JP2001336691A - Vacuum insulation material and refrigerator using vacuum insulation material - Google Patents

Vacuum insulation material and refrigerator using vacuum insulation material

Info

Publication number
JP2001336691A
JP2001336691A JP2000154216A JP2000154216A JP2001336691A JP 2001336691 A JP2001336691 A JP 2001336691A JP 2000154216 A JP2000154216 A JP 2000154216A JP 2000154216 A JP2000154216 A JP 2000154216A JP 2001336691 A JP2001336691 A JP 2001336691A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
box
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000154216A
Other languages
Japanese (ja)
Other versions
JP3478780B2 (en
Inventor
Tomonao Amayoshi
智尚 天良
Masayuki Nakanishi
正幸 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2000154216A priority Critical patent/JP3478780B2/en
Priority to TW090109557A priority patent/TW470837B/en
Priority to KR1020027014137A priority patent/KR100540522B1/en
Priority to PCT/JP2001/003469 priority patent/WO2001081817A1/en
Priority to DE60126403T priority patent/DE60126403T2/en
Priority to US10/258,131 priority patent/US6938968B2/en
Priority to EP01922015A priority patent/EP1275893B1/en
Priority to CNB018083692A priority patent/CN1212485C/en
Publication of JP2001336691A publication Critical patent/JP2001336691A/en
Priority to HK03107974A priority patent/HK1055784A1/en
Application granted granted Critical
Publication of JP3478780B2 publication Critical patent/JP3478780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum insulation material of a flat plate shape with flexibility without large cost increase caused by worsened workability, increased man-hours, etc., while designing improvement in the heat insulating performance and productivity of the vacuum insulation material. SOLUTION: This vacuum insulation material is characterized by laminating at least two layers or more or a sheet-like molded unit consisting of inorganic fiber to constitute a core material, covering it with a film of gas barrier quality, after sealing its inside under reduced pressure, forming at least one or more grooves in a side surface part vertical to a thickness direction of the vacuum insulation material by compression molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家電製品,住宅、
及び車輛等の断熱材として使用可能な真空断熱材、ま
た、前記真空断熱材を適用した保温保冷容器,冷蔵庫,
給湯器,自動販売機,車輛,住宅等に関するものであ
る。
TECHNICAL FIELD The present invention relates to home appliances, houses,
Vacuum heat insulating material that can be used as heat insulating material for vehicles and the like;
The present invention relates to a water heater, a vending machine, a vehicle, a house, and the like.

【0002】[0002]

【従来の技術】近年、地球温暖化防止の観点から省エネ
ルギーが強く望まれており、家庭用電化製品についても
省エネルギー化は緊急の課題となっている。特に、冷蔵
庫,冷凍庫,ジャー炊飯器,給湯器等の保温保冷機器で
は熱を効率的に利用するという観点から、優れた断熱性
能を有する断熱材が求められている。
2. Description of the Related Art In recent years, energy saving has been strongly demanded from the viewpoint of prevention of global warming, and energy saving has become an urgent issue also for home electric appliances. In particular, heat insulating materials such as refrigerators, freezers, jar rice cookers, and water heaters require a heat insulating material having excellent heat insulating performance from the viewpoint of efficiently using heat.

【0003】この様な課題を解決する一手段として真空
断熱材がある。
As one means for solving such a problem, there is a vacuum heat insulating material.

【0004】例えば、無機粉末を芯材に用いた真空断熱
材が特開昭57−173689号公報や特開昭61−1
44492号公報で開示されている。その内容は、フィ
ルム状プラスチック容器に単粒子径が1μm以下の無機
粉末を充填し、その内部を減圧後密閉することにより、
真空断熱材を得るというものである。
For example, a vacuum heat insulating material using an inorganic powder as a core material is disclosed in JP-A-57-173689 and JP-A-61-1.
No. 44492. The contents are as follows. A film-shaped plastic container is filled with an inorganic powder having a single particle diameter of 1 μm or less, and the inside thereof is sealed after decompression.
It is to obtain vacuum insulation.

【0005】また、無機粉末を芯材とした真空断熱材の
応用展開を推進するため、更には、真空断熱材の継ぎ目
部分からの熱漏洩を抑制するため、前記真空断熱材に可
撓性を付与する方法が、特開2000−97390号公
報で開示されている。その内容は、無機質粉体を、通気
性を有する袋体内に収容し、少なくとも、予め、一方に
複数の突条を併設してある上下一対の成形型の間で、前
記無機質粉体を収容した袋体を狭圧して圧粉成形体に成
形し、前記成形体を芯材として適用することにより可撓
性を有する真空断熱材を得るというものである。
Further, in order to promote application development of a vacuum heat insulating material using an inorganic powder as a core material, and further to suppress heat leakage from a joint portion of the vacuum heat insulating material, the vacuum heat insulating material has flexibility. A method of providing the information is disclosed in JP-A-2000-97390. The content is that the inorganic powder is housed in a bag having air permeability, and at least, in advance, the inorganic powder is housed between a pair of upper and lower molds provided with a plurality of ridges on one side. This is to obtain a flexible vacuum heat insulating material by narrowing the bag body to form a green compact and applying the formed body as a core material.

【0006】[0006]

【発明が解決しようとする課題】真空断熱材の応用展開
を推進するには、断熱性能の向上や生産性の向上を図る
と共に、真空断熱材に可撓性を付与することは、重要な
課題である。
In order to promote the application development of the vacuum heat insulating material, it is important to improve the heat insulating performance and the productivity and to impart flexibility to the vacuum heat insulating material. It is.

【0007】しかしながら、従来技術の方法で、真空断
熱材に可撓性を付与するには、圧縮成型した芯材がその
形状を保持することが必要であり、芯材が自己形状保持
性能を持たない場合には、従来技術は適用することがで
きなかった。特に、無機繊維からなるシート状成形体を
芯材とする場合は、圧縮成型により無機繊維が圧断さ
れ、芯材そのものが崩壊することから、従来技術により
可撓性を付与することはできなかった。
However, in order to impart flexibility to the vacuum heat insulating material by the prior art method, it is necessary that the compression-molded core material retain its shape, and the core material has a self-shape retaining performance. If not, the prior art could not be applied. In particular, when the core material is a sheet-like molded body made of inorganic fibers, the inorganic fibers are compressed by compression molding, and the core material itself collapses, so that the conventional technology cannot provide flexibility. Was.

【0008】また、芯材に無機粉末を適用した場合に
は、圧縮成型した芯材の形状を保持させるため、予め、
通気性を有する袋体に無機質粉体を充填することが必用
であり、工数の増加、部品数の増加等、コストアップの
要因となっていた。
When an inorganic powder is applied to the core material, the shape of the compression-molded core material is maintained in advance.
It is necessary to fill the air-permeable bag with the inorganic powder, which has been a factor of cost increase such as an increase in man-hours and an increase in the number of parts.

【0009】また、通気性を有する袋体に無機質粉体を
充填し、圧縮成型を施した場合には、圧縮成型した前記
芯材の自己形状保持性能は極めて弱いものである。よっ
て、その形状を保持させながら真空断熱材を製造するに
は、作業性が大幅に低下するという課題を有していた。
When a bag having air permeability is filled with an inorganic powder and subjected to compression molding, the compression molded core material has a very weak self-shape retention performance. Therefore, in order to manufacture a vacuum heat insulating material while maintaining its shape, there was a problem that workability was significantly reduced.

【0010】本発明は上記課題を鑑み、断熱性能に優れ
た真空断熱材を低コストで提供すると共に、芯材特性に
関わらず、生産性や断熱性能を犠牲にすることなく、容
易に真空断熱材に可撓性を付与することを目的とするも
のである。
In view of the above problems, the present invention provides a vacuum heat insulating material having excellent heat insulating performance at a low cost, and easily performs vacuum heat insulating without sacrificing productivity or heat insulating performance regardless of core material characteristics. The purpose is to impart flexibility to the material.

【0011】更には、本発明によって考案された真空断
熱材を用い、熱漏洩の少ない保温保冷容器,冷蔵庫、お
よび給湯器を提供するものである。
Still another object of the present invention is to provide a heat insulating / cooling container, a refrigerator, and a water heater using the vacuum heat insulating material devised according to the present invention and having less heat leakage.

【0012】[0012]

【課題を解決するための手段】本発明の真空断熱材は、
平均直径が1μm以上5μm以下の無機繊維からなるシ
ート状成形体を少なくとも2層以上積層してなる芯材
を、ガスバリア性フィルムで覆い、その内部を減圧し、
密封した真空断熱材において、圧縮成型により、前記真
空断熱材の厚み方向に垂直な側面部に少なくとも一本以
上の溝を形成してなることを特徴とするものである。
The vacuum heat insulating material of the present invention comprises:
A core material obtained by laminating at least two layers of a sheet-like molded body made of inorganic fibers having an average diameter of 1 μm or more and 5 μm or less is covered with a gas barrier film, and the inside thereof is depressurized.
In the sealed vacuum heat insulating material, at least one groove is formed on a side surface perpendicular to the thickness direction of the vacuum heat insulating material by compression molding.

【0013】よって、断熱性能の向上や生産性の向上が
図れる。更に、真空断熱材の芯材が、無機繊維からなる
シート状成形体のような場合にも、減圧密封後に芯材の
圧縮成型を実施するため、芯材の自己形状保持性能に関
わらず、その芯材形状を自由に変化させることができ
る。よって、圧縮成型により形成した芯材厚みの薄い溝
部では、ガスバリア性フィルムのテンションが低下する
ため、容易に真空断熱材の折り曲げが可能となる。
Therefore, the heat insulation performance and the productivity can be improved. Furthermore, even in the case where the core material of the vacuum heat insulating material is a sheet-like molded body made of inorganic fibers, the compression molding of the core material is performed after sealing under reduced pressure. The core material shape can be freely changed. Therefore, in a groove portion having a thin core material formed by compression molding, the tension of the gas barrier film is reduced, so that the vacuum heat insulating material can be easily bent.

【0014】本発明の真空断熱材は、圧縮成型により形
成した溝が、真空断熱材の厚み方向に垂直な両側面部の
同位置に有ることを特徴とするものである。
The vacuum heat insulating material of the present invention is characterized in that the grooves formed by compression molding are located at the same position on both side surfaces perpendicular to the thickness direction of the vacuum heat insulating material.

【0015】よって、真空断熱材の芯材厚みが厚い場合
にも、ガスバリア性フィルムにダメージを与えることな
く、真空断熱材の芯材厚みを薄くすることが可能とな
り、容易に溝部で真空断熱材の折り曲げが可能となる。
Therefore, even when the thickness of the core of the vacuum heat insulating material is large, the thickness of the core of the vacuum heat insulating material can be reduced without damaging the gas barrier film. Can be bent.

【0016】本発明の真空断熱材は、真空断熱材の厚み
方向に垂直な側面部の溝部で折り曲げを行うことを特徴
とするものである。
The vacuum heat insulating material of the present invention is characterized in that the vacuum heat insulating material is bent at a groove on a side surface perpendicular to the thickness direction of the vacuum heat insulating material.

【0017】よって、特別な装置を用いることなく、容
易に折り曲げ加工が可能となる。そのため、真空断熱材
の形状自由度が飛躍的に高まり、従来使用できなかった
製品部位への適用が可能となる。
Therefore, the bending process can be easily performed without using a special device. Therefore, the degree of freedom of the shape of the vacuum heat insulating material is dramatically increased, and it is possible to apply the vacuum heat insulating material to product parts that could not be used conventionally.

【0018】本発明の真空断熱材は、ガスバリア性フィ
ルムが金属箔とプラスチックフィルムが積層されたラミ
ネートフィルムと、金属あるいは金属酸化物の蒸着が施
されたプラスチックフィルムよりなる蒸着フィルムとか
らなる真空断熱材において、蒸着フィルム面が外面にな
るように、折り曲げを行うことを特徴とするものであ
る。
The vacuum heat insulating material of the present invention is a vacuum heat insulating material comprising a laminated film in which a gas barrier film is formed by laminating a metal foil and a plastic film, and a vapor-deposited film made of a plastic film on which metal or metal oxide is vapor-deposited. The material is characterized in that the material is bent so that the surface of the deposited film becomes the outer surface.

【0019】よって、伸びに対するダメージの小さい蒸
着フィルムが、伸びの大きい折り曲げ部の外面側となる
ため、複数回の折り曲げ動作を実施した場合にも、フィ
ルムのガスバリア性を悪化させることなく、真空断熱材
の折り曲げが可能となる。
Therefore, the vapor deposition film having a small damage to elongation is located on the outer surface side of the bent portion having a large elongation. Therefore, even when the bending operation is performed a plurality of times, the vacuum insulation can be performed without deteriorating the gas barrier property of the film. The material can be bent.

【0020】本発明の真空断熱材は、溝部の芯材厚み
が、他側面部の2分の1以下であることを特徴とするも
のである。
The vacuum heat insulating material of the present invention is characterized in that the thickness of the core of the groove is not more than half that of the other side.

【0021】よって、特別な装置を適用することなく容
易に折り曲げ加工が可能となる。また、溝部を形成した
面の方向に折り曲げた場合にも、芯材どうしの干渉が防
止できる。
Therefore, bending can be easily performed without applying a special device. Also, even when bent in the direction of the surface on which the groove is formed, interference between the core materials can be prevented.

【0022】本発明の保温保冷容器は、外箱と、内箱
と、前記外箱と前記内箱の空間部に配設された請求項1
から5いずれか記載の真空断熱材とから構成されること
を特徴とするものである。
The heat insulating and cooling container of the present invention is disposed in an outer box, an inner box, and a space between the outer box and the inner box.
And the vacuum heat insulating material according to any one of (5) to (5).

【0023】よって、真空断熱材が可撓性を有するため
真空断熱材の形状自由度が飛躍的に高まり、従来使用で
きなかった部位への適用が可能となると共に、真空断熱
材の継ぎ目部からの熱漏洩を低減できるため、保温保冷
容器の断熱性能を大幅に改善することができる。
Therefore, since the vacuum heat insulating material has flexibility, the degree of freedom of the shape of the vacuum heat insulating material is remarkably increased, so that the vacuum heat insulating material can be applied to a portion which cannot be used conventionally, and the vacuum heat insulating material can be connected to the joint. Since the heat leakage of the container can be reduced, the heat insulation performance of the heat insulating and cooling container can be greatly improved.

【0024】本発明の冷蔵庫は、外箱と、内箱と、前記
外箱と前記内箱によって形成される空間に充填された発
泡断熱材と、前記外箱または前記内箱の内壁に取り付け
られた請求項1から5いずれか記載の真空断熱材とを備
えた断熱箱体から構成されることを特徴とするものであ
る。
[0024] The refrigerator of the present invention is provided with an outer box, an inner box, a foam insulating material filled in a space formed by the outer box and the inner box, and attached to an inner wall of the outer box or the inner box. And a vacuum heat insulating material according to any one of claims 1 to 5.

【0025】よって、真空断熱材が可撓性を有すること
から形状自由度が飛躍的に高まり、従来使用できなかっ
た部位への適用が可能となると共に、真空断熱材の継ぎ
目部からの熱漏洩を低減できるため、冷蔵庫断熱箱体の
断熱性能を大幅に改善することができる。
Therefore, since the vacuum heat insulating material has flexibility, the degree of freedom in shape is dramatically increased, and it is possible to apply the heat insulating material to a portion which cannot be used conventionally, and heat leakage from a joint portion of the vacuum heat insulating material. Therefore, the heat insulating performance of the refrigerator heat insulating box can be significantly improved.

【0026】本発明の給湯器は、給湯容器と、外容器
と、蓋体と、加熱器と、前記貯湯容器の外周部に配設さ
れた請求項1から5いずれか記載の真空断熱材とを備え
たことを特徴とするものである。
The hot water supply device of the present invention is characterized in that the hot water supply container, the outer container, the lid, the heater, and the vacuum heat insulating material according to any one of claims 1 to 5, which are disposed on the outer periphery of the hot water storage container. It is characterized by having.

【0027】よって、真空断熱材が可撓性を有すること
から、貯湯容器の形状に容易に沿わすことができ、効率
よく断熱することができる。また、本発明の真空断熱材
の芯材が耐熱性を有する無機繊維であるため、断熱温度
の高い貯湯容器の断熱材として適用した場合でも、断熱
性能が著しく悪化するといったことがない。
Therefore, since the vacuum heat insulating material has flexibility, it can easily conform to the shape of the hot water storage container and can be efficiently insulated. Further, since the core material of the vacuum heat insulating material of the present invention is an inorganic fiber having heat resistance, the heat insulating performance does not significantly deteriorate even when applied as a heat insulating material for a hot water storage container having a high heat insulating temperature.

【0028】[0028]

【発明の実施の形態】本発明の請求項1に記載の真空断
熱材は、平均直径が1μm以上5μm以下の無機繊維か
らなるシート状成形体を少なくとも2層以上積層してな
る芯材を、ガスバリア性フィルムで覆い、その内部を減
圧し、密封した真空断熱材において、圧縮成型により、
前記真空断熱材の厚み方向に垂直な側面部に少なくとも
一本以上の溝を形成してなることを特徴とするものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The vacuum heat insulating material according to claim 1 of the present invention comprises a core material obtained by laminating at least two or more layers of a sheet-like molded body made of inorganic fibers having an average diameter of 1 μm or more and 5 μm or less. Covered with a gas barrier film, decompressed the inside, and in a sealed vacuum heat insulating material, by compression molding,
At least one or more grooves are formed on a side surface perpendicular to the thickness direction of the vacuum heat insulating material.

【0029】よって、断熱性能の向上や生産性の向上が
図れる。更に、真空断熱材の芯材が、無機繊維からなる
シート状成形体のような場合にも、減圧密封後に芯材の
圧縮成型を実施するため、芯材の自己形状保持性能に関
わらず、その芯材形状を自由に変化させることができ
る。よって、圧縮成型により形成した芯材厚みの薄い溝
部では、ガスバリア性フィルムのテンションが低下する
ため、容易に真空断熱材の折り曲げが可能となる。
Therefore, the heat insulation performance and the productivity can be improved. Furthermore, even in the case where the core material of the vacuum heat insulating material is a sheet-like molded body made of inorganic fibers, the compression molding of the core material is performed after sealing under reduced pressure. The core material shape can be freely changed. Therefore, in a groove portion having a thin core material formed by compression molding, the tension of the gas barrier film is reduced, so that the vacuum heat insulating material can be easily bent.

【0030】本発明の請求項2に記載の真空断熱材は、
真空断熱材の厚み方向に垂直な両側面部の同位置に溝を
有することを特徴とするものである。
The vacuum heat insulating material according to the second aspect of the present invention comprises:
The vacuum heat insulating material has a groove at the same position on both side surfaces perpendicular to the thickness direction.

【0031】よって、真空断熱材の芯材厚みが厚い場合
にも、ガスバリア性フィルムにダメージを与えることな
く、真空断熱材の芯材厚みを薄くすることが可能とな
り、容易に溝部で真空断熱材の折り曲げが可能となる。
Therefore, even when the core thickness of the vacuum heat insulating material is large, the thickness of the core material of the vacuum heat insulating material can be reduced without damaging the gas barrier film, and the vacuum heat insulating material can be easily formed in the groove. Can be bent.

【0032】本発明の請求項3に記載の真空断熱材は、
圧縮成型により形成した溝部で折り曲げを行うことを特
徴とするものである。
The vacuum heat insulating material according to the third aspect of the present invention comprises:
It is characterized in that bending is performed in a groove formed by compression molding.

【0033】よって、特別な装置を用いることなく、容
易に折り曲げ加工が可能となる。そのため、真空断熱材
の形状自由度が飛躍的に高まり、従来使用できなかった
製品部位への適用が可能となる。
Therefore, the bending can be easily performed without using a special device. Therefore, the degree of freedom of the shape of the vacuum heat insulating material is dramatically increased, and it is possible to apply the vacuum heat insulating material to product parts that could not be used conventionally.

【0034】本発明の請求項4に記載の真空断熱材は、
ガスバリア性フィルムが、金属箔とプラスチックフィル
ムが積層されたラミネートフィルムと、金属あるいは金
属酸化物の蒸着が施されたプラスチックフィルムよりな
る蒸着フィルムとからなる真空断熱材において、蒸着フ
ィルム面が外面になるように、折り曲げを行うことを特
徴とするものである。
The vacuum heat insulating material according to claim 4 of the present invention comprises:
The gas barrier film is a laminated film in which a metal foil and a plastic film are laminated, and a vacuum heat insulating material composed of a vapor-deposited film made of a plastic film on which metal or metal oxide is vapor-deposited. Thus, the bending is performed.

【0035】よって、伸びに対するダメージの小さい蒸
着フィルムが、伸びの大きい折り曲げ部の外面側となる
ため、複数回の折り曲げ動作を実施した場合にも、フィ
ルムのガスバリア性を悪化させることなく真空断熱材の
折り曲げが可能となる。
Therefore, the vapor-deposited film having small damage to elongation is located on the outer surface side of the bent portion having large elongation. Therefore, even when the bending operation is performed a plurality of times, the vacuum heat insulating material is maintained without deteriorating the gas barrier properties of the film. Can be bent.

【0036】本発明の請求項5に記載の真空断熱材は、
溝部の芯材厚みが、他側面部の2分の1以下であること
を特徴とするものである。
The vacuum heat insulating material according to claim 5 of the present invention comprises:
The core material thickness of the groove portion is not more than half of that of the other side surface portion.

【0037】よって、特別な装置を適用することなく容
易に折り曲げ加工が可能となる。また、溝部を形成した
面の方向に折り曲げた場合にも、溝部の空間において、
芯材どうしの干渉が防止できる。
Therefore, the bending can be easily performed without using a special device. In addition, even when bent in the direction of the surface on which the groove is formed, in the space of the groove,
Interference between core materials can be prevented.

【0038】本発明の請求項6に記載の保温保冷容器
は、外箱と、内箱と、前記外箱と前記内箱の空間部に配
設された請求項1から5いずれか記載の真空断熱材とか
ら構成されることを特徴とするものである。
According to a sixth aspect of the present invention, there is provided the heat insulating / cooling container according to any one of the preceding claims, wherein the vacuum container is provided in an outer box, an inner box, and a space between the outer box and the inner box. And a heat insulating material.

【0039】よって、真空断熱材が可撓性を有するため
真空断熱材の形状自由度が飛躍的に高まり、従来使用で
きなかった部位への適用が可能となると共に、真空断熱
材の継ぎ目部からの熱漏洩を低減できるため、保温保冷
容器の断熱性能を大幅に改善することができる。
Therefore, since the vacuum heat insulating material has flexibility, the degree of freedom of the shape of the vacuum heat insulating material is remarkably increased, so that the vacuum heat insulating material can be applied to a part which cannot be used conventionally, and the vacuum heat insulating material can be connected to the joint part. Since the heat leakage of the container can be reduced, the heat insulation performance of the heat insulating and cooling container can be greatly improved.

【0040】本発明の請求項7に記載の冷蔵庫は、外箱
と、内箱と、前記外箱と前記内箱によって形成される空
間に充填された発泡断熱材と、前記外箱または前記内箱
の内壁に取り付けられた請求項1から5いずれか記載の
真空断熱材とを備えた断熱箱体から構成されることを特
徴とするものである。
[0040] The refrigerator according to claim 7 of the present invention comprises an outer box, an inner box, a foam insulation material filled in a space formed by the outer box and the inner box, the outer box or the inner box. It is characterized by comprising a heat insulating box provided with the vacuum heat insulating material according to any one of claims 1 to 5 attached to an inner wall of the box.

【0041】よって、真空断熱材が可撓性を有すること
から形状自由度が飛躍的に高まり、従来使用できなかっ
た部位への適用が可能となると共に、真空断熱材の継ぎ
目部からの熱漏洩を低減できるため、冷蔵庫断熱箱体の
断熱性能を大幅に改善することができる。
Therefore, since the vacuum heat insulating material has flexibility, the degree of freedom in shape is dramatically increased, and the vacuum heat insulating material can be applied to a portion which cannot be used conventionally, and heat leakage from a joint portion of the vacuum heat insulating material can be achieved. Therefore, the heat insulating performance of the refrigerator heat insulating box can be significantly improved.

【0042】本発明の請求項8記載の給湯器は、貯湯容
器と、外容器と、蓋体と、加熱器と、前記貯湯容器の外
周部に配設された請求項1から5いずれか記載の真空断
熱材とを備えたことを特徴とするものである。
[0042] The water heater according to claim 8 of the present invention is the hot water supply container, the outer container, the lid, the heater, and the outer peripheral portion of the hot water storage container. And a vacuum heat insulating material.

【0043】よって、真空断熱材が可撓性を有すること
から、貯湯容器の形状に容易に沿わすことができ、効率
よく断熱することができる。また、本発明の真空断熱材
の芯材が耐熱性を有する無機繊維であるため、断熱温度
の高い貯湯容器の断熱材として適用した場合でも、断熱
性能が著しく悪化するといったことがない。
Therefore, since the vacuum heat insulating material has flexibility, it can easily conform to the shape of the hot water storage container and can be efficiently insulated. Further, since the core material of the vacuum heat insulating material of the present invention is an inorganic fiber having heat resistance, the heat insulating performance does not significantly deteriorate even when applied as a heat insulating material for a hot water storage container having a high heat insulating temperature.

【0044】以下、実施の形態について図1から8を用
いて説明する。
An embodiment will be described below with reference to FIGS.

【0045】(実施の形態1)図1は、本発明の一実施
形態における真空断熱材の断面模式図である。また、図
2は、本発明の一実施形態における真空断熱材の平面図
である。1は真空断熱材であり、芯材2とガスバリア性
フィルムからなる外被材3とから構成されている。
(Embodiment 1) FIG. 1 is a schematic sectional view of a vacuum heat insulating material according to an embodiment of the present invention. FIG. 2 is a plan view of a vacuum heat insulating material according to an embodiment of the present invention. Reference numeral 1 denotes a vacuum heat insulating material, which is composed of a core material 2 and a jacket material 3 made of a gas barrier film.

【0046】また、4は、真空断熱材を作製後、圧縮成
型により形成した溝である。
Reference numeral 4 denotes a groove formed by compression molding after producing a vacuum heat insulating material.

【0047】このようにして作製した真空断熱材を英弘
精機(株)社製のAuto−λにて、平均温度24℃に
て測定した。結果、熱伝導率は、0.0035〜0.0
043W/mKであり、従来のシリカ粉末を用いた真空
断熱材やウレタン連通フォームを用いた真空断熱材の約
2倍の断熱性能を有するものであった。
The vacuum insulation material thus produced was measured at an average temperature of 24 ° C. using Auto-λ manufactured by Eiko Seiki Co., Ltd. As a result, the thermal conductivity was 0.0035 to 0.0
043 W / mK, which is about twice the heat insulation performance of a conventional vacuum heat insulating material using silica powder or a vacuum heat insulating material using urethane communicating foam.

【0048】次に真空断熱材1の作製方法について説明
する。
Next, a method of manufacturing the vacuum heat insulating material 1 will be described.

【0049】芯材は、厚さ5mmのシート状の無機繊維
成形体を3枚積層して構成し、前記芯材を130℃で1
時間乾燥後、ガスバリア性フィルムからなる袋体の外被
材中に挿入し、内部を減圧し、開口部をヒートシールに
より密封することにより形成した。
The core material is formed by laminating three sheet-like inorganic fiber molded bodies having a thickness of 5 mm, and the core material is heated at 130 ° C. for 1 hour.
After drying for a time, the bag was formed by inserting the bag made of a gas barrier film into the outer cover material, depressurizing the inside, and sealing the opening by heat sealing.

【0050】その後、凸型がセットされた油圧プレスに
よる圧縮成型により、前記真空断熱材を狭圧し、真空断
熱材の厚み方向に垂直な側面部に溝を形成したものであ
る。
Thereafter, the vacuum heat insulating material is narrowed by compression molding with a hydraulic press in which a convex shape is set, and a groove is formed on a side surface perpendicular to the thickness direction of the vacuum heat insulating material.

【0051】よって、圧縮により繊維が圧断され、その
芯材形状を保持できない無機繊維からなるシート状成形
体を芯材として適用した場合にも、減圧密封後に芯材の
圧縮成型を施すため、容易に芯材の形状を変化させるこ
とができる。そのため、圧縮成型により形成した溝部で
は、溝部周辺の他側面部と比べて真空断熱材の芯材厚み
が薄いことから、ガスバリア性フィルムのテンションが
低下する。更には、溝部を形成した面が内側になるよう
に折り曲げた場合にも、溝部の空間により、折り曲げ時
の芯材どうしの干渉を防止できるため、溝部において、
容易に真空断熱材の折り曲げが可能となる。
Therefore, even when a sheet-like molded body made of inorganic fibers that cannot retain the core material shape is applied as the core material because the fibers are compressed by compression, the core material is subjected to compression molding after sealing under reduced pressure. The shape of the core material can be easily changed. For this reason, in the groove formed by compression molding, the thickness of the core material of the vacuum heat insulating material is thinner than the other side surface around the groove, so that the tension of the gas barrier film decreases. Furthermore, even in the case of bending such that the surface on which the groove is formed is on the inside, the space of the groove can prevent interference between the core materials at the time of bending.
It is possible to easily bend the vacuum heat insulating material.

【0052】なお、折り曲げの方向は、溝部を形成した
面が、内側、あるいは外側のいずれの方向に折り曲げた
場合にも、何等問題ない。
It should be noted that there is no problem in the direction of bending whether the surface on which the groove is formed is bent inward or outward.

【0053】その結果、真空断熱材の形状自由度が大き
く改善され、真空断熱材の適用可能部位、および真空断
熱材の適用可能製品が大幅に増加する。
As a result, the degree of freedom of the shape of the vacuum heat insulating material is greatly improved, and the parts to which the vacuum heat insulating material can be applied and the products to which the vacuum heat insulating material can be applied are greatly increased.

【0054】なお、この時、溝部の芯材厚みが、他側面
部の2分の1以下である場合に、折り曲げ時の芯材の干
渉もなく、容易に真空断熱材の折り曲げ加工が実施でき
るが、2分の1以上では折り曲げが困難であった。より
望ましくは、溝部の厚みが薄いほど、折り曲げ加工が容
易に実施できることが判った。
At this time, when the thickness of the core material of the groove portion is not more than half of that of the other side surface portion, the vacuum heat insulating material can be easily bent without interference of the core material at the time of bending. However, it was difficult to bend at more than half. More desirably, it was found that the thinner the groove, the easier the bending process can be performed.

【0055】更に、溝部の形状は、希望する折り曲げ角
度に合わせ、自由に設定できるが、圧縮成型時にガスバ
リア性フィルムに負荷のかからない形状、および平板状
の真空断熱材を折り曲げた時に、溝部が芯材で干渉しな
いような形状とすることが望ましい。
Further, the shape of the groove can be freely set in accordance with a desired bending angle. However, the shape of the groove does not apply a load to the gas barrier film at the time of compression molding, and when the flat vacuum heat insulating material is bent, the groove forms a core. Desirably, the shape does not interfere with the material.

【0056】一方、本発明の真空断熱材は、シートを積
層した芯材構成としているため、真空排気時に、シート
表面部とシート間部において、それぞれ気体の流体抵抗
が異なることから渦流が生じる。その結果、前記渦流が
粘性流となり、一種のポンプ作用として機能するため、
著しく排気時間が短縮され、生産性が向上する。更に、
その結果、短時間で、真空断熱材の到達内圧が低くなる
ことから、断熱性能に優れた真空断熱材が容易に作製で
きる。
On the other hand, since the vacuum heat insulating material of the present invention has a core material structure in which sheets are stacked, a vortex is generated at the time of evacuation because gas flow resistance is different between the sheet surface and the sheet. As a result, the eddy current becomes a viscous flow and functions as a kind of pump action,
The evacuation time is remarkably reduced, and productivity is improved. Furthermore,
As a result, the ultimate internal pressure of the vacuum heat insulating material is reduced in a short time, so that a vacuum heat insulating material having excellent heat insulating performance can be easily produced.

【0057】次に、真空断熱材の構成材料について説明
する。
Next, the constituent materials of the vacuum heat insulating material will be described.

【0058】芯材2は、珪酸ガラスを主成分とする非晶
質構造を有する平均繊維径1〜5μmのグラスファイバ
ーを厚み5mmのシート状に加工成型したものであり、
前記シート状成型体を3枚積層し、芯材としている。前
記繊維径はSEM像を基に算出した。この時、芯材の嵩
密度は、0.1〜0.2g/cm3 であった。なお、積
層枚数は、2枚以上であれば生産性に問題なく作製で
き、厚みの異なる各種シートの組み合わせにより、希望
する芯材厚みとすることができる。
The core material 2 is formed by processing glass fibers having an amorphous structure composed mainly of silicate glass and having an average fiber diameter of 1 to 5 μm into a sheet having a thickness of 5 mm.
A core material is formed by laminating the three sheet-like molded bodies. The fiber diameter was calculated based on the SEM image. At this time, the bulk density of the core material was 0.1 to 0.2 g / cm 3 . In addition, if the number of laminations is two or more, it can be produced without any problem in productivity, and a desired core material thickness can be obtained by combining various sheets having different thicknesses.

【0059】外被材3は、片面には、表面層としてポリ
エチレンテレフタレート(12μm)、中間層にはアル
ミ箔(6μm)、最内層に高密度ポリエチレン(50μ
m)からなるラミネートフィルム、もう一方の面には、
表面層がポリエチレンテレフタレート(12μm)、中
間層がエチレン−ビニルアルコール共重合体樹脂組成物
(15μm)(商品名 エバール、クラレ(株)社製)
の内側にアルミ蒸着を施した蒸着フィルム、最内層が高
密度ポリエチレン(50μm)からなるラミネートフィ
ルムである。
The outer covering material 3 has polyethylene terephthalate (12 μm) as a surface layer on one side, aluminum foil (6 μm) as an intermediate layer, and high-density polyethylene (50 μm) as an innermost layer.
m) on the other side,
The surface layer is polyethylene terephthalate (12 μm) and the intermediate layer is an ethylene-vinyl alcohol copolymer resin composition (15 μm) (trade name: EVAL, manufactured by Kuraray Co., Ltd.)
Is a laminated film in which the innermost layer is made of high-density polyethylene (50 μm).

【0060】外被材の構成上の特徴としては、最外層は
衝撃からの保護や剛性を付与させるものであり、中間層
はガスバリア性を確保するものであり、最内層はフィル
ムの熱融着によって密封(ヒートシール)する機能を有
するものである。
[0060] The outer layer is provided with protection and rigidity from impact, the intermediate layer is provided with gas barrier properties, and the innermost layer is formed by heat fusion of the film. It has a function of sealing (heat sealing).

【0061】したがって、これらの目的に叶うものであ
れば、一般的な公知材料が使用可能である。例えば、最
外層にナイロン樹脂などを付与することで耐突き刺し性
を向上させたり、ガスバリア性を向上させるため中間層
にアルミ蒸着フィルムを2層設けたり、中間層にアルミ
箔を適用したラミネートフィルムを両面共に適用しても
良い。また、熱融着する最内層としては、ヒートシール
性,ガスバリア性,耐ケミカルアタック性,コストなど
の観点からトータル的に高密度ポリエチレンが好ましい
が、この他に、真空断熱材の適用用途に応じて、ポリプ
ロピレンやポリアクリロニトリルなどを用いても良い。
Therefore, general known materials can be used as long as they fulfill these purposes. For example, by applying a nylon resin or the like to the outermost layer to improve piercing resistance, to improve gas barrier properties, to provide two layers of aluminum vapor-deposited film in the intermediate layer, or to use a laminated film in which aluminum foil is applied to the intermediate layer. Both sides may be applied. As the innermost layer to be heat-sealed, high-density polyethylene is preferably used from the viewpoint of heat sealing properties, gas barrier properties, chemical attack resistance, cost, etc. Alternatively, polypropylene or polyacrylonitrile may be used.

【0062】また、図1には図示していないが、必要に
応じて活性炭,ゼオライト,ドーソナイト,ハイドロタ
ルサイト,塩化カルシウム,塩化リチウム,塩化マグネ
シウムや酸化カルシウム等の金属酸化物、及び水酸化マ
グネシウムや水酸化カルシウム等の金属水酸化物等の化
合物をガス吸着剤として使用することもできる。より望
ましくは、サエスゲッター社製のCOMBO GETT
ERを適用することにより、長期に亘って優れた断熱性
能が維持できる。
Although not shown in FIG. 1, if necessary, activated carbon, zeolite, dawsonite, hydrotalcite, metal oxides such as calcium chloride, lithium chloride, magnesium chloride and calcium oxide, and magnesium hydroxide Compounds such as metal hydroxides such as calcium hydroxide and calcium hydroxide can also be used as gas adsorbents. More preferably, COMBO GETT manufactured by SAES Getter Co., Ltd.
By applying ER, excellent heat insulating performance can be maintained over a long period of time.

【0063】無機繊維のシート状成形体の構成材料は、
特に限定するものではなく、グラスウール,セラミック
ファイバー,ロックウール等、平均繊維径や嵩密度等の
所定の諸物性を満たす無機繊維であれば何等問題ない。
また、単一素材に限定するものでもなく、シート体を形
成するために有機あるいは無機バインダーを用いても良
い。
The constituent material of the sheet-like molded body of inorganic fibers is
There is no particular limitation, and there is no problem if it is an inorganic fiber such as glass wool, ceramic fiber, rock wool or the like which satisfies predetermined physical properties such as average fiber diameter and bulk density.
The material is not limited to a single material, and an organic or inorganic binder may be used to form a sheet.

【0064】また、無機繊維のシート状成形体を芯材と
する場合において、生産性や断熱性能を犠牲にすること
なく、最も効率的に、かつ容易に真空断熱材に可撓性を
付与できるが、芯材が、ウレタン連通フォーム,発泡ポ
リスチレンの連通化品、及び非晶質シリカ粉末等からな
る真空断熱材の場合においても、同様の方法で可撓性を
付与することができる。
Further, when a sheet-like formed body of inorganic fibers is used as a core material, flexibility can be most efficiently and easily imparted to the vacuum heat insulating material without sacrificing productivity or heat insulating performance. However, even in the case where the core material is a vacuum heat insulating material made of a urethane communication foam, a communication product of expanded polystyrene, an amorphous silica powder, or the like, flexibility can be imparted by the same method.

【0065】(実施の形態2)図3は、本発明の一実施
形態における真空断熱材の断面模式図である。1は真空
断熱材であり、芯材2とガスバリア性フィルムからなる
外被材3とから構成されている。
(Embodiment 2) FIG. 3 is a schematic sectional view of a vacuum heat insulating material according to an embodiment of the present invention. Reference numeral 1 denotes a vacuum heat insulating material, which is composed of a core material 2 and a jacket material 3 made of a gas barrier film.

【0066】なお、真空断熱材1の製造方法、及び構成
材料は、実施の形態1と同様である。
The method of manufacturing the vacuum heat insulating material 1 and the constituent materials are the same as in the first embodiment.

【0067】また、溝4は、真空断熱材を作製後、圧縮
成型により形成したものであり、真空断熱材の厚み方向
に垂直な両側面部の同位置に形成されている。
The groove 4 is formed by compression molding after manufacturing the vacuum heat insulating material, and is formed at the same position on both side surfaces perpendicular to the thickness direction of the vacuum heat insulating material.

【0068】その結果、真空断熱材厚みが厚い場合に
も、ガスバリア性フィルムにダメージを与えることな
く、真空断熱材に芯材厚みの薄い溝部を形成できるた
め、容易に真空断熱材の折り曲げが可能となる。
As a result, even when the thickness of the vacuum heat insulating material is large, a groove having a thin core material can be formed in the vacuum heat insulating material without damaging the gas barrier film, so that the vacuum heat insulating material can be easily bent. Becomes

【0069】このように、真空断熱材の両側面部の同位
置に溝部を形成した場合には、溝部での折り曲げ加工
が、一層容易になると共に、折り曲げ加工時のガスバリ
ア性フィルムに対するダメージも一層低減され、複数回
の折り曲げ動作を実施した場合にも、ガスバリア性フィ
ルムには、ピンホールやクラック等が生じることはなか
った。
As described above, when the grooves are formed at the same positions on both side surfaces of the vacuum heat insulating material, bending at the grooves becomes easier, and damage to the gas barrier film at the time of bending is further reduced. Thus, even when the bending operation was performed a plurality of times, pinholes, cracks, and the like did not occur in the gas barrier film.

【0070】(実施の形態3)図4、及び図5は、本発
明の一実施形態における真空断熱材の断面模式図であ
る。1は真空断熱材であり、芯材とガスバリア性フィル
ムからなる外被材とから構成されている。
(Embodiment 3) FIGS. 4 and 5 are schematic sectional views of a vacuum heat insulating material according to an embodiment of the present invention. Reference numeral 1 denotes a vacuum heat insulating material, which is composed of a core material and a jacket material made of a gas barrier film.

【0071】外被材は、折り曲げ内側面がアルミ箔ラミ
ネートフィルム5にて構成され、表面層にポリエチレン
テレフタレート(12μm)、中間層にアルミ箔(6μ
m)、最内層に高密度ポリエチレン(50μm)からな
っており、折り曲げ外側面がアルミ蒸着ラミネートフィ
ルム6にて構成され、表面層にポリエチレンテレフタレ
ート(12μm)、中間層にエチレン−ビニルアルコー
ル共重合体樹脂組成物(15μm)の内側にアルミ蒸着
を施した蒸着フィルム、最内層に高密度ポリエチレン
(50μm)からなるものである。
The outer cover material is formed by folding the inner side surface of an aluminum foil laminated film 5, the surface layer is made of polyethylene terephthalate (12 μm), and the intermediate layer is made of aluminum foil (6 μm).
m), the innermost layer is made of high-density polyethylene (50 μm), the folded outer surface is made of an aluminum vapor-deposited laminated film 6, the surface layer is polyethylene terephthalate (12 μm), and the intermediate layer is an ethylene-vinyl alcohol copolymer. An aluminum film is deposited on the inside of the resin composition (15 μm), and the innermost layer is made of high-density polyethylene (50 μm).

【0072】溝4は、真空断熱材を作製後、前記真空断
熱材の圧縮成型により形成したものであり、形成した溝
部を中心に、約90度折り曲げ加工を行った。この時、
図4では、溝部を形成した面を内側にして、図5では、
溝部を形成した面を外側にして折り曲げを行っている。
The groove 4 is formed by compression molding of the vacuum heat insulating material after the vacuum heat insulating material is manufactured, and is bent about 90 degrees around the formed groove portion. At this time,
In FIG. 4, the surface on which the groove is formed is directed inside, and in FIG.
Bending is performed with the surface on which the groove is formed facing outward.

【0073】なお、真空断熱材1の製造方法、及び構成
材料は、実施の形態1と同様である。
The method of manufacturing the vacuum heat insulating material 1 and the constituent materials are the same as in the first embodiment.

【0074】このように、減圧密封後、圧縮成型により
形成した溝部では、他側面部と比べて真空断熱材の厚み
が薄いことから、ガスバリア性フィルムのテンションが
低下する。よって容易に真空断熱材の折り曲げが可能と
なる。
As described above, the tension of the gas barrier film is reduced in the groove formed by compression molding after sealing under reduced pressure, since the thickness of the vacuum heat insulating material is smaller than that of the other side surface. Therefore, the vacuum heat insulating material can be easily bent.

【0075】また、溝部の芯材厚みが、他側面部の2分
の1以下である場合には、容易に真空断熱材の折り曲げ
加工が実施できるが、芯材厚みが2分の1を越える場合
には、折り曲げが困難であった。より望ましくは、溝部
の芯材厚みがより薄いほど、折り曲げ加工が容易に実施
でき、更には、複数回の折り曲げ動作を実施した場合に
も、折り曲げ時のガスバリア性フィルムに対するダメー
ジが小さくなることが判った。
When the thickness of the core of the groove is less than half of that of the other side, bending of the vacuum heat insulating material can be easily performed, but the thickness of the core exceeds half. In some cases, bending was difficult. More desirably, the thinner the core material thickness of the groove, the easier the bending process can be performed, and even when a plurality of bending operations are performed, the damage to the gas barrier film at the time of bending can be reduced. understood.

【0076】また、ガスバリア性フィルムからなる外被
材において、蒸着フィルム面が折り曲げの外側面になる
ように、折り曲げ加工を行うことにより、複数回の折り
曲げ動作を実施した場合にも外被材にピンホールやクラ
ック等が生じることなく、外被材のガスバリア性が一層
良好なものになることが判った。これは、伸びに対する
ダメージの小さい蒸着フィルムが、伸びの大きい折り曲
げ部の外側面となるためである。
Further, by performing a bending process so that the surface of the vapor-deposited film becomes the outer surface of the bending in the outer cover material made of the gas barrier film, the outer cover material can be formed even when a plurality of bending operations are performed. It was found that the gas barrier properties of the jacket material were further improved without generating pinholes and cracks. This is because the vapor deposition film having small damage to elongation becomes the outer surface of the bent portion having large elongation.

【0077】一方、ガスバリア性フィルムからなる外被
材において、アルミ箔フィルム面が折り曲げの外側面に
なるように、折り曲げ加工を行った場合は、複数回の折
り曲げ動作を実施することによりアルミ箔にピンホール
やクラックが生じることが判った。
On the other hand, in the case where the aluminum foil film surface is bent so that the surface of the aluminum foil film becomes the outer surface of the bending in the outer cover material made of the gas barrier film, the bending operation is performed a plurality of times to form the aluminum foil. It was found that pinholes and cracks occurred.

【0078】なお、アルミ箔フィルム面が折り曲げの外
側面になるように折り曲げ加工を行った場合、あるいは
両面がアルミ箔ラミネートからなる外被材の使用で折り
曲げ加工を行った場合にも、複数回の折り曲げを実施し
ない場合は、アルミ箔にピンホールやクラックが生じる
ことはなく、何等問題なく真空断熱材の折り曲げ加工が
できる。
It should be noted that, even when the bending process is performed so that the aluminum foil film surface becomes the outer surface of the bending, or when the bending process is performed by using a covering material whose both surfaces are made of the aluminum foil laminate, a plurality of times are required. When no bending is performed, no pinholes or cracks are generated in the aluminum foil, and the vacuum heat insulating material can be bent without any problem.

【0079】このように、折り曲げ加工を施した真空断
熱材は、外被材のガスバリア性の悪化、及びスプリング
バック等の問題もなく、曲げ加工精度や経時断熱性能も
良好であることが判った。よって、真空断熱材の形状自
由度が大きく改善され、真空断熱材の適用可能製品、及
び適用可能部位が大幅に増加する。
As described above, it was found that the vacuum heat-insulated material that had been subjected to the bending process had no problems such as deterioration of the gas barrier property of the outer cover material and problems such as springback, and also had good bending process accuracy and temporal heat-insulating performance. . Therefore, the degree of freedom of the shape of the vacuum heat insulating material is greatly improved, and the applicable products and applicable portions of the vacuum heat insulating material are greatly increased.

【0080】(実施の形態4)図6は、本発明の一実施
形態における保温冷却容器の斜視図の一部を切り欠いた
断面図である。7は保温保冷容器、8は本体、9は蓋、
10はABS製の外箱、11はポリプロピレン製の内
箱、12は蓄冷材である。図に示すように、保温保冷容
器の本体、及び蓋は、内箱と外箱とにより中空の構造体
を形成しており、その中空部に真空断熱材1を挿入し保
温保冷容器を構成している。
(Embodiment 4) FIG. 6 is a partially cutaway cross-sectional view of a heat-retaining cooling container according to an embodiment of the present invention. 7 is an insulated container, 8 is a main body, 9 is a lid,
10 is an outer box made of ABS, 11 is an inner box made of polypropylene, and 12 is a cold storage material. As shown in the figure, the main body and the lid of the heat insulating / cooling container form a hollow structure by an inner box and an outer box, and the vacuum heat insulating material 1 is inserted into the hollow portion to constitute the heat insulating / cooling container. ing.

【0081】なお、真空断熱材1の製造方法は、実施の
形態1と同様であり、真空断熱材は、保温保冷容器の形
状に合わせて、予め、折り曲げ加工を施し適用してい
る。よって、前記断熱容器は、継ぎ目部分を低減した立
体的な真空断熱材を用いて断熱されているため、継ぎ目
部からの熱漏洩が大幅に低減できる。
The method of manufacturing the vacuum heat insulating material 1 is the same as that of the first embodiment, and the vacuum heat insulating material is applied by bending it in advance in accordance with the shape of the heat insulating and cooling container. Therefore, since the heat insulating container is insulated by using a three-dimensional vacuum heat insulating material having a reduced joint portion, heat leakage from the joint portion can be significantly reduced.

【0082】よって、従来にない優れた断熱性能を有す
る保温保冷容器が提供できるため、レジャー用クーラー
ボックスをはじめ、より温度管理の厳しい医療用の保冷
容器としても有効に利用できる。
Accordingly, a heat-insulated and cool container having excellent heat insulation performance, which has not been obtained in the past, can be provided, so that it can be effectively used as a cooler box for leisure and a medical cool container with more strict temperature control.

【0083】(実施の形態5)図7は、本発明の一実施
形態における冷蔵庫の斜視投影図である。13は冷蔵庫
であり、鉄板製の外箱15と、ABS樹脂からなる内箱
(図示せず)と、前記外箱と前記内箱によって形成され
る空間に充填されたシクロペンタンを発泡剤とする発泡
断熱材(図示せず)と、機械室14の上部の外箱内壁に
取り付けられた真空断熱材1とを備えた断熱箱体から構
成されている。
(Embodiment 5) FIG. 7 is a perspective projection view of a refrigerator according to an embodiment of the present invention. Reference numeral 13 denotes a refrigerator, which uses an outer box 15 made of an iron plate, an inner box (not shown) made of ABS resin, and cyclopentane filled in a space formed by the outer box and the inner box as a foaming agent. The heat insulating box includes a foam heat insulating material (not shown) and a vacuum heat insulating material 1 attached to the inner wall of the outer box at the upper part of the machine room 14.

【0084】また、真空断熱材1の製造方法は、実施の
形態1と同様である。
The method of manufacturing the vacuum heat insulating material 1 is the same as that of the first embodiment.

【0085】図に示すように冷蔵庫機械室部の外箱内壁
は、立体的な形状を有しているものの、本発明の真空断
熱材は可撓性を有するため、予め、その形状に合わせて
真空断熱材を折り曲げ加工することにより、前記機械室
部のような箇所にも真空断熱材を外箱内壁形状に沿わせ
て適用することができる。
As shown in the figure, the inner wall of the outer box of the refrigerator machine room has a three-dimensional shape, but the vacuum heat insulating material of the present invention has flexibility, so that it is necessary to match the shape in advance. By bending the vacuum heat insulating material, it is possible to apply the vacuum heat insulating material to a portion such as the machine room along the shape of the inner wall of the outer box.

【0086】よって、コンプレッサーの運転により雰囲
気温度が高くなる機械室部と冷蔵庫庫内とを高断熱性能
の真空断熱材で効率的に断熱できるようになるため、機
械室部からの冷蔵庫庫内への熱漏洩が大幅に低減され、
冷蔵庫の消費電力量が大きく低減される。このように、
本発明の真空断熱材を適用することにより、省エネルギ
ーとコストパフォーマンスに優れた冷蔵庫を提供するこ
とができる。
[0086] Therefore, since the vacuum chamber having a high heat insulating performance can efficiently insulate the inside of the refrigerator compartment from the machine room where the atmospheric temperature is increased by the operation of the compressor, the inside of the refrigerator compartment from the machine compartment can be efficiently insulated. Heat leakage is greatly reduced,
The power consumption of the refrigerator is greatly reduced. in this way,
By applying the vacuum heat insulating material of the present invention, a refrigerator excellent in energy saving and cost performance can be provided.

【0087】また、本発明の真空断熱材は、優れた断熱
性能を有するため、省エネルギーを追求しない場合に
は、断熱壁の薄壁化が可能となるため、冷蔵庫の省スペ
ース化、あるいは冷蔵庫の庫内容積向上が達成できる。
Further, since the vacuum heat insulating material of the present invention has excellent heat insulating performance, it is possible to reduce the thickness of the heat insulating wall when energy saving is not pursued. It is possible to achieve an increase in the internal volume.

【0088】また、真空断熱材の芯材は無機繊維である
ことから、芯材は不燃性であるため、冷蔵庫安全性の面
からも優れている。
Further, since the core material of the vacuum heat insulating material is an inorganic fiber, the core material is nonflammable, which is excellent in terms of refrigerator safety.

【0089】更には、冷蔵庫廃棄時においても、本発明
の真空断熱材の芯材は、簡単に分離できると共に、繰り
返し利用できるためリサイクル性にも優れている。
Furthermore, even when the refrigerator is discarded, the core material of the vacuum heat insulating material of the present invention can be easily separated and can be repeatedly used, so that it is excellent in recyclability.

【0090】(実施の形態6)図8は、本発明の一実施
形態における給湯器の断面図である。16は給湯器であ
り、外容器17と、貯湯容器18と、蓋体19と、加熱
器20と、真空断熱材1とから構成されている。真空断
熱材は、予め、貯湯容器の形状に沿わすように折り曲げ
加工を行い適用している。また、貯湯容器の下部に取り
付けられた加熱器の近傍付近まで、真空断熱材を折り曲
げて取り付けている。
(Embodiment 6) FIG. 8 is a sectional view of a water heater according to an embodiment of the present invention. Reference numeral 16 denotes a water heater, which includes an outer container 17, a hot water storage container 18, a lid 19, a heater 20, and the vacuum heat insulating material 1. The vacuum heat insulating material is previously bent and applied so as to conform to the shape of the hot water storage container. Also, the vacuum heat insulating material is bent and attached to the vicinity of the heater attached to the lower part of the hot water storage container.

【0091】また、蓋部19の凹部にも真空断熱材1が
設けられている。
Further, the vacuum heat insulating material 1 is provided also in the concave portion of the lid portion 19.

【0092】なお、真空断熱材1の製造方法は、実施の
形態1と同様である。
The method of manufacturing the vacuum heat insulating material 1 is the same as in the first embodiment.

【0093】以上のような構成からなる給湯器は、可撓
性を有する真空断熱材を適用し、貯湯容器や、凹部を有
する蓋部の形状に沿わせて効率的な断熱ができる。ま
た、真空断熱材が耐熱性を有する無機繊維材料を芯材と
して適用していることから、熱劣化が少なく、長期に亘
って給湯器を使用した場合においても問題なく使用でき
る。
The water heater having the above-described configuration employs a vacuum heat insulating material having flexibility, and can efficiently perform heat insulation along the shape of the hot water storage container and the lid having the concave portion. In addition, since the heat insulating inorganic fiber material is used as the core material of the vacuum heat insulating material, heat deterioration is small, and it can be used without any problem even when the water heater is used for a long time.

【0094】よって、このような給湯器は、真空断熱材
が可撓性を有し、かつ耐熱性を有する効率的な消費電力
量の低減ができると共に、コンパクト化も実現すること
ができる。
Therefore, in such a water heater, the vacuum heat insulating material has flexibility and heat resistance, so that the power consumption can be efficiently reduced, and the water heater can be downsized.

【0095】[0095]

【発明の効果】以上のように本発明により、断熱性能や
生産性の向上が図れる優れた真空断熱材が提供できる。
As described above, according to the present invention, it is possible to provide an excellent vacuum heat insulating material capable of improving heat insulating performance and productivity.

【0096】更に、芯材が無機繊維からなるシート状成
形体のような場合にも、減圧密封後に芯材の圧縮成型を
実施するため、芯材の自己形状保持性能に関わらず、そ
の芯材形状を自由に変化させることができるため、芯材
特性に関わらず、容易に可撓性を有する真空断熱材が提
供できる。
Further, even when the core material is a sheet-like molded body made of inorganic fibers, the core material is subjected to compression molding after sealing under reduced pressure. Since the shape can be freely changed, a vacuum heat insulating material having flexibility can be easily provided regardless of the properties of the core material.

【0097】また、可撓性を有する真空断熱材は、作業
性を低下させることなく、部品数を増加させることな
く、大幅なコストアップ無しに提供できる。
Further, the vacuum heat insulating material having flexibility can be provided without lowering workability, without increasing the number of parts, and without significantly increasing the cost.

【0098】また、本発明によって考案された優れた断
熱性能を有する真空断熱材を用いることにより、熱漏洩
の少ない優れた保温保冷器,冷蔵庫,給湯器を提供する
ことができる。
Further, by using the vacuum heat insulating material having excellent heat insulating performance devised by the present invention, it is possible to provide an excellent heat insulating cooler, refrigerator and water heater with less heat leakage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における真空断熱材の断面
模式図
FIG. 1 is a schematic cross-sectional view of a vacuum heat insulating material according to an embodiment of the present invention.

【図2】本発明の一実施形態における真空断熱材の平面
FIG. 2 is a plan view of a vacuum heat insulating material according to an embodiment of the present invention.

【図3】本発明の一実施形態における真空断熱材の断面
模式図
FIG. 3 is a schematic cross-sectional view of a vacuum heat insulating material according to an embodiment of the present invention.

【図4】本発明の一実施形態における真空断熱材の断面
模式図
FIG. 4 is a schematic cross-sectional view of a vacuum heat insulating material according to an embodiment of the present invention.

【図5】本発明の一実施形態における真空断熱材の断面
模式図
FIG. 5 is a schematic cross-sectional view of a vacuum heat insulating material according to an embodiment of the present invention.

【図6】本発明の一実施形態における保温保冷容器の斜
視図の一部を切り欠いた断面図
FIG. 6 is a partially cut-away cross-sectional view of the heat insulating and cooling container in one embodiment of the present invention.

【図7】本発明の一実施形態における冷蔵庫の斜視投影
FIG. 7 is a perspective projection view of the refrigerator in one embodiment of the present invention.

【図8】本発明の一実施形態における給湯器の断面図FIG. 8 is a sectional view of a water heater according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空断熱材 2 芯材 3 外被材 4 溝 5 アルミ箔ラミネートフィルム 6 アルミ蒸着フィルム 7 保温保冷容器 8 本体 9 ふた 10,15 外箱 11 内箱 12 蓄冷剤 13 冷蔵庫 14 機械室 16 給湯器 17 外容器 18 貯湯容器 19 蓋体 20 加熱器 DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Outer cover material 4 Groove 5 Aluminum foil laminated film 6 Aluminum vapor deposition film 7 Heat insulation cool container 8 Main body 9 Lid 10,15 Outer box 11 Inner box 12 Cool storage agent 13 Refrigerator 14 Machine room 16 Water heater 17 Outer container 18 Hot water storage container 19 Lid 20 Heater

フロントページの続き Fターム(参考) 3H036 AA08 AA09 AB24 AB33 AC01 AE13 3L102 JA01 LB10 MB22 MB26 MB27 4B002 AA13 BA22 BA31 CA32 Continued on the front page F term (reference) 3H036 AA08 AA09 AB24 AB33 AC01 AE13 3L102 JA01 LB10 MB22 MB26 MB27 4B002 AA13 BA22 BA31 CA32

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平均直径が1μm以上5μm以下の無機
繊維からなるシート状成形体を少なくとも2層以上積層
してなる芯材を、ガスバリア性フィルムで覆い、その内
部を減圧し、密封した真空断熱材において、圧縮成型に
より、前記真空断熱材の厚み方向に垂直な側面部に少な
くとも一本以上の溝を形成してなることを特徴とする真
空断熱材。
1. A vacuum insulating material in which a core material obtained by laminating at least two layers of a sheet-like molded body made of inorganic fibers having an average diameter of 1 μm or more and 5 μm or less is covered with a gas barrier film, and the inside thereof is depressurized and sealed. A vacuum heat insulating material, wherein at least one groove is formed on a side surface perpendicular to the thickness direction of the vacuum heat insulating material by compression molding.
【請求項2】 圧縮成型により形成した溝が、真空断熱
材の厚み方向に垂直な両側面部の同位置に有ることを特
徴とする請求項1記載の真空断熱材。
2. The vacuum heat insulating material according to claim 1, wherein the grooves formed by compression molding are located at the same positions on both side surfaces perpendicular to the thickness direction of the vacuum heat insulating material.
【請求項3】 真空断熱材の厚み方向に垂直な側面部の
溝部で折り曲げを行うことを特徴とする請求項1または
2記載の真空断熱材。
3. The vacuum heat insulating material according to claim 1, wherein the vacuum heat insulating material is bent at a groove on a side surface perpendicular to a thickness direction of the vacuum heat insulating material.
【請求項4】 ガスバリア性フィルムが、金属箔とプラ
スチックフィルムが積層されたラミネートフィルムと、
金属あるいは金属酸化物の蒸着が施されたプラスチック
フィルムよりなる蒸着フィルムとからなる真空断熱材に
おいて、蒸着フィルム面が外面になるように、折り曲げ
を行うことを特徴とする請求項3記載の真空断熱材。
4. A gas barrier film, comprising: a laminate film in which a metal foil and a plastic film are laminated;
4. The vacuum heat insulating material according to claim 3, wherein the vacuum heat insulating material is made of a vapor-deposited film made of a plastic film on which a metal or a metal oxide is vapor-deposited, so that the surface of the vapor-deposited film is turned to the outer surface. Wood.
【請求項5】 溝部の芯材厚みが、他側面部の2分の1
以下であることを特徴とする請求項1から4いずれか記
載の真空断熱材。
5. The thickness of the core of the groove is one half that of the other side.
The vacuum heat insulating material according to claim 1, wherein:
【請求項6】 外箱と、内箱と、前記外箱と前記内箱の
空間部に配設された請求項1から5いずれか記載の真空
断熱材とから構成されることを特徴とする保温保冷容
器。
6. An outer box, an inner box, and the vacuum heat insulating material according to claim 1 disposed in a space between the outer box and the inner box. Insulated cool container.
【請求項7】 外箱と、内箱と、前記外箱と前記内箱に
よって形成される空間に充填された発泡断熱材と、前記
外箱または前記内箱の内壁に取り付けられた請求項1か
ら5いずれか記載の真空断熱材とを備えた断熱箱体から
構成されることを特徴とする冷蔵庫。
7. An outer box, an inner box, a foam insulating material filled in a space formed by the outer box and the inner box, and attached to an inner wall of the outer box or the inner box. A refrigerator comprising: a heat insulating box provided with the vacuum heat insulating material according to any one of claims to 5.
【請求項8】 貯湯容器と、外容器と、蓋体と、加熱器
と、前記貯湯容器の外周部に配設された請求項1から5
いずれか記載の真空断熱材とを備えたことを特徴とする
給湯器。
8. A hot water storage container, an outer container, a lid, a heater, and an outer peripheral portion of the hot water storage container.
A water heater comprising the vacuum heat insulating material according to any one of the above.
JP2000154216A 2000-04-21 2000-05-25 Vacuum insulation material and refrigerator using vacuum insulation material Expired - Lifetime JP3478780B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000154216A JP3478780B2 (en) 2000-05-25 2000-05-25 Vacuum insulation material and refrigerator using vacuum insulation material
TW090109557A TW470837B (en) 2000-04-21 2001-04-20 Vacuum heat insulator
PCT/JP2001/003469 WO2001081817A1 (en) 2000-04-21 2001-04-23 Vacuum insulating material and device using the same
DE60126403T DE60126403T2 (en) 2000-04-21 2001-04-23 VACUUM INSULATION MATERIAL AND DEVICE USING THIS MATERIAL
KR1020027014137A KR100540522B1 (en) 2000-04-21 2001-04-23 Vacuum insulating material and device using the same
US10/258,131 US6938968B2 (en) 2000-04-21 2001-04-23 Vacuum insulating material and device using the same
EP01922015A EP1275893B1 (en) 2000-04-21 2001-04-23 Vacuum insulating material and device using the same
CNB018083692A CN1212485C (en) 2000-04-21 2001-04-23 Vacuum insulating material and device using the same
HK03107974A HK1055784A1 (en) 2000-04-21 2003-11-05 Vacuum insulating material and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154216A JP3478780B2 (en) 2000-05-25 2000-05-25 Vacuum insulation material and refrigerator using vacuum insulation material

Publications (2)

Publication Number Publication Date
JP2001336691A true JP2001336691A (en) 2001-12-07
JP3478780B2 JP3478780B2 (en) 2003-12-15

Family

ID=18659348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154216A Expired - Lifetime JP3478780B2 (en) 2000-04-21 2000-05-25 Vacuum insulation material and refrigerator using vacuum insulation material

Country Status (1)

Country Link
JP (1) JP3478780B2 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011755A (en) * 2002-06-06 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat-insulating material, its manufacturing method, and insulation box in which vacuum heat-insulating material is used
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof
JP2005069657A (en) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd Vacuum thermal insulation material and its disassembly and recovery method
JP2005308294A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Freezer/refrigerator
WO2006009063A1 (en) * 2004-07-16 2006-01-26 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
JP2006077790A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, manufacturing method of vacuum heat insulating material and outfit for protection against cold using vacuum heat insulating material
JP2006322644A (en) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007240021A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Folding-type cool box
JP2007283989A (en) * 2006-04-20 2007-11-01 Hitachi Ltd Automobile using vacuum heat insulation material
JP2007321951A (en) * 2006-06-05 2007-12-13 Kurabo Ind Ltd Vacuum heat insulating material
JP2008101792A (en) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd Refrigerator
JP2008101838A (en) * 2006-10-19 2008-05-01 Matsushita Electric Ind Co Ltd Refrigerator
JP2008121757A (en) * 2006-11-10 2008-05-29 Sharp Corp Vacuum insulation material and refrigerator
JP2008157431A (en) * 2006-12-26 2008-07-10 Kurabo Ind Ltd Vacuum heat insulating material
JP2008196572A (en) * 2007-02-13 2008-08-28 Sharp Corp Vacuum heat insulating material and refrigerator
CN100545502C (en) * 2006-02-06 2009-09-30 日立空调·家用电器株式会社 Vacuumed insulation panel and manufacture method thereof
JP2010108199A (en) * 2008-10-30 2010-05-13 Kubota Corp Heat insulating structure for vending machine
JP2011117631A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Storage water heater
WO2011108850A3 (en) * 2010-03-04 2011-11-24 ㈜엘지하우시스 Grooved type of vacuum thermal insulation material and a production method for the same
WO2012044001A2 (en) 2010-10-01 2012-04-05 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
KR20120034511A (en) * 2010-10-01 2012-04-12 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
EP2472164A1 (en) * 2009-10-19 2012-07-04 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
ITTO20110515A1 (en) * 2011-06-10 2012-12-11 Indesit Co Spa REFRIGERATION APPLIANCE, IN PARTICULAR HOUSEHOLD USE.
CN102996978A (en) * 2011-09-12 2013-03-27 日立空调·家用电器株式会社 Vacuum insulation material and equipment made of the same
KR101280776B1 (en) * 2010-09-14 2013-07-05 히타치 어플라이언스 가부시키가이샤 Vacuum insulation panel and refrigerator using this
JP2013228015A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Vacuum heat insulation material and device to be heat-insulated
JP2014070710A (en) * 2012-10-01 2014-04-21 Asahi Fiber Glass Co Ltd Vacuum heat insulating material
EP2765375A2 (en) 2013-02-06 2014-08-13 Samsung Electronics Co., Ltd Vacuum insulation material, insulation case unit, and refrigerator
KR20140100411A (en) * 2013-02-06 2014-08-14 삼성전자주식회사 Vacuum insulation material and the refrigerator which is applied it
WO2015008533A1 (en) * 2013-07-19 2015-01-22 大日本印刷株式会社 Vacuum heat-insulating material, method for manufacturing vacuum heat-insulating material, outer cover material for vacuum heat-insulating material, and heat-insulated article
US8986805B2 (en) 2010-10-01 2015-03-24 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
JP2015078707A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Vacuum heat insulation material, heat insulation box using vacuum heat insulation material, apparatus using vacuum heat insulation material and manufacturing method for vacuum heat insulation material
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
EP2910880A1 (en) * 2014-02-24 2015-08-26 Whirlpool Corporation A folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
JP2016017635A (en) * 2014-07-03 2016-02-01 ケーニヒ メタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトKoenig Metall GmbH & Co. KG Insulation housing and method for manufacturing insulation housing
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
CN107816601A (en) * 2016-09-12 2018-03-20 松下电器产业株式会社 Vacuumed insulation panel
JP2018044668A (en) * 2016-09-12 2018-03-22 パナソニック株式会社 Vacuum heat insulation material
JP2018100742A (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Vacuum heat insulation material and refrigerator
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
WO2020027549A1 (en) * 2018-07-31 2020-02-06 씨제이제일제당 (주) Vacuum insulation panel, container using same, and manufacturing method therefor
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155065A (en) * 2005-12-07 2007-06-21 Nisshinbo Ind Inc Vacuum heat insulating material and its manufacturing method

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011755A (en) * 2002-06-06 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat-insulating material, its manufacturing method, and insulation box in which vacuum heat-insulating material is used
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof
JP2005069657A (en) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd Vacuum thermal insulation material and its disassembly and recovery method
JP2005308294A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Freezer/refrigerator
WO2006009063A1 (en) * 2004-07-16 2006-01-26 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
JP2006029456A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, heat insulation/cold insulation unit comprising the same, and refrigerator
JP4609007B2 (en) * 2004-09-07 2011-01-12 パナソニック株式会社 Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and cold protection device using vacuum heat insulating material
JP2006077790A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, manufacturing method of vacuum heat insulating material and outfit for protection against cold using vacuum heat insulating material
JP2006322644A (en) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd Heat exchanger
CN100545502C (en) * 2006-02-06 2009-09-30 日立空调·家用电器株式会社 Vacuumed insulation panel and manufacture method thereof
JP2007240021A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Folding-type cool box
JP2007283989A (en) * 2006-04-20 2007-11-01 Hitachi Ltd Automobile using vacuum heat insulation material
JP4661670B2 (en) * 2006-04-20 2011-03-30 株式会社日立製作所 Insulation
JP2007321951A (en) * 2006-06-05 2007-12-13 Kurabo Ind Ltd Vacuum heat insulating material
JP2008101792A (en) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd Refrigerator
JP2008101838A (en) * 2006-10-19 2008-05-01 Matsushita Electric Ind Co Ltd Refrigerator
JP2008121757A (en) * 2006-11-10 2008-05-29 Sharp Corp Vacuum insulation material and refrigerator
JP2008157431A (en) * 2006-12-26 2008-07-10 Kurabo Ind Ltd Vacuum heat insulating material
JP2008196572A (en) * 2007-02-13 2008-08-28 Sharp Corp Vacuum heat insulating material and refrigerator
JP2010108199A (en) * 2008-10-30 2010-05-13 Kubota Corp Heat insulating structure for vending machine
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
EP2472164A4 (en) * 2009-10-19 2014-01-29 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
EP2472164A1 (en) * 2009-10-19 2012-07-04 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
JP2011117631A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Storage water heater
US8927084B2 (en) 2010-03-04 2015-01-06 Lg Hausys, Ltd. Grooved type vacuum thermal insulation material and a production method for the same
TWI457233B (en) * 2010-03-04 2014-10-21 Lg Hausys Ltd Groove type vacuum heat insulation material
JP2013512404A (en) * 2010-03-04 2013-04-11 エルジー・ハウシス・リミテッド Groove type vacuum heat insulating material and method for manufacturing the same
KR101267733B1 (en) * 2010-03-04 2013-05-24 (주)엘지하우시스 Groove type vacuum heat insulation material
EP2543942A4 (en) * 2010-03-04 2014-10-22 Lg Hausys Ltd Grooved type of vacuum thermal insulation material and a production method for the same
EP2543942A2 (en) * 2010-03-04 2013-01-09 LG Hausys, Ltd. Grooved type of vacuum thermal insulation material and a production method for the same
WO2011108850A3 (en) * 2010-03-04 2011-11-24 ㈜엘지하우시스 Grooved type of vacuum thermal insulation material and a production method for the same
KR101280776B1 (en) * 2010-09-14 2013-07-05 히타치 어플라이언스 가부시키가이샤 Vacuum insulation panel and refrigerator using this
KR20120034511A (en) * 2010-10-01 2012-04-12 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
EP2622292A4 (en) * 2010-10-01 2015-05-13 Lg Electronics Inc Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
WO2012044001A2 (en) 2010-10-01 2012-04-05 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
KR101714569B1 (en) * 2010-10-01 2017-03-09 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
WO2012044001A3 (en) * 2010-10-01 2012-06-21 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
EP2622292B1 (en) * 2010-10-01 2020-05-13 LG Electronics Inc. Vacuum insulation panel and a refrigerator with a vacuum insulation panel
US8986805B2 (en) 2010-10-01 2015-03-24 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
WO2012168922A1 (en) * 2011-06-10 2012-12-13 Indesit Company S.P.A. Refrigerating appliance, in particular for household use
ITTO20110515A1 (en) * 2011-06-10 2012-12-11 Indesit Co Spa REFRIGERATION APPLIANCE, IN PARTICULAR HOUSEHOLD USE.
CN102996978A (en) * 2011-09-12 2013-03-27 日立空调·家用电器株式会社 Vacuum insulation material and equipment made of the same
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
JP2013228015A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Vacuum heat insulation material and device to be heat-insulated
JP2014070710A (en) * 2012-10-01 2014-04-21 Asahi Fiber Glass Co Ltd Vacuum heat insulating material
US9464751B2 (en) 2013-02-06 2016-10-11 Samsung Electronics Co., Ltd. Vacuum insulation material, insulation case unit, and refrigerator
KR102186839B1 (en) 2013-02-06 2020-12-07 삼성전자주식회사 Vacuum insulation material and the refrigerator which is applied it
KR20140100411A (en) * 2013-02-06 2014-08-14 삼성전자주식회사 Vacuum insulation material and the refrigerator which is applied it
EP2765375A2 (en) 2013-02-06 2014-08-13 Samsung Electronics Co., Ltd Vacuum insulation material, insulation case unit, and refrigerator
JP2015038374A (en) * 2013-07-19 2015-02-26 大日本印刷株式会社 Vacuum insulation material, method of manufacturing the same, outer wrapping material for the same, and heat insulation article
WO2015008533A1 (en) * 2013-07-19 2015-01-22 大日本印刷株式会社 Vacuum heat-insulating material, method for manufacturing vacuum heat-insulating material, outer cover material for vacuum heat-insulating material, and heat-insulated article
JP2015078707A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Vacuum heat insulation material, heat insulation box using vacuum heat insulation material, apparatus using vacuum heat insulation material and manufacturing method for vacuum heat insulation material
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
EP2910880A1 (en) * 2014-02-24 2015-08-26 Whirlpool Corporation A folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
JP2016017635A (en) * 2014-07-03 2016-02-01 ケーニヒ メタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトKoenig Metall GmbH & Co. KG Insulation housing and method for manufacturing insulation housing
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
CN107816601A (en) * 2016-09-12 2018-03-20 松下电器产业株式会社 Vacuumed insulation panel
JP2018044668A (en) * 2016-09-12 2018-03-22 パナソニック株式会社 Vacuum heat insulation material
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
JP2018100742A (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Vacuum heat insulation material and refrigerator
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
KR20200013910A (en) * 2018-07-31 2020-02-10 씨제이제일제당 (주) Container using vacuum insulation panel and manufacturing method of same
KR102566976B1 (en) * 2018-07-31 2023-08-16 씨제이제일제당 (주) Container using vacuum insulation panel and manufacturing method of same
WO2020027549A1 (en) * 2018-07-31 2020-02-06 씨제이제일제당 (주) Vacuum insulation panel, container using same, and manufacturing method therefor
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Also Published As

Publication number Publication date
JP3478780B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
JP3478780B2 (en) Vacuum insulation material and refrigerator using vacuum insulation material
US6938968B2 (en) Vacuum insulating material and device using the same
JP3544653B2 (en) refrigerator
JP3478771B2 (en) refrigerator
US7278279B2 (en) Refrigerator
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP2007211884A (en) Vacuum thermal insulation box body
JP3478792B2 (en) refrigerator
JP3528846B1 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP3549453B2 (en) refrigerator
JP2002310383A (en) Vacuum heat insulation material, vacuum heat insulation material manufacturing method, note type computer, refrigerating appliance, electric water heater, and over- range
JP2006029456A (en) Vacuum heat insulating material, heat insulation/cold insulation unit comprising the same, and refrigerator
JP2001108187A (en) Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JP2002161994A (en) Vacuum insulant, vacuum insulant applied refrigerator
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP3488229B2 (en) Insulated box and refrigerator
JP2002317897A (en) Vacuum heat insulation material, heat insulated container, refrigerator, and rice cooker
JP2005307995A (en) Vacuum heat insulation material, method for manufacturing same and apparatus using same
JP4443727B2 (en) Manufacturing method of vacuum insulation container
JP2001295984A (en) Vacuum heat insulator and heat insulating box
CN101900473A (en) Built-in integral L-shaped vacuum heat insulation slab for refrigerator and processing method thereof
JP3527727B2 (en) Vacuum insulation material and equipment using the vacuum insulation material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3478780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

EXPY Cancellation because of completion of term