JP3408101B2 - refrigerator - Google Patents
refrigeratorInfo
- Publication number
- JP3408101B2 JP3408101B2 JP06340797A JP6340797A JP3408101B2 JP 3408101 B2 JP3408101 B2 JP 3408101B2 JP 06340797 A JP06340797 A JP 06340797A JP 6340797 A JP6340797 A JP 6340797A JP 3408101 B2 JP3408101 B2 JP 3408101B2
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- insulating material
- vacuum heat
- refrigerator
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、外箱と内箱間に真
空断熱材を備えた断熱箱体から成り、この断熱箱体の底
壁後部が立ち上がり、外側に機械室が構成されている冷
蔵庫に関するものである。
【0002】
【従来の技術】従来よりこの種冷蔵庫は、鋼板製の外箱
と硬質樹脂製の内箱間に発泡ポリウレタンなどの断熱材
を現場発泡方式にて充填した断熱箱体から構成されてお
り、この断熱箱体内(庫内)を仕切ることによって、−
20℃などの凍結温度に冷却される冷凍室や、+5℃な
どの冷蔵温度に維持される冷蔵室、そして、野菜などの
乾燥を嫌う食品を保存するための野菜室などを区画形成
している。
【0003】特に、近年では頻繁に食品の納出が行われ
る冷蔵室や野菜室を上方に配置し、長期保存を目的とし
た冷凍室は庫内の最下部に配置した冷蔵庫も開発されて
いる。
【0004】また、近年では冷蔵庫の設置スペースを縮
小し、或いは、その拡大を防止しつつ、庫内有効容積を
拡張するために、断熱箱体の壁厚を薄くする必要が生じ
ており、そのため、例えば特公昭61−17263号公
報(B32B5/18)や特公昭63−35911号公
報(F25D23/06)、或いは、特公平2−544
79号公報(F16L59/06)に示されるような真
空断熱材が用いられるようになって来た。
【0005】この真空断熱材は、ガス(空気など)の透
過を阻止する多層ラミネート構造のフィルム(ガスバリ
アフィルム)の周囲を溶着して成る袋内に、シリカ、パ
ーライトなどの微粉末、及び、グラスファイバ、或い
は、連続気泡の発泡ポリウレタンなどから成る断熱材コ
ア材を挿入した後、袋内のガスを排気し、真空状態とし
て密封したものである。
【0006】係る真空断熱材によれば、0.005〜
0.010Kcal/mh℃の熱伝導率が達成されるの
で、低温が要求される冷凍室周囲の外箱内面に配置すれ
ば、断熱箱体の壁厚を薄くしても、外箱外から冷凍室内
に侵入する熱を有効に削減することが可能となる。
【0007】特に、この種冷蔵庫を構成する断熱箱体の
底壁は、後部が階段状に立ち上がる形状とされ、この立
ち上がり部分の外側には圧縮機などの機器を設置するた
めの機械室が構成されている。そして、圧縮機などは運
転により発熱するため、この機械室内は他の部分よりも
高温となる。
【0008】従って、係る断熱箱体の底壁内にも真空断
熱材を取り付ければ、断熱箱体底部から冷凍室内に侵入
しようとする機械室内の熱を効果的に削減することが期
待できる。
【0009】
【発明が解決しようとする課題】しかしながら、従来の
真空断熱材は平板状を呈していたため、係る真空断熱材
を断熱箱体の底壁内にも配置しようとすると、底壁の形
状に沿って複数の平板状真空断熱材を並設するかたちと
なる。一方で、真空断熱材は上述の如きガスバリアフィ
ルムとその中に密封されたコア材から構成されているた
め、周縁部は熱伝導率の大きいガスバリアフィルムのみ
となっている。
【0010】そのため、底壁に沿って真空断熱材を複数
枚並設すると、係る周縁部を伝って侵入して来る熱量が
大きくなってしまう問題、即ち、ヒートブリッジの問題
が発生する。
【0011】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、真空断熱材のヒートブリ
ッジの影響を解消し、断熱箱体底部からの熱侵入を効果
的に削減することができる冷蔵庫を提供するものであ
る。
【0012】
【課題を解決するための手段】本発明の冷蔵庫は、外箱
と内箱間に真空断熱材を備えた断熱箱体から成り、この
断熱箱体の底壁後部は立ち上がり、当該底壁の外側には
機械室を構成して成るものであって、真空断熱材は断熱
箱体の底壁形状に沿った形状を呈し、当該底壁内に配置
されているものである。
【0013】本発明によれば、真空断熱材を断熱箱体の
底壁形状に沿った形状として当該底壁内に配置したの
で、断熱箱体の底壁に沿って平板状の真空断熱材を複数
枚並設する場合に比して、真空断熱材周縁部を熱が伝わ
る所謂ヒートブリッジによる悪影響を低減し、温度が高
くなる断熱箱体底壁外側の機械室からの熱侵入を効果的
に削減することができるようになる。
【0014】これにより、断熱箱体の壁厚を薄くして冷
蔵庫の設置スペースをより一層縮小し、若しくは、有効
容積を拡大し、或いは、冷却装置の消費電力の一層の削
減を図ることができるようになる。特に、真空断熱材の
取り付け枚数も減るため、組立作業性も改善されるもの
である。
【0015】更に、この発明の冷蔵庫は上記真空断熱材
が、ガスバリアフィルム内にコア材を真空密封して構成
されると共に、当該真空断熱材の屈曲箇所の内側屈曲線
に対応するコア材には当該屈曲線方向に渡る凹溝が形成
されているものである。
【0016】この発明によれば、上記に加えて真空断熱
材はガスバリアフィルム内にコア材を真空密封して構成
され、且つ、当該真空断熱材の屈曲箇所の内側屈曲線に
対応するコア材には当該屈曲線方向に渡る凹溝を形成し
たので、真空引きの過程でガスバリアフィルムはこの凹
溝内に引っ張り込まれる。
【0017】これにより、コア材には凹溝の開口を閉じ
る方向に力が加わるので、コア材は凹溝の延在する屈曲
線に沿って屈曲されることになる。従って、断熱箱体の
底壁に沿った真空断熱材の成形を極めて容易に行うこと
ができるようになるものである。
【0018】
【発明の実施の形態】次に、図面に基づき本発明の実施
形態を詳述する。図1は本発明の冷蔵庫1の正面図、図
2は扉を除く冷蔵庫1の正面図、図3は冷蔵庫1の縦断
側面図、図4は冷蔵庫1の背面図、図5は冷蔵庫1のも
う一つの縦断側面図、図6は図5のA−A線断面図、図
7は図6のB−B線断面図、図8は図6のC−C線断面
図、図9は冷蔵庫1の透視分解斜視図である。
【0019】実施例の冷蔵庫1は、前方に開口する鋼板
製の外箱2と、硬質樹脂製の内箱3間に発泡ポリウレタ
ン断熱材4を現場発泡方式により充填して成る断熱箱体
6により構成されており、この断熱箱体6の庫内は、略
中央部に設けられた仕切板7によって上下に区画され、
仕切板7の上方を冷蔵温度(+5℃程)に維持される冷
蔵室8としている。
【0020】仕切板7の下方は更に真空断熱材を内蔵し
た断面略L字状の断熱仕切壁9にて上下に区画され、こ
の断熱仕切壁9と仕切板7の間を野菜などの乾燥を嫌う
食品を収納するための野菜室17とし、断熱仕切壁9の
下方を凍結温度(−20℃程)に冷却される冷凍室18
としている。
【0021】前記冷蔵室8内には上下複数段の棚21・
・が架設されており、その下部には氷温(0℃〜−3
℃)に維持される氷温室22が形成されている。また、
冷蔵室8の前面開口は回動式の扉23にて開閉自在に閉
塞されている。
【0022】更に、冷蔵室8の背部には冷蔵室ダクト2
4が上下に渡って形成されており、その左右には冷蔵室
ダクト24の上端部と冷蔵室8内に連通した冷蔵室冷気
吐出口26が上下に複数形成されている。また、前記氷
温室22内にも氷温室冷気吐出口25が形成されると共
に、その奥部及び底部(仕切板7)には冷蔵室冷気戻り
口27が形成されている。
【0023】前記野菜室17の奥上部には前記冷蔵室冷
気戻り口27に連通した野菜室冷気吐出口31が形成さ
れており、更に右上奥には野菜室冷気戻り口32が形成
されている。この野菜室17の前面開口は引き出し式の
扉33により開閉自在に閉塞されると共に、この扉33
の裏面には上面に開口した野菜容器34が取り付けら
れ、この野菜容器34が野菜室17内に配置され、野菜
を収納するかたちとなる。
【0024】前記冷凍室18の背部には仕切板36によ
り冷却室37が画成されており、この冷却室37は冷凍
室18の背方から断熱仕切壁9の背方まで渡っている。
そして、この冷却室37内には冷凍室18の背部に位置
して、冷却装置を構成する冷却器38が縦設されると共
に、この冷却器38の上方の冷却室37内には送風機3
9が設置されている。尚、41は冷却器38の除霜ヒー
タである。
【0025】この冷凍室18の前面開口は上下二段の引
き出し式の扉42、43により開閉自在に閉塞されると
共に、これら扉42、43の裏面にはそれぞれ上面に開
口した容器44、46が取り付けられ、この容器44、
46が冷凍室18内の上下に配置され、冷凍食品やアイ
スクリームなどを収納するかたちとなる。
【0026】前記仕切板36と冷却器38及び送風機3
9間には冷気分配用ダクト47が形成されており、仕切
板36にはこのダクト47と冷凍室18とに連通した冷
凍室冷気吐出口48、49が各容器44、46の上奥部
に対応して開口している。また、容器46の背方には冷
却室37の下部に連通した冷凍室冷気戻り口51が形成
されている。
【0027】ダクト47の上部には送風機39の側方に
位置して冷気分配口52が形成され、この冷気分配口5
2が冷蔵室ダクト24の下端に連通している。また、冷
却器38の側方には冷蔵室・野菜室冷気戻りダクト53
が形成されており、その上端は前記野菜室冷気戻り口3
2に連通し、その下端は冷却室37の下部に開口した冷
蔵室・野菜室冷気戻り口54にて冷却室37内に連通し
ている。尚、図2では断熱仕切壁9及び仕切板36を撤
去している。
【0028】一方、断熱箱体6の底壁6Aは後部が階段
状に立ち上がる形状とされており、この底壁6Aの後部
外側には機械室56が形成されている。この機械室56
内には冷却装置を構成する圧縮機57、蒸発皿コンデン
サ58及び主コンデンサ59が設置される。また、底壁
6Aが係る形状とされている関係上、冷凍室18の底部
も後部が立ち上がる形状とされ、そのため、下方の容器
46の後面は上方の容器44の後面よりも前方に位置す
るかたちとなる。そして、前記冷却器38は立ち上がっ
た底壁6Aの上方に位置することになる。
【0029】他方外箱2の内面には高温冷媒配管61が
交熱的に添設(貼付)され、断熱箱体6の開口周縁に位
置する外箱2の内面にも高温冷媒配管62が設けられて
いる。そして、圧縮機57の吐出側は前記蒸発皿コンデ
ンサ58に接続され、蒸発皿コンデンサ58の出口は主
コンデンサ59に接続される。主コンデンサ59の出口
は前記高温冷媒配管61に接続され、高温冷媒配管61
の出口は前記開口周縁の高温冷媒配管62に接続され
る。そして、この高温冷媒配管62は図示しないキャピ
ラリチューブ63を経て前記冷却器38に接続され、冷
却器38の出口は圧縮機57の吸込側に接続される。
【0030】係る構成で、圧縮機57が運転されると、
圧縮機57からは高温高圧のガス冷媒が吐出され、蒸発
皿コンデンサ58、主コンデンサ59に順次流入して放
熱し、凝縮されて行く。主コンデンサ59を出た冷媒は
高温冷媒配管61に流入して更に放熱し、次に、高温冷
媒配管62に流入して開口周縁を加熱する。これによっ
て、開口周縁への結露を解消する。
【0031】高温冷媒配管62を出た冷媒は前記キャピ
ラリチューブにて減圧された後、冷却器38に入って蒸
発する。このときに周囲から熱を奪い、冷却室37内の
空気を冷却する。冷却器38を出た冷媒は再び圧縮機5
7に吸い込まれる。
【0032】前述の如く冷却器38にて冷却された冷気
は上方の送風機39の運転により吸引され、前方の分配
ダクト47に吹き出される。分配ダクト47に吹き出さ
れた冷気は冷凍室冷気吐出口48、49から冷凍室18
内の各容器44、46内に吐出され、−20℃程の凍結
温度に冷却する。尚、冷凍室18内の冷気は冷凍室冷気
戻り口51から冷却器38の吸い込み側の冷却室37内
に帰還する。
【0033】分配ダクト47に吹き出された冷気はま
た、冷気分配口52から冷蔵室ダクト24に流入し、そ
こを上昇した後、各冷蔵室冷気吐出口26・・及び氷温
室冷気吐出口25より冷蔵室8及び氷温室22内に吐出
される。冷蔵室ダクト24内には冷蔵室8内の温度にて
開閉する図示しないダンパーが設けられており、これに
よって、冷蔵室8内は+5℃程の冷蔵温度に維持される
と共に、氷温室22内は0℃〜−3℃程の氷温に維持さ
れる。
【0034】各室8、22内を循環した冷気は冷蔵室冷
気戻り口27に流入して野菜室冷気吐出口31などから
野菜室17内に入り、野菜室容器34内を周囲から保冷
する。そして、野菜室17内を循環した冷気は野菜室冷
気戻り口32より冷蔵室・野菜室冷気戻りダクト53に
流入し、そこを流下して冷蔵室・野菜室冷気戻り口54
より冷却器38の吸い込み側の冷却室37内に帰還す
る。
【0035】一方、冷凍室18の両側方に対応する外箱
2の側板2A、2A内面には真空断熱材71、71が貼
り付けられると共に、冷凍室18の下方に対応する外箱
2の底板2B内面にも真空断熱材72が貼り付けられ、
断熱材4内に埋設されている。また、冷凍室18背部の
冷却室37背方に対応する外箱2の背板2C内面にも真
空断熱材73が貼り付けられ、断熱材4内に埋設されて
いる。
【0036】各真空断熱材71、73は、例えば内側か
らポリエチレン若しくはポリプロピレンなどから成る熱
溶着層とアルミニウム層及び表面保護層をラミネートし
たガスバリアフィルムを折り返し、二辺を密着させて熱
溶着層を相互に溶着することにより袋状とし、その状態
でシリカ、パーライトなどの微粉末、及び、グラスファ
イバ、或いは、連続気泡の発泡ポリウレタン断熱材から
成るコア材を挿入し、所定の真空排気装置内において袋
内部のガスを排気して真空状態とした後、残りの一辺の
前記熱溶着層を相互に溶着させて密封することにより、
製造されている。
【0037】このうち、冷凍室18の両側方に位置する
真空断熱材71、71の上部は図5に示す如く野菜室1
7を経て冷蔵室8の下部まで延在すると共に、真空断熱
材71、71の下端縁71Aはその後部が前部よりも所
定の角度で徐々に立ち上がる傾斜形状とされている。こ
れにより、真空断熱材71の下端縁71Aは底壁6Aの
形状に近似した形状となり、真空断熱材71、71は機
械室56を避けて冷凍室18底部の前部から後部に渡る
略全域をカバーするようになる。
【0038】これによって、機械室56による断熱箱体
6の底壁6Aの形状に係わらず、真空断熱材71、71
を断熱箱体6の底部に広い面積で貼り付け、その断熱効
果を向上させることができるようになる。特に、最も断
熱したい冷凍室18の側方略全域に真空断熱材71、7
1を設けることができるようになるので、断熱箱体6の
壁厚を薄くして冷蔵庫1の設置スペースをより一層縮小
し、若しくは、有効容積を拡大し、或いは、冷却装置の
消費電力の一層の削減を図ることができるようになる。
【0039】また、真空断熱材71自体が係る形状とな
ることにより、真空断熱材71を構成するコア材が先細
り形状となるので、ガスバリアフィルム内に挿入する作
業も容易となり、真空断熱材71自体の組立作業性も向
上する。
【0040】更に、冷凍室18の背方に位置する真空断
熱材73は全体としては矩形平板状を呈している。ま
た、そのコア材は図6に示す如く冷却器38と送風機3
9を含む領域の背方投影面積よりも大なる寸法とされて
いる。
【0041】ここで、これら真空断熱材の周縁部にはコ
ア材は存在しておらず、ガスバリアフィルムのみとなっ
ているため、真空断熱材の周縁部における熱移動は大き
くなり断熱性能は悪化する(これをヒートブリッジと云
う)。
【0042】これに対して、真空断熱材73のコア材は
冷却器38と送風機39を含む領域の背方投影面積より
も大なる寸法とされているので、係るヒートブリッジに
よる悪影響を受けること無く、−30℃〜−35℃など
の最も低温となる冷却器38の背方を効果的に断熱する
ことができるようになり、冷却能力等の一層の向上を図
ることが可能となる。
【0043】特に、送風機39の背方もモータなどを設
置する関係から、図3、図5に示す如く断熱箱体6の壁
厚が薄くなるが、前述の如く真空断熱材73を設置する
ことによって、送風機39部分の断熱性能の低下を防止
することができようになる。
【0044】一方、前述の如く断熱箱体6の底壁6Aは
後部が立ち上がる階段形状を呈しているため、外箱2の
底板2Bも係る階段形状を呈している。そして、本発明
では冷凍室18の下方に位置する真空断熱材72も、図
3、図5、図9に示される如く底壁6Aの形状に沿い、
後部が立ち上がる階段状に成形されており、底板2Bの
内面(断熱材4側の面)に貼付されている。
【0045】この真空断熱材72は、前記他の真空断熱
材71、73同様の例えば内側からポリエチレン若しく
はポリプロピレンなどから成る熱溶着層とアルミニウム
層及び表面保護層をラミネートしたガスバリアフィルム
81を2枚重ね、図10の如く三辺を密着させて熱溶着
層を相互に溶着することにより袋状とし、その状態で同
様にシリカ、パーライトなどの微粉末、及び、グラスフ
ァイバ、或いは、連続気泡の発泡ポリウレタン断熱材か
ら成るコア材82を挿入し、所定の真空排気装置内にお
いて袋内部のガスを排気して真空状態とした後、残りの
一辺の前記熱溶着層を相互に溶着させて密封することに
より、製造されている。
【0046】このとき、階段形状の真空断熱材72の屈
曲箇所の内側屈曲線(図13にP1、P2で示す)に対
応する位置のコア材82には、当該屈曲線P1、P2の
方向に渡る凹溝83、84が形成されている。この凹溝
83、84は開口に向けて拡開する形状を呈しており、
その深さはコア材82の略2/3の位置まで達してい
る。
【0047】係る構成で、真空排気装置内に装填し、真
空引きを行うと、その過程でガスバリアフィルム81は
各凹溝83、84内に引っ張り込まれる。このときのテ
ンションによって、コア材82には各凹溝83、84の
開口を閉じる方向に力が加わるので、コア材82は各凹
溝83、84の延在する屈曲線P1、P2に沿って図1
3の如く階段状に屈曲される。従って、断熱箱体6の底
壁6Aに沿った真空断熱材72の成形を極めて容易に行
うことができるようになる。
【0048】このように、本発明では真空断熱材72を
断熱箱体6の底壁6Aの形状に沿った形状として当該底
壁6A内に配置しているので、断熱箱体6の底壁6Aに
沿って平板状の真空断熱材を複数枚並設する場合に比し
て、真空断熱材72周縁部のガスバリアフィルム81を
熱が伝わる所謂ヒートブリッジによる悪影響を低減し、
温度が高くなる機械室56からの熱侵入を効果的に削減
することができるようになる。
【0049】これにより、断熱箱体6の壁厚を薄くして
冷蔵庫1の設置スペースをより一層縮小し、若しくは、
有効容積を拡大し、或いは、冷却装置の消費電力の一層
の削減を図ることができるようになる。特に、一枚の真
空断熱材72を取り付ければ済むので、複数枚の真空断
熱材を取り付ける場合に比して組立作業性も改善され
る。
【0050】他方、前記高温冷媒配管61は図9に示す
如く、向かって左側の真空断熱材71の後方の側板2A
内面を下方から上方に立ち上がり、前方にクランク状に
折れ曲がった後、上方に回って天板2D内面を右方に延
在する。そして、下方に回った後、後方にクランク状に
折れ曲がり、右側の真空断熱材71の後方の側板2A内
面を降下する。
【0051】高温冷媒配管61はそこから更に真空断熱
材73の側方の背板2C内面を立ち上がり、真空断熱材
73の上方に位置する背板2Cの内面において蛇行状に
屈曲した後、再び真空断熱材73の側方を降下する形状
とされている。
【0052】このように、下方の冷却器38背方に取り
付けた真空断熱材73の上方の背板2C内面に図4、図
9の如く高温冷媒配管61を貼り付けているので、真空
断熱材71や73の存在に係わらず、高温冷媒配管61
の放熱能力(配管長)を確保して、冷却能力を維持する
ことができるようになる。
【0053】次に、上述の如き冷蔵庫1の断熱箱体6の
組立手順を説明する。先ず、外箱2の内面の上記各位置
に各真空断熱材71、71、72、73をそれぞれ貼り
付けると共に、各高温冷媒配管61、62もこの時点で
外箱2の内面に取り付ける。このとき、外箱2の背板2
C中央部左右にはウレタン注入口75、75が形成され
ており、高温冷媒配管61はこれを避けて取り付けられ
る。
【0054】そして、内箱3を外箱2内に組み込んだ
後、開口を下方として所定の発泡治具内にセットする。
次に、前記ウレタン注入口75、75からポリウレタン
原液を注入し、両箱2、3間に充填するものであるが、
このとき、真空断熱材71、71の厚さ寸法は15m
m、真空断熱材73の厚さ寸法は20mmとされ、断熱
箱体6の冷凍室18部分(図8)の断熱厚さ寸法は側壁
で45mm、背壁で40mm〜50mmとされている。
【0055】他方、断熱箱体6の冷蔵室8部分(図7)
の断熱厚さ寸法は側壁で33mm、背壁で30mm〜4
0mmとされているので、各真空断熱材71、73の厚
さ分を差し引いた断熱材4の厚さ寸法は、冷凍室18部
分と冷蔵室8部分とで略同等若しくは近似した値とな
る。従って、反応成長するポリウレタン原液も両箱2、
3間に略均等に回り、断熱材4は断熱箱体6の各部に略
均一に充填されるようになる。
【0056】
【発明の効果】以上詳述した如く本発明によれば、真空
断熱材を断熱箱体の底壁形状に沿った形状として当該底
壁内に配置したので、断熱箱体の底壁に沿って平板状の
真空断熱材を複数枚並設する場合に比して、真空断熱材
周縁部を熱が伝わる所謂ヒートブリッジによる悪影響を
低減し、温度が高くなる断熱箱体底壁外側の機械室から
の熱侵入を効果的に削減することができるようになる。
【0057】これにより、断熱箱体の壁厚を薄くして冷
蔵庫の設置スペースをより一層縮小し、若しくは、有効
容積を拡大し、或いは、冷却装置の消費電力の一層の削
減を図ることができるようになる。特に、真空断熱材の
取り付け枚数も減るため、組立作業性も改善されるもの
である。
【0058】更に、この発明によれば、上記に加えて真
空断熱材はガスバリアフィルム内にコア材を真空密封し
て構成され、且つ、当該真空断熱材の屈曲箇所の内側屈
曲線に対応するコア材には当該屈曲線方向に渡る凹溝を
形成したので、真空引きの過程でガスバリアフィルムは
この凹溝内に引っ張り込まれる。
【0059】これにより、コア材には凹溝の開口を閉じ
る方向に力が加わるので、コア材は凹溝の延在する屈曲
線に沿って屈曲されることになる。従って、断熱箱体の
底壁に沿った真空断熱材の成形を極めて容易に行うこと
ができるようになるものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a heat insulating box provided with a vacuum heat insulating material between an outer box and an inner box, and a rear portion of a bottom wall of the heat insulating box rises. And a refrigerator having a machine room on the outside. 2. Description of the Related Art Conventionally, a refrigerator of this type is constituted by an insulating box body in which a heat insulating material such as foamed polyurethane is filled between a steel sheet outer box and a hard resin inner box by a foaming method in place. By dividing the inside of the heat insulation box (inside the storage),-
A freezing room cooled to a freezing temperature such as 20 ° C., a refrigerated room maintained at a refrigerated temperature such as + 5 ° C., and a vegetable room for storing foods such as vegetables that do not want to be dried are defined. . [0003] In particular, in recent years, refrigerators have been developed in which a refrigerator compartment and a vegetable compartment where foods are frequently delivered are arranged above, and a freezer compartment for long-term storage is arranged at the bottom of the refrigerator. . In recent years, it has become necessary to reduce the wall thickness of the heat-insulating box in order to reduce the installation space of the refrigerator or to prevent the expansion of the refrigerator while expanding the effective volume in the refrigerator. For example, JP-B-61-17263 (B32B5 / 18) and JP-B-63-35911 (F25D23 / 06), or JP-B-2-544.
No. 79 (F16L59 / 06) has come to use a vacuum heat insulating material. [0005] This vacuum heat insulating material is provided in a bag formed by welding the periphery of a film (gas barrier film) having a multilayer laminate structure for preventing gas (such as air) from permeating, into a fine powder of silica, pearlite, etc., and a glass. After inserting a heat insulating core material made of fiber or open-cell foamed polyurethane, the gas in the bag is evacuated and sealed in a vacuum state. According to such a vacuum heat insulating material, 0.005 to
Since a thermal conductivity of 0.010 Kcal / mh ° C. is achieved, if it is arranged on the inner surface of the outer box around the freezing room where low temperature is required, even if the wall thickness of the heat insulating box is thin, the freezing from outside the outer box can be achieved. It is possible to effectively reduce the heat that enters the room. [0007] In particular, the bottom wall of the heat-insulating box constituting this type of refrigerator has a shape in which the rear portion rises stepwise, and a machine room for installing equipment such as a compressor is formed outside the rising portion. Have been. Then, since the compressor and the like generate heat during operation, the temperature in the machine room becomes higher than that in other portions. Therefore, if a vacuum heat insulating material is attached also to the bottom wall of the heat insulating box, it is expected that the heat in the machine room, which tends to enter the freezer compartment from the bottom of the heat insulating box, can be effectively reduced. [0009] However, since the conventional vacuum heat insulating material has a flat plate shape, if the vacuum heat insulating material is to be disposed in the bottom wall of the heat insulating box, the shape of the bottom wall is not sufficient. A plurality of plate-shaped vacuum heat insulating materials are arranged side by side along. On the other hand, since the vacuum heat insulating material is composed of the above-described gas barrier film and the core material sealed therein, the peripheral portion is only the gas barrier film having a high thermal conductivity. Therefore, when a plurality of vacuum heat insulating materials are arranged side by side along the bottom wall, a problem that the amount of heat entering along the peripheral edge portion and invading becomes large, that is, a problem of a heat bridge occurs. The present invention has been made to solve the above-mentioned conventional technical problem, and eliminates the influence of a heat bridge of a vacuum heat insulating material and effectively reduces heat intrusion from the bottom of the heat insulating box. It is intended to provide a refrigerator that can be used. A refrigerator according to the present invention comprises a heat insulating box provided with a vacuum heat insulating material between an outer box and an inner box. A machine room is formed outside the wall, and the vacuum heat insulating material has a shape along the shape of the bottom wall of the heat insulating box and is disposed inside the bottom wall. According to the present invention, the vacuum heat insulating material is arranged in the bottom wall of the heat insulating box so as to follow the shape of the bottom wall of the heat insulating box, so that the flat vacuum heat insulating material is formed along the bottom wall of the heat insulating box. Compared to the case where a plurality of sheets are arranged side by side, the adverse effect of the so-called heat bridge, in which heat is transmitted to the peripheral portion of the vacuum heat insulating material, is reduced, and heat intrusion from the machine room outside the bottom wall of the heat insulating box body where the temperature becomes high is effectively reduced. It can be reduced. Thus, the wall thickness of the heat insulating box can be reduced to further reduce the installation space for the refrigerator, increase the effective volume, or further reduce the power consumption of the cooling device. Become like In particular, the number of vacuum insulation materials attached is reduced, so that the assembly workability is also improved. Further, in the refrigerator according to the present invention, the vacuum heat insulating material is formed by vacuum-sealing a core material in a gas barrier film, and a core material corresponding to an inner bending line at a bent portion of the vacuum heat insulating material is provided. A concave groove extending in the bending line direction is formed. According to this invention, the vacuum heat insulating material in addition to the above is constituted by a vacuum seal the core material in the gas barrier film, and a core material corresponding to the inner bend line of bending portions of the vacuum heat insulating material Has formed a groove extending in the bending line direction, so that the gas barrier film is pulled into the groove in the process of evacuation. As a result, a force is applied to the core material in a direction to close the opening of the groove, so that the core material is bent along the bending line where the groove extends. Therefore, the vacuum heat insulating material can be formed very easily along the bottom wall of the heat insulating box. Next, an embodiment of the present invention will be described in detail with reference to the drawings. 1 is a front view of the refrigerator 1 of the present invention, FIG. 2 is a front view of the refrigerator 1 without a door, FIG. 3 is a longitudinal side view of the refrigerator 1, FIG. 4 is a rear view of the refrigerator 1, and FIG. FIG. 6 is a sectional view taken along line AA of FIG. 5, FIG. 7 is a sectional view taken along line BB of FIG. 6, FIG. 8 is a sectional view taken along line CC of FIG. 6, and FIG. FIG. The refrigerator 1 of the embodiment comprises a heat-insulating box 6 formed by filling a foamed polyurethane heat-insulating material 4 by an in-situ foaming method between an outer box 2 made of a steel plate opening forward and an inner box 3 made of a hard resin. The interior of the heat-insulating box 6 is vertically partitioned by a partition plate 7 provided at a substantially central portion,
The upper part of the partition plate 7 is a refrigerating room 8 maintained at a refrigerating temperature (about + 5 ° C.). The lower part of the partition plate 7 is further vertically divided by a heat insulating partition wall 9 having a substantially L-shaped cross-section and containing a vacuum heat insulating material, and the space between the heat insulating partition wall 9 and the partition plate 7 is used for drying vegetables and the like. A vegetable compartment 17 for storing disliked food, and a freezer compartment 18 in which the lower part of the heat insulating partition wall 9 is cooled to a freezing temperature (about −20 ° C.).
And The refrigerator 21 has a plurality of shelves 21 and
・ The ice temperature (0 ° C to -3
(° C.) is formed. Also,
The front opening of the refrigerator compartment 8 is closed by a pivotable door 23 so as to be openable and closable. Further, the refrigerator compartment duct 2 is provided at the back of the refrigerator compartment 8.
4 are formed vertically, and on the left and right sides thereof, a plurality of refrigerator air outlets 26 communicating with the upper end of the refrigerator compartment 24 and the refrigerator 8 are formed vertically. Further, an ice greenhouse cold air discharge port 25 is formed inside the ice greenhouse 22, and a cold storage room cool air return port 27 is formed at the back and bottom (partition plate 7). A vegetable compartment cool air discharge port 31 communicating with the refrigerator compartment cool air return port 27 is formed in the upper rear portion of the vegetable compartment 17, and a vegetable compartment cool air return port 32 is formed in the upper right rear portion. . The front opening of the vegetable compartment 17 is openably and closably closed by a drawer-type door 33, and the door 33
A vegetable container 34 having an opening on the upper surface is attached to the back surface of the container, and the vegetable container 34 is disposed in the vegetable compartment 17 to store vegetables. A cooling chamber 37 is defined at the back of the freezing chamber 18 by a partition plate 36, and extends from the back of the freezing chamber 18 to the back of the heat insulating partition wall 9.
In the cooling chamber 37, a cooler 38 which constitutes a cooling device is provided vertically behind the freezing chamber 18, and a blower 3 is provided in the cooling chamber 37 above the cooler 38.
9 are installed. Reference numeral 41 denotes a defrost heater of the cooler 38. The front opening of the freezer compartment 18 is closed openably and closably by two upper and lower drawer-type doors 42 and 43, and containers 44 and 46 having upper surfaces respectively opened on the back surfaces of the doors 42 and 43. Attached, this container 44,
Reference numerals 46 are arranged above and below the freezer compartment 18 to store frozen food, ice cream, and the like. The partition plate 36, the cooler 38 and the blower 3
A cooling air distribution duct 47 is formed between the cylinders 9, and freezing room cold air discharge ports 48, 49 communicating with the duct 47 and the freezing room 18 are formed in the partition plate 36 at the upper back of the containers 44, 46. Open correspondingly. In addition, a freezer compartment cool air return port 51 communicating with a lower portion of the cooling compartment 37 is formed behind the container 46. At the upper part of the duct 47, a cool air distribution port 52 is formed on the side of the blower 39.
2 communicates with the lower end of the refrigerator compartment duct 24. In addition, beside the cooler 38, a cold air return duct 53 is provided in the refrigerator compartment / vegetable compartment.
The upper end of which is formed in the vegetable compartment cool air return port 3
The lower end thereof communicates with the inside of the cooling chamber 37 through a cold air return port 54 for opening the refrigerator compartment / vegetable compartment opened at the lower part of the cooling compartment 37. In FIG. 2, the heat insulating partition wall 9 and the partition plate 36 are removed. On the other hand, the bottom wall 6A of the heat-insulating box 6 is formed such that the rear portion rises in a stepped manner, and a machine room 56 is formed outside the rear portion of the bottom wall 6A. This machine room 56
Inside, a compressor 57, an evaporating dish condenser 58, and a main condenser 59 constituting a cooling device are installed. In addition, since the bottom wall 6A has such a shape, the bottom of the freezing compartment 18 also has a shape in which the rear rises, so that the rear surface of the lower container 46 is located forward of the rear surface of the upper container 44. Becomes The cooler 38 is located above the raised bottom wall 6A. On the other hand, a high-temperature refrigerant pipe 61 is alternately attached (attached) to the inner surface of the outer box 2, and a high-temperature refrigerant pipe 62 is also provided on the inner surface of the outer box 2 located at the periphery of the opening of the heat insulating box 6. Have been. The discharge side of the compressor 57 is connected to the evaporating dish condenser 58, and the outlet of the evaporating dish condenser 58 is connected to the main condenser 59. The outlet of the main condenser 59 is connected to the high-temperature refrigerant pipe 61,
Is connected to a high-temperature refrigerant pipe 62 around the opening. The high-temperature refrigerant pipe 62 is connected to the cooler 38 via a capillary tube 63 (not shown), and the outlet of the cooler 38 is connected to the suction side of the compressor 57. In this configuration, when the compressor 57 is operated,
A high-temperature and high-pressure gas refrigerant is discharged from the compressor 57, flows into the evaporating dish condenser 58 and the main condenser 59 in order, releases heat, and is condensed. The refrigerant flowing out of the main condenser 59 flows into the high-temperature refrigerant pipe 61 to further radiate heat, and then flows into the high-temperature refrigerant pipe 62 to heat the periphery of the opening. Thereby, dew condensation on the periphery of the opening is eliminated. The refrigerant flowing out of the high-temperature refrigerant pipe 62 is decompressed by the capillary tube, enters the cooler 38 and evaporates. At this time, heat is taken from the surroundings, and the air in the cooling chamber 37 is cooled. The refrigerant exiting the cooler 38 is again supplied to the compressor 5
It is sucked into 7. As described above, the cool air cooled by the cooler 38 is sucked by the operation of the upper blower 39 and is blown out to the distribution duct 47 on the front side. The cool air blown out to the distribution duct 47 flows from the cool room discharge ports 48 and 49 to the freezer room 18.
Is discharged into each of the containers 44 and 46 and cooled to a freezing temperature of about −20 ° C. The cool air in the freezer compartment 18 returns from the freezer cool air return port 51 into the cooling compartment 37 on the suction side of the cooler 38. The cold air blown out to the distribution duct 47 also flows into the refrigerator compartment duct 24 from the cool air distribution port 52 and rises there. After that, the cold air is discharged from each of the refrigerator compartment cold air discharge ports 26. It is discharged into the refrigeration room 8 and the ice temperature room 22. A not-shown damper that opens and closes at the temperature in the refrigerator compartment 8 is provided in the refrigerator compartment duct 24, whereby the refrigerator compartment 8 is maintained at a refrigerator temperature of about + 5 ° C. Is maintained at an ice temperature of about 0 ° C. to −3 ° C. The cold air circulated in each of the chambers 8 and 22 flows into the cold room return port 27, enters the vegetable room 17 from the vegetable room cold air discharge port 31 and the like, and keeps the inside of the vegetable room container 34 cool from the surroundings. Then, the cool air circulated in the vegetable room 17 flows into the cool room / vegetable room cool air return duct 53 from the vegetable room cool air return port 32, flows down there, and returns to the cool room / vegetable room cool air return port 54.
It returns to the cooling chamber 37 on the suction side of the cooler 38. On the other hand, vacuum heat insulating materials 71, 71 are adhered to the inner surfaces of the side plates 2A, 2A of the outer box 2 corresponding to both sides of the freezing room 18, and the bottom plate of the outer box 2 corresponding to the lower part of the freezing room 18. A vacuum heat insulating material 72 is also attached to the inner surface of 2B,
It is embedded in the heat insulating material 4. A vacuum heat insulating material 73 is also attached to the inner surface of the back plate 2 </ b> C of the outer box 2 corresponding to the back of the cooling room 37 behind the freezing room 18, and is embedded in the heat insulating material 4. Each of the vacuum heat insulating materials 71 and 73 is formed by folding a gas barrier film in which a heat-welding layer made of, for example, polyethylene or polypropylene, an aluminum layer and a surface protective layer are laminated from the inside, and two sides are brought into close contact with each other to bond the heat-welding layers to each other. Into a bag by welding, and in that state, a fine powder such as silica or perlite, and a core material made of glass fiber or open-cell foamed polyurethane insulation are inserted into the bag, and the bag is filled in a predetermined vacuum exhaust device. After evacuating the gas inside to a vacuum state, the remaining one side of the heat welding layer is mutually welded and sealed,
Being manufactured. Of these, the upper portions of the vacuum heat insulating materials 71, 71 located on both sides of the freezing compartment 18 are provided with the vegetable compartment 1 as shown in FIG.
7, the lower end edge 71A of the vacuum heat insulating material 71, 71 has an inclined shape in which the rear portion gradually rises at a predetermined angle from the front portion. Thereby, the lower end edge 71A of the vacuum heat insulating material 71 has a shape similar to the shape of the bottom wall 6A, and the vacuum heat insulating materials 71, 71 cover substantially the entire area from the front part to the rear part of the bottom of the freezing chamber 18 avoiding the machine room 56. Will come to cover. Thus, regardless of the shape of the bottom wall 6A of the heat insulating box 6 formed by the machine room 56, the vacuum heat insulating materials 71, 71 are provided.
Is attached to the bottom of the heat insulation box 6 with a large area, and the heat insulation effect can be improved. In particular, the vacuum heat insulating materials 71 and 7 are provided almost all over the side of the freezing room 18 where heat insulation is most desired.
1 can be provided, so that the wall thickness of the heat insulating box 6 is reduced to further reduce the installation space of the refrigerator 1, or to increase the effective volume, or to further increase the power consumption of the cooling device. Can be reduced. Further, since the vacuum heat insulating material 71 itself has such a shape, the core material constituting the vacuum heat insulating material 71 has a tapered shape, so that the work of inserting the vacuum heat insulating material 71 into the gas barrier film becomes easy, and the vacuum heat insulating material 71 itself Also improves the assembly workability. Further, the vacuum heat insulating material 73 located behind the freezing compartment 18 has a rectangular flat plate shape as a whole. The core material includes a cooler 38 and a blower 3 as shown in FIG.
9 is larger than the rear projection area of the region including the region 9. Here, the core material does not exist at the peripheral portion of the vacuum heat insulating material, and only the gas barrier film is used. Therefore, heat transfer at the peripheral portion of the vacuum heat insulating material increases, and the heat insulating performance deteriorates. (This is called a heat bridge.) On the other hand, since the core material of the vacuum heat insulating material 73 has a size larger than the rear projection area of the area including the cooler 38 and the blower 39, it is not affected by the heat bridge. , -30 ° C. to −35 ° C., etc., can be effectively insulated behind the cooler 38 at the lowest temperature, and the cooling capacity and the like can be further improved. In particular, the wall thickness of the heat insulating box 6 is reduced as shown in FIGS. 3 and 5 due to the installation of a motor and the like behind the blower 39, but the vacuum heat insulating material 73 must be provided as described above. As a result, it is possible to prevent the insulation performance of the blower 39 from lowering. On the other hand, since the bottom wall 6A of the heat insulating box 6 has a stepped shape in which the rear portion rises as described above, the bottom plate 2B of the outer box 2 also has the stepped shape. In the present invention, the vacuum heat insulating material 72 located below the freezing compartment 18 also follows the shape of the bottom wall 6A as shown in FIGS.
The rear portion is formed in a stair-like shape that rises, and is attached to the inner surface (the surface on the heat insulating material 4 side) of the bottom plate 2B. This vacuum heat insulating material 72 is composed of two gas barrier films 81 each having a heat-welding layer made of, for example, polyethylene or polypropylene, and an aluminum layer and a surface protective layer laminated from the inside, like the other vacuum heat insulating materials 71 and 73. As shown in FIG. 10, the three sides are brought into close contact with each other and the heat-welding layers are welded to each other to form a bag. Similarly, in this state, fine powders of silica, pearlite, etc., and glass fibers or open-cell foamed polyurethane After inserting the core material 82 made of a heat insulating material and evacuating the gas inside the bag in a predetermined evacuation apparatus to make a vacuum state, the heat welding layers on the remaining one side are welded to each other and sealed. , Has been manufactured. At this time, the core member 82 at a position corresponding to the inner bending line (indicated by P1 and P2 in FIG. 13) of the bending portion of the step-shaped vacuum heat insulating material 72 has a direction corresponding to the bending lines P1 and P2. Crossover grooves 83 and 84 are formed. The concave grooves 83 and 84 have a shape that expands toward the opening.
The depth reaches approximately / of the core material 82. When the gas barrier film 81 is loaded into the vacuum exhaust device and evacuated, the gas barrier film 81 is pulled into the concave grooves 83 and 84 in the process. Due to the tension at this time, a force is applied to the core member 82 in a direction to close the openings of the concave grooves 83 and 84, so that the core member 82 follows the bending lines P1 and P2 where the concave grooves 83 and 84 extend. FIG.
It is bent stepwise as shown in FIG. Therefore, it is possible to extremely easily form the vacuum heat insulating material 72 along the bottom wall 6A of the heat insulating box 6. As described above, according to the present invention, the vacuum heat insulating material 72 is arranged inside the bottom wall 6A so as to conform to the shape of the bottom wall 6A of the heat insulating box 6, so that the bottom wall 6A of the heat insulating box 6 is formed. In comparison with the case where a plurality of flat vacuum heat insulating materials are arranged side by side, the adverse effect due to the so-called heat bridge in which heat is transmitted through the gas barrier film 81 around the vacuum heat insulating material 72 is reduced,
Heat intrusion from the machine room 56 where the temperature becomes high can be effectively reduced. Thus, the wall thickness of the heat-insulating box 6 can be reduced to further reduce the installation space of the refrigerator 1, or
The effective volume can be increased, or the power consumption of the cooling device can be further reduced. In particular, since only one vacuum heat insulating material 72 needs to be attached, operability in assembly is improved as compared with a case where a plurality of vacuum heat insulating materials are attached. On the other hand, as shown in FIG. 9, the high-temperature refrigerant pipe 61 is connected to the side plate 2A behind the vacuum heat insulating material 71 on the left side.
The inner surface rises upward from below, bends forward in a crank shape, and then turns upward to extend rightward on the inner surface of the top plate 2D. Then, after turning downward, it is bent rearward in the shape of a crank, and descends on the inner surface of the side plate 2A behind the right vacuum insulating material 71. The high-temperature refrigerant pipe 61 further rises from the inner surface of the back plate 2C on the side of the vacuum heat insulating material 73, bends in a meandering manner on the inner surface of the back plate 2C located above the vacuum heat insulating material 73, and then re-evacuates. The heat insulating material 73 has a shape that descends to the side. As described above, since the high-temperature refrigerant pipe 61 is adhered to the inner surface of the back plate 2C above the vacuum heat insulating material 73 attached behind the lower cooler 38 as shown in FIGS. Regardless of the presence of 71 or 73, the high-temperature refrigerant pipe 61
, The cooling capacity can be maintained by securing the heat radiation capacity (pipe length). Next, the procedure for assembling the heat insulating box 6 of the refrigerator 1 as described above will be described. First, the vacuum heat insulating materials 71, 71, 72, 73 are respectively attached to the respective positions on the inner surface of the outer box 2, and the high-temperature refrigerant pipes 61, 62 are also attached to the inner surface of the outer box 2 at this time. At this time, the back plate 2 of the outer box 2
Urethane injection ports 75, 75 are formed on the left and right sides of the central portion of the C, and the high-temperature refrigerant pipe 61 is attached so as to avoid this. After assembling the inner box 3 into the outer box 2, it is set in a predetermined foaming jig with the opening facing downward.
Next, a polyurethane undiluted solution is injected from the urethane injection ports 75, 75, and is filled between the two boxes 2, 3.
At this time, the thickness of the vacuum heat insulating materials 71, 71 is 15 m.
m, the thickness of the vacuum heat insulating material 73 is 20 mm, and the heat insulating thickness of the freezer compartment 18 (FIG. 8) of the heat insulating box 6 is 45 mm on the side wall and 40 mm to 50 mm on the back wall. On the other hand, the refrigerator compartment 8 of the heat insulating box 6 (FIG. 7)
The insulation thickness of the side wall is 33mm, the back wall is 30mm ~ 4mm
Since the thickness is set to 0 mm, the thickness of the heat insulating material 4 minus the thickness of the vacuum heat insulating materials 71 and 73 is substantially the same or similar between the freezing compartment 18 and the refrigerating compartment 8. Therefore, the undiluted polyurethane solution that grows by reaction is also in both boxes 2,
The heat insulating material 4 turns substantially uniformly between the three, and the heat insulating material 4 is almost uniformly filled in each part of the heat insulating box 6. As described above in detail, according to the present invention, the vacuum heat insulating material is arranged in the bottom wall of the heat insulating box so as to conform to the shape of the bottom wall of the heat insulating box. Compared to the case of arranging a plurality of plate-shaped vacuum heat insulators in parallel with each other, the adverse effect of a so-called heat bridge through which heat is transmitted to the periphery of the vacuum heat insulator is reduced, and the temperature of the heat insulating box bottom wall outside increases. Heat intrusion from the machine room can be effectively reduced. Thus, the wall thickness of the heat insulating box can be reduced to further reduce the installation space for the refrigerator, increase the effective volume, or further reduce the power consumption of the cooling device. Become In particular, the number of vacuum insulation materials attached is reduced, so that the assembly workability is also improved. Further, according to the present invention, in addition to the above, the vacuum heat insulating material is formed by vacuum-sealing a core material in a gas barrier film, and further comprises a core corresponding to an inner bending line of a bent portion of the vacuum heat insulating material. Since a groove is formed in the material in the direction of the bending line, the gas barrier film is pulled into the groove during the evacuation process. As a result, a force is applied to the core material in the direction to close the opening of the groove, so that the core material is bent along the bending line where the groove extends. Therefore, the vacuum heat insulating material can be formed very easily along the bottom wall of the heat insulating box.
【図面の簡単な説明】
【図1】本発明の冷蔵庫の正面図である。
【図2】扉を除く本発明の冷蔵庫の正面図である。
【図3】本発明の冷蔵庫の縦断側面図である。
【図4】本発明の冷蔵庫の背面図である。
【図5】本発明の冷蔵庫のもう一つの縦断側面図であ
る。
【図6】図5のA−A線断面図である。
【図7】図6のB−B線断面図である。
【図8】図6のC−C線断面図である。
【図9】本発明の冷蔵庫の透視分解斜視図である。
【図10】断熱材の底壁に取り付けた真空断熱材の製造
手順を説明する斜視図である。
【図11】図10の真空断熱材のコア材の斜視図であ
る。
【図12】図10の真空断熱材の真空引き前の状態の側
面図である。
【図13】図10の真空断熱材の真空引き後の状態の縦
断側面図である。
【符号の説明】
1 冷蔵庫
2 外箱
3 内箱
4 ポリウレタン断熱材
6 断熱箱体
6A 底壁
18 冷凍室
38 冷却器
56 機械室
57 圧縮機
72 真空断熱材
81 ガスバリアフィルム
82 コア材
83、84 凹溝BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a refrigerator according to the present invention. FIG. 2 is a front view of the refrigerator of the present invention excluding a door. FIG. 3 is a vertical sectional side view of the refrigerator of the present invention. FIG. 4 is a rear view of the refrigerator of the present invention. FIG. 5 is another longitudinal side view of the refrigerator of the present invention. FIG. 6 is a sectional view taken along line AA of FIG. 5; FIG. 7 is a sectional view taken along the line BB of FIG. 6; FIG. 8 is a sectional view taken along line CC of FIG. 6; FIG. 9 is a perspective exploded perspective view of the refrigerator of the present invention. FIG. 10 is a perspective view illustrating a manufacturing procedure of the vacuum heat insulating material attached to the bottom wall of the heat insulating material. 11 is a perspective view of a core material of the vacuum heat insulating material of FIG. 12 is a side view of the vacuum heat insulating material of FIG. 10 in a state before evacuation. FIG. 13 is a longitudinal side view of the vacuum heat insulating material of FIG. 10 after evacuation. [Description of Signs] 1 Refrigerator 2 Outer box 3 Inner box 4 Polyurethane heat insulating material 6 Heat insulating box 6A Bottom wall 18 Freezer room 38 Cooler 56 Machine room 57 Compressor 72 Vacuum heat insulating material 81 Gas barrier film 82 Core materials 83, 84 concave groove
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤堂 淳一 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 茂木 秀文 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭61−186775(JP,A) 特開 平3−153996(JP,A) 特開 平7−195385(JP,A) 特開 平7−151297(JP,A) 特開 昭63−15074(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25D 23/06 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Junichi Todo 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hidefumi Mogi 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (56) References JP-A-61-186775 (JP, A) JP-A-3-153996 (JP, A) JP-A-7-195385 (JP, A) JP-A-7-195 151297 (JP, A) JP-A-63-15074 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25D 23/06
Claims (1)
箱体から成り、この断熱箱体の底壁後部は立ち上がり、
当該底壁の外側には機械室を構成して成る冷蔵庫におい
て、 前記真空断熱材は、ガスバリアフィルム内にコア材を真
空密封して構成されると共に、当該真空断熱材の屈曲箇
所の内側屈曲線に対応するコア材には、当該屈曲線方向
に渡る凹溝が形成されて、この真空断熱材は前記断熱箱
体の底壁形状に沿った形状を呈し、当該底壁内に配置さ
れることを特徴とする冷蔵庫。(57) [Claims] [Claim 1] A heat insulating box body provided with a vacuum heat insulating material between an outer box and an inner box, and a rear portion of a bottom wall of the heat insulating box rises,
In a refrigerator comprising a machine room outside the bottom wall, the vacuum heat insulating material includes a core material inside a gas barrier film.
Air-tight, and bend the vacuum insulation material
The core material corresponding to the inner bending line at the place
The vacuum heat insulating material has a shape along the bottom wall shape of the heat insulating box, and is disposed in the bottom wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06340797A JP3408101B2 (en) | 1997-03-17 | 1997-03-17 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06340797A JP3408101B2 (en) | 1997-03-17 | 1997-03-17 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10253243A JPH10253243A (en) | 1998-09-25 |
JP3408101B2 true JP3408101B2 (en) | 2003-05-19 |
Family
ID=13228426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06340797A Ceased JP3408101B2 (en) | 1997-03-17 | 1997-03-17 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3408101B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157431A (en) * | 2006-12-26 | 2008-07-10 | Kurabo Ind Ltd | Vacuum heat insulating material |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4238475B2 (en) * | 2000-11-06 | 2009-03-18 | パナソニック株式会社 | refrigerator |
JP3793113B2 (en) * | 2002-06-06 | 2006-07-05 | 松下冷機株式会社 | Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material |
JP2006029456A (en) * | 2004-07-16 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material, heat insulation/cold insulation unit comprising the same, and refrigerator |
JP2007092776A (en) * | 2005-09-27 | 2007-04-12 | Toshiba Home Technology Corp | Heat insulating material and its manufacturing method |
JP2008101792A (en) * | 2006-10-17 | 2008-05-01 | Matsushita Electric Ind Co Ltd | Refrigerator |
JP4816403B2 (en) * | 2006-10-19 | 2011-11-16 | パナソニック株式会社 | refrigerator |
JP2007107877A (en) * | 2006-12-04 | 2007-04-26 | Matsushita Refrig Co Ltd | Refrigerator |
EP2538125A3 (en) | 2008-12-26 | 2013-02-20 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
EP2489919A4 (en) | 2009-10-16 | 2014-01-29 | Mitsubishi Electric Corp | Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator |
US8920899B2 (en) | 2009-10-16 | 2014-12-30 | Mitsubishi Electric Corporation | Vacuum heat insulating material and refrigerator |
EP2472164A4 (en) | 2009-10-19 | 2014-01-29 | Mitsubishi Electric Corp | Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material |
KR101324928B1 (en) * | 2011-04-06 | 2013-11-01 | (주)엘지하우시스 | Vacuum heat insulation pannel and manufacturing mathod of the same |
JP5968004B2 (en) * | 2012-03-29 | 2016-08-10 | 三菱電機株式会社 | Refrigerator using vacuum heat insulating material and vacuum heat insulating material |
US11053369B2 (en) * | 2012-08-10 | 2021-07-06 | Aspen Aerogels, Inc. | Segmented flexible gel composites and rigid panels manufactured therefrom |
JP6448984B2 (en) * | 2014-10-30 | 2019-01-09 | 東芝ライフスタイル株式会社 | refrigerator |
-
1997
- 1997-03-17 JP JP06340797A patent/JP3408101B2/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157431A (en) * | 2006-12-26 | 2008-07-10 | Kurabo Ind Ltd | Vacuum heat insulating material |
Also Published As
Publication number | Publication date |
---|---|
JPH10253243A (en) | 1998-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3408101B2 (en) | refrigerator | |
JP5903567B2 (en) | refrigerator | |
CN100498158C (en) | Refrigerator | |
US6397620B1 (en) | Ultra-low temperature freezer cabinet utilizing vacuum insulated panels | |
JP3478771B2 (en) | refrigerator | |
WO2011114656A1 (en) | Refrigerator | |
JPH10253244A (en) | Refrigerator | |
JP2008298360A (en) | Heat insulation case body for cooling storage | |
JP2006329482A (en) | Refrigerator | |
JPH10205994A (en) | Heat insulation box body of cooling storage | |
JPH10205989A (en) | Refrigerator | |
JPH10205995A (en) | Refrigerator | |
JP2003222466A (en) | Refrigerator | |
JP2002364978A (en) | Refrigerator | |
JP2023070202A (en) | refrigerator | |
JP5945708B2 (en) | refrigerator | |
JPH10205996A (en) | Thermal insulation box of cooling refrigerator | |
JPH09269177A (en) | Refrigerator | |
JPH10205991A (en) | Thermal insulation box of cooling refrigerator | |
JPH11159950A (en) | Heat insulating box body for refrigerator | |
JPH10205988A (en) | Refrigerator | |
JP2004116785A (en) | Manufacturing device for thermal insulation box | |
JPH10253246A (en) | Heat insulating box and its manufacturing apparatus | |
JPH10205992A (en) | Thermal insulation box of cooling refrigerator | |
JP2003314952A (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RVOP | Cancellation by post-grant opposition |