heat insulating material is not bound by the binding material, the heat insulation performance deteriorates over time because the internal pressure due to the gas component generated from the binding material does not cause deterioration of the heat insulating performance. It is possible to continue to contribute to energy conservation.

なお、本発明の保温保冷機器は、冷凍冷蔵庫、冷凍機器、野菜保冷庫、および米保冷庫等の作動温度帯である−30℃から常温、更には自動販売機、給湯タンク等のより高温までの範囲で温冷熱を利用した機器を指す。   In addition, the heat and cold insulation equipment of the present invention is from −30 ° C. which is an operating temperature range of a refrigerator, a freezer, a vegetable cold storage, and a rice cold storage, to a higher temperature such as a vending machine and a hot water supply tank. Refers to equipment that uses heat and cold in the range of.

また、電気機器に限ったものではなく、ガス機器なども含むものである。   Moreover, it is not limited to electrical equipment, but includes gas equipment and the like.

(実施の形態4)
図6は、本発明の実施の形態4における断熱ボードの斜視図である。
(Embodiment 4)
FIG. 6 is a perspective view of a heat insulating board according to Embodiment 4 of the present invention.

図6は断熱ボード61であり、実施の形態1に示した真空断熱材のボード状芯材をそのまま断熱ボードとして適用している。   FIG. 6 shows a heat insulating board 61, and the board-shaped core material of the vacuum heat insulating material shown in the first embodiment is applied as it is as a heat insulating board.

この断熱ボードの断熱性能は、京都電子工業社製の熱流センサーで求めた熱流束から、熱伝導率を算出して求めた。結果、平均温度100℃にて0.04W/mK、150℃にて0.05W/mKと優れた断熱性能を有していることが判った。   The heat insulation performance of this heat insulation board was obtained by calculating the thermal conductivity from the heat flux obtained with a heat flow sensor manufactured by Kyoto Electronics Industry Co., Ltd. As a result, it was found that the heat insulation performance was excellent at 0.04 W / mK at an average temperature of 100 ° C. and 0.05 W / mK at 150 ° C.

なお、本構成の断熱ボードは、ガラス繊維の成形体であり、かつ有機系結合材を含まないため、ガラス繊維の耐熱温度である約400℃前後まで使用が可能であり、耐熱性に優れた高性能断熱ボードとして利用できる。   In addition, since the heat insulation board of this structure is a molded body of glass fiber and does not include an organic binder, it can be used up to about 400 ° C., which is the heat resistant temperature of glass fiber, and has excellent heat resistance. It can be used as a high performance insulation board.

また、ボード剛性も高く、取り扱い性に優れている。   In addition, the board has high rigidity and is easy to handle.

更には、その構造がガラス繊維の積層体であるため粉落ちが少ないこと、結合材を全く含まないことから高温使用時の異臭やガス成分の発生といった問題が生じないという利点も併せて具備している。   Furthermore, since the structure is a laminated body of glass fibers, it has the advantage that there is little powder falling off, and since it does not contain any binder, it does not cause problems such as generation of off-flavors and gas components when used at high temperatures. ing.

以下、実施例、および比較例を用いて、本発明を更に具体的に説明するが、本発明は本実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited only to the Examples.

(実施例1)
ボード状芯材は、Cガラスからなる平均繊維径3.5μmのグラスウールを適用し、芯材密度が220kg/m3となるようにグラスウールを積層した集合体を形成し、前記集合体を480℃の温度をかけながら圧縮成形することで成形した。なお、この時、バインダーとなる結合材は適用していない。
(Example 1)
As the board-like core material, glass wool having an average fiber diameter of 3.5 μm made of C glass is applied to form an aggregate in which glass wool is laminated so that the core material density is 220 kg / m 3, and the aggregate is 480 ° C. It shape | molded by carrying out compression molding, applying the temperature of. At this time, a binder serving as a binder is not applied.

この芯材を140℃の乾燥炉で30分間乾燥した後、予め製袋したプラスチックラミネートフィルムからなる外包材に挿入し、減圧チャンバー内で、外包材内部が10Pa以下になるように減圧し、開口部を熱溶着により密閉封止して真空断熱材を成形した。   After the core material is dried for 30 minutes in a drying furnace at 140 ° C., the core material is inserted into a pre-packaged outer packaging material made of a plastic laminate film, and the pressure is reduced in the decompression chamber so that the inside of the outer packaging material is 10 Pa or less. The part was hermetically sealed by heat welding to form a vacuum heat insulating material.

この時、外包材は、最外層にポリエチレンテレフタレートフィルム(12μm)、中間層にはアルミ箔(6μm)、熱溶着層として直鎖状低密度ポリエチレンフィルム(50μm)から構成している。   At this time, the outer packaging material is composed of a polyethylene terephthalate film (12 μm) as the outermost layer, an aluminum foil (6 μm) as the intermediate layer, and a linear low density polyethylene film (50 μm) as the heat welding layer.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.0019W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.0019 W / mK at an average temperature of 24 ° C.

(実施例2)
ボード状芯材は、Cガラスからなる平均繊維径3.5μmのグラスウールを適用し、芯材密度が260kg/m3となるようにグラスウールを積層した集合体を形成し、前記集合体を480℃の温度をかけながら圧縮成形することで成形した。なお、この時、バインダーとなる結合材は適用していない。
(Example 2)
As the board-like core material, glass wool having an average fiber diameter of 3.5 μm made of C glass is applied to form an aggregate in which glass wool is laminated so that the core material density is 260 kg / m 3, and the aggregate is 480 ° C. It shape | molded by carrying out compression molding, applying the temperature of. At this time, a binder serving as a binder is not applied.

なお、真空断熱材の成形条件、および外包材の構成は実施例1と同様にして成形した。   The molding conditions of the vacuum heat insulating material and the structure of the outer packaging material were molded in the same manner as in Example 1.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.002W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.002 W / mK at an average temperature of 24 ° C.

(実施例3)
ボード状芯材は、Aガラスからなる平均繊維径3.5μmのグラスウールを適用し、芯材密度が220kg/m3となるようにグラスウールを積層した集合体を形成し、前記集合体を460℃の温度をかけながら圧縮成形することで成形した。なお、この時、バインダーとなる結合材は適用していない。
(Example 3)
As the board-like core material, glass wool having an average fiber diameter of 3.5 μm made of A glass is applied to form an aggregate in which glass wool is laminated so that the core material density is 220 kg / m 3, and the aggregate is 460 ° C. It shape | molded by carrying out compression molding, applying the temperature of. At this time, a binder serving as a binder is not applied.

なお、真空断熱材の成形条件、および外包材の構成は実施例1と同様にして成形した。   The molding conditions of the vacuum heat insulating material and the structure of the outer packaging material were molded in the same manner as in Example 1.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.002W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.002 W / mK at an average temperature of 24 ° C.

また、Aガラスを使用したため、芯材の成形温度を460℃とすることができた。   Moreover, since A glass was used, the shaping | molding temperature of the core material was able to be 460 degreeC.

(比較例1)
ボード状芯材は、Cガラスからなる平均繊維径3.5μmのグラスウールを適用し、芯材密度が220kg/m3となるようにグラスウールを積層した集合体を形成し、pH3に調整した硫酸水溶液を付着処理し、圧縮脱水して、所定形状となるように加熱乾燥した。
(Comparative Example 1)
The board-like core material is an aqueous solution of sulfuric acid adjusted to pH 3 by applying glass wool made of C glass and having an average fiber diameter of 3.5 μm, forming an aggregate in which glass wool is laminated so that the core material density is 220 kg / m 3. Was subjected to an adhesion treatment, compression dewatered, and heat-dried to a predetermined shape.

なお、真空断熱材の成形条件、および外包材の構成は実施例1と同様にして成形した。   The molding conditions of the vacuum heat insulating material and the structure of the outer packaging material were molded in the same manner as in Example 1.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.0027W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.0027 W / mK at an average temperature of 24 ° C.

(比較例2)
ボード状芯材は、Cガラスからなる平均繊維径3.5μmのグラスウールを適用し、芯材密度が220kg/m3となるようにグラスウールを積層した集合体を形成し、所定濃度に調整した水ガラスの水溶液を付着処理し、前記集合体を480℃の温度をかけながら圧縮成形することで成形した。
(Comparative Example 2)
As the board-like core material, glass wool having an average fiber diameter of 3.5 μm made of C glass is applied to form an aggregate in which glass wool is laminated so that the core material density is 220 kg / m 3, and water adjusted to a predetermined concentration is used. An aqueous solution of glass was subjected to adhesion treatment, and the aggregate was molded by compression molding while applying a temperature of 480 ° C.

なお、真空断熱材の成形条件、および外包材の構成は実施例1と同様にして成形した。   The molding conditions of the vacuum heat insulating material and the structure of the outer packaging material were molded in the same manner as in Example 1.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.003W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.003 W / mK at an average temperature of 24 ° C.

(比較例3)
ボード状芯材は、Cガラスからなる平均繊維径3.5μmのグラスウールを適用し、芯材密度が220kg/m3となるようにグラスウールを積層した集合体を形成し、所定濃度に調整したホウ酸水溶液を付着処理し、前記集合体を480℃の温度をかけながら圧縮成形することで成形した。
(Comparative Example 3)
For the board-like core material, glass wool having an average fiber diameter of 3.5 μm made of C glass is applied, an aggregate in which the glass wool is laminated so that the core material density is 220 kg / m 3, and adjusted to a predetermined concentration. The aqueous acid solution was subjected to adhesion treatment, and the aggregate was molded by compression molding while applying a temperature of 480 ° C.

なお、真空断熱材の成形条件、および外包材の構成は実施例1と同様にして成形した。   The molding conditions of the vacuum heat insulating material and the structure of the outer packaging material were molded in the same manner as in Example 1.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.0029W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.0029 W / mK at an average temperature of 24 ° C.

(比較例4)
ボード状芯材は、Eガラスからなる平均繊維径3.5μmのグラスウールを適用し、材密度が220kg/m3となるようにグラスウールを積層した集合体を形成し、前記集合体を480℃の温度をかけながら圧縮成形することで成形した。
(Comparative Example 4)
As the board-like core material, glass wool having an average fiber diameter of 3.5 μm made of E glass is applied to form an aggregate in which glass wool is laminated so that the material density is 220 kg / m 3, and the aggregate is formed at 480 ° C. Molded by compression molding while applying temperature.

なお、真空断熱材の成形条件、および外包材の構成は実施例1と同様にして成形した。   The molding conditions of the vacuum heat insulating material and the structure of the outer packaging material were molded in the same manner as in Example 1.

結果、この真空断熱材の熱伝導率は、平均温度24℃にて0.002W/mKであった。   As a result, the thermal conductivity of this vacuum heat insulating material was 0.002 W / mK at an average temperature of 24 ° C.

しかしながら、歪点温度の高いEガラスを適用しため、ガラス繊維の熱変形が不十分であり、充分な芯材剛性が得られず、芯材の取り扱い性に問題があった。   However, since E glass having a high strain point temperature is applied, thermal deformation of the glass fiber is insufficient, and sufficient core material rigidity cannot be obtained, which causes a problem in the handleability of the core material.

また、前記芯材の密度は220kg/m3を狙いに成形したが、ガラス繊維の積層体が所定厚みに成形できず、成形後密度は180kg/m3となった。 Moreover, although the density of the said core material was shape | molded aiming at 220 kg / m < 3 >, the laminated body of glass fiber could not be shape | molded to predetermined thickness, and the density after shaping | molding became 180 kg / m < 3 >.

なお、実施例1〜3、および比較例1〜4の結果について(表1)にまとめた。   The results of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in (Table 1).

Figure 2005273696
Figure 2005273696

以上のように、本発明にかかる真空断熱材は、芯材の固体成分の熱伝導を著しく低減し、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するものである。   As described above, the vacuum heat insulating material according to the present invention remarkably reduces the heat conduction of the solid component of the core material, and has an excellent heat insulating performance 10 times or more that of a conventional rigid urethane foam.

その結果、冷凍冷蔵庫および冷凍機器をはじめとした温冷熱を効率的に利用することが可能となり、あらゆる機器の省エネルギー化に貢献できる。更には、熱や冷熱から保護すべき物象などのあらゆる断熱、遮熱用途や、熱害対策用途等に適用できる。   As a result, it is possible to efficiently use hot and cold heat including a refrigerator-freezer and a refrigeration equipment, which can contribute to energy saving of all equipment. Furthermore, the present invention can be applied to all types of heat insulation, heat shielding applications, heat damage countermeasure applications, and the like that should be protected from heat and cold.

また、本発明の真空断熱材の芯材は、耐熱性に優れた高性能な断熱ボードとしても適用できる。   Moreover, the core material of the vacuum heat insulating material of the present invention can also be applied as a high performance heat insulating board excellent in heat resistance.

本発明の実施の形態1における真空断熱材の断面模式図Sectional schematic diagram of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態1における芯材成形工程のフローチャートFlowchart of core material forming process in Embodiment 1 of the present invention 本発明の実施の形態1における芯材の顕微鏡写真Micrograph of core material in Embodiment 1 of the present invention 本発明の実施の形態2における真空断熱材の斜視図The perspective view of the vacuum heat insulating material in Embodiment 2 of this invention 本発明の実施の形態3における冷凍冷蔵庫の断面図Sectional drawing of the refrigerator-freezer in Embodiment 3 of this invention 本発明の実施の形態4における断熱ボードの斜視図The perspective view of the heat insulation board in Embodiment 4 of this invention 特許文献1におけるの圧縮繊維マットの無機繊維の交点の概略図Schematic of intersection of inorganic fibers of compressed fiber mat in Patent Document 1

符号の説明Explanation of symbols

1 真空断熱材
2 芯材
3 外包材
31 真空断熱材の表面
41 冷蔵庫
61 断熱ボード
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Outer packaging material 31 Surface of vacuum heat insulating material 41 Refrigerator 61 Heat insulation board

Claims (7)

ボード状芯材と、前記芯材を被覆するプラスチックラミネートフィルムの外包材とからなり、内部を減圧密閉した真空断熱材であって、前記ボード状芯材がガラス短繊維のウェブの積層体からなり、前記ウェブ間は物理的交絡により結合され、前記ボード状芯材の密度が100〜400kg/m3の範囲である真空断熱材。 A board-shaped core material and an outer packaging material of a plastic laminate film covering the core material, and a vacuum heat insulating material whose inside is sealed under reduced pressure, wherein the board-shaped core material consists of a laminate of short glass fiber webs The vacuum heat insulating material in which the webs are bonded by physical entanglement and the density of the board-shaped core material is in the range of 100 to 400 kg / m 3 . ボード状芯材と、前記芯材を被覆するプラスチックラミネートフィルムの外包材とからなり、内部を減圧密閉した真空断熱材であって、前記ボード状芯材がガラス短繊維のウェブの積層体からなり、前記ウェブ間は物理的交絡により結合され、前記ボード状芯材は100〜400kg/m3の範囲の密度で塑性変形している真空断熱材。 A board-shaped core material and an outer packaging material of a plastic laminate film covering the core material, and a vacuum heat insulating material whose inside is sealed under reduced pressure, wherein the board-shaped core material consists of a laminate of short glass fiber webs The vacuum heat insulating material in which the webs are joined by physical entanglement, and the board-shaped core material is plastically deformed at a density in the range of 100 to 400 kg / m 3 . 前記ボード状芯材は、ウェブの積層体の積層方向における少なくとも片側最表面に平滑な表面層が形成された請求項1または2に記載の真空断熱材。   The said board-shaped core material is a vacuum heat insulating material of Claim 1 or 2 in which the smooth surface layer was formed in the at least one side outermost surface in the lamination direction of the laminated body of a web. 前記ガラス短繊維が、含アルカリガラスからなる請求項1から3のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the short glass fibers are made of an alkali-containing glass. 前記ボード状芯材は、バインダー成分を含まない請求項1から4のいずれか一項に記載の真空断熱材。   The said board-shaped core material is a vacuum heat insulating material as described in any one of Claim 1 to 4 which does not contain a binder component. 請求項1から5のいずれか一項に記載の真空断熱材を具備する保温保冷機器。   A heat and cold insulation device comprising the vacuum heat insulating material according to any one of claims 1 to 5. 請求項1から5のいずれか一項に記載の真空断熱材のボード状芯材からなる断熱ボード。   The heat insulation board which consists of a board-shaped core material of the vacuum heat insulating material as described in any one of Claim 1 to 5.
JP2004084381A 2004-02-04 2004-03-23 Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board Pending JP2005273696A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004084381A JP2005273696A (en) 2004-03-23 2004-03-23 Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board
CN2005100064574A CN1657282A (en) 2004-02-04 2005-02-01 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
EP05709926.9A EP1653146B1 (en) 2004-02-04 2005-02-02 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
US10/595,081 US7638181B2 (en) 2004-02-04 2005-02-02 Vacuum heat insulator and hot insulation/cold insulation apparatus incorporating the vacuum insulator
PCT/JP2005/001874 WO2005075878A1 (en) 2004-02-04 2005-02-02 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
CA002539448A CA2539448C (en) 2004-02-04 2005-02-02 Vacuum heat insulator, manufacturing method of the same, hot-insulation cold-insulation apparatus having the same, and heat insulation board
KR1020067002899A KR20060032656A (en) 2004-02-04 2005-02-02 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084381A JP2005273696A (en) 2004-03-23 2004-03-23 Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board

Publications (1)

Publication Number Publication Date
JP2005273696A true JP2005273696A (en) 2005-10-06

Family

ID=35173611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084381A Pending JP2005273696A (en) 2004-02-04 2004-03-23 Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board

Country Status (1)

Country Link
JP (1) JP2005273696A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747477B1 (en) * 2005-11-28 2007-08-09 엘지전자 주식회사 Vacuum insulation panel and insulation structure applying the same
WO2009038580A1 (en) * 2007-09-19 2009-03-26 Thermo King Corporation Wall construction for insulated enclosure
JP2010242975A (en) * 2010-07-13 2010-10-28 Toshiba Home Technology Corp Insulating material and its manufacturing method
JP2015524901A (en) * 2012-07-12 2015-08-27 ケーシーシー コーポレーション Vacuum insulation containing annealed binderless glass fiber
JP2016102511A (en) * 2014-11-27 2016-06-02 旭硝子株式会社 Process of manufacture of heat insulation plate, its manufacturing apparatus, vacuum heat insulation material and its process of manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747477B1 (en) * 2005-11-28 2007-08-09 엘지전자 주식회사 Vacuum insulation panel and insulation structure applying the same
WO2009038580A1 (en) * 2007-09-19 2009-03-26 Thermo King Corporation Wall construction for insulated enclosure
JP2010242975A (en) * 2010-07-13 2010-10-28 Toshiba Home Technology Corp Insulating material and its manufacturing method
JP2015524901A (en) * 2012-07-12 2015-08-27 ケーシーシー コーポレーション Vacuum insulation containing annealed binderless glass fiber
US9523460B2 (en) 2012-07-12 2016-12-20 Kcc Corporation Vacuum insulation panel including annealed binderless glass fiber
JP2016102511A (en) * 2014-11-27 2016-06-02 旭硝子株式会社 Process of manufacture of heat insulation plate, its manufacturing apparatus, vacuum heat insulation material and its process of manufacture

Similar Documents

Publication Publication Date Title
CA2539448C (en) Vacuum heat insulator, manufacturing method of the same, hot-insulation cold-insulation apparatus having the same, and heat insulation board
US6938968B2 (en) Vacuum insulating material and device using the same
JP5162377B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP3580315B1 (en) Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board
JP6025969B2 (en) Vacuum heat insulating material, heat insulation tank equipped with the same, heat insulation body, and heat pump water heater
KR20030007544A (en) Heat insulation box, and vacuum heat insulation material used therefor
TWI607883B (en) Vacuum insulation material, heat insulation box, and vacuum insulation material manufacturing method
JP3578172B1 (en) Vacuum insulation, refrigerators and refrigerators
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP3528846B1 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material
JP2005273696A (en) Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2005106090A (en) Vacuum insulating panel and its manufacturing method
JP2006316872A (en) Vacuum heat insulating material and heat retaining equipment adopting the same
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP2006002919A (en) Glass wool board and vacuum heat insulating material
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2005351438A (en) Glass wool board, vacuum thermal insulation material, and equipment using glass wool board and vacuum thermal insulation material
JP3527727B2 (en) Vacuum insulation material and equipment using the vacuum insulation material
JP2006342852A (en) Vacuum thermal insulating material and refrigerator using it

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060525

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427