JP2008157431A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2008157431A
JP2008157431A JP2006350340A JP2006350340A JP2008157431A JP 2008157431 A JP2008157431 A JP 2008157431A JP 2006350340 A JP2006350340 A JP 2006350340A JP 2006350340 A JP2006350340 A JP 2006350340A JP 2008157431 A JP2008157431 A JP 2008157431A
Authority
JP
Japan
Prior art keywords
core
core material
heat insulating
vacuum heat
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006350340A
Other languages
Japanese (ja)
Other versions
JP4897473B2 (en
Inventor
Yuji Nanbu
祐司 南部
Kinichi Yamamoto
欽一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2006350340A priority Critical patent/JP4897473B2/en
Publication of JP2008157431A publication Critical patent/JP2008157431A/en
Application granted granted Critical
Publication of JP4897473B2 publication Critical patent/JP4897473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material easy to bend, easily manufactured and maintaining a sufficient heat insulating effect even if bent. <P>SOLUTION: A core material comprising a first core material and a second core material is used to form a thick layer part comprising the first core material and second core material, and a thin layer part comprising the first core material and thinner in thickness than the thick layer part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

折り曲げることができる真空断熱材に関する。   The present invention relates to a vacuum heat insulating material that can be bent.

保温や保冷をするために断熱を要する容器等の機器においては、真空断熱材が用いられている。このような機器に真空断熱材を用いる場合には、保温や保冷をするための空間の周囲に、その空間の形状に適合するように真空断熱材を変形させて配置していた。   A vacuum heat insulating material is used in a device such as a container that needs to be insulated in order to keep warm and cool. In the case of using a vacuum heat insulating material for such a device, the vacuum heat insulating material is deformed and arranged around the space for keeping heat and cold so as to conform to the shape of the space.

例えば、湯沸かし器等の円柱状の空間を保温するために、円筒形状に変形できる真空断熱材を用いるものがあった(例えば、特許文献1参照)。この真空断熱材は、切削加工により真空断熱材に複数の溝を形成したものであり、溝の箇所で折り曲げやすくしたものであった。   For example, there is one that uses a vacuum heat insulating material that can be deformed into a cylindrical shape in order to keep a columnar space such as a water heater (see Patent Document 1). This vacuum heat insulating material was formed by forming a plurality of grooves in the vacuum heat insulating material by cutting, and was easy to bend at the position of the groove.

また、真空断熱材の芯材を、通常の繊維からなる部分と、粉体からなる部分とで構成したものがあった(例えば、特許文献2参照)。この真空断熱材は、この粉体からなる部分で折り曲げやすくしようとするものであった。   Moreover, there existed what comprised the core material of the vacuum heat insulating material in the part which consists of a normal fiber, and the part which consists of powder (for example, refer patent document 2). This vacuum heat insulating material was intended to be easily bent at the portion made of the powder.

さらに、真空断熱材を形成した後に、折り曲げやすくするための溝を形成するもの(例えば、特許文献3参照)や、真空断熱材を形成する前に、折り曲げやすくするための溝を芯材に形成するもの(例えば、特許文献4参照)があった。
特開2000−249290号公報 特開2005−106311号公報 特開2006−29413号公報 特許3408101号
Furthermore, after forming the vacuum heat insulating material, a groove for making it easy to bend (see, for example, Patent Document 3), or before forming the vacuum heat insulating material, a groove for making the wire easy to be bent is formed in the core material. There is what to do (for example, see Patent Document 4).
JP 2000-249290 A JP 2005-106311 A JP 2006-29413 A Japanese Patent No. 3408101

上述した従来の真空断熱材において、溝を形成するものは、いずれも切削加工や押圧加工によって形成するものであったため、製造しにくかったり、製造工程が煩雑になったりするほか、十分に溝を形成できない場合もあった。また、粉体を用いるものは、粉体を一定の形状に保つことが困難なため、真空断熱材を所望する形状にすることが困難であるとともに、粉体を封入する工程を要するため、製造工程が煩雑にならざるを得なかった。   In the conventional vacuum heat insulating materials described above, all the grooves are formed by cutting or pressing, so that it is difficult to manufacture, the manufacturing process becomes complicated, and the grooves are sufficiently formed. In some cases, it could not be formed. In addition, since it is difficult to keep the powder in a certain shape for those using powder, it is difficult to make the vacuum heat insulating material the desired shape, and a process for encapsulating the powder is required. The process had to be complicated.

本発明は、上述の点に鑑みてなされたものであり、その目的とするところは、折り曲げやすく、かつ、容易に製造することができるとともに、折り曲げても断熱効果を十分に保つことができる真空断熱材を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to be a vacuum that is easy to bend and can be easily manufactured, and can maintain a sufficient heat insulating effect even when folded. It is to provide insulation.

以上のような目的を達成するために、本発明においては、第1の芯材と第2の芯材とを含む芯材を用いて、第1の芯材と第2の芯材とを含む厚層部と、第1の芯材を含みかつ厚層部よりも厚さが薄い薄層部とを形成する。   In order to achieve the above object, the present invention includes a first core material and a second core material using a core material including a first core material and a second core material. A thick layer portion and a thin layer portion including the first core material and having a thickness smaller than that of the thick layer portion are formed.

具体的には、本発明に係る真空断熱材は、
芯材部と、前記芯材部を収納しかつ内部を減圧状態に維持できる外包材と、を含む真空断熱材であって、
前記芯材部は、
少なくとも1つの第1の芯材と、
前記第1の芯材とは別体であり、かつ、少なくとも1つの第2の芯材と、を含み、
前記第2の芯材が、前記第1の芯材と少なくとも一部で重なり、
前記第1の芯材と前記第2の芯材とを含む厚層部と、
前記第1の芯材を含みかつ前記厚層部よりも厚さが薄い薄層部と、が形成されたことを特徴とする。
Specifically, the vacuum heat insulating material according to the present invention is:
A vacuum heat insulating material including a core material part, and an outer packaging material that houses the core material part and can maintain the inside in a reduced pressure state,
The core part is
At least one first core material;
And a separate body from the first core material, and at least one second core material,
The second core material overlaps at least partly with the first core material;
A thick layer portion including the first core material and the second core material;
A thin layer portion including the first core material and having a thickness smaller than the thick layer portion is formed.

本発明に係る真空断熱材は、芯材部と外包材とを含む。外包材は、芯材部を収納できるものであるとともに、外包材の内部を減圧した状態に維持できるものである。   The vacuum heat insulating material according to the present invention includes a core material portion and an outer packaging material. The outer packaging material can store the core material portion and can maintain the inside of the outer packaging material in a decompressed state.

上述した芯材部は、第1の芯材と第2の芯材とを含む。これらの第1の芯材と第2の芯材とは、別体に構成されている。また、第1の芯材と第2の芯材との各々は、少なくとも1つ以上あればよい。   The core member described above includes a first core member and a second core member. The first core material and the second core material are configured separately. Further, at least one of the first core material and the second core material may be provided.

また、第2の芯材が、第1の芯材と少なくとも一部で重なるように構成されている。すなわち、第1の芯材と第2の芯材とが重なる態様は、第2の芯材の全体が、第1の芯材と一部と重なっている態様や、第2の芯材の一部が、第1の芯材と一部と重なっている態様や、第2の芯材の一部が、第1の芯材と全体と重なっている態様がある。   Further, the second core material is configured to overlap at least partly with the first core material. That is, the aspect in which the first core material and the second core material overlap each other is an aspect in which the entire second core material overlaps with the first core material or one of the second core materials. There is an aspect in which the part overlaps with the first core material and a part of the second core material overlaps with the first core material.

なお、第1の芯材と第2の芯材とが重なっている箇所には、接着剤等の接合するための部材が存在しないものが好ましい。   In addition, it is preferable that a member for joining such as an adhesive does not exist in a place where the first core member and the second core member overlap.

さらに、芯材部には、第1の芯材と第2の芯材とによって、厚層部と薄層部とが形成されている。   Further, a thick layer portion and a thin layer portion are formed in the core member portion by the first core member and the second core member.

厚層部は、第1の芯材と第2の芯材とを含む。すなわち、厚層部は、第1の芯材と第2の芯材とを少なくとも含んでいればよく、厚層部に、さらに他の部材が含まれていてもよい。   The thick layer portion includes a first core material and a second core material. That is, the thick layer portion only needs to include at least the first core material and the second core material, and the thick layer portion may further include another member.

薄層部は、第1の芯材を含み、さらに、薄層部の厚さが厚層部の厚さよりも薄くなるように形成されている。すなわち、薄層部は、薄層部の厚さが厚層部の厚さよりも薄くなっていれば、第1の芯材の他にさらなる別の部材が含まれていてもよい。   The thin layer portion includes the first core member, and is formed so that the thickness of the thin layer portion is thinner than the thickness of the thick layer portion. That is, the thin layer portion may include another member in addition to the first core material as long as the thickness of the thin layer portion is thinner than the thickness of the thick layer portion.

このような構成としたことにより、第1の芯材と第2の芯材とを重ね合わせれば芯材部を構成できるので、真空断熱材を容易に製造することができ、製造工程を簡素化することができる。   By adopting such a configuration, if the first core material and the second core material are overlapped, the core material portion can be configured, so that the vacuum heat insulating material can be easily manufactured, and the manufacturing process is simplified. can do.

また、薄層部が形成されているので、薄層部で折り曲げることができ、折り曲げやすい真空断熱材を提供することができる。さらに、薄層部には、少なくとも第一の第1の芯材が含まれているので、折り曲げた場合であっても、折り曲げた箇所の断熱効果を維持することができる。   Moreover, since the thin layer part is formed, the vacuum heat insulating material which can be bent in a thin layer part and is easy to bend can be provided. Furthermore, since at least the first first core material is included in the thin layer portion, it is possible to maintain the heat insulating effect of the bent portion even when the thin layer portion is bent.

さらに、上述した厚層部や薄層部の一部に厚さが一定でない部分が含まれている場合であっても、厚層部や薄層部の全体的なおおよその厚さや、平均的な厚さを用いることによって、薄層部の厚さが厚層部の厚さよりも薄いか否かを判断することができる。   Furthermore, even when a portion of the thick layer portion or the thin layer portion described above includes a portion where the thickness is not constant, an overall approximate thickness of the thick layer portion or the thin layer portion, or an average By using an appropriate thickness, it is possible to determine whether or not the thickness of the thin layer portion is thinner than the thickness of the thick layer portion.

また、上述したように、第1の芯材と第2の芯材とが重なっている箇所には、接着剤等の接合するための部材が存在しないものが好ましい。さらに、第1の芯材と第2の芯材とが、本来、別々に構成され、第1の芯材と第2の芯材との間に、第1の芯材と第2の芯材とは異なる材質からなる層や、第1の芯材や第2の芯材が変質した層等の層が介在するものであれば、第1の芯材と第2の芯材とは別体である。   In addition, as described above, it is preferable that a member for joining such as an adhesive does not exist in a place where the first core member and the second core member overlap. Furthermore, the first core material and the second core material are originally configured separately, and the first core material and the second core material are between the first core material and the second core material. The first core material and the second core material are separated from each other as long as a layer made of a material different from the above, or a layer such as a layer in which the first core material or the second core material is altered is interposed. It is.

さらに、上述した厚層部や薄層部の大小や広狭にはよらない。例えば、厚層部が複数形成されるような場合に、隣り合う厚層部が密接するように形成されていても、隣り合う厚層部の間で折り曲げることができれば、折り曲げることができる箇所は薄層部であり、折り曲げることによって、薄層部の存在を確認できるので、厚層部と薄層部との双方が形成された真空断熱材である。   Furthermore, it does not depend on the size or width of the thick layer portion or thin layer portion described above. For example, in the case where a plurality of thick layer portions are formed, even if adjacent thick layer portions are formed in close contact with each other, if they can be folded between adjacent thick layer portions, the portions that can be folded are Since it is a thin layer part and can confirm presence of a thin layer part by bending, it is a vacuum heat insulating material in which both the thick layer part and the thin layer part were formed.

さらにまた、厚層部が複数形成されるような場合に、折り曲げたときに、隣り合う厚層部の向かい合う端部が当接し合ったり押圧し合ったりするものが好ましい。このようにすることで、折り曲げた箇所の断熱効果を高めることができる。   Furthermore, when a plurality of thick layer portions are formed, it is preferable that the opposite end portions of adjacent thick layer portions come into contact with each other or be pressed together when bent. By doing in this way, the heat insulation effect of the bent part can be improved.

本発明に係る真空断熱材は、
前記薄層部の曲げ剛性が、前記厚層部の曲げ剛性よりも小さいものが好ましい。
The vacuum heat insulating material according to the present invention is
The thin layer portion preferably has a bending rigidity smaller than that of the thick layer portion.

このようにすることで、薄層部は、厚さが薄いだけではなく、曲げ剛性も小さいので、より折り曲げを容易にすることができる。   By doing so, the thin layer portion is not only thin, but also has a small bending rigidity, so that the bending can be facilitated.

本発明に係る真空断熱材は、
前記第1の芯材は、第1の厚さを有する略板状の形状を有し、
前記第2の芯材は、前記第1の厚さよりも厚い第2の厚さを有する略板状の形状を有するものがより好ましい。
The vacuum heat insulating material according to the present invention is
The first core member has a substantially plate shape having a first thickness,
More preferably, the second core member has a substantially plate-like shape having a second thickness that is greater than the first thickness.

第1の芯材や第2の芯材を、このような形状にすることで、製造をより容易にでき、製造工程をさらに簡素化することができる。   By making the first core material and the second core material into such a shape, the manufacturing can be facilitated and the manufacturing process can be further simplified.

本発明に係る真空断熱材は、
少なくとも2つの前記第2の芯材が、互いに離隔して前記薄層部に沿って並置され、
前記厚層部の間に前記薄層部が配置されたものがさらに好ましい。
The vacuum heat insulating material according to the present invention is
At least two of the second core members are juxtaposed along the thin layer portion apart from each other;
More preferably, the thin layer portion is disposed between the thick layer portions.

第2の芯材が、互いに離隔しているので、製造を容易にすることができるとともに、隣り合う厚層部の間に薄層部が位置づけられているので、薄層部で的確に折り曲げることができ、折り曲げ加工を容易にすることができる。   Since the second core members are separated from each other, the manufacturing can be facilitated, and the thin layer portion is positioned between the adjacent thick layer portions, so that the second core material can be folded accurately at the thin layer portion. And bending can be facilitated.

さらにまた、本発明に係る真空断熱材は、
前記薄層部は屈曲部を有し、
前記屈曲部を有する前記薄層部を挟む2つの前記厚層部が所定の角度をなすものが好ましい。
Furthermore, the vacuum heat insulating material according to the present invention is:
The thin layer portion has a bent portion,
It is preferable that the two thick layer portions sandwiching the thin layer portion having the bent portion form a predetermined angle.

薄層部のみが折れ曲がるように変形加工されて、薄層部に屈曲部が形成されるものが好ましい。薄層部を挟んで隣り合う2つの厚層部の間をなす角度が、所望する角度をなすように、薄層部を折り曲げて変形加工するのが好ましい。この所望する角度は、真空断熱材が配置される機器の形状に応じて適宜定めることができる。   It is preferable that the thin layer portion is deformed so that only the thin layer portion is bent and a bent portion is formed in the thin layer portion. It is preferable that the thin layer portion is bent and deformed so that an angle between two adjacent thick layer portions sandwiching the thin layer portion forms a desired angle. This desired angle can be appropriately determined according to the shape of the device in which the vacuum heat insulating material is disposed.

薄層部を折り曲げる方向は、薄層部を挟む2つの厚層部のうちの一方を基準にして、時計回りに他方の厚層部を折り曲げるような方向でも、反時計回りに折り曲げるような方向でもよい。例えば、薄層部を挟む2つの厚層部が、薄層部に対して同じ側に配置されている場合には、第2の芯材が配置されている側に折り曲げる、すなわち、折り曲げることによって、第2の芯材が次第に向かい合うような方向に折り曲げても、また、第2の芯材が配置されていない側に折り曲げる、すなわち、折り曲げることによって、第2の芯材が次第に背中合わせになるような方向に折り曲げてもよい。   The direction in which the thin layer portion is folded is a direction in which the other thick layer portion is folded in the counterclockwise direction with respect to one of the two thick layer portions sandwiching the thin layer portion. But you can. For example, when two thick layer portions sandwiching the thin layer portion are arranged on the same side with respect to the thin layer portion, they are bent to the side where the second core member is arranged, that is, by bending Even if the second core member is bent in a direction that gradually faces each other, the second core member is bent back to the side where the second core member is not disposed. It may be bent in any direction.

本発明に係る真空断熱材は、
芯材部と、前記芯材部を収納しかつ内部を減圧状態に維持できる外包材と、を含む真空断熱材であって、
前記芯材部は、
略平板状の単一の第1の芯材と、
前記第1の芯材よりも小さく、かつ、略平板上の複数の第2の芯材と、を含み、
前記複数の第2の芯材は、互いに離隔し、かつ、前記第1の芯材上に並設され、
前記第1の芯材の曲げ剛性が、前記複数の第2の芯材の曲げ剛性よりも小さいことを特徴とするものが望ましい。
The vacuum heat insulating material according to the present invention is
A vacuum heat insulating material including a core material part, and an outer packaging material that houses the core material part and can maintain the inside in a reduced pressure state,
The core part is
A substantially flat single first core material;
A plurality of second core members that are smaller than the first core member and are substantially flat.
The plurality of second core members are spaced apart from each other and arranged side by side on the first core member,
It is desirable that the bending rigidity of the first core material is smaller than the bending rigidity of the plurality of second core materials.

このような構成としたことにより、第1の芯材と第2の芯材とを重ね合わせれば芯材部を構成できるので、真空断熱材を容易に製造することができ、製造工程を簡素化することができる。   By adopting such a configuration, if the first core material and the second core material are overlapped, the core material portion can be configured, so that the vacuum heat insulating material can be easily manufactured, and the manufacturing process is simplified. can do.

また、第1の芯材の曲げ剛性が小さいので、第1の芯材で折り曲げることができ、折り曲げやすい真空断熱材を提供することができる。さらに、第1の芯材で折り曲げることができるので、折り曲げた場合であっても、折り曲げた箇所の断熱効果を維持することができる。   Moreover, since the bending rigidity of the 1st core material is small, it can be bent with the 1st core material, and the vacuum heat insulating material which can be bent easily can be provided. Furthermore, since it can be bent with the first core material, the heat insulating effect of the bent portion can be maintained even when it is bent.

本発明に係る真空断熱材は、
前記第1の芯材の厚さは、前記第2の芯材の厚さよりも薄いものがより望ましい。
The vacuum heat insulating material according to the present invention is
The thickness of the first core material is more desirably thinner than the thickness of the second core material.

このような構成としたことにより、第1の芯材の厚さが、第2の芯材の厚さよりも薄いので、折り曲げをより容易にすることができる。   With such a configuration, since the thickness of the first core material is thinner than the thickness of the second core material, bending can be facilitated.

折り曲げやすく、かつ、容易に製造することができるとともに、折り曲げても断熱効果を十分に保つことができる真空断熱材を提供できる。   It is easy to bend and can be easily manufactured, and a vacuum heat insulating material that can sufficiently maintain a heat insulating effect even when bent can be provided.

以下に、本発明の実施例について図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<<<第1の実施の形態>>>
図1は、芯材部110を外包材120に収納するときの状態を示す斜視図である。芯材部110を外包材120に収納して密封し、外包材120の内部を減圧状態にすることによって、第1の実施の形態による真空断熱材100を作ることができる。
<<<< first embodiment >>>>
FIG. 1 is a perspective view showing a state when the core member 110 is housed in the outer packaging material 120. The vacuum heat insulating material 100 according to the first embodiment can be made by housing the core material part 110 in the outer packaging material 120 and sealing it, and making the inside of the outer packaging material 120 in a reduced pressure state.

<<芯材部110>>
<芯材部110の形状>
図2は、第1の実施の形態における真空断熱材100に用いる芯材部110を示す断面図である。
<< Core material part 110 >>
<Shape of the core part 110>
FIG. 2 is a cross-sectional view showing the core member 110 used for the vacuum heat insulating material 100 in the first embodiment.

この図2に示した芯材部110は、1つの第1の芯材112と3つの第2の芯材114とからなる。第1の芯材112が「第1の芯材」に対応し、第2の芯材114が「第2の芯材」に対応する。   The core part 110 shown in FIG. 2 includes one first core material 112 and three second core materials 114. The first core material 112 corresponds to the “first core material”, and the second core material 114 corresponds to the “second core material”.

図1及び図2に示すように、第1の芯材112は、略一定の厚さD1と、長さL1と、幅Wとを有する略薄板状の形状を有する。3つの第2の芯材114の各々は、略一定の厚さd1と、長さl1と、幅Wとを有する略板状の形状を有する。この第1の実施の形態では、3つの第2の芯材114の各々は、厚さd1が、第1の芯材112の厚さD1よりも厚くなるように形成されている。また、第2の芯材114は、長さl1が、第1の芯材112の長さL1よりも短くなるように形成されている。さらに、第2の芯材114は、幅Wが、第1の芯材112の幅Wと略同じになるように形成されている。   As shown in FIGS. 1 and 2, the first core material 112 has a substantially thin plate shape having a substantially constant thickness D1, a length L1, and a width W. Each of the three second core members 114 has a substantially plate shape having a substantially constant thickness d1, a length l1, and a width W. In the first embodiment, each of the three second core members 114 is formed such that the thickness d1 is larger than the thickness D1 of the first core member 112. Further, the second core material 114 is formed such that the length l1 is shorter than the length L1 of the first core material 112. Further, the second core material 114 is formed so that the width W is substantially the same as the width W of the first core material 112.

図1及び図2に示すように、第1の芯材112の上に、3つの第2の芯材114が重ねられて配置されている。3つの第2の芯材114は、間隔Sだけ離隔して隣り合うように配置されている。3つの第2の芯材114は、第1の芯材112の上に単に重ねられていればよく、接着剤や粘着テープ等の接合するための部材を必要としない。なお、第1の芯材112の所望する位置に、3つの第2の芯材114を的確かつ容易に配置するために、第2の芯材114の大きさに応じた若干の窪みや溝を、押圧処理等の処理によって、第1の芯材112の表面に形成しておくのが好ましい。   As shown in FIGS. 1 and 2, three second core members 114 are arranged on the first core member 112 so as to overlap each other. The three second core members 114 are arranged so as to be adjacent to each other with a distance S therebetween. The three second core members 114 need only be superimposed on the first core member 112 and do not require a member for joining such as an adhesive or an adhesive tape. In addition, in order to arrange the three second core members 114 accurately and easily at a desired position of the first core member 112, a slight depression or groove corresponding to the size of the second core member 114 is provided. It is preferable to form on the surface of the first core material 112 by a process such as a pressing process.

なお、図1及び図2に示した例では、3つの第2の芯材114を第1の芯材112の上に配置するものを示したが、第1の芯材112の上に配置する第2の芯材114の数は、少なくとも1つ以上あればよい。後述する図3(a)及び(b)に示すように、第1の芯材112のみからなる薄層部Nにおいて折り曲げることを考慮すれば、第2の芯材114の数を2つ以上にするのが好ましい。   In the example shown in FIGS. 1 and 2, the three second core members 114 are arranged on the first core member 112, but are arranged on the first core member 112. The number of the second core members 114 may be at least one. As shown in FIGS. 3A and 3B to be described later, the number of the second core members 114 is set to two or more in consideration of bending in the thin layer portion N composed of only the first core member 112. It is preferable to do this.

このように、3つの第2の芯材114を第1の芯材112の上に重ねることによって、図2に示すように、第1の芯材112のみからなる薄層部Nと、第1の芯材112及び第2の芯材114からなる厚層部Kとが形成される。上述したように、3つの第2の芯材114を、間隔Sだけ離隔して隣り合うように配置しているので、薄層部Nは、厚さD1と長さSと幅Wとを有する略直方体の形状を有し、厚層部Kは、厚さ(D1+d1)と長さl1と幅Wとを有する略直方体の形状を有する。   In this way, by stacking the three second core members 114 on the first core member 112, as shown in FIG. 2, the thin layer portion N consisting only of the first core member 112, and the first The thick layer portion K made of the core material 112 and the second core material 114 is formed. As described above, since the three second core members 114 are arranged so as to be adjacent to each other by the interval S, the thin layer portion N has the thickness D1, the length S, and the width W. The thick layer portion K has a substantially rectangular parallelepiped shape having a thickness (D1 + d1), a length l1, and a width W.

この第1の実施の形態では、芯材部110は、1つの第1の芯材112と3つの第2の芯材114とからなるので、薄層部Nは、第1の芯材112のみからなり、厚層部Kは、第1の芯材112と第2の芯材114とからなるが、芯材部110が、さらなる別の層、例えば、保護層などや他の部材も含む場合には、このさらなる別の層や他の部材も薄層部Nや厚層部Kに含めることができる。すなわち、薄層部Nには、少なくとも第1の芯材112が含まれ、厚層部Kには、第1の芯材112及び第2の芯材114が少なくとも含まれ、薄層部Nの厚さが、厚層部Kの厚さよりも薄くなるように形成されていればよい。   In the first embodiment, since the core member 110 includes one first core member 112 and three second core members 114, the thin layer portion N includes only the first core member 112. The thick layer portion K is composed of the first core material 112 and the second core material 114, but the core material portion 110 further includes another layer, for example, a protective layer or the like. In addition, this further another layer and other members can also be included in the thin layer portion N and the thick layer portion K. That is, at least the first core material 112 is included in the thin layer portion N, and at least the first core material 112 and the second core material 114 are included in the thick layer portion K. The thickness should just be formed so that it may become thinner than the thickness of the thick layer part K. FIG.

上述した第1の芯材112と第2の芯材114との大きさは、真空断熱材100が配置される装置や機器の大きさに適合するように適宜定めればよい。特に、第1の芯材112と第2の芯材114との厚さは、真空断熱材100が配置される装置や機器の大きさのほかに、後述する第1の芯材112及び第2の芯材114の材料を考慮して、要求される断熱効率となるように、適宜定めればよい。さらに、隣り合う第2の芯材114の間隔Sも、真空断熱材100が配置される装置や機器の大きさのほかに、折り曲げやすさや断熱効率を考慮して適宜定めればよい。   The sizes of the first core material 112 and the second core material 114 described above may be determined as appropriate so as to match the size of the apparatus or device in which the vacuum heat insulating material 100 is disposed. In particular, the thickness of the first core material 112 and the second core material 114 is not limited to the size of the device or device in which the vacuum heat insulating material 100 is disposed, but the first core material 112 and the second core material 112 described later. In consideration of the material of the core material 114, it may be determined as appropriate so as to achieve the required heat insulation efficiency. Furthermore, the interval S between the adjacent second core members 114 may be determined as appropriate in consideration of the ease of folding and the heat insulation efficiency, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 100 is disposed.

なお、後述するように、真空断熱材100を折り曲げるときには、薄層部Nの箇所で折り曲げることができる。   As will be described later, when the vacuum heat insulating material 100 is folded, it can be folded at the thin layer portion N.

<第1の芯材112及び第2の芯材114の材料>
第1の芯材112及び第2の芯材114は、特に限定されないが、繊維集合体、連続気泡発泡体等が使用される。断熱性及び屈曲性の観点から好ましくは繊維集合体である。繊維集合体は、作業性の観点から、上述したように、略板状の形態で使用されることが好ましい。繊維集合体を、そのままの「わた状態」や、微細化した「粉体状」で使用する場合には、芯材部110の取り扱い性が低下するので、芯材部110を、後述する外包材120へ収納する工程が煩雑になり、作業性が悪化する。
<Material of the first core material 112 and the second core material 114>
Although the 1st core material 112 and the 2nd core material 114 are not specifically limited, A fiber aggregate, an open-cell foam, etc. are used. A fiber assembly is preferable from the viewpoint of heat insulation and flexibility. From the viewpoint of workability, the fiber assembly is preferably used in a substantially plate shape as described above. When the fiber assembly is used as it is in the “wadding state” or in the refined “powdered state”, the handling property of the core material part 110 is deteriorated. The process of storing in 120 becomes complicated and the workability deteriorates.

繊維集合体は無機繊維、有機繊維またはそれらの混合物からなる。   The fiber assembly is composed of inorganic fibers, organic fibers, or a mixture thereof.

無機繊維としては、例えば、ガラス繊維(グラスウール)、アルミナ繊維、スラグウール繊維、シリカ繊維、ロックウール等が挙げられる。   Examples of the inorganic fiber include glass fiber (glass wool), alumina fiber, slag wool fiber, silica fiber, rock wool, and the like.

有機繊維としては、例えば、ポリエステル繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ナイロン繊維、ポリビニルアルコール繊維、ポリウレタン繊維、ポリノジック繊維、レーヨン繊維等の合成繊維、麻、絹、綿、羊毛等の天然繊維等が挙げられる。無機繊維および有機繊維は、1種からなる単独繊維または複数種の混合繊維として用いられる。   Examples of organic fibers include polyester fibers, acrylic fibers, polyethylene fibers, polypropylene fibers, nylon fibers, polyvinyl alcohol fibers, polyurethane fibers, polynosic fibers, rayon fibers, and other synthetic fibers, and natural fibers such as hemp, silk, cotton, and wool. Etc. An inorganic fiber and an organic fiber are used as single fiber which consists of 1 type, or multiple types of mixed fiber.

この第1の実施の形態では、第1の芯材112及び第2の芯材114として、グラスウールを用いるのが好ましい。この場合に、減圧した状態で、第1の芯材112の厚さが略3ミリメートルとなり、第2の芯材114の厚さが略9ミリメートルとなるものがより望ましい。   In the first embodiment, glass wool is preferably used as the first core material 112 and the second core material 114. In this case, it is more desirable that the first core material 112 has a thickness of about 3 millimeters and the second core material 114 has a thickness of about 9 millimeters in a decompressed state.

このグラスウールは、抄造法によって略板状(マット状)にしたもの(平均繊維長が略10ミリメートルで、平均繊維径が略3マイクロメートル)を用いる。また、このグラスウールは、減圧した状態では、密度が270キログラム/立方メートルである。グラスウールは、断熱性に優れるが、折り曲げ性にやや劣るため、第2の芯材114として用いるのが好ましく、第1の芯材112として用いる場合は、厚み6ミリメートル以下、特に、4ミリメートル以下とするのが好ましい。   This glass wool is made into a substantially plate shape (mat shape) by a papermaking method (average fiber length is about 10 millimeters and average fiber diameter is about 3 micrometers). Moreover, this glass wool has a density of 270 kilograms / cubic meter in a decompressed state. Glass wool is excellent in heat insulation, but is slightly inferior in bendability, so it is preferably used as the second core material 114. When used as the first core material 112, the thickness is 6 mm or less, particularly 4 mm or less. It is preferable to do this.

また、この第1の実施の形態では、第1の芯材112としてポリエチレンテレフタレート繊維(以下、PET繊維と称する。)を用い、第2の芯材114としてグラスウールを用いるのがより好ましい。この場合に、減圧した状態で、第1の芯材112の厚さが略3ミリメートルとなり、第2の芯材114の厚さが略9ミリメートルとなるものがさらに好ましい。   In the first embodiment, it is more preferable to use polyethylene terephthalate fibers (hereinafter referred to as PET fibers) as the first core material 112 and glass wool as the second core material 114. In this case, it is more preferable that the first core material 112 has a thickness of approximately 3 millimeters and the second core material 114 has a thickness of approximately 9 millimeters in a decompressed state.

このグラスウールは、上述したものと同様のものを用いる。一方、PET繊維は、繊維長が略51ミリメートルのポリエチレンテレフタレート繊維であり、繊維をニードルパンチ法によって略板状(シート状)に加工したもので、加工直後のシート目付は550グラム/平方メートルである。このPET繊維は、減圧した状態では、密度が220キログラム/立方メートルである。PET繊維は、折り曲げ性に優れており第1の芯材112として用いるのに特に好ましい。   As this glass wool, the same one as described above is used. On the other hand, the PET fiber is a polyethylene terephthalate fiber having a fiber length of about 51 millimeters, which is obtained by processing the fiber into a substantially plate shape (sheet shape) by a needle punch method, and the sheet basis weight immediately after processing is 550 grams / square meter. . The PET fiber has a density of 220 kilograms / cubic meter under reduced pressure. The PET fiber is excellent in bendability and is particularly preferable for use as the first core material 112.

さらに、この第1の実施の形態では、第1の芯材112としてPET繊維を用い、第2の芯材114として硬質ウレタン発泡体を用いるのが望ましい。この場合に、減圧した状態で、第1の芯材112の厚さが略3ミリメートルとなり、第2の芯材114の厚さが略10ミリメートルとなるものがより望ましい。   Further, in the first embodiment, it is desirable to use PET fibers as the first core material 112 and to use a hard urethane foam as the second core material 114. In this case, it is more desirable that the first core material 112 has a thickness of approximately 3 millimeters and the second core material 114 has a thickness of approximately 10 millimeters in a decompressed state.

このPET繊維は、上述したものと同様のものを用いる。一方、硬質ウレタン発泡体は、連続気泡硬質ウレタンフォーム(密度が、55キログラム/立方メートルであり、平均セル径が75マイクロメートルで、独立気泡率が5パーセント)である。硬質ウレタン発泡体は軽量であるが、折曲げ性に乏しいため、第2の芯材114として用いるのが好ましい。   The same PET fibers as those described above are used. On the other hand, the rigid urethane foam is an open-cell rigid urethane foam (density is 55 kilograms / cubic meter, average cell diameter is 75 micrometers, and closed cell ratio is 5%). The hard urethane foam is lightweight, but it is preferably used as the second core material 114 because of its poor bendability.

上述した3つの例のように、第1の芯材112の厚さ及び材質と、第2の芯材114の厚さ及び材質とを適宜定めることによって、薄層部Nの曲げ剛性を、厚層部Kの曲げ剛性よりも小さくすることができる。   As in the above-described three examples, the thickness and material of the first core material 112 and the thickness and material of the second core material 114 are appropriately determined, whereby the bending rigidity of the thin layer portion N is increased. The bending rigidity of the layer portion K can be made smaller.

なお、第2の芯材114の厚さを、上述した3つの例に示したものよりも厚くすることによって、断熱効率を高めることができるので、より好ましいものとなる。   In addition, since the heat insulation efficiency can be improved by making the thickness of the 2nd core material 114 thicker than what was shown in the three examples mentioned above, it becomes more preferable.

<<外包材120>>
<外包材120の形状>
上述したように、図1は、芯材部110を外包材120に収納するときの状態を示す斜視図である。
<< Outer packaging material 120 >>
<Shape of outer packaging material 120>
As described above, FIG. 1 is a perspective view showing a state when the core member 110 is housed in the outer packaging material 120.

外包材120は、図1に示すように、2枚のシート状の外包シート122a及び122bによって成形された袋状の形状を有する。2枚の外包シート122a及び122bの各々は、同じ大きさの正方形や長方形の形状を有する。2枚の外包シート122a及び122bが、互いに重なり合うようにし、2枚の外包シート122a及び122bの4つの辺のうちの3つの辺の縁をヒートシールすることによって袋状に形成することができる。ヒートシールしなかった1つの辺が、袋状の外包材120の開口部124となる。外包材120を袋状の形状にすることで、外包材120の内部を減圧した後、開口部124を形成する1つの辺をヒートシールすることで、真空断熱材100を形成でき、開口部124のみをヒートシールすればよいので、作業の効率を高めることができる。   As shown in FIG. 1, the outer packaging material 120 has a bag-like shape formed by two sheet-like outer packaging sheets 122a and 122b. Each of the two outer sheets 122a and 122b has a square or rectangular shape having the same size. The two outer sheets 122a and 122b can be formed in a bag shape by overlapping each other and heat-sealing the edges of three sides of the four sides of the two outer sheets 122a and 122b. One side that is not heat-sealed becomes the opening 124 of the bag-shaped outer packaging material 120. By making the outer packaging material 120 into a bag-like shape, the inside of the outer packaging material 120 is decompressed, and then one side forming the opening 124 is heat-sealed, whereby the vacuum heat insulating material 100 can be formed. Since it is sufficient to heat seal only, work efficiency can be improved.

2枚の外包シート122a及び122bの各々は、最外層と最内層とを含む複数の層(図示せず)から構成されている。外包シート122a及び122bの最内層が、袋状の外包材120の裏面となるように構成し、すなわち、最内層が、袋状の外包材120の内面となるように構成される。このようにすることで、袋状の外包材120の内部の真空状態を十分に維持することができる。   Each of the two outer packaging sheets 122a and 122b includes a plurality of layers (not shown) including an outermost layer and an innermost layer. The innermost layers of the outer packaging sheets 122a and 122b are configured to be the back surface of the bag-shaped outer packaging material 120, that is, the innermost layer is configured to be the inner surface of the bag-shaped outer packaging material 120. By doing in this way, the vacuum state inside the bag-shaped outer packaging material 120 can be sufficiently maintained.

外包材120(外包シート122a及び122b)の大きさは、芯材部110を効率よくかつ的確に収納できる程度に、芯材部110より大きいものが好ましい。   The size of the outer packaging material 120 (the outer packaging sheets 122a and 122b) is preferably larger than the core material portion 110 so that the core material portion 110 can be stored efficiently and accurately.

<外包シート122a及び122bの材料>
外包シート122a及び122bは、ガスバリア性を有し内部を減圧に維持でき、かつ、ヒートシール可能なものであれば、どのようなものでも用いることができる。上述したように、外包シート122a及び122bの各々は、単層又は複数の層から構成されており、層の各々には種々の材料が用いられる。
<Material of the outer sheet 122a and 122b>
As the outer sheet 122a and 122b, any sheet can be used as long as it has gas barrier properties, can maintain the inside at a reduced pressure, and can be heat sealed. As described above, each of the envelope sheets 122a and 122b is composed of a single layer or a plurality of layers, and various materials are used for each of the layers.

外包シート122a及び122bの各々の好適な具体例として、以下のガスバリアフィルムがある。例えば、最外層がナイロンであり、第1の中間層がアルミ蒸着PET(ポリエチレンテレフタレート)であり、第2の中間層がアルミ箔であり、最内層が高密度ポリエチレンである4層構造のガスバリアフィルムがある。また、最外層がポリエチレンテレフタレート樹脂であり、中間層がアルミ箔であり、最内層が高密度ポリエチレン樹脂である3層構造のガスバリアフィルムがある。さらに、最外層がPET樹脂であり、中間層がアルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂であり、最内層が高密度ポリエチレン樹脂である3層構造のガスバリアフィルムがある。   As a preferable specific example of each of the outer sheet 122a and 122b, there is the following gas barrier film. For example, a four-layer gas barrier film in which the outermost layer is nylon, the first intermediate layer is aluminum-deposited PET (polyethylene terephthalate), the second intermediate layer is aluminum foil, and the innermost layer is high-density polyethylene. There is. There is a gas barrier film having a three-layer structure in which the outermost layer is a polyethylene terephthalate resin, the intermediate layer is an aluminum foil, and the innermost layer is a high-density polyethylene resin. Furthermore, there is a gas barrier film having a three-layer structure in which the outermost layer is a PET resin, the intermediate layer is an ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer, and the innermost layer is a high-density polyethylene resin.

<<ゲッター剤130>>
<ゲッター剤130の機能>
外包材120の中には、ゲッター剤130(図示せず)が設けられてもよい。外包材120の内部を減圧して開口部124をヒートシールした後に、外包材120の内部では、ガス、例えば、芯材部110からアウトガスや水分が発生する場合がある。また、外包材120の外部から内部にガスや水分が侵入してくる場合もある。このため、ガスや水分を吸着することができるゲッター剤130を、外包材120の内部に芯材部110とともに収納することが好ましい。
<< Getter Agent 130 >>
<Function of getter agent 130>
A getter agent 130 (not shown) may be provided in the outer packaging material 120. After the inside of the outer packaging material 120 is decompressed and the opening 124 is heat-sealed, gas, for example, outgas or moisture may be generated from the core material portion 110 inside the outer packaging material 120. In addition, gas or moisture may enter from the outside to the inside of the outer packaging material 120. For this reason, it is preferable to store the getter agent 130 capable of adsorbing gas and moisture together with the core member 110 in the outer packaging material 120.

このように、ゲッター剤130を外包材120の内部に収納することで、ゲッター剤130によってガスや水分を吸収できるので、真空断熱材100の断熱効果をより長く持続させることができる。   In this way, by storing the getter agent 130 inside the outer packaging material 120, gas and moisture can be absorbed by the getter agent 130, so that the heat insulating effect of the vacuum heat insulating material 100 can be maintained for a longer time.

<ゲッター剤130の数及び配置>
図3に示したように、真空断熱材100は、袋状の外包材120に芯材部110を収納し、開口をヒートシールすることによって形成される。このため、外包材120の内部は、真空断熱材100の全体で閉鎖された1つの空間となるので、真空断熱材100には、1つのゲッター剤130のみを配置すればよい。
<Number and arrangement of getter agents 130>
As shown in FIG. 3, the vacuum heat insulating material 100 is formed by housing the core part 110 in a bag-shaped outer packaging material 120 and heat-sealing the opening. For this reason, since the inside of the outer packaging material 120 becomes one space closed by the entire vacuum heat insulating material 100, only one getter agent 130 may be disposed in the vacuum heat insulating material 100.

また、ゲッター剤130は、真空断熱材100の略中心の位置や、その近くになるようにすることで、真空断熱材100の全体に亘ってガスや水分を吸着させることができ、ゲッター剤130の機能を発揮させることができる。   Further, the getter agent 130 can adsorb gas and moisture over the entire vacuum heat insulating material 100 by being positioned at or near the center of the vacuum heat insulating material 100. The function of can be demonstrated.

さらに、真空断熱材100や芯材部110の大きさに応じて、ガスや水分の量が変化するので、ゲッター剤130の大きさも、真空断熱材100や芯材部110の大きさに応じて適宜定めればよい。   Furthermore, since the amount of gas and moisture changes depending on the size of the vacuum heat insulating material 100 and the core material part 110, the size of the getter agent 130 also depends on the size of the vacuum heat insulating material 100 and the core material part 110. What is necessary is just to determine suitably.

<ゲッター剤130の材質>
ガスや水分を吸着できる物質は、特に、限定されるものではなく、物理的にガスや水分等を吸着するものとして、例えば、活性炭、シリカゲル、酸化アルミニウム、モレキュラーシーブ、ゼオライト等がある。また、化学的にガスや水分等を吸着するものは、例えば、酸化カルシウム、酸化バリウム、塩化カルシウム、酸化マグネシウム、塩化マグネシウム等や、鉄、亜鉛等の金属粉素材、バリウム−リチウム系合金、ジルコニウム系合金等がある。
<Material of getter agent 130>
The substance capable of adsorbing gas and moisture is not particularly limited, and examples of substances that physically adsorb gas and moisture include activated carbon, silica gel, aluminum oxide, molecular sieve, and zeolite. Also, those that chemically adsorb gas, moisture, etc. are, for example, calcium oxide, barium oxide, calcium chloride, magnesium oxide, magnesium chloride, metal powder materials such as iron and zinc, barium-lithium alloys, zirconium There are system alloys.

<<真空断熱材100>>
図1に示したように、袋状の外包材120の内部に、芯材部110を収納した後、外包材120の内部を減圧し、開口部124をヒートシールすることによって、減圧状態を維持でき、真空断熱材100を形成することができる。
<< Vacuum insulation 100 >>
As shown in FIG. 1, after the core part 110 is stored in the bag-shaped outer packaging material 120, the inside of the outer packaging material 120 is decompressed and the opening 124 is heat-sealed to maintain the decompressed state. The vacuum heat insulating material 100 can be formed.

<<真空断熱材100の折り曲げ>>
図3は、真空断熱材100を折り曲げる過程を示す断面図である。図3(a)は、第2の芯材114が配置されている側に折り曲げる態様を示し、図3(b)は、第2の芯材114が配置されていない側に折り曲げる態様を示す。なお、図3(a)及び図3(b)のいずれも、第1の芯材112と第2の芯材114とを明確に示すために外包材120は、省略して示した。
<< Bending of vacuum heat insulating material 100 >>
FIG. 3 is a cross-sectional view showing a process of bending the vacuum heat insulating material 100. FIG. 3A shows a mode of bending to the side where the second core material 114 is arranged, and FIG. 3B shows a mode of bending to the side where the second core material 114 is not arranged. 3A and 3B, the outer packaging material 120 is omitted in order to clearly show the first core material 112 and the second core material 114.

図3(a)のように折り曲げる場合であっても、図3(b)のように折り曲げる場合であっても、薄層部Nで折り曲げられ、薄層部Nに屈曲部が形成される。   Even when it is bent as shown in FIG. 3A or when it is bent as shown in FIG. 3B, it is bent at the thin layer portion N, and a bent portion is formed at the thin layer portion N.

図3(a)のように折り曲げた場合、すなわち、反時計回りに折り曲げた場合には、折り曲げることによって、隣り合う第2の芯材114の端部や端面が当接し合ったり押圧し合ったりするので、第1の芯材112のみならず、第2の芯材114によっても断熱することができ、折り曲げた箇所の断熱効率を、厚層部Kと同様にすることができる。   When bent as shown in FIG. 3A, that is, when bent in the counterclockwise direction, the ends and end surfaces of the adjacent second core members 114 come into contact with each other or are pressed against each other. Therefore, heat insulation can be performed not only by the first core material 112 but also by the second core material 114, and the heat insulation efficiency of the bent portion can be made the same as that of the thick layer portion K.

図3(b)のように折り曲げた場合、すなわち、時計回りに折り曲げた場合には、隣り合う第2の芯材114の端部や端面が当接し合ったり押圧し合ったりすることはないが、折り曲げ加工に要する力を低減できるので、折り曲げを容易にすることができる。   When it is bent as shown in FIG. 3B, that is, when it is bent clockwise, the end portions and end faces of the adjacent second core members 114 do not come into contact with each other or are pressed against each other. Since the force required for the bending process can be reduced, the bending can be facilitated.

図3(a)のように折り曲げるか、図3(b)のように折り曲げるかは、真空断熱材100が配置される装置や機器の形状や、求められる断熱効率や、折り曲げ加工の容易さに応じて適宜決めればよい。また、真空断熱材100を折り曲げる角度も、真空断熱材100が配置される装置や機器の形状に応じて定めればよい。いずれの場合であっても、薄層部Nのみに屈曲部が形成されるように、折り曲げるのが好ましい。   Whether it is bent as shown in FIG. 3A or as shown in FIG. 3B depends on the shape of the apparatus or equipment in which the vacuum heat insulating material 100 is arranged, the required heat insulation efficiency, and the ease of bending. What is necessary is just to decide suitably according to. In addition, the angle at which the vacuum heat insulating material 100 is bent may be determined according to the shape of the apparatus or device in which the vacuum heat insulating material 100 is disposed. In any case, it is preferable to bend so that the bent portion is formed only in the thin layer portion N.

<<<第2の実施の形態>>>
図4(a)は、第2の実施の形態における真空断熱材200に用いる芯材部210を示す断面図である。
<<< Second Embodiment >>>
FIG. 4A is a cross-sectional view showing a core material portion 210 used for the vacuum heat insulating material 200 in the second embodiment.

この第2の実施の形態における芯材部210は、第1の芯材112と3つの第2の芯材114とからなる。これらは、上述した第1の実施の形態における第1の芯材112と第2の芯材114と同じものを用いており、同様の大きさ、形状、材質及び機能を有し、図4(a)に示すように、同一の符号を付した。第1の芯材112が「第1の芯材」に対応し、第2の芯材114が「第2の芯材」に対応する。   The core part 210 in the second embodiment includes a first core material 112 and three second core materials 114. These are the same as the first core material 112 and the second core material 114 in the first embodiment described above, and have the same size, shape, material and function. As shown to a), the same code | symbol was attached | subjected. The first core material 112 corresponds to the “first core material”, and the second core material 114 corresponds to the “second core material”.

なお、第2の実施の形態における真空断熱材200に用いられる外包材(図示せず)は、第1の実施の形態における外包材120と同様の材料、並びに機能を有する。また、第2の実施の形態における真空断熱材200に用いられるゲッター剤(図示せず)も、第1の実施の形態におけるものと同様の形状、大きさ及び材料、並びに機能を有する。芯材部210を外包材120に収納して密封し、外包材120の内部を減圧状態にすることによって、第2の実施の形態による真空断熱材200を作ることができる。   In addition, the outer packaging material (not shown) used for the vacuum heat insulating material 200 in the second embodiment has the same materials and functions as the outer packaging material 120 in the first embodiment. Moreover, the getter agent (not shown) used for the vacuum heat insulating material 200 in the second embodiment also has the same shape, size, material, and function as those in the first embodiment. The vacuum heat insulating material 200 according to the second embodiment can be made by housing the core part 210 in the outer packaging material 120 and sealing it, and making the inside of the outer packaging material 120 in a reduced pressure state.

この第2の実施の形態では、第1の実施の形態とは異なり、3つの第2の芯材114は、互いに密接して隣り合うように配置されている。第2の実施の形態でも、第1の芯材112の上に、3つの第2の芯材114が重ねられて配置されており、第1の実施の形態と同様に、3つの第2の芯材114は、第1の芯材112の上に単に重ねられていればよく、接着剤や粘着テープ等の接合するための部材を必要としない。なお、第1の実施の形態と同様に、第1の芯材112の所望する位置に、3つの第2の芯材114を的確かつ容易に配置するために、第2の芯材114の大きさに応じた若干の窪みや溝を、押圧処理等の処理によって、第1の芯材112の表面に形成しておくのが好ましい。   In the second embodiment, unlike the first embodiment, the three second core members 114 are arranged in close proximity to each other. Also in the second embodiment, three second core members 114 are arranged on the first core member 112 so as to overlap each other, and like the first embodiment, three second core members 114 are arranged. The core material 114 only needs to be superimposed on the first core material 112, and does not require a member such as an adhesive or an adhesive tape. As in the first embodiment, the size of the second core material 114 is set in order to accurately and easily arrange the three second core materials 114 at desired positions of the first core material 112. It is preferable to form some depressions and grooves corresponding to the thickness on the surface of the first core material 112 by a process such as a pressing process.

なお、図4(a)に示した例では、3つの第2の芯材114を第1の芯材112の上に配置するものを示したが、第1の芯材112の上に配置する第2の芯材114の数は、少なくとも1つ以上あればよい。   In the example shown in FIG. 4A, the three second core members 114 are arranged on the first core member 112, but are arranged on the first core member 112. The number of the second core members 114 may be at least one.

このように、3つの第2の芯材114を第1の芯材112の上に重ねることによって、第1の実施の形態と同様に、図4(a)に示すように、第1の芯材112のみからなる薄層部Nと、第1の芯材112及び第2の芯材114からなる厚層部Kとが形成される。上述したように、3つの第2の芯材114を、互いに密接して隣り合うように配置しているので、第1の実施の形態の芯材部210とは異なり、薄層部Nは、厚さD1と幅Wとを有して長さが極めて短い形状、すなわちおおよそ薄膜状の形状を有し、厚層部Kは、厚さ(D1+d1)と長さl1と幅Wとを有する略直方体の形状を有する。   In this way, by stacking the three second core members 114 on the first core member 112, as in the first embodiment, as shown in FIG. A thin layer portion N made of only the material 112 and a thick layer portion K made of the first core material 112 and the second core material 114 are formed. As described above, since the three second core members 114 are arranged so as to be closely adjacent to each other, unlike the core member portion 210 of the first embodiment, the thin layer portion N is It has a thickness D1 and a width W and has a very short shape, that is, an approximately thin-film shape, and the thick layer portion K has a thickness (D1 + d1), a length l1 and a width W. It has a rectangular parallelepiped shape.

なお、この第2の実施の形態の場合には、薄層部Nは、薄膜状の形状を有し、認識し難いが、隣り合う厚層部Kの間で折り曲げることができれば、折り曲げることができる箇所は薄層部Nであり、折り曲げることによって、薄層部Nの存在を確認できる。   In the case of the second embodiment, the thin layer portion N has a thin film shape and is difficult to recognize, but can be folded if it can be folded between adjacent thick layer portions K. The portion that can be formed is the thin layer portion N, and the presence of the thin layer portion N can be confirmed by bending.

この第2の実施の形態においても、芯材部210が、さらなる別の層、例えば、保護層などや他の部材も含む場合には、このさらなる別の層や他の部材も薄層部Nや厚層部Kに含めることができる。すなわち、薄層部Nには、少なくとも第1の芯材112が含まれ、厚層部Kには、第1の芯材112及び第2の芯材114が少なくとも含まれ、薄層部Nの厚さが、厚層部Kの厚さよりも薄くなるように形成されていればよい。   Also in the second embodiment, when the core part 210 includes another layer, for example, a protective layer or the like, the other layer or the other member is also a thin layer part N. Or the thick layer portion K. That is, at least the first core material 112 is included in the thin layer portion N, and at least the first core material 112 and the second core material 114 are included in the thick layer portion K. The thickness should just be formed so that it may become thinner than the thickness of the thick layer part K. FIG.

上述した第1の芯材112と第2の芯材114との大きさは、真空断熱材200が配置される装置や機器の大きさに適合するように適宜定めればよい。特に、第1の芯材112と第2の芯材114との厚さは、真空断熱材200が配置される装置や機器の大きさのほかに、後述する第1の芯材112及び第2の芯材114の材料を考慮して、要求される断熱効率となるように、適宜定めればよい。さらに、隣り合う第2の芯材114の間隔Sも、真空断熱材200が配置される装置や機器の大きさのほかに、折り曲げやすさや断熱効率を考慮して適宜定めればよい。   The size of the first core material 112 and the second core material 114 described above may be determined as appropriate so as to match the size of the apparatus or device in which the vacuum heat insulating material 200 is disposed. In particular, the thickness of the first core material 112 and the second core material 114 is not limited to the size of the device or equipment in which the vacuum heat insulating material 200 is disposed, and the first core material 112 and the second core material described later are used. In consideration of the material of the core material 114, it may be determined as appropriate so as to achieve the required heat insulation efficiency. Furthermore, the interval S between the adjacent second core members 114 may be determined as appropriate in consideration of the ease of folding and the heat insulation efficiency, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 200 is disposed.

第1の実施の形態の真空断熱材100と同様に、薄層部Nの箇所で折り曲げることで、真空断熱材200を折り曲げることができる。   Similarly to the vacuum heat insulating material 100 of the first embodiment, the vacuum heat insulating material 200 can be bent by bending at the thin layer portion N.

<<<第3の実施の形態>>>
図4(b)は、第3の実施の形態における真空断熱材300に用いる芯材部310を示す断面図である。
<<< Third Embodiment >>>
FIG. 4B is a cross-sectional view showing the core part 310 used for the vacuum heat insulating material 300 in the third embodiment.

この第3の実施の形態における芯材部310は、第1の芯材112と3つの第2の芯材314とからなる。第1の芯材112が「第1の芯材」に対応し、第2の芯材314が「第2の芯材」に対応する。第1の芯材112は、上述した第1の実施の形態や第2の実施の形態における第1の芯材112と同じものを用いており、同様の大きさ、形状、材質及び機能を有し、図4(b)に示すように、同一の符号を付した。また、第2の芯材314は、第2の芯材114と形状が異なる点を除き、第2の芯材114と同様の材質及び機能を有する。   The core part 310 in the third embodiment includes a first core material 112 and three second core materials 314. The first core material 112 corresponds to a “first core material”, and the second core material 314 corresponds to a “second core material”. The first core material 112 is the same as the first core material 112 in the first embodiment and the second embodiment described above, and has the same size, shape, material, and function. In addition, as shown in FIG. The second core material 314 has the same material and function as the second core material 114 except that the second core material 314 has a different shape from the second core material 114.

なお、第3の実施の形態における真空断熱材300に用いられる外包材(図示せず)は、第1の実施の形態における外包材120と同様の材料、並びに機能を有する。また、第3の実施の形態における真空断熱材300に用いられるゲッター剤(図示せず)も、第1の実施の形態におけるものと同様の形状、大きさ及び材料、並びに機能を有する。芯材部310を外包材120に収納して密封し、外包材120の内部を減圧状態にすることによって、第3の実施の形態による真空断熱材300を作ることができる。   In addition, the outer packaging material (not shown) used for the vacuum heat insulating material 300 in the third embodiment has the same materials and functions as the outer packaging material 120 in the first embodiment. Moreover, the getter agent (not shown) used for the vacuum heat insulating material 300 in the third embodiment also has the same shape, size, material, and function as those in the first embodiment. The vacuum heat insulating material 300 according to the third embodiment can be made by housing the core material portion 310 in the outer packaging material 120 and sealing it, and reducing the pressure inside the outer packaging material 120.

図4(b)に示すように、第2の芯材314は、断面形状が略台形形状を有し、2つの傾斜面と上面と下面とを含み、第2の芯材314の全体として、おおよそ板状の形状を有する。この第2の芯材314は、上面が下面よりも小さくなるように形成されている。第2の芯材314では、2つの傾斜面が形成されている箇所は一部分であり、上面が形成されている箇所では、上面と下面との間の距離は、略一定である。したがって、上面が形成されている箇所において、上面と下面との間の距離を第2の芯材314の厚さd1とすることができる。このように、第2の芯材314の全体的なおおよその厚さを第2の芯材314の厚さd1とすることができる。   As shown in FIG. 4B, the second core member 314 has a substantially trapezoidal cross-sectional shape, includes two inclined surfaces, an upper surface, and a lower surface. As a whole of the second core member 314, It has an approximately plate shape. The second core member 314 is formed so that the upper surface is smaller than the lower surface. In the second core member 314, the portion where the two inclined surfaces are formed is a part, and the distance between the upper surface and the lower surface is substantially constant at the portion where the upper surface is formed. Therefore, the distance between the upper surface and the lower surface can be set to the thickness d1 of the second core member 314 at the location where the upper surface is formed. Thus, the overall approximate thickness of the second core material 314 can be the thickness d1 of the second core material 314.

このようにすることで、第2の芯材314は、略一定の厚さd1と、長さl1と、幅Wとを有する略板状の形状を有する。また、第2の芯材314は、厚さd1が、第1の芯材112の厚さD1よりも厚くなるように形成されている。第2の芯材314は、下面の長さl1が、第1の芯材112の長さL1よりも短くなるように形成されている。さらに、第2の芯材314は、幅Wが、第1の芯材112の幅Wと略同じになるように形成されている。   By doing so, the second core member 314 has a substantially plate-like shape having a substantially constant thickness d1, a length l1, and a width W. The second core material 314 is formed so that the thickness d1 is thicker than the thickness D1 of the first core material 112. The second core member 314 is formed so that the length l1 of the lower surface is shorter than the length L1 of the first core member 112. Further, the second core member 314 is formed so that the width W is substantially the same as the width W of the first core member 112.

この第3の実施の形態においても、図4(b)に示すように、第1の芯材112の上に、3つの第2の芯材314が重ねられて配置されている。3つの第2の芯材314は、下面が間隔Sだけ離隔して隣り合うように配置されている。3つの第2の芯材314は、第1の芯材112の上に単に重ねられていればよく、接着剤や粘着テープ等の接合するための部材を必要としない。なお、第1の実施の形態や第2の実施の形態と同様に、第1の芯材112の所望する位置に、3つの第2の芯材314を的確かつ容易に配置するために、第2の芯材314の下面の大きさに応じた若干の窪みや溝を、押圧処理等の処理によって、第1の芯材112の表面に形成しておくのが好ましい。   Also in the third embodiment, as shown in FIG. 4B, three second core members 314 are arranged on the first core member 112 so as to overlap each other. The three second core members 314 are arranged such that their lower surfaces are separated by a distance S and are adjacent to each other. The three second core members 314 only need to be superimposed on the first core member 112, and a member for joining such as an adhesive or an adhesive tape is not required. As in the first embodiment and the second embodiment, in order to accurately and easily arrange the three second core members 314 at desired positions of the first core member 112, It is preferable that a slight depression or groove corresponding to the size of the lower surface of the second core material 314 is formed on the surface of the first core material 112 by a process such as a pressing process.

なお、図4(b)に示した例では、3つの第2の芯材314を第1の芯材112の上に配置するものを示したが、第1の芯材112の上に配置する第2の芯材314の数は、少なくとも1つ以上あればよい。   In the example shown in FIG. 4B, the three second core members 314 are arranged on the first core member 112, but are arranged on the first core member 112. The number of the second core materials 314 may be at least one.

このように、3つの第2の芯材314を第1の芯材112の上に重ねることによって、第1の実施の形態や第2の実施の形態と同様に、図4(b)に示すように、第1の芯材112のみからなる薄層部Nと、第1の芯材112及び第2の芯材314からなる厚層部Kとが形成される。上述したように、3つの第2の芯材314を、間隔Sだけ離隔して隣り合うように配置しているので、薄層部Nは、厚さD1と長さSと幅Wとを有する略直方体の形状を有し、厚層部Kは、おおよその厚さ(D1+d1)とおおよその長さl1と幅Wとを有する略六角柱の形状を有する。   As shown in FIG. 4B, the three second core members 314 are stacked on the first core member 112 in the same manner as in the first embodiment and the second embodiment. Thus, the thin layer part N which consists only of the 1st core material 112, and the thick layer part K which consists of the 1st core material 112 and the 2nd core material 314 are formed. As described above, since the three second core members 314 are arranged so as to be adjacent to each other by the interval S, the thin layer portion N has the thickness D1, the length S, and the width W. The thick layer portion K has a substantially hexagonal column shape having an approximate thickness (D1 + d1), an approximate length l1, and a width W.

この第3の実施の形態においても、芯材部310が、さらなる別の層、例えば、保護層などや他の部材も含む場合には、このさらなる別の層や他の部材も薄層部Nや厚層部Kに含めることができる。すなわち、薄層部Nには、少なくとも第1の芯材112が含まれ、厚層部Kには、第1の芯材112及び第2の芯材314が少なくとも含まれ、薄層部Nの厚さが、厚層部Kの厚さよりも薄くなるように形成されていればよい。   Also in the third embodiment, when the core part 310 includes another layer, for example, a protective layer or the like, the further layer or other member is also a thin layer N. Or the thick layer portion K. That is, at least the first core material 112 is included in the thin layer portion N, and at least the first core material 112 and the second core material 314 are included in the thick layer portion K. The thickness should just be formed so that it may become thinner than the thickness of the thick layer part K. FIG.

上述した第1の芯材112と第2の芯材314との大きさは、真空断熱材300が配置される装置や機器の大きさに適合するように適宜定めればよい。特に、第1の芯材112と第2の芯材314との厚さは、真空断熱材300が配置される装置や機器の大きさのほかに、第1の芯材112及び第2の芯材314の材料を考慮して、要求される断熱効率となるように、適宜定めればよい。さらに、隣り合う第2の芯材314の間隔Sも、真空断熱材300が配置される装置や機器の大きさのほかに、折り曲げやすさや断熱効率を考慮して適宜定めればよい。   The sizes of the first core material 112 and the second core material 314 described above may be determined as appropriate so as to match the size of the apparatus or device in which the vacuum heat insulating material 300 is disposed. In particular, the thicknesses of the first core material 112 and the second core material 314 include the first core material 112 and the second core, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 300 is disposed. In consideration of the material of the material 314, it may be determined as appropriate so as to achieve the required heat insulation efficiency. Furthermore, the spacing S between the adjacent second core members 314 may be determined as appropriate in consideration of the ease of folding and the heat insulation efficiency, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 300 is disposed.

真空断熱材300を折り曲げるときには、薄層部Nの箇所で折り曲げることができる。特に、この第3の実施の形態においては、図3(a)に示したような態様で、すなわち、第2の芯材314が配置されている側に折り曲げる態様で、真空断熱材300を折り曲げた場合には、隣り合う第2の芯材314の向かい合う傾斜面同士が当接し合ったり押圧し合ったりするので、当接したり押圧したりする面積を大きくすることができ、第2の芯材314同士の当接や押圧によって的確に断熱することができ、折り曲げた箇所の断熱効率をより高めることができる。   When the vacuum heat insulating material 300 is folded, it can be folded at the thin layer portion N. In particular, in the third embodiment, the vacuum heat insulating material 300 is bent in the manner shown in FIG. 3A, that is, in the manner in which the second heat insulating material 314 is folded. In this case, since the facing inclined surfaces of the adjacent second core members 314 are in contact with each other or pressed against each other, the area of contact or pressing can be increased, and the second core material can be increased. Heat insulation can be accurately performed by abutting and pressing 314, and the heat insulation efficiency of the bent portion can be further increased.

第2の芯材314に傾斜面が形成されているので、過度に力を加えずに、無理なく真空断熱材300を折り曲げることができ、折り曲げ作業を容易にすることができる。   Since the inclined surface is formed on the second core member 314, the vacuum heat insulating material 300 can be bent without excessive force, and the bending work can be facilitated.

<<<第4の実施の形態>>>
図4(c)は、第4の実施の形態における真空断熱材400に用いる芯材部410を示す断面図である。
<<< Fourth embodiment >>>>
FIG.4 (c) is sectional drawing which shows the core part 410 used for the vacuum heat insulating material 400 in 4th Embodiment.

この第4の実施の形態における芯材部410は、第1の芯材112と3つの第2の芯材314とからなる。これらは、上述した第3の実施の形態における第1の芯材112と第2の芯材314と同様のものを用いており、同様の大きさ、形状、材質及び機能を有し、図4(c)に示すように、同一の符号を付した。第1の芯材112が「第1の芯材」に対応し、第2の芯材314が「第2の芯材」に対応する。   The core material portion 410 in the fourth embodiment includes a first core material 112 and three second core materials 314. These are the same as the first core material 112 and the second core material 314 in the third embodiment described above, and have the same size, shape, material and function. As shown in (c), the same code | symbol was attached | subjected. The first core material 112 corresponds to a “first core material”, and the second core material 314 corresponds to a “second core material”.

なお、第4の実施の形態における真空断熱材400に用いられる外包材(図示せず)も、第1の実施の形態〜第3の実施の形態における外包材120と同様の材料、並びに機能を有する。また、第4の実施の形態における真空断熱材400に用いられるゲッター剤(図示せず)も、第1の実施の形態〜第3の実施の形態におけるものと同様の形状、大きさ及び材料、並びに機能を有する。芯材部410を外包材120に収納して密封し、外包材120の内部を減圧状態にすることによって、第4の実施の形態による真空断熱材400を作ることができる。   The outer packaging material (not shown) used for the vacuum heat insulating material 400 in the fourth embodiment also has the same materials and functions as the outer packaging material 120 in the first to third embodiments. Have. Further, the getter agent (not shown) used for the vacuum heat insulating material 400 in the fourth embodiment is also similar in shape, size and material to those in the first to third embodiments, And has a function. The vacuum heat insulating material 400 according to the fourth embodiment can be made by housing the core material portion 410 in the outer packaging material 120 and sealing it, and making the inside of the outer packaging material 120 in a reduced pressure state.

第3の実施の形態と同様に、第2の芯材314は、断面形状が略台形形状を有し、2つの傾斜面と上面と下面とを含み、おおよそ板状の形状を有する。このため、この第4の実施の形態における第2の芯材314も、上面が形成されている箇所において、上面と下面との間の距離を第2の芯材314の厚さd1とすることができる。このように、第2の芯材314の全体的なおおよその厚さを第2の芯材314の厚さd1とすることができる。   Similar to the third embodiment, the second core member 314 has a substantially trapezoidal cross-sectional shape, includes two inclined surfaces, an upper surface, and a lower surface, and has an approximately plate shape. For this reason, also in the second core member 314 in the fourth embodiment, the distance between the upper surface and the lower surface is set to the thickness d1 of the second core member 314 at the place where the upper surface is formed. Can do. Thus, the overall approximate thickness of the second core material 314 can be the thickness d1 of the second core material 314.

この第4の実施の形態では、図4(c)に示すように、隣り合う第2の芯材314の下面が密接するように、3つの第2の芯材314は配置されている。3つの第2の芯材314は、第1の芯材112の上に単に重ねられていればよく、接着剤や粘着テープ等の接合するための部材を必要としない。なお、第1の実施の形態〜第3の実施の形態と同様に、第1の芯材112の所望する位置に、3つの第2の芯材314を的確かつ容易に配置するために、第2の芯材314の下面の大きさに応じた若干の窪みや溝を、押圧処理等の処理によって、第1の芯材112の表面に形成しておくのが好ましい。   In the fourth embodiment, as shown in FIG. 4C, the three second core members 314 are arranged so that the lower surfaces of the adjacent second core members 314 are in close contact with each other. The three second core members 314 only need to be superimposed on the first core member 112, and a member for joining such as an adhesive or an adhesive tape is not required. As in the first to third embodiments, in order to accurately and easily arrange the three second core members 314 at desired positions of the first core member 112, It is preferable that a slight depression or groove corresponding to the size of the lower surface of the second core material 314 is formed on the surface of the first core material 112 by a process such as a pressing process.

なお、図4(c)に示した例では、3つの第2の芯材314を第1の芯材112の上に配置するものを示したが、第1の芯材112の上に配置する第2の芯材314の数は、少なくとも1つ以上あればよい。   In the example shown in FIG. 4C, the three second core members 314 are arranged on the first core member 112, but are arranged on the first core member 112. The number of the second core materials 314 may be at least one.

上述したように、3つの第2の芯材314を第1の芯材112の上に重ねることによって、第1の実施の形態〜第3の実施の形態と同様に、図4(c)に示すように、第1の芯材112のみからなる薄層部Nと、第1の芯材112及び第2の芯材314からなる厚層部Kとが形成される。上述したように、3つの第2の芯材314を、互いに密接して隣り合うように配置しているので、第1の実施の形態の芯材部110や第3の実施の形態の芯材部310とは異なり、薄層部Nは、厚さD1と幅Wとを有して長さが極めて短い形状、すなわちおおよそ薄膜状の形状を有し、厚層部Kは、厚さ(D1+d1)と長さl1と幅Wとを有する略六角柱の形状を有する。   As described above, by superimposing the three second core members 314 on the first core member 112, as in the first to third embodiments, FIG. As shown, a thin layer portion N consisting only of the first core material 112 and a thick layer portion K consisting of the first core material 112 and the second core material 314 are formed. As described above, since the three second core members 314 are arranged so as to be closely adjacent to each other, the core member 110 of the first embodiment and the core member of the third embodiment. Unlike the portion 310, the thin layer portion N has a thickness D1 and a width W and has a very short shape, that is, an approximately thin film shape, and the thick layer portion K has a thickness (D1 + d1). ), A length 11 and a width W, and a substantially hexagonal column shape.

なお、この第4の実施の形態の場合も、第2の実施の形態と同様に、薄層部Nは、薄膜状の形状を有し、認識し難いが、隣り合う厚層部Kの間で折り曲げることができれば、折り曲げることができる箇所は薄層部Nであり、折り曲げることによって、薄層部Nの存在を確認できる。   In the case of the fourth embodiment as well, as in the second embodiment, the thin layer portion N has a thin film shape and is difficult to recognize, but between the adjacent thick layer portions K. If it can be folded, the portion that can be folded is the thin layer portion N, and the presence of the thin layer portion N can be confirmed by folding.

さらに、この第4の実施の形態においても、芯材部410が、さらなる別の層、例えば、保護層などや他の部材も含む場合には、このさらなる別の層や他の部材も薄層部Nや厚層部Kに含めることができる。すなわち、薄層部Nには、少なくとも第1の芯材112が含まれ、厚層部Kには、第1の芯材112及び第2の芯材314が少なくとも含まれ、薄層部Nの厚さが、厚層部Kの厚さよりも薄くなるように形成されていればよい。   Furthermore, also in this 4th Embodiment, when the core part 410 contains another layer, for example, a protective layer etc., and another member, this another layer and other member are also thin layers. It can be included in the portion N and the thick layer portion K. That is, at least the first core material 112 is included in the thin layer portion N, and at least the first core material 112 and the second core material 314 are included in the thick layer portion K. The thickness should just be formed so that it may become thinner than the thickness of the thick layer part K. FIG.

上述した第1の芯材112と第2の芯材314との大きさは、真空断熱材400が配置される装置や機器の大きさに適合するように適宜定めればよい。特に、第1の芯材112と第2の芯材314との厚さは、真空断熱材400が配置される装置や機器の大きさのほかに、第1の芯材112及び第2の芯材314の材料を考慮して、要求される断熱効率となるように、適宜定めればよい。さらに、隣り合う第2の芯材314の間隔Sも、真空断熱材400が配置される装置や機器の大きさのほかに、折り曲げやすさや断熱効率を考慮して適宜定めればよい。   The size of the first core material 112 and the second core material 314 described above may be determined as appropriate so as to match the size of the apparatus or device in which the vacuum heat insulating material 400 is disposed. In particular, the thicknesses of the first core material 112 and the second core material 314 include the first core material 112 and the second core, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 400 is disposed. In consideration of the material of the material 314, it may be determined as appropriate so as to achieve the required heat insulation efficiency. Furthermore, the interval S between the adjacent second core members 314 may be determined as appropriate in consideration of the ease of folding and the heat insulation efficiency, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 400 is disposed.

真空断熱材400を折り曲げるときにも、薄層部Nの箇所で折り曲げることができる。特に、この第4の実施の形態においては、図3(a)に示したような態様で、すなわち、第2の芯材314が配置されている側に折り曲げる態様で、真空断熱材300を折り曲げた場合には、隣り合う第2の芯材314の向かい合う傾斜面同士が当接し合ったり押圧し合ったりするので、当接したり押圧したりする面積を大きくすることができ、第2の芯材314同士の当接や押圧によって的確に断熱することができ、折り曲げた箇所の断熱効率をより高めることができる。さらに、この第4の実施の形態では、隣り合う第2の芯材314の下面が密接するように、3つの第2の芯材314は配置されているので、真空断熱材400を折り曲げたときには、薄層部Nと厚層部Kとの間に隙間がないように、薄層部Nと厚層部Kとが位置づけられるため、より的確に断熱することができる。   When the vacuum heat insulating material 400 is folded, it can be folded at the thin layer portion N. In particular, in the fourth embodiment, the vacuum heat insulating material 300 is bent in the manner shown in FIG. 3A, that is, in the manner in which the second heat insulating material 314 is folded. In this case, since the facing inclined surfaces of the adjacent second core members 314 are in contact with each other or pressed against each other, the area of contact or pressing can be increased, and the second core material can be increased. Heat insulation can be accurately performed by abutting and pressing 314, and the heat insulation efficiency of the bent portion can be further increased. Further, in the fourth embodiment, since the three second core members 314 are arranged so that the lower surfaces of the adjacent second core members 314 are in close contact with each other, when the vacuum heat insulating material 400 is bent, Since the thin layer portion N and the thick layer portion K are positioned so that there is no gap between the thin layer portion N and the thick layer portion K, heat insulation can be performed more accurately.

また、第2の芯材314に傾斜面が形成されているので、過度に力を加えずに、無理なく真空断熱材300を折り曲げることができ、折り曲げ作業を容易にすることができる。   Moreover, since the inclined surface is formed in the 2nd core material 314, the vacuum heat insulating material 300 can be bent reasonably without applying excessive force, and a bending operation can be made easy.

<<<第5の実施の形態>>>
図5(a)は、第5の実施の形態における真空断熱材500に用いる芯材部510を示す断面図である。
<<< Fifth Embodiment >>>
FIG. 5A is a cross-sectional view showing a core part 510 used for the vacuum heat insulating material 500 in the fifth embodiment.

この第5の実施の形態における芯材部510は、4つの第1の芯材512と3つの第2の芯材114とからなる。第1の芯材512が「第1の芯材」に対応し、第2の芯材114が「第2の芯材」に対応する。第2の芯材114は、上述した第1の実施の形態や第2の実施の形態における第2の芯材114と同じものを用いており、同様の大きさ、形状、材質及び機能を有し、図5(a)に示すように、同一の符号を付した。また、第1の芯材512は、第1の芯材112と形状が異なる点を除き、第1の芯材112と同様の材質及び機能を有する。   The core member 510 in the fifth embodiment includes four first core members 512 and three second core members 114. The first core material 512 corresponds to the “first core material”, and the second core material 114 corresponds to the “second core material”. The second core material 114 is the same as the second core material 114 in the first embodiment and the second embodiment described above, and has the same size, shape, material and function. And the same code | symbol was attached | subjected as shown to Fig.5 (a). The first core member 512 has the same material and function as the first core member 112 except that the shape is different from that of the first core member 112.

なお、第5の実施の形態における真空断熱材500に用いられる外包材(図示せず)は、第1の実施の形態における外包材120と同様の材料、並びに機能を有する。また、第5の実施の形態における真空断熱材500に用いられるゲッター剤(図示せず)も、第1の実施の形態におけるものと同様の形状、大きさ及び材料、並びに機能を有する。芯材部510を外包材120に収納して密封し、外包材120の内部を減圧状態にすることによって、第5の実施の形態による真空断熱材500を作ることができる。   In addition, the outer packaging material (not shown) used for the vacuum heat insulating material 500 in the fifth embodiment has the same materials and functions as the outer packaging material 120 in the first embodiment. Further, the getter agent (not shown) used for the vacuum heat insulating material 500 in the fifth embodiment also has the same shape, size, material, and function as those in the first embodiment. The vacuum heat insulating material 500 according to the fifth embodiment can be made by accommodating the core material portion 510 in the outer packaging material 120 and sealing it, and making the inside of the outer packaging material 120 in a reduced pressure state.

図5(a)に示すように、4つの第1の芯材512の各々は、略一定の厚さD1と、長さL5と、幅Wとを有する略板状の形状を有する。3つの第2の芯材114の各々は、略一定の厚さd1と、長さl1と、幅Wとを有する略板状の形状を有する。この第5の実施の形態でも、3つの第2の芯材114の各々は、厚さd1が、第1の芯材512の各々の厚さD1よりも厚くなるように形成されている。また、第2の芯材114は、長さl1が、第1の芯材512の長さL5よりも長くなるように形成されている。さらに、第2の芯材114は、幅Wが、第1の芯材512の幅Wと略同じになるように形成されている。   As shown in FIG. 5A, each of the four first core members 512 has a substantially plate shape having a substantially constant thickness D1, a length L5, and a width W. Each of the three second core members 114 has a substantially plate shape having a substantially constant thickness d1, a length l1, and a width W. Also in the fifth embodiment, each of the three second core members 114 is formed such that the thickness d1 is larger than the thickness D1 of each of the first core members 512. Further, the second core material 114 is formed such that the length l1 is longer than the length L5 of the first core material 512. Further, the second core member 114 is formed so that the width W is substantially the same as the width W of the first core member 512.

この第5の実施の形態においては、第1の芯材512の上に、その一部が第2の芯材114の一部と重なるように配置されている。4つの第1の芯材512は、間隔S5だけ離隔して隣り合うように配置されている。一方、3つの第2の芯材114は、間隔Sだけ離隔して隣り合うように配置されている。3つの第2の芯材114は、第1の芯材512の上に単に重ねられていればよく、接着剤や粘着テープ等の接合するための部材を必要としない。なお、第1の芯材512の所望する位置に、3つの第2の芯材114を的確かつ容易に配置するために、第2の芯材114の大きさに応じた若干の窪みや溝を、押圧処理等の処理によって、第1の芯材512の表面に形成しておくのが好ましい。   In the fifth embodiment, the first core member 512 is disposed so that a part thereof overlaps a part of the second core member 114. The four first core members 512 are arranged so as to be adjacent to each other with an interval S5. On the other hand, the three second core members 114 are arranged so as to be adjacent to each other with an interval S therebetween. The three second core members 114 need only be superimposed on the first core member 512, and do not require a member for joining such as an adhesive or an adhesive tape. In order to accurately and easily arrange the three second core members 114 at desired positions of the first core member 512, some depressions or grooves corresponding to the size of the second core member 114 are provided. It is preferable to form the surface of the first core member 512 by a process such as a pressing process.

なお、図5(a)に示した例では、3つの第2の芯材114を4つの第1の芯材512の上に配置するものを示したが、第1の芯材512の数や、第2の芯材114の数は、少なくとも1つ以上あればよい。   In the example shown in FIG. 5A, the three second core members 114 are arranged on the four first core members 512. However, the number of the first core members 512, The number of the second core members 114 may be at least one.

このように、3つの第2の芯材114を4つの第1の芯材512の上に重ねることによって、図5(a)に示すように、第1の芯材512のみからなる薄層部Nと、第1の芯材512及び第2の芯材114からなる厚層部Kとが形成される。上述したように、3つの第2の芯材114を、間隔Sだけ離隔して隣り合うように配置しているので、薄層部Nは、厚さD1と長さSと幅Wとを有する略直方体の形状を有し、厚層部Kは、厚さ(D1+d1)と、第2の芯材114と第1の芯材512とが重なった長さと、幅Wとを有する略直方体の形状を有する。なお、この第5の実施の形態では、第2の芯材114のみからなる層Yも形成される。   Thus, by laminating the three second core members 114 on the four first core members 512, as shown in FIG. 5 (a), a thin layer portion consisting only of the first core member 512 is obtained. N and a thick layer portion K composed of the first core member 512 and the second core member 114 are formed. As described above, since the three second core members 114 are arranged so as to be adjacent to each other by the interval S, the thin layer portion N has the thickness D1, the length S, and the width W. The thick layer portion K has a substantially rectangular parallelepiped shape, and has a thickness (D1 + d1), a length in which the second core material 114 and the first core material 512 overlap, and a width W. Have In the fifth embodiment, the layer Y composed only of the second core material 114 is also formed.

この第5の実施の形態では、芯材部510は、4つの第1の芯材512と3つの第2の芯材114とからなるので、薄層部Nは、第1の芯材512のみからなり、厚層部Kは、第1の芯材512と第2の芯材114とからなるが、芯材部510が、さらなる別の層、例えば、保護層などや他の部材も含む場合には、このさらなる別の層や他の部材も薄層部Nや厚層部Kに含めることができる。すなわち、薄層部Nには、少なくとも第1の芯材512が含まれ、厚層部Kには、第1の芯材512及び第2の芯材114が少なくとも含まれ、薄層部Nの厚さが、厚層部Kの厚さよりも薄くなるように形成されていればよい。   In the fifth embodiment, since the core part 510 includes four first core members 512 and three second core members 114, the thin layer portion N includes only the first core member 512. The thick layer portion K is composed of the first core material 512 and the second core material 114, but the core material portion 510 further includes another layer, for example, a protective layer or the like. In addition, this further another layer and other members can also be included in the thin layer portion N and the thick layer portion K. That is, the thin layer portion N includes at least the first core member 512, and the thick layer portion K includes at least the first core member 512 and the second core member 114, and the thin layer portion N includes The thickness should just be formed so that it may become thinner than the thickness of the thick layer part K. FIG.

上述した第1の芯材512と第2の芯材114との大きさは、真空断熱材500が配置される装置や機器の大きさに適合するように適宜定めればよい。特に、第1の芯材512と第2の芯材114との厚さは、真空断熱材500が配置される装置や機器の大きさのほかに、第1の芯材512及び第2の芯材114の材料を考慮して、要求される断熱効率となるように、適宜定めればよい。さらに、隣り合う第2の芯材114の間隔Sも、真空断熱材500が配置される装置や機器の大きさのほかに、折り曲げやすさや断熱効率を考慮して適宜定めればよい。   The size of the first core material 512 and the second core material 114 described above may be determined as appropriate so as to match the size of the apparatus or device in which the vacuum heat insulating material 500 is disposed. In particular, the thickness of the first core member 512 and the second core member 114 is not limited to the size of the device or equipment in which the vacuum heat insulating material 500 is disposed, but also the first core member 512 and the second core member. In consideration of the material of the material 114, it may be determined as appropriate so as to achieve the required heat insulation efficiency. Furthermore, the interval S between the adjacent second core members 114 may be determined as appropriate in consideration of the ease of folding and the heat insulation efficiency, in addition to the size of the apparatus and equipment in which the vacuum heat insulating material 500 is disposed.

この第5の実施の形態においても、薄層部Nの箇所で折り曲げることで、真空断熱材200を折り曲げることができる。   Also in the fifth embodiment, the vacuum heat insulating material 200 can be bent by bending at the thin layer portion N.

<<<第6の実施の形態>>>
図5(b)は、第6の実施の形態における真空断熱材600に用いる芯材部610を示す断面図である。
<<< Sixth Embodiment >>>
FIG.5 (b) is sectional drawing which shows the core part 610 used for the vacuum heat insulating material 600 in 6th Embodiment.

第6の実施の形態における芯材部610は、第1の芯材512と第2の芯材114とからなる。これらは、上述した第5の実施の形態における第1の芯材512と第2の芯材114と同様のものを用いており、同様の大きさ、形状、材質及び機能を有し、図5(b)に示すように、同一の符号を付した。第1の芯材512が「第1の芯材」に対応し、第2の芯材114が「第2の芯材」に対応する。   The core part 610 according to the sixth embodiment includes a first core member 512 and a second core member 114. These are the same as the first core member 512 and the second core member 114 in the fifth embodiment described above, and have the same size, shape, material, and function. As shown in (b), the same code | symbol was attached | subjected. The first core material 512 corresponds to the “first core material”, and the second core material 114 corresponds to the “second core material”.

第5の実施の形態における芯材部510では、第1の芯材512に対して同じ側(図5(a)においては、第1の芯材512の上側)に、全ての第2の芯材114が配置されている。これに対して、第6の実施の形態における芯材部610は、図5(b)に示すように、第1の芯材512に対して、いずれの側(図5(b)においては、第1の芯材512の上側と下側)にも、第2の芯材114が配置されている。   In the core member 510 in the fifth embodiment, all the second cores are on the same side with respect to the first core member 512 (on the upper side of the first core member 512 in FIG. 5A). A material 114 is arranged. On the other hand, as shown in FIG. 5B, the core material portion 610 in the sixth embodiment is on either side (FIG. 5B) with respect to the first core material 512. The second core material 114 is also disposed on the upper and lower sides of the first core material 512.

このようにしたことで、真空断熱材600を配置する装置や機器の形状に応じて、真空断熱材600を、Z字形に折り曲げたり交互に折り曲げたりする、いわゆるジグザグに折り曲げることが容易になる。   By doing in this way, according to the shape of the apparatus and apparatus which arrange | positions the vacuum heat insulating material 600, it becomes easy to bend the vacuum heat insulating material 600 into what is called zigzag which bend | folds in a Z shape or is alternately bent.

<<<第7の実施の形態>>>
図5(c)は、第7の実施の形態における真空断熱材700に用いる芯材部710を示す断面図である。
<<< Seventh Embodiment >>>
FIG.5 (c) is sectional drawing which shows the core part 710 used for the vacuum heat insulating material 700 in 7th Embodiment.

第7の実施の形態における芯材部710は、第1の芯材712と第2の芯材114とからなる。第2の芯材114は、上述した第1の実施の形態や第5の実施の形態における第2の芯材114と同様のものを用いており、同様の大きさ、形状、材質及び機能を有し、図5(b)に示すように、同一の符号を付した。第1の芯材712は、第1の実施の形態や第5の実施の形態における第2の芯材114と長さが異なる点を除いて、厚さ、幅、材質及び機能は同様のものである。第1の芯材712が「第1の芯材」に対応し、第2の芯材314が「第2の芯材」に対応する。   The core material portion 710 in the seventh embodiment includes a first core material 712 and a second core material 114. The second core material 114 is the same as the second core material 114 in the first embodiment and the fifth embodiment described above, and has the same size, shape, material and function. As shown in FIG. 5 (b). The first core material 712 is the same in thickness, width, material, and function except that the length is different from the second core material 114 in the first embodiment and the fifth embodiment. It is. The first core material 712 corresponds to the “first core material”, and the second core material 314 corresponds to the “second core material”.

上述した第5の実施の形態の芯材部510や第6の実施の形態の芯材部610は、1つの第1の芯材512と1つの第2の芯材114とが、一部分でのみ重なるように配置されたものであった。この第7の実施の形態における芯材部710は、第2の芯材114が、第1の芯材712と、第2の芯材114の一部分で重なる態様と、第2の芯材114の全体で重なる態様との双方を含むように配置されたものである。
このようにしたことで、真空断熱材700を配置する装置や機器の形状に応じて、真空断熱材600を折り曲げやすくすることができる。
In the core material portion 510 of the fifth embodiment and the core material portion 610 of the sixth embodiment described above, one first core material 512 and one second core material 114 are only partly. They were arranged so as to overlap. The core part 710 in the seventh embodiment includes an aspect in which the second core material 114 overlaps the first core material 712 and a part of the second core material 114, and the second core material 114 It arrange | positions so that both the aspect which overlaps as a whole may be included.
By doing in this way, according to the shape of the apparatus and apparatus which arrange | position the vacuum heat insulating material 700, the vacuum heat insulating material 600 can be made easy to bend.

真空断熱材の概略を示す斜視図である。It is a perspective view which shows the outline of a vacuum heat insulating material. 第1の実施の形態の芯材部110を示す断面図である。It is sectional drawing which shows the core part 110 of 1st Embodiment. 第1の実施の形態の芯材部110を折り曲げる態様を示す断面図である。It is sectional drawing which shows the aspect which bends the core material part 110 of 1st Embodiment. 第2の実施の形態の芯材部210を示す断面図(a)と、第3の実施の形態の芯材部310を示す断面図(b)と、第4の実施の形態の芯材部410を示す断面図(c)とである。Sectional drawing (a) which shows core material part 210 of 2nd Embodiment, Sectional drawing (b) which shows core material part 310 of 3rd Embodiment, and Core material part of 4th Embodiment It is sectional drawing (c) which shows 410. FIG. 第5の実施の形態の芯材部510を示す断面図(a)と、第6の実施の形態の芯材部610を示す断面図(b)と、第7の実施の形態の芯材部710を示す断面図(c)とである。Sectional drawing (a) which shows core material part 510 of 5th Embodiment, Sectional drawing (b) which shows core material part 610 of 6th Embodiment, and Core material part of 7th Embodiment 710 is a sectional view (c) showing 710.

符号の説明Explanation of symbols

100、200、300、400、500、600、700 真空断熱材
110、210、310、410、510、610、710 芯材部
112、512、712 第1の芯材
114、314、 第2の芯材
120 外包材
K 厚層部
N 薄層部
100, 200, 300, 400, 500, 600, 700 Vacuum heat insulating material 110, 210, 310, 410, 510, 610, 710 Core material part 112, 512, 712 First core material 114, 314, Second core Material 120 Outer packaging material K Thick layer N Thin layer

Claims (7)

芯材部と、前記芯材部を収納しかつ内部を減圧状態に維持できる外包材と、を含む真空断熱材であって、
前記芯材部は、
少なくとも1つの第1の芯材と、
前記第1の芯材とは別体であり、かつ、少なくとも1つの第2の芯材と、を含み、
前記第2の芯材が、前記第1の芯材と少なくとも一部で重なり、
前記第1の芯材と前記第2の芯材とを含む厚層部と、
前記第1の芯材を含みかつ前記厚層部よりも厚さが薄い薄層部と、が形成されたことを特徴とする真空断熱材。
A vacuum heat insulating material including a core material part, and an outer packaging material that houses the core material part and can maintain the inside in a reduced pressure state,
The core part is
At least one first core material;
And a separate body from the first core material, and at least one second core material,
The second core material overlaps at least partly with the first core material;
A thick layer portion including the first core material and the second core material;
A vacuum heat insulating material, characterized in that a thin layer portion including the first core material and having a thickness smaller than the thick layer portion is formed.
前記薄層部の曲げ剛性が、前記厚層部の曲げ剛性よりも小さい請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein a bending rigidity of the thin layer portion is smaller than a bending rigidity of the thick layer portion. 前記第1の芯材は、第1の厚さを有する略板状の形状を有し、
前記第2の芯材は、前記第1の厚さよりも厚い第2の厚さを有する略板状の形状を有する請求項1又は2に記載の真空断熱材。
The first core member has a substantially plate shape having a first thickness,
The vacuum heat insulating material according to claim 1 or 2, wherein the second core member has a substantially plate shape having a second thickness larger than the first thickness.
少なくとも2つの前記第2の芯材が、互いに離隔して前記薄層部に沿って並置され、
前記厚層部の間に前記薄層部が配置された請求項1〜3のいずれかに記載の真空断熱材。
At least two of the second core members are juxtaposed along the thin layer portion apart from each other;
The vacuum heat insulating material according to any one of claims 1 to 3, wherein the thin layer portion is disposed between the thick layer portions.
前記薄層部は屈曲部を有し、
前記屈曲部を有する前記薄層部を挟む2つの前記厚層部が所定の角度をなす請求項4に記載の真空断熱材。
The thin layer portion has a bent portion,
The vacuum heat insulating material according to claim 4, wherein the two thick layer portions sandwiching the thin layer portion having the bent portion form a predetermined angle.
芯材部と、前記芯材部を収納しかつ内部を減圧状態に維持できる外包材と、を含む真空断熱材であって、
前記芯材部は、
略平板状の単一の第1の芯材と、
前記第1の芯材よりも小さく、かつ、略平板上の複数の第2の芯材と、を含み、
前記複数の第2の芯材は、互いに離隔し、かつ、前記第1の芯材上に並設され、
前記第1の芯材の曲げ剛性が、前記複数の第2の芯材の曲げ剛性よりも小さいことを特徴とする真空断熱材。
A vacuum heat insulating material including a core material part, and an outer packaging material that houses the core material part and can maintain the inside in a reduced pressure state,
The core part is
A substantially flat single first core material;
A plurality of second core members that are smaller than the first core member and are substantially flat.
The plurality of second core members are spaced apart from each other and arranged side by side on the first core member,
The vacuum heat insulating material, wherein the first core member has a bending rigidity smaller than that of the plurality of second core members.
前記第1の芯材の厚さは、前記第2の芯材の厚さよりも薄い請求項6に記載の真空断熱材。   The thickness of the said 1st core material is a vacuum heat insulating material of Claim 6 thinner than the thickness of the said 2nd core material.
JP2006350340A 2006-12-26 2006-12-26 Vacuum insulation Expired - Fee Related JP4897473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350340A JP4897473B2 (en) 2006-12-26 2006-12-26 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350340A JP4897473B2 (en) 2006-12-26 2006-12-26 Vacuum insulation

Publications (2)

Publication Number Publication Date
JP2008157431A true JP2008157431A (en) 2008-07-10
JP4897473B2 JP4897473B2 (en) 2012-03-14

Family

ID=39658552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350340A Expired - Fee Related JP4897473B2 (en) 2006-12-26 2006-12-26 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP4897473B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190257A (en) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp Vacuum heat insulating material and method for manufacturing the same
JP2011117631A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Storage water heater
JP2012063022A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator equipped with the same
JP2012062904A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012063021A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
KR101477343B1 (en) * 2012-06-14 2014-12-30 (주)엘지하우시스 Method for manufacturing vacuum insulation panel and vacuum insulation panel
KR101495127B1 (en) * 2010-07-06 2015-02-24 히타치 어플라이언스 가부시키가이샤 Vacuum heat insulation member and refrigerator using same
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
EP2910880A1 (en) * 2014-02-24 2015-08-26 Whirlpool Corporation A folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
JP2016142345A (en) * 2015-02-03 2016-08-08 日立アプライアンス株式会社 Manufacturing method of vacuum heat insulation material, vacuum heat insulation material and equipment including vacuum heat insulation material
JP2016205448A (en) * 2015-04-17 2016-12-08 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
CN107816601A (en) * 2016-09-12 2018-03-20 松下电器产业株式会社 Vacuumed insulation panel
JP2018044668A (en) * 2016-09-12 2018-03-22 パナソニック株式会社 Vacuum heat insulation material
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530917B1 (en) * 2013-09-30 2015-06-23 대림산업 주식회사 Folding thermal insulation panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173844A (en) * 1984-02-20 1985-09-07 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS60201196A (en) * 1984-03-26 1985-10-11 昭和電工株式会社 Coating material
JPH11280989A (en) * 1998-02-19 1999-10-15 Wacker Chemie Gmbh Plate-like evacuated heat insulating molded body and heat insulating method for curved surface by using heat insulating material
JP2001336691A (en) * 2000-05-25 2001-12-07 Matsushita Refrig Co Ltd Vacuum insulation material and refrigerator using vacuum insulation material
JP3408101B2 (en) * 1997-03-17 2003-05-19 三洋電機株式会社 refrigerator
JP2008082534A (en) * 2006-08-31 2008-04-10 Zojirushi Corp Vacuum heat insulating panel, vacuum heat insulating container, and vacuum heat insulating panel manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173844A (en) * 1984-02-20 1985-09-07 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS60201196A (en) * 1984-03-26 1985-10-11 昭和電工株式会社 Coating material
JP3408101B2 (en) * 1997-03-17 2003-05-19 三洋電機株式会社 refrigerator
JPH11280989A (en) * 1998-02-19 1999-10-15 Wacker Chemie Gmbh Plate-like evacuated heat insulating molded body and heat insulating method for curved surface by using heat insulating material
JP2001336691A (en) * 2000-05-25 2001-12-07 Matsushita Refrig Co Ltd Vacuum insulation material and refrigerator using vacuum insulation material
JP2008082534A (en) * 2006-08-31 2008-04-10 Zojirushi Corp Vacuum heat insulating panel, vacuum heat insulating container, and vacuum heat insulating panel manufacturing method

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
JP2010190257A (en) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp Vacuum heat insulating material and method for manufacturing the same
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2011117631A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Storage water heater
KR101495127B1 (en) * 2010-07-06 2015-02-24 히타치 어플라이언스 가부시키가이샤 Vacuum heat insulation member and refrigerator using same
JP2012063022A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator equipped with the same
JP2012062904A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012063021A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
KR101477343B1 (en) * 2012-06-14 2014-12-30 (주)엘지하우시스 Method for manufacturing vacuum insulation panel and vacuum insulation panel
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
EP2910880A1 (en) * 2014-02-24 2015-08-26 Whirlpool Corporation A folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
JP2016142345A (en) * 2015-02-03 2016-08-08 日立アプライアンス株式会社 Manufacturing method of vacuum heat insulation material, vacuum heat insulation material and equipment including vacuum heat insulation material
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP2016205448A (en) * 2015-04-17 2016-12-08 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
CN107816601A (en) * 2016-09-12 2018-03-20 松下电器产业株式会社 Vacuumed insulation panel
JP2018044668A (en) * 2016-09-12 2018-03-22 パナソニック株式会社 Vacuum heat insulation material
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Also Published As

Publication number Publication date
JP4897473B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4897473B2 (en) Vacuum insulation
JP4974861B2 (en) Vacuum insulation
JP2010255805A (en) Vacuum heat insulating material
JP2007056903A (en) Heat insulating material and heat insulating structure using the same
JP6041214B2 (en) GAS ADSORBENT, PROCESS FOR PRODUCING THE SAME, AND VACUUM INSULATOR
JP2015007450A (en) Vacuum heat insulation material vacuum-packaged doubly
JP2010138956A (en) Vacuum heat insulating material
CN107816601B (en) Vacuum heat insulation piece
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP2010203538A (en) Vacuum heat insulation material and heat insulation board
JP5788714B2 (en) Vacuum insulation panel and refrigerator using the same
JP6874529B2 (en) Vacuum heat insulating material
WO2020066849A1 (en) Cold insulation and heat insulation bag
JP2014109334A (en) Vacuum insulation material and external capsule material for the same
JP6255735B2 (en) Vacuum insulation material
JP2007321951A (en) Vacuum heat insulating material
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2009222098A (en) Vacuum heat insulating material
JP2014213240A (en) Gas absorption device and vacuum insulation material
WO2021132457A1 (en) Heat insulation bag, heat retention bag, and method for manufacturing heat insulation bag
JP2005315346A (en) Vacuum insulator
JP5424929B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP2021134819A (en) Vacuum heat insulating material and heat insulating container
JP2017100799A (en) Folding type cold insulation/heat insulation box and folding method thereof, and cage carriage
JP2021133940A (en) Heat insulation container, heat insulation bag, and vacuum heat insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees