JP2004011755A - Vacuum heat-insulating material, its manufacturing method, and insulation box in which vacuum heat-insulating material is used - Google Patents

Vacuum heat-insulating material, its manufacturing method, and insulation box in which vacuum heat-insulating material is used Download PDF

Info

Publication number
JP2004011755A
JP2004011755A JP2002165793A JP2002165793A JP2004011755A JP 2004011755 A JP2004011755 A JP 2004011755A JP 2002165793 A JP2002165793 A JP 2002165793A JP 2002165793 A JP2002165793 A JP 2002165793A JP 2004011755 A JP2004011755 A JP 2004011755A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
groove
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002165793A
Other languages
Japanese (ja)
Other versions
JP3793113B2 (en
Inventor
Koji Ono
小野 晃司
Koichi Kubota
久保田 孝一
Kazufumi Toyoda
豊田 和史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002165793A priority Critical patent/JP3793113B2/en
Publication of JP2004011755A publication Critical patent/JP2004011755A/en
Application granted granted Critical
Publication of JP3793113B2 publication Critical patent/JP3793113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat-insulating material and its manufacturing method in which, even after the heat-insulating material is manufactured, a recess and grooves can be formed on the surface by an ordinary forming process without causing damages such as tears and pinholes on the covering material of a laminate film, suppressing warping, sink, and defective forming, which are caused in association with formation of the recess and grooves. <P>SOLUTION: The recess is formed on the surface of the vacuum heat-insulating material, in which a plate core-material having an inside layer more flexibly than the skin layer is used. The grooves are formed in the vicinity of a rear position opposite to a recess-opening end. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、断熱容器や家電製品、自動販売機、車両、及び住宅等の断熱材として使用可能な真空断熱材に関するものである。
【0002】
【従来の技術】
真空断熱材は外被材の内部が減圧され、表面全体に大気圧が付加されているため非常に硬直であり、折り曲げや凹部及び溝を形成するなど、後から成形しようとすると薄いフィルムからなる外被材に損傷を与えやすいため、ほとんどの適用例において平板のまま使用され、適用箇所の形状によっては分割して複数枚使用されている。
【0003】
そこで真空断熱材の適用範囲をより広くするために、真空断熱材を成形する方法が特公平6−105152号公報で開示されている。その内容は、真空断熱材を真空容器中に入れ周囲雰囲気を減圧し、フィルム表面に付加されている大気圧を除去し、真空断熱材を柔軟にした後成形し、更にその形状を保持したまま周囲雰囲気を常圧に戻すことによって成形された真空断熱材を得るようにしたもので、フィルムに損傷を与えることなく容易に成形できるというものである。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の方法で真空断熱材を成形するには、成形のたびに真空容器中を真空にし、成形後常圧に戻す必要があり、生産性が悪いという問題がある。また、真空容器中に成形金型を設けなくてはならないため、装置が複雑になりコストが掛かるという問題があった。
【0005】
また、芯材を柔らかくする、或いは外被材を強化するなどの対応をして、凹部や溝の成形を、真空断熱材の作製後に外被材の上からするとしても、加圧により外被材が引っ張られて真空断熱材が成形面側に反ってしまうという問題がある。
【0006】
また、この外被材の張力が凹部や溝の開口端の形状を不確定なものとし、それが成形部を中心に真空断熱材の厚みを薄くしてしまうという問題がある。
【0007】
更に、幅のある底面を有する凹部の場合、うら面の相対位置にひけが発生するという問題がある。
【0008】
本発明は上記の課題を解決するもので、通常の装置で外被材の上から凹部などを成形できる真空断熱材を提供するとともに、生産性を向上し、通常の装置でコストが掛からない真空断熱材及び製造方法を提供し、また、真空断熱材を用いた熱損失が少ない断熱箱体を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明による真空断熱材は、芯材と、この芯材を覆い内部を減圧して封止した外被材とを備え、平板状のおもて面に略平面形状で所定の幅の底面を有する凹部を形成し、うら面に一つ以上の溝を形成したことを特徴とするものであり、おもて面の凹部に対応してうら面にも外被材の張力に対抗する溝を形成して反りを防止するものである。
【0010】
また本発明は、この芯材を表皮層より内側の層が柔軟な平板状に成形したもので、外被材に損傷を与えない範囲で表皮層に適度の剛性を持たせることで、外被材の上から加圧することにより凹部の成形を可能とするとともに、成形後の反りを防止するものである。
【0011】
また本発明は、繊維材料を成形することにより、表皮層より内側の層が柔軟な平板状の芯材が容易に作製できるものである。
【0012】
また本発明は、真空断熱材のおもて面の凹部開口端に相対するうら面の位置近傍に溝を形成するもので、反りを防止するとともに、凹部及び凹部開口端の成形と同時にうら面の相対位置にも加圧して溝を成形することにより、凹部を所定の形状に成形するものである。
【0013】
また本発明は、うら面の溝の凹部に近い側の開口端が、凹部開口端のうら面の相対位置に対して、このうら面の溝の開口幅以上に離れないようにするもので、うら面からの加圧が効果的に作用し、凹部開口端の所定の形状が確実に得られるものである。
【0014】
また本発明による真空断熱材の製造方法は、繊維材料を表皮層より内側の層が柔軟な平板状に成形した芯材を、外被材で覆って内部を減圧して封止したのち、外被材の上から加圧成形によりおもて面の凹部及びうら面の溝を形成するものであり、芯材の内側の層が柔軟なため、真空断熱材作製後でも金型のプレス圧を小さくして外被材の上から真空断熱材の表面に溝を形成することができ、外被材への傷付きを抑制し、破れやピンホール等の損傷を与えることがない。すなわち、大気中で通常の装置を使用して溝の成形ができるものであり、生産性が向上するとともにコストを抑えることができる。
【0015】
本発明の真空断熱材を用いた断熱箱体は、外箱と内箱とにより形成された空間に本発明の真空断熱材を備えるものであり、この真空断熱材に空間の内部に存在する補強部や配管及び配線などの突起部に合わせて凹部を形成することにより、従来適用できなかった箇所での使用が可能となるとともに、従来は突起部を避けて複数枚の真空断熱材を使用し、その継ぎ目などから発生していた熱損失を防止することが可能となることにより、断熱箱体の断熱性能を向上することができる。
【0016】
【発明の実施の形態】
以下、本発明による真空断熱材の実施の形態について、図面を参照しながら説明する。
【0017】
(実施の形態1)
図1は、本発明の実施の形態1による真空断熱材の断面模式図である。また、図2は図1に示す真空断熱材の平面図である。
【0018】
図1及び図2において、真空断熱材1は芯材2とガスバリア性フィルムからなる外被材3とから構成され、内部が減圧されている。真空断熱材1のおもて面Aには凹部4が形成され、うら面Bには2本の溝5a,5bが成形されている。真空断熱材1の周囲には、減圧し、熱融着して余った外被材3のひれ部3aが周囲に存在する。
【0019】
なお、おもて面A及びうら面Bについてはそれぞれが相対する面であることを示すものであり、それ以上の限定をするものではない。
【0020】
図3は本発明の実施の形態1による真空断熱材の芯材の断面模式図で、芯材2は繊維材料をバインダー6を用いて成形したもので、バインダー6の濃度は芯材2の表皮層2aが最も高く、中間層2b、更には中心層2cと内側の層ほど低くなっている。
【0021】
芯材2と外被材3について詳細に説明する。
【0022】
芯材2は、まず、平均繊維径5μmのグラスウールを所定量積層して繊維積層体を成形する。バインダー6は、グラスウール100重量部に対し、ホウ酸3重量部を水97重量部に溶解してホウ酸水溶液100重量部としたものを用意する。このホウ酸水溶液を噴霧装置にて繊維積層体の表面に噴霧し、それを一度常温でプレスして浸透させた後、350℃の熱風循環炉の中で20分間プレスし、厚さが15mm、密度が230kg/mの成形体を得、縦180mm×横180mmに切断して芯材2とした。
【0023】
ホウ酸水溶液を繊維積層体に噴霧後プレスしても、内側の層へは完全に浸透していないため、内側の層には加熱圧縮時の蒸気により水溶液が拡散する。これにより、芯材2の内側の層はわずかなバインダー6により結着して柔らかく、表皮層2aに向けてバインダー量が増大した成形体となる。分析の結果、芯材2のおもて面とうら面各1mmの表皮層2aにそれぞれ全体の約28%のバインダー6が存在し、その内側各4mmの中間層2bにそれぞれ約18%、残り5mmの中心層2cに8%が存在した。
【0024】
外被材2は、2枚のラミネートフィルムの熱融着面を重ね合わせて三方を熱融着により製袋したものである。
【0025】
この2枚のラミネートフィルムのうち、1枚は熱融着層として厚さ50μmの直鎖状低密度ポリエチレンフィルム(以下LLDPEと称す)、ガスバリア層として厚さ15μmのエチレン−ポリビニルアルコール共重合体フィルム(以下EVOHと称す)に膜厚500Åのアルミ蒸着を形成したフィルムと、厚さ12μmのポリエチレンテレフタレートフィルム(以下PETと称す)に500Åのアルミ蒸着を形成したフィルムをアルミ蒸着面同士貼り合わせたフィルムとして、熱融着層のLLDPEとガスバリア層のEVOHをドライラミネートして構成したものである。
【0026】
また他の1枚は、熱融着層として厚さ50μmのLLDPE、その上にガスバリア層として厚さ6μmのアルミ箔、その上に保護層として厚さ12μmのナイロン、更に最外層として厚さ12μmのナイロンにより構成したものである。
【0027】
次に、真空断熱材1の製造方法について説明する。
【0028】
芯材2としては、内側の層のバインダー濃度を表皮層よりも低くして内部を柔らかくした芯材2を用い、芯材2を140℃で1時間乾燥後、袋状の外被材3の中に挿入したものを、真空チャンバーに入れて内部を減圧し、その状態で開口部を熱融着により密封し、真空チャンバーから取り出すことにより作製した。
【0029】
以上のような真空断熱材1の熱伝導率は、平均温度24℃にて0.0020W/mKであった。
【0030】
その後、金型を使用してプレス成形により真空断熱材1を挟圧し、おもて面Aの凹部4とうら面Bの溝5a,5bを同時に成形した。
【0031】
凹部4はほぼ平面形状の底面4Yを有するもので、寸法は、開口幅W40mm×底面幅Y20mm×深さD5mmで、真空断熱材1のほぼ中央を全幅にわたって形成した。なお、外被材3に圧接する金型については、凹部4の底面を成形する角部分はR形状(10R)を施すなど、損傷が発生しないよう配慮している。
【0032】
溝5a,5bの寸法は、開口幅V4mm×深さU2mmで、それぞれ凹部開口端4a,4bに相対するうら面Bの位置付近に溝5a,5bの頂部Pa,Pbがくるように形成した。この位置については、頂部Pa,Pbが凹部開口端4a,4bに相対する位置の近傍ならばうら面Bからの加圧効果が充分得られるが、うら面Bの溝5a,5bの凹部4に近い側の開口端5c,5dが、凹部開口端4a,4bのうら面Bの相対位置に対して、溝5a,5bの開口幅V以上外側に離れてしまうと充分な効果が得られなくなる。
【0033】
このように形成された凹部4及び溝5a,5bにおいて、外被材3にピンホールや破れ等の損傷はなかった。また、凹部4による真空断熱材1の反り、及び凹部4に相対するうら面Bのひけもなく、凹部開口端4a,4bも所定の形状に成形できた。
【0034】
また、真空断熱材1の熱伝導率も、凹部4及び溝5a,5bの部分を除いて変化はなかった。更に、経時信頼性を確認するため加速試験による断熱材の劣化を評価したが、10年経過条件での熱伝導率は平均温度24℃にて0.014W/mKで、真空断熱材の作製後に成形を加えないものとの差はなかった。
【0035】
すなわち、芯材の内側の層のバインダー濃度が低く、内部が柔軟なため、真空断熱材作製後に加圧成形により凹部や溝を形成することに問題はなく、大気中で通常の装置を使用して比較的小さな加圧で凹部や溝の成形ができるものであり、生産性が向上するとともにコストを抑制できる。
【0036】
なお、真空断熱材の材料や構成については、上記に限るものではない。
【0037】
繊維材料は公知のものを使用できるが、加熱圧縮時の耐熱性の点から、好ましくは無機繊維がよい。無機繊維は、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化ケイ素繊維等を使用できる。
【0038】
また、その繊維径は特に指定するものではないが、0.1μm〜10μmが断熱性能面、原綿の生産性の点から好ましい。
【0039】
バインダーとしては、ホウ酸系化合物として、ホウ酸、メタホウ酸、酸化ホウ素、四ホウ酸ナトリウムの各水和物あるいは無水物等のホウ酸ナトリウム類、ホウ酸アンモニウム、ホウ酸リチウム類、ホウ酸マグネシウム類、ホウ酸カルシウム類、ホウ酸アルミニウム類、ホウ酸亜鉛類、過ホウ酸塩類、アルキルホウ酸、ボロキシン誘導体等がある。
【0040】
また、リン酸系化合物としては、リン酸、五酸化二リン等の酸化リン、あるいはリン酸塩として第一リン酸塩、第二リン酸塩、第三リン酸塩、ピロリン酸塩、トリポリリン酸塩、メタリン酸塩等であり、それらのナトリウム塩、カリウム塩、アンモニウム塩、マグネシウム塩、アルミニウム塩等がある。
【0041】
これらのうち、好ましくはガラス形成物、あるいは水溶性物質であり、例えばホウ酸、メタホウ酸、酸化ホウ素、ホウ砂、あるいはリン酸、第一リン酸アルミニウム、ヘキサメタリン酸ナトリウム等である。
【0042】
以上のようなものを1種、あるいは2種以上混合、あるいはその他のバインダーを混合、あるいはそれらを希釈して成形体のバインダーとして用いる。
【0043】
次に、バインダー付着方法を説明する。
【0044】
特に指定するものではないが、バインダーまたはその希釈液を塗布または噴霧したり、あるいはバインダーまたはその希釈液中に芯材を浸漬したり、あるいは抄造法を用いたりすることにより、バインダーを付着させる。
【0045】
具体的には、上記のようにある程度成形したものに噴霧する方法の他、繊維であればその繊維化時にバインダーやその希釈液を噴霧し、例えば芯材となる表皮層にはバインダー濃度が高い繊維を、内側の層にはバインダー濃度が低い繊維を、更に中心層にはバインダーのない繊維を配置し、その繊維積層体を圧縮加熱等により固形化させることにより、成形体の厚み方向に対しバインダー濃度の異なる平板を得ることも可能である。
【0046】
バインダー濃度は、芯材に対しバインダーの固形分が0.5wt%以上20wt%以下となるようにバインダーを付着させることが望ましい。バインダー量が多くなると、バインダーからの発生ガスの増加や固体熱伝導率の増加が懸念され、真空断熱材の断熱性能に悪影響を及ぼすことが考えられるからである。
【0047】
バインダー濃度は、芯材の厚み方向において、少なくともある部分とある部分の濃度が異なっていればよく、バインダー濃度が低い部分に芯材硬度を低減させ柔らかくする効果をもたせ、高い部分に平板の剛性を付与するという効果をそれぞれもたせることを目的とするものである。
【0048】
なお、芯材の表皮層のバインダー濃度が高いということは、真空断熱材にしたときに表面の平面性を良くすることができる。
【0049】
また別の方法として、バインダーを使用せずに水の作用によりバインダーの代わりとなる成分を溶出させる方法もあるが、この場合の繊維材料は、無機繊維の中でもシリカを成分とするものが好ましく、その中でもグラスウールが最も好ましい。
【0050】
更に、芯材の密度は100kg/m〜400kg/mとなるように加圧することが望ましく、また芯材内部で密度が異なっていてもよい。
【0051】
密度が100kg/mより小さいと成形体としての形状を保持しにくくなり、400kg/mより大きくなると固くなり過ぎ、溝が成形しにくくなる。
【0052】
次に、外被材について説明する。
【0053】
外被材は、少なくともガスバリア層及び熱融着層を有するものであり、必要に応じて表面保護層等を設けてもよい。
【0054】
ガスバリア層としては、金属箔、無機酸化物、あるいはダイヤモンドライクカーボン蒸着をしたプラスチックフィルム等を用いることができるが、気体透過を低減する目的で用いるものであれば、特に指定するものではない。
【0055】
金属箔としては、アルミニウム、ステンレス及び鉄等の箔を用いることができる。
【0056】
また、金属等の蒸着を行う基材となるプラスチックフィルムの材料は特に指定するものではないが、ポリエチレンテレフタレート、エチレン−ビニルアルコール共重合体樹脂、ポリエチレンナフタレート、ナイロン、ポリアミド、ポリイミドなどが好ましい。
【0057】
プラスチックフィルム上への金属蒸着の材料は、アルミニウム、コバルト、ニッケル、亜鉛、銅、銀、あるいはそれらの混合物等特に指定するものではない。
【0058】
また、プラスチックフィルム上への無機酸化物蒸着の材料としては、シリカ、アルミナ等がある。
【0059】
また、熱融着層としては、低密度ポリエチレンフィルム、鎖状低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンテレフタレートフィルム、エチレン−ビニルアルコール共重合体フィルム、あるいはそれらの混合体等を用いることができるが、特に指定するものではない。
【0060】
表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムの延伸加工品などが利用でき、さらに外側にナイロンフィルムなどを設けると可とう性が向上し、耐折り曲げ性などが向上する。
【0061】
以上のようなフィルムをラミネートして、外被材として用いることができる。
【0062】
(実施の形態2)
真空断熱材に形成する凹部や溝の他の実施例について説明する。
【0063】
図4及び図5は、いずれも本発明の他の実施例による真空断熱材の断面模式図である。
【0064】
図4において、おもて面の凹部44に相対して、うら面に浅く、かつ底面45Yの幅が広い溝45を形成した。これにより、真空断熱材41の反りの発生はなく、凹部開口端44a,44bも所定の形状が得られた。ただし、真空断熱材41の凹部44の厚みが薄いため、ごく僅かの断熱性能の低下が認められた。
【0065】
図5において、おもて面に2箇所の凹部54,55を近接して形成し、うら面の複数の溝56,57,58を形成した。ここで、溝57を2箇所の凹部開口端54b,55bに相対して兼用して形成したもので、凹部開口端54b,55bの間隔LAは、溝57の開口幅VLと、溝の開口端57a,57bと2箇所の相対位置との間隔LBa,LBbとの和であり、この間隔LBa,LBbはいずれも溝57の開口幅VLより小さいものである。
【0066】
これにより、真空断熱材51の反りの発生はなく、凹部開口端54a,54b,55a,55bも所定の形状が得られるとともに、凹部54,55に相対するうら面にひけの発生は見られなかった。
【0067】
図6は本発明の他の実施例による真空断熱材の平面図である。
【0068】
図6において、実施の形態1の図2と比較して、おもて面の凹部64が真空断熱材61の全幅にわたらないものである。この様な場合、うら面の溝65は環状に形成した。
【0069】
これにより、真空断熱材61の反りの発生はなく、凹部開口端64aも所定の形状が得られるとともに、凹部64に相対するうら面にひけの発生は見られなかった。
【0070】
以上示した実施の形態は、それぞれを組み合わせた形でも適用できるものである。
【0071】
(実施の形態3)
本発明による真空断熱材について、芯材2をグラスウールに水を用いて成形したものにより製作する方法について説明する。
【0072】
遠心法にて製造した平均繊維径が約4μm〜6μmのグラスウールの原綿を、所定の大きさに切断して所定量集綿積層する。pH値が6以上8以下の中性付近のイオン交換水を、この集綿積層体の表面にほぼ均一に付着するよう噴霧する。噴霧量は前記集綿積層体の重量に対して1.5倍〜2.0倍とした。
【0073】
イオン交換水を噴霧した集綿積層体を常温下で圧縮して集綿積層体内部に水を拡散浸透させ、380℃に加熱した金属製の冶具内にこの拡散浸透させた積層体を戴置して金属製の押さえ板を上から置き、加熱プレスにて高温圧縮して10分間以上保持して乾燥させ、厚さ15mmの芯材2を作製した。
【0074】
得られた芯材2は、圧縮を繰り返すことでガラス繊維が伝熱方向に対して垂直に配向され、積層方向に対して裂けにくくなり、信頼性が高いものとなる。
【0075】
更に、作製した厚さ15mmの芯材2を、縦180mm×横180mmに切断して芯材2とする。芯材2は、150℃の乾燥炉で約60分乾燥して成形後も残留していた水分を除去する。
【0076】
乾燥炉から乾燥した芯材2を取り出して、あらかじめ芯材2に形成した凹部に吸着剤をすばやく収納し、吸着剤を収納した芯材2を外被材3内に挿入して真空チャンバ内に載置する。真空チャンバー内を1.33Pa以下の真空度となるように減圧排気したのち、そのまま真空チャンバー内で外被材3の開口を熱融着により密閉する。できあがったものを真空チャンバから取り出し、真空断熱材1を得た。
【0077】
なお、集綿積層体に噴霧する水についてはイオン交換水を用いているが、特に限定するものではなく、蒸留水、アルカリイオン水、ミネラルウォーター、ろ過浄水、又は水道水でも差し支えない。
【0078】
また、水の特性値として、硬度、総アルカリ度、残留塩素濃度、亜硝酸性、硝酸性、アンモニ性といった塩基性窒素、リン酸、銅、鉄といったイオン濃度等も特に限定するものではない。ただ、断熱性能面ではイオン交換水が好ましい。
【0079】
以降、真空断熱材1に凹部や溝を形成する方法については実施の形態1と同様であるが、水を使用して成形した場合はバインダーを使用した場合より柔軟な芯材が得られ、より外被材の損傷が少ない。また、バインダーを含まないため、グラスウールの再生や再利用が容易であり、環境にかける負荷が少ない。
【0080】
(実施の形態4)
本発明の真空断熱材を用いた断熱箱体として、冷蔵庫に適用した一例を説明する。
【0081】
図7は実施の形態3による冷蔵庫の側面断面模式図、図8は実施の形態3による冷蔵庫の要部分解斜視図である。
【0082】
図7及び図8において、7は冷蔵庫で外箱8と内箱9とにより箱体が構成され、その箱体の壁の内部の空間には複数の真空断熱材が使用され、残りの空間部にはシクロペンタンを発泡剤とした硬質ウレタンフォーム10が充填されている。
【0083】
冷蔵庫7は4つの部屋に区画されており、上段から5℃程度の冷蔵温度に維持される冷蔵室11、その下段に乾燥を嫌う食品を収納するための野菜室11aが2段あり、最下段に−20℃程度の凍結温度に冷却する冷凍室11bがある。これら各室は、断熱仕切り板12,13で区画されている。
【0084】
真空断熱材は、冷蔵庫7の天面、背面、左右の側面、底面、4枚のドア、及び断熱仕切り板12,13に配設している。天面、背面、及び左右の側面へ使用した真空断熱材1A,1B,1C,1Dは、外箱の内面に沿った直径4mmの冷媒配管14の形状に沿った配管溝15を形成したもので、ホットメルトにより外箱の内面に貼り付けた。配管溝15の形状は、実施の形態1における溝と同様である。また、各ドアへは溝がない通常の真空断熱材1を使用し、底面にはドレンパイプを貫通させるための孔16を設けた真空断熱材1を使用した。
【0085】
これらにより、真空断熱材の被覆率は冷蔵庫7の外箱表面積に対して70%まで達している。
【0086】
このようにして得られた冷蔵庫7の消費電力を測定したところ、真空断熱材の被覆率が30%のものと比較して約20%低下していることが確認できた。
【0087】
すなわち、冷蔵庫の断熱壁内部に配管等の突起部が存在するような、従来は一枚の真空断熱材を使用することができなかった箇所でも、その形状に合わせて真空断熱材に溝を成形することにより使用でできるようになるとともに、1枚で適用できることで、真空断熱材の継ぎ目部からの熱損失を低減できるため、冷蔵庫の断熱性能を大幅に改善することができる。
【0088】
尚、冷蔵庫における真空断熱材の適用箇所としては、庫内外の温度差が大きい箇所ほど効果があるが、外箱表面積に対しては50%以上の被覆率が望ましい。被覆率が50%以上となると、硬質ウレタンフォーム部からの熱損失の影響度が小さくなり、真空断熱材適用による断熱効果が支配的となるため効率的な断熱が可能となる。
【0089】
このように、本発明の真空断熱材を適用することにより、省エネルギーに優れた冷蔵庫を提供することができる。
【0090】
また、本発明の真空断熱材は、優れた断熱性能を有するため、断熱壁の薄型化が可能となるため、冷蔵庫の省スペース化、あるいは冷蔵庫の庫内容積向上が達成できる。
【0091】
また、真空断熱材の芯材は無機繊維であることから不燃性であり、冷蔵庫安全性の面からも優れたものである。
【0092】
以上、本発明の真空断熱材による断熱性能の向上は各種断熱箱体において確認できるものであり、給湯器や炊飯器、クーラーボックス等の各種保冷保温容器のほか、自動販売機、車両、或いは住宅設備等の断熱パネルとしても適用できるものである。
【0093】
【発明の効果】
以上説明したように、本発明による真空断熱材は、芯材と、この芯材を覆い内部を減圧して封止した外被材とを備え、平板状のおもて面に略平面形状で所定の幅の底面を有する凹部を形成し、うら面に一つ以上の溝を形成したことを特徴とするものであり、おもて面の凹部に対応してうら面にも外被材の張力に対抗する溝を形成して反りを防止することができる。
【0094】
また本発明は、この芯材を表皮層より内側の層が柔軟な平板状に成形したもので、外被材に損傷を与えない範囲で表皮層に適度の剛性を持たせることで、通常の装置で外被材の上から加圧することにより凹部の成形を可能として生産性を向上するとともに、成形後の反りを防止することができる。
【0095】
また本発明は、繊維材料を成形することにより、表皮層より内側の層が柔軟な平板状の芯材が容易に作製できる。
【0096】
また本発明は、真空断熱材のおもて面の凹部開口端に相対するうら面の位置近傍に溝を形成するもので、反りを防止するとともに、凹部及び凹部開口端の成形と同時にうら面の相対位置にも加圧して溝を成形することにより、凹部を所定の形状に成形することができる。
【0097】
また本発明は、うら面の溝の凹部に近い側の開口端が、凹部開口端のうら面の相対位置に対して、このうら面の溝の開口幅以上に離れないようにするもので、うら面からの加圧が効果的に作用し、凹部開口端の所定の形状を確実に得ることができる。
【0098】
また本発明による真空断熱材の製造方法は、繊維材料を表皮層より内側の層が柔軟な平板状に成形した芯材を、外被材で覆って内部を減圧して封止したのち、外被材の上から加圧成形によりおもて面の凹部及びうら面の溝を形成するものであり、芯材の内側の層が柔軟なため、真空断熱材作製後でも金型のプレス圧を小さくして外被材の上から真空断熱材の表面に溝を形成することができ、外被材への傷付きを抑制し、破れやピンホール等の損傷を与えることがない。すなわち、大気中で通常の装置を使用して溝の成形ができるものであり、生産性が向上するとともにコストを抑えることができる。
【0099】
本発明の真空断熱材を用いた断熱箱体は、外箱と内箱とにより形成された空間に本発明の真空断熱材を備えるものである。この真空断熱材に空間の内部に存在する補強部や配管及び配線などの突起部に合わせて凹部や溝を形成することにより、従来適用できなかった箇所での使用が可能となるとともに、従来は突起部を避けて複数枚の真空断熱材を使用し、その継ぎ目などから発生していた熱損失を防止することが可能となることにより、断熱性能が大きく向上した断熱箱体を提供することができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1による真空断熱材の断面模式図
【図2】図1に示す真空断熱材の平面図
【図3】本発明の実施の形態1による真空断熱材の芯材の断面模式図
【図4】本発明の他の実施例による真空断熱材の断面模式図
【図5】本発明の他の実施例による真空断熱材の断面模式図
【図6】本発明の他の実施例による真空断熱材の平面図
【図7】本発明の実施の形態4による冷蔵庫の側面断面模式図
【図8】本発明の実施の形態4による冷蔵庫の要部分解斜視図
【符号の説明】
1,1A,1B,1C,1D,41,51,61 真空断熱材
2 芯材
2a 表皮層
3 外被材
4,44,54,55,64 凹部
4a,4b,44a,44b,54a,54b,55a,55b,64a 凹部開口端
4Y 底面
5a,5b,45,56,57,58,65 溝
5c,5d 開口端
7 冷蔵庫
8 外箱
9 内箱
15 配管溝
A おもて面
B うら面
V,VL 開口幅
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum heat insulating material that can be used as a heat insulating material for heat insulating containers, home electric appliances, vending machines, vehicles, houses, and the like.
[0002]
[Prior art]
Vacuum insulation material is very rigid because the inside of the jacket material is decompressed and atmospheric pressure is applied to the entire surface, and it is made of a thin film when it is later formed, such as by bending, forming recesses and grooves. Since the outer cover material is apt to be damaged, it is used as a flat plate in most application examples, and a plurality of sheets are divided and used depending on the shape of an application portion.
[0003]
Then, in order to further expand the applicable range of the vacuum heat insulating material, a method of forming the vacuum heat insulating material is disclosed in Japanese Patent Publication No. 6-105152. The contents are as follows: put the vacuum heat insulating material in a vacuum vessel, reduce the ambient atmosphere, remove the atmospheric pressure added to the film surface, soften the vacuum heat insulating material, mold it, and further maintain its shape A vacuum heat insulating material is obtained by returning the ambient atmosphere to normal pressure, and can be easily formed without damaging the film.
[0004]
[Problems to be solved by the invention]
However, in order to form the vacuum heat insulating material by the conventional method, it is necessary to evacuate the inside of the vacuum container each time the molding is performed, and to return to normal pressure after the molding. Further, since a molding die must be provided in the vacuum vessel, there is a problem that the apparatus becomes complicated and costs increase.
[0005]
In addition, even if the recesses and grooves are formed from the top of the jacket material after the vacuum insulation material is manufactured, by taking measures such as softening the core material or strengthening the jacket material, the jacket is pressed by pressure. There is a problem that the material is pulled and the vacuum heat insulating material warps toward the molding surface.
[0006]
Further, there is a problem that the tension of the jacket material makes the shape of the opening end of the concave portion or the groove indefinite, which causes the thickness of the vacuum heat insulating material to be reduced mainly at the molded portion.
[0007]
Furthermore, in the case of a concave portion having a wide bottom surface, there is a problem that sink marks occur in the relative position of the back surface.
[0008]
The present invention solves the above-mentioned problems, and provides a vacuum heat insulating material capable of forming a concave portion or the like from above a jacket material with a normal device, improves the productivity, and reduces the cost without using a normal device. An object of the present invention is to provide a heat insulating material and a manufacturing method, and to provide a heat insulating box using a vacuum heat insulating material and having a small heat loss.
[0009]
[Means for Solving the Problems]
The vacuum heat insulating material according to the present invention includes a core material, and a covering material that covers the core material and seals the inside of the core by decompressing the inside of the core material. Forming a concave portion having at least one groove on the back surface, and forming a groove against the tension of the outer cover material on the back surface corresponding to the concave portion on the front surface. It is formed to prevent warpage.
[0010]
Further, the present invention is based on the fact that the core material is formed into a flat plate shape in which the inner layer from the skin layer is flexible, and the skin layer is provided with appropriate rigidity within a range that does not damage the jacket material. By pressing the material from above, it is possible to form the concave portion and prevent warpage after the forming.
[0011]
Further, in the present invention, by molding a fiber material, a flat core material whose layer inside the skin layer is flexible can be easily produced.
[0012]
Also, the present invention is to form a groove near the position of the back surface opposite to the opening end of the recess of the front surface of the vacuum heat insulating material, thereby preventing warpage and simultaneously forming the recess and the opening surface of the opening of the recess. The concave portion is formed into a predetermined shape by forming a groove by applying pressure also to the relative position of.
[0013]
Further, the present invention is to prevent the opening end on the side close to the recess of the groove on the back surface from being separated from the relative position of the back surface of the opening end of the recess by more than the opening width of the groove on the back surface, Pressing from the back surface works effectively, and a predetermined shape of the opening end of the concave portion can be reliably obtained.
[0014]
Further, the method for producing a vacuum heat insulating material according to the present invention comprises, after covering a core material obtained by molding a fibrous material into a flat plate having a layer on the inner side of the skin layer with a covering material, depressurizing the inside and sealing the outer material. A concave part on the front side and a groove on the back side are formed by pressure molding from the top of the workpiece. Since the inner layer of the core material is flexible, the pressing pressure of the mold can be reduced even after the vacuum insulation material is manufactured. A groove can be formed on the surface of the vacuum heat insulating material from above the outer cover material by making it smaller, thereby suppressing damage to the outer cover material and preventing damage such as breakage and pinholes. That is, the groove can be formed using a normal apparatus in the atmosphere, so that the productivity can be improved and the cost can be suppressed.
[0015]
The heat insulating box using the vacuum heat insulating material of the present invention is provided with the vacuum heat insulating material of the present invention in a space formed by the outer box and the inner box, and the vacuum heat insulating material has a reinforcement existing inside the space. By forming recesses in accordance with the projections such as parts, pipes and wiring, it is possible to use in places that could not be applied conventionally, and in the past, multiple vacuum insulation materials were used avoiding the projections Since the heat loss generated from the joint or the like can be prevented, the heat insulating performance of the heat insulating box can be improved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a vacuum heat insulating material according to the present invention will be described with reference to the drawings.
[0017]
(Embodiment 1)
FIG. 1 is a schematic sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention. FIG. 2 is a plan view of the vacuum heat insulating material shown in FIG.
[0018]
1 and 2, a vacuum heat insulating material 1 is composed of a core material 2 and a jacket material 3 made of a gas barrier film, and the inside thereof is decompressed. A concave portion 4 is formed on the front surface A of the vacuum heat insulating material 1, and two grooves 5a and 5b are formed on the back surface B. Around the vacuum heat insulating material 1, a fin portion 3a of the outer cover material 3 which has been decompressed and thermally fused is present around.
[0019]
It should be noted that the front surface A and the back surface B indicate that they are opposing surfaces, and do not limit the present invention further.
[0020]
FIG. 3 is a schematic cross-sectional view of the core material of the vacuum heat insulating material according to the first embodiment of the present invention. The core material 2 is obtained by molding a fiber material using a binder 6, and the concentration of the binder 6 is the skin of the core material 2. The layer 2a is the highest, and the intermediate layer 2b, and the center layer 2c and the inner layer are lower.
[0021]
The core 2 and the jacket 3 will be described in detail.
[0022]
First, a predetermined amount of glass wool having an average fiber diameter of 5 μm is laminated on the core material 2 to form a fiber laminate. The binder 6 is prepared by dissolving 3 parts by weight of boric acid in 97 parts by weight of water with respect to 100 parts by weight of glass wool to obtain 100 parts by weight of a boric acid aqueous solution. This boric acid aqueous solution is sprayed on the surface of the fiber laminate with a spray device, and once pressed and infiltrated at room temperature, pressed in a hot air circulating furnace at 350 ° C. for 20 minutes, and has a thickness of 15 mm. A molded body having a density of 230 kg / m 3 was obtained, and was cut into a length of 180 mm and a width of 180 mm to obtain a core material 2.
[0023]
Even when the boric acid aqueous solution is sprayed onto the fiber laminate and pressed, the aqueous layer is not completely penetrated into the inner layer, so that the aqueous solution is diffused into the inner layer by the steam during the heating and compression. Thereby, the inner layer of the core material 2 is softened by binding with a small amount of the binder 6, and becomes a molded body in which the amount of the binder increases toward the skin layer 2a. As a result of the analysis, about 28% of the entire binder 6 is present in the skin layer 2a of 1 mm each on the front and back surfaces of the core material 2, and about 18% of the binder 6 is present on the intermediate layer 2b of 4 mm inside each. 8% was present in the 5 mm central layer 2c.
[0024]
The outer cover material 2 is formed by laminating the heat-sealed surfaces of two laminated films and forming a bag on three sides by heat-sealing.
[0025]
One of the two laminated films is a 50 μm-thick linear low-density polyethylene film (hereinafter referred to as LLDPE) as a heat-sealing layer, and a 15 μm-thick ethylene-polyvinyl alcohol copolymer film as a gas barrier layer. A film in which a 500 mm thick aluminum vapor-deposited film is formed on an EVOH (hereinafter referred to as EVOH) and a 500 mm thick aluminum vapor-deposited film is formed on a 12 μm-thick polyethylene terephthalate film (hereinafter referred to as PET). In this case, LLDPE of the heat sealing layer and EVOH of the gas barrier layer are dry-laminated.
[0026]
Another one is LLDPE having a thickness of 50 μm as a heat sealing layer, an aluminum foil having a thickness of 6 μm as a gas barrier layer thereon, a nylon having a thickness of 12 μm as a protective layer thereon, and a thickness of 12 μm as an outermost layer. It is made of nylon.
[0027]
Next, a method for manufacturing the vacuum heat insulating material 1 will be described.
[0028]
As the core material 2, a core material 2 in which the binder concentration of the inner layer is lower than that of the skin layer and the inside is softened is used, and after drying the core material 2 at 140 ° C. for 1 hour, the bag-shaped outer material 3 is formed. The product inserted therein was placed in a vacuum chamber to depressurize the inside, and in this state, the opening was sealed by heat fusion and taken out of the vacuum chamber.
[0029]
The thermal conductivity of the vacuum heat insulating material 1 as described above was 0.0020 W / mK at an average temperature of 24 ° C.
[0030]
Thereafter, the vacuum heat insulating material 1 was pressed by press molding using a mold to simultaneously form the concave portion 4 on the front surface A and the grooves 5a and 5b on the back surface B.
[0031]
The concave portion 4 has a substantially planar bottom surface 4Y, and has dimensions of opening width W40 mm × bottom width Y20 mm × depth D5 mm, and substantially the center of the vacuum heat insulating material 1 is formed over the entire width. With respect to the metal mold pressed into contact with the jacket material 3, the corners for forming the bottom surface of the concave portion 4 are given an R shape (10R) to prevent damage.
[0032]
The dimensions of the grooves 5a, 5b were such that the opening width V4mm × the depth U2mm, and the tops Pa, Pb of the grooves 5a, 5b were located near the position of the back surface B facing the recess opening ends 4a, 4b, respectively. In this position, if the tops Pa and Pb are in the vicinity of the positions facing the recess opening ends 4a and 4b, a sufficient pressing effect from the back surface B can be obtained. If the closer opening ends 5c and 5d are separated from the relative positions of the back surfaces B of the recess opening ends 4a and 4b by more than the opening width V of the grooves 5a and 5b, a sufficient effect cannot be obtained.
[0033]
In the recess 4 and the grooves 5a and 5b formed in this manner, there was no damage such as pinholes or breaks in the jacket material 3. Also, there was no warpage of the vacuum heat insulating material 1 due to the concave portion 4 and no sinking of the back surface B facing the concave portion 4, and the concave portion opening ends 4a and 4b could be formed into a predetermined shape.
[0034]
Further, the thermal conductivity of the vacuum heat insulating material 1 was not changed except for the concave portion 4 and the grooves 5a and 5b. Furthermore, to confirm the reliability over time, the deterioration of the heat insulating material was evaluated by an accelerated test. The thermal conductivity under the condition of 10 years passed was 0.014 W / mK at an average temperature of 24 ° C. There was no difference from the one without molding.
[0035]
That is, since the binder concentration of the inner layer of the core material is low and the inside is flexible, there is no problem in forming the concave portion or the groove by pressure molding after the vacuum heat insulating material is produced, and a normal device is used in the atmosphere. Thus, the recesses and grooves can be formed with relatively small pressure, so that the productivity can be improved and the cost can be suppressed.
[0036]
The material and configuration of the vacuum heat insulating material are not limited to the above.
[0037]
As the fibrous material, known materials can be used, but from the viewpoint of heat resistance during heating and compression, inorganic fibers are preferably used. As the inorganic fiber, glass wool, glass fiber, alumina fiber, silica-alumina fiber, silica fiber, rock wool, silicon carbide fiber and the like can be used.
[0038]
The fiber diameter is not particularly specified, but is preferably 0.1 μm to 10 μm from the viewpoint of heat insulation performance and productivity of raw cotton.
[0039]
As the binder, boric acid-based compounds include sodium borates such as boric acid, metaboric acid, boron oxide, each hydrate or anhydride of sodium tetraborate, ammonium borate, lithium borate, magnesium borate , Calcium borates, aluminum borates, zinc borates, perborates, alkylboric acids, boroxine derivatives and the like.
[0040]
Examples of the phosphoric acid compound include phosphoric acid, phosphorus oxide such as diphosphorus pentoxide, and phosphates such as primary phosphate, secondary phosphate, tertiary phosphate, pyrophosphate, and tripolyphosphate. And sodium salts, potassium salts, ammonium salts, magnesium salts, aluminum salts and the like.
[0041]
Among these, a glass-forming substance or a water-soluble substance is preferable, and examples thereof include boric acid, metaboric acid, boron oxide, borax, phosphoric acid, aluminum monophosphate, and sodium hexametaphosphate.
[0042]
One or a mixture of two or more of the above may be used, or other binders may be mixed or diluted to use as a binder for a molded article.
[0043]
Next, a method for adhering a binder will be described.
[0044]
Although not particularly specified, the binder is adhered by applying or spraying a binder or a diluent thereof, immersing the core material in the binder or a diluent thereof, or using a papermaking method.
[0045]
More specifically, in addition to the method of spraying a molded article to a certain degree as described above, if the fiber is a fiber, a binder or a diluent thereof is sprayed at the time of fiberization, and for example, the binder concentration is high in a skin layer serving as a core material. By placing fibers with a low binder concentration in the inner layer, and fibers with no binder in the center layer, and solidifying the fiber laminate by compression heating, etc., in the thickness direction of the molded body, It is also possible to obtain flat plates having different binder concentrations.
[0046]
It is desirable that the binder be attached such that the solid content of the binder is 0.5 wt% or more and 20 wt% or less with respect to the core material. This is because, when the amount of the binder increases, there is a concern that the amount of gas generated from the binder and the solid thermal conductivity may increase, which may adversely affect the heat insulating performance of the vacuum heat insulating material.
[0047]
The binder concentration may be different as long as at least a certain part and a certain part have different concentrations in the thickness direction of the core material. It is intended to have the effect of imparting each.
[0048]
In addition, the fact that the binder concentration of the skin layer of the core material is high can improve the flatness of the surface when a vacuum heat insulating material is used.
[0049]
As another method, there is also a method of dissolving a component instead of a binder by the action of water without using a binder, but in this case, the fiber material is preferably a material containing silica among inorganic fibers, Among them, glass wool is most preferable.
[0050]
Furthermore, the density of the core material is desirably pressurized so as to 100kg / m 3 ~400kg / m 3 , or may have a density different inside core.
[0051]
When the density is less than 100 kg / m 3, it is difficult to maintain the shape as a molded body, and when the density is more than 400 kg / m 3 , it becomes too hard, and it becomes difficult to form grooves.
[0052]
Next, the covering material will be described.
[0053]
The jacket material has at least a gas barrier layer and a heat sealing layer, and may be provided with a surface protective layer and the like as necessary.
[0054]
As the gas barrier layer, a metal foil, an inorganic oxide, a plastic film on which diamond-like carbon is deposited, or the like can be used, but is not particularly limited as long as it is used for the purpose of reducing gas permeation.
[0055]
As the metal foil, foil such as aluminum, stainless steel, and iron can be used.
[0056]
The material of the plastic film serving as a base material on which metal or the like is deposited is not particularly specified, but polyethylene terephthalate, ethylene-vinyl alcohol copolymer resin, polyethylene naphthalate, nylon, polyamide, polyimide, and the like are preferable.
[0057]
The material for metal deposition on the plastic film is not particularly specified, such as aluminum, cobalt, nickel, zinc, copper, silver, or a mixture thereof.
[0058]
Further, as a material for depositing the inorganic oxide on the plastic film, there are silica, alumina and the like.
[0059]
Further, as the heat sealing layer, a low-density polyethylene film, a chain low-density polyethylene film, a high-density polyethylene film, a polypropylene film, a polyacrylonitrile film, a non-oriented polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer film, or Can be used, but is not particularly specified.
[0060]
As the surface protective layer, a stretched product of a nylon film, a polyethylene terephthalate film, a polypropylene film, or the like can be used. Further, when a nylon film or the like is provided on the outside, flexibility is improved, and bending resistance and the like are improved.
[0061]
The above films can be laminated and used as a covering material.
[0062]
(Embodiment 2)
Another embodiment of the concave portion and the groove formed in the vacuum heat insulating material will be described.
[0063]
4 and 5 are schematic cross-sectional views of a vacuum heat insulating material according to another embodiment of the present invention.
[0064]
In FIG. 4, a shallow groove 45 having a wide bottom surface 45Y is formed on the back surface, opposite to the concave portion 44 on the front surface. As a result, the vacuum heat insulating material 41 did not warp, and the concave opening ends 44a and 44b also had a predetermined shape. However, since the thickness of the concave portion 44 of the vacuum heat insulating material 41 was small, a slight decrease in heat insulating performance was recognized.
[0065]
In FIG. 5, two recesses 54, 55 are formed in the front surface in close proximity, and a plurality of grooves 56, 57, 58 on the back surface are formed. Here, the groove 57 is formed so as to be used also as opposed to the two concave opening ends 54b and 55b. The interval LA between the concave opening ends 54b and 55b is determined by the opening width VL of the groove 57 and the opening end of the groove. This is the sum of the distances LBa and LBb between 57a and 57b and the two relative positions, and both of the distances LBa and LBb are smaller than the opening width VL of the groove 57.
[0066]
As a result, the vacuum heat insulating material 51 does not warp, and the concave opening ends 54a, 54b, 55a, and 55b also have a predetermined shape, and no sink marks are observed on the back surfaces facing the concave portions 54, 55. Was.
[0067]
FIG. 6 is a plan view of a vacuum heat insulating material according to another embodiment of the present invention.
[0068]
6, the concave portion 64 on the front surface does not extend over the entire width of the vacuum heat insulating material 61 as compared with FIG. 2 of the first embodiment. In such a case, the groove 65 on the back surface is formed in an annular shape.
[0069]
As a result, there was no warpage of the vacuum heat insulating material 61, the concave opening end 64a had a predetermined shape, and no sink mark was observed on the back surface facing the concave 64.
[0070]
The embodiments described above can also be applied in a form in which they are combined.
[0071]
(Embodiment 3)
A method of manufacturing the vacuum heat insulating material according to the present invention by molding the core material 2 on glass wool using water will be described.
[0072]
Raw cotton wool having an average fiber diameter of about 4 μm to 6 μm manufactured by a centrifugal method is cut into a predetermined size, and a predetermined amount of cotton is laminated. Neutral ion-exchanged water having a pH value of 6 or more and 8 or less is sprayed so as to adhere almost uniformly to the surface of the collected cotton laminate. The spray amount was 1.5 to 2.0 times the weight of the cotton collection laminate.
[0073]
The cotton laminate laminated with ion-exchanged water is compressed at room temperature to diffuse and permeate water into the cotton laminate, and the diffusion-permeated laminate is placed in a metal jig heated to 380 ° C. Then, a metal holding plate was placed from above, pressed at a high temperature by a hot press, held for 10 minutes or more, and dried to produce a core material 2 having a thickness of 15 mm.
[0074]
In the obtained core material 2, the glass fibers are oriented perpendicularly to the heat transfer direction by repeating the compression, so that the glass fibers are less likely to be torn in the laminating direction and have high reliability.
[0075]
Further, the prepared core material 2 having a thickness of 15 mm is cut into a length of 180 mm and a width of 180 mm to obtain a core material 2. The core material 2 is dried in a drying oven at 150 ° C. for about 60 minutes to remove moisture remaining after molding.
[0076]
The dried core material 2 is taken out of the drying furnace, the adsorbent is quickly stored in the recess formed in the core material 2 in advance, and the core material 2 containing the adsorbent is inserted into the jacket material 3 and placed in the vacuum chamber. Place. After the inside of the vacuum chamber is evacuated to a vacuum degree of 1.33 Pa or less, the opening of the jacket 3 is sealed in the vacuum chamber by heat fusion. The completed product was taken out of the vacuum chamber, and a vacuum heat insulating material 1 was obtained.
[0077]
In addition, although the ion-exchanged water is used for the water sprayed on the cotton collection laminate, the water is not particularly limited, and may be distilled water, alkaline ionized water, mineral water, filtered water, or tap water.
[0078]
Further, as the characteristic values of water, hardness, total alkalinity, residual chlorine concentration, basic nitrogen such as nitrite, nitrate, and ammonium, ion concentration such as phosphoric acid, copper, and iron are not particularly limited. However, ion-exchanged water is preferable in terms of heat insulation performance.
[0079]
Thereafter, the method of forming the concave portion and the groove in the vacuum heat insulating material 1 is the same as that of the first embodiment. However, when molded using water, a softer core material is obtained than when a binder is used. Less damage to the jacket material. Further, since no binder is contained, regeneration and reuse of glass wool is easy, and the load on the environment is small.
[0080]
(Embodiment 4)
An example in which the present invention is applied to a refrigerator as a heat insulating box using the vacuum heat insulating material of the present invention will be described.
[0081]
FIG. 7 is a schematic side sectional view of a refrigerator according to the third embodiment, and FIG. 8 is an exploded perspective view of a main part of the refrigerator according to the third embodiment.
[0082]
7 and 8, reference numeral 7 denotes a refrigerator, which is composed of an outer box 8 and an inner box 9, and a plurality of vacuum heat insulating materials are used in a space inside a wall of the box, and a remaining space portion is provided. Is filled with a rigid urethane foam 10 using cyclopentane as a foaming agent.
[0083]
The refrigerator 7 is divided into four rooms. The refrigerator 7 has a refrigerator room 11 which is maintained at a refrigeration temperature of about 5 ° C. from the upper stage, and a vegetable room 11a for storing foods which do not want to be dried. There is a freezing room 11b for cooling to a freezing temperature of about −20 ° C. These chambers are partitioned by heat insulating partition plates 12 and 13.
[0084]
The vacuum heat insulating material is disposed on the top surface, the rear surface, the left and right side surfaces, the bottom surface, the four doors, and the heat insulating partition plates 12 and 13 of the refrigerator 7. Vacuum insulation materials 1A, 1B, 1C, 1D used on the top surface, the back surface, and the left and right side surfaces are formed by forming a piping groove 15 along the shape of a refrigerant pipe 14 having a diameter of 4 mm along the inner surface of the outer box. Then, it was stuck on the inner surface of the outer box by hot melt. The shape of the piping groove 15 is the same as the groove in the first embodiment. Further, a normal vacuum heat insulating material 1 having no groove was used for each door, and a vacuum heat insulating material 1 having a hole 16 for penetrating a drain pipe was used on the bottom surface.
[0085]
As a result, the coverage of the vacuum heat insulating material reaches up to 70% of the outer box surface area of the refrigerator 7.
[0086]
When the power consumption of the refrigerator 7 thus obtained was measured, it was confirmed that the coverage of the vacuum heat insulating material was reduced by about 20% as compared with the case where the coverage was 30%.
[0087]
In other words, even in places where a single piece of vacuum heat insulating material could not be used conventionally, such as when there are protrusions such as pipes inside the heat insulating wall of a refrigerator, a groove is formed in the vacuum heat insulating material according to its shape. By doing so, it becomes possible to use it, and since it can be applied with one piece, the heat loss from the joint part of the vacuum heat insulating material can be reduced, so that the heat insulating performance of the refrigerator can be greatly improved.
[0088]
In addition, as a place where the vacuum heat insulating material is applied in the refrigerator, a place where the temperature difference between the inside and outside of the refrigerator is large is more effective, but a coverage of 50% or more with respect to the outer box surface area is desirable. When the coverage is 50% or more, the influence of the heat loss from the rigid urethane foam part is reduced, and the heat insulating effect by applying the vacuum heat insulating material becomes dominant, so that efficient heat insulating becomes possible.
[0089]
Thus, by applying the vacuum heat insulating material of the present invention, a refrigerator excellent in energy saving can be provided.
[0090]
Further, since the vacuum heat insulating material of the present invention has excellent heat insulating performance, it is possible to make the heat insulating wall thinner, so that it is possible to achieve space saving of the refrigerator or increase in the refrigerator internal volume.
[0091]
Further, since the core material of the vacuum heat insulating material is inorganic fiber, it is nonflammable, and is excellent in terms of refrigerator safety.
[0092]
As described above, the improvement of the heat insulating performance by the vacuum heat insulating material of the present invention can be confirmed in various heat insulating boxes, and in addition to various cold insulating containers such as water heaters, rice cookers, and cooler boxes, vending machines, vehicles, or homes. It can also be applied as a heat insulation panel for equipment and the like.
[0093]
【The invention's effect】
As described above, the vacuum heat insulating material according to the present invention includes a core material, and a jacket material that covers the core material and seals the inside by reducing the pressure, and has a substantially planar shape on the flat front surface. A recess having a bottom surface of a predetermined width is formed, and one or more grooves are formed on the back surface, and the outer surface of the jacket material is also formed on the back surface corresponding to the recess on the front surface. By forming a groove against tension, warpage can be prevented.
[0094]
In addition, the present invention is a material in which the core material is formed into a flat plate with a layer inside the skin layer being flexible, and the skin layer has an appropriate rigidity within a range that does not damage the jacket material. By applying pressure from above on the jacket material with the device, it is possible to form the concave portion, thereby improving productivity and preventing warpage after the molding.
[0095]
Further, according to the present invention, by molding a fibrous material, a flat plate-shaped core material whose layer inside the skin layer is flexible can be easily produced.
[0096]
Also, the present invention is to form a groove near the position of the back surface opposite to the opening end of the recess of the front surface of the vacuum heat insulating material, thereby preventing warpage and simultaneously forming the recess and the opening surface of the opening of the recess. The concave portion can be formed in a predetermined shape by forming a groove by applying pressure also to the relative position of.
[0097]
Further, the present invention is to prevent the opening end on the side close to the recess of the groove on the back surface from being separated from the relative position of the back surface of the opening end of the recess by more than the opening width of the groove on the back surface, The pressure from the back surface effectively acts, and a predetermined shape of the opening end of the concave portion can be reliably obtained.
[0098]
Further, the method for producing a vacuum heat insulating material according to the present invention comprises, after covering a core material obtained by molding a fibrous material into a flat plate having a layer on the inner side of the skin layer with a covering material, depressurizing the inside and sealing the outer material. A concave part on the front side and a groove on the back side are formed by pressure molding from the top of the workpiece. Since the inner layer of the core material is flexible, the pressing pressure of the mold can be reduced even after the vacuum insulation material is manufactured. A groove can be formed on the surface of the vacuum heat insulating material from above the outer cover material by making it smaller, thereby suppressing damage to the outer cover material and preventing damage such as breakage and pinholes. That is, the groove can be formed using a normal apparatus in the atmosphere, so that the productivity can be improved and the cost can be suppressed.
[0099]
The heat insulating box using the vacuum heat insulating material of the present invention includes the vacuum heat insulating material of the present invention in a space formed by the outer box and the inner box. By forming recesses and grooves in this vacuum heat insulator in accordance with the protrusions such as reinforcements and pipes and wiring existing inside the space, it is possible to use in places that could not be applied conventionally, and conventionally By using a plurality of vacuum heat insulating materials avoiding the protruding portions, and by being able to prevent heat loss generated from the joints thereof, it is possible to provide a heat insulating box body with greatly improved heat insulating performance. You can do it.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a vacuum heat insulating material according to a first embodiment of the present invention. FIG. 2 is a plan view of the vacuum heat insulating material shown in FIG. 1. FIG. FIG. 4 is a schematic cross-sectional view of a vacuum heat insulating material according to another embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a vacuum heat insulating material according to another embodiment of the present invention. FIG. 7 is a schematic plan view of a refrigerator according to a fourth embodiment of the present invention. FIG. 8 is an exploded perspective view of a main part of a refrigerator according to a fourth embodiment of the present invention. Description]
1, 1A, 1B, 1C, 1D, 41, 51, 61 Vacuum heat insulating material 2 Core material 2a Skin layer 3 Jacket material 4, 44, 54, 55, 64 Concave portions 4a, 4b, 44a, 44b, 54a, 54b, 55a, 55b, 64a Recessed opening end 4Y Bottom surface 5a, 5b, 45, 56, 57, 58, 65 Groove 5c, 5d Opening end 7 Refrigerator 8 Outer box 9 Inner box 15 Piping groove A Front surface B Back surface V, VL opening width

Claims (7)

芯材と、前記芯材を覆い内部を減圧して封止した外被材とを備え、平板状のおもて面に略平面形状で所定の幅の底面を有する凹部を形成し、うら面に一つ以上の溝を形成したことを特徴とする真空断熱材。A core material, and a covering material that covers the core material and seals the inside of the core material by decompressing the inside of the core material, and forming a concave portion having a substantially planar shape and a bottom surface of a predetermined width on a flat front surface; Vacuum insulation, characterized in that at least one groove is formed in the vacuum insulation material. 芯材が、表皮層より内側の層が柔軟な平板状に成形してなることを特徴とする請求項1記載の真空断熱材。2. The vacuum heat insulating material according to claim 1, wherein the core material is formed by forming a layer inside the skin layer into a flexible flat plate. 芯材が繊維材料を成形してなることを特徴とする請求項1又は請求項2記載の真空断熱材。3. The vacuum heat insulating material according to claim 1, wherein the core material is formed by molding a fiber material. おもて面の凹部開口端に相対するうら面の位置近傍に溝を形成したことを特徴とする請求項1から請求項3のうちいずれか一項記載の真空断熱材。The vacuum heat insulating material according to any one of claims 1 to 3, wherein a groove is formed near the position of the back surface facing the opening end of the concave surface of the front surface. うら面の溝の凹部に近い側の開口端が、凹部開口端のうら面の相対位置に対して、前記溝の開口幅以上外側に離れないことを特徴とする請求項4記載の真空断熱材。5. The vacuum heat insulating material according to claim 4, wherein the opening end of the groove on the back surface on the side close to the concave portion does not move outward with respect to the relative position of the back surface of the opening end of the concave portion more than the opening width of the groove. . 繊維材料を表皮層より内側の層が柔軟な平板状に成形した芯材を、外被材で覆って内部を減圧して封止したのち、前記外被材の上から加圧成形によりおもて面の凹部及びうら面の溝を形成することを特徴とする真空断熱材の製造方法。A core material obtained by molding a fibrous material into a flat plate having a layer on the inner side of the skin layer is covered with a covering material, and the inside is decompressed and sealed. A method of manufacturing a vacuum heat insulating material, comprising forming a concave portion on a front surface and a groove on a back surface. 外箱と、内箱と、前記外箱と内箱とにより形成された空間に配設された真空断熱材とを備え、前記真空断熱材が請求項1から請求項5のうちいずれか一項記載のものであることを特徴とする真空断熱材を用いた断熱箱体。6. An outer box, an inner box, and a vacuum heat insulating material provided in a space formed by the outer box and the inner box, wherein the vacuum heat insulating material is any one of claims 1 to 5. A heat-insulating box body using a vacuum heat-insulating material as described above.
JP2002165793A 2002-06-06 2002-06-06 Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material Expired - Fee Related JP3793113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165793A JP3793113B2 (en) 2002-06-06 2002-06-06 Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165793A JP3793113B2 (en) 2002-06-06 2002-06-06 Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material

Publications (2)

Publication Number Publication Date
JP2004011755A true JP2004011755A (en) 2004-01-15
JP3793113B2 JP3793113B2 (en) 2006-07-05

Family

ID=30433550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165793A Expired - Fee Related JP3793113B2 (en) 2002-06-06 2002-06-06 Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP3793113B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075878A1 (en) * 2004-02-04 2005-08-18 Matsushita Electric Industrial Co., Ltd. Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
WO2006132001A1 (en) 2005-06-07 2006-12-14 Mag Co., Ltd. Process for producing glass wool molding, glass wool molding and vacuum insulation material
JP2011122727A (en) * 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
WO2012004901A1 (en) * 2010-07-06 2012-01-12 日立アプライアンス株式会社 Vacuum heat insulation member and refrigerator using same
CN102401216A (en) * 2010-09-14 2012-04-04 日立空调·家用电器株式会社 Vacuum insulating material and fridge using the vacuum insulating material
JP2012202666A (en) * 2011-03-28 2012-10-22 Mitsubishi Electric Corp Hot water storage type water heater
DE102012215314A1 (en) * 2012-08-29 2014-03-06 BSH Bosch und Siemens Hausgeräte GmbH Housing for a household refrigerator and household refrigeration appliance
JP2014152830A (en) * 2013-02-06 2014-08-25 Samsung Electronics Co Ltd Vacuum heat insulation material, heat insulation box body, and refrigerator
JP2014163494A (en) * 2013-02-27 2014-09-08 Toshiba Home Technology Corp Heat insulator
JP2015165182A (en) * 2015-05-18 2015-09-17 三菱電機株式会社 Hot water storage water heater
JP2016194360A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
CN106885411A (en) * 2017-01-04 2017-06-23 合肥美的电冰箱有限公司 One kind refrigeration electrical equipment
JP2018048807A (en) * 2017-11-17 2018-03-29 東芝ライフスタイル株式会社 refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007498B1 (en) * 2013-06-25 2017-03-31 Gaztransport Et Technigaz VACUUM INSULATING BLOCK

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113492A (en) * 1993-10-15 1995-05-02 Meisei Kogyo Kk Vacuum insulating member
JPH09145239A (en) * 1995-11-17 1997-06-06 Sanyo Electric Co Ltd Vacuum heat-insulating material
JPH10253243A (en) * 1997-03-17 1998-09-25 Sanyo Electric Co Ltd Refrigerator
JP2000280266A (en) * 1999-03-29 2000-10-10 Sharp Corp Core material for thermal insulating material and its preparation and vacuum thermal insulating material
JP2001336691A (en) * 2000-05-25 2001-12-07 Matsushita Refrig Co Ltd Vacuum insulation material and refrigerator using vacuum insulation material
JP2004011708A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method, and thermal insulation box using vacuum heat insulating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113492A (en) * 1993-10-15 1995-05-02 Meisei Kogyo Kk Vacuum insulating member
JPH09145239A (en) * 1995-11-17 1997-06-06 Sanyo Electric Co Ltd Vacuum heat-insulating material
JPH10253243A (en) * 1997-03-17 1998-09-25 Sanyo Electric Co Ltd Refrigerator
JP2000280266A (en) * 1999-03-29 2000-10-10 Sharp Corp Core material for thermal insulating material and its preparation and vacuum thermal insulating material
JP2001336691A (en) * 2000-05-25 2001-12-07 Matsushita Refrig Co Ltd Vacuum insulation material and refrigerator using vacuum insulation material
JP2004011708A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method, and thermal insulation box using vacuum heat insulating material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638181B2 (en) 2004-02-04 2009-12-29 Panasonic Corporation Vacuum heat insulator and hot insulation/cold insulation apparatus incorporating the vacuum insulator
WO2005075878A1 (en) * 2004-02-04 2005-08-18 Matsushita Electric Industrial Co., Ltd. Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
WO2006132001A1 (en) 2005-06-07 2006-12-14 Mag Co., Ltd. Process for producing glass wool molding, glass wool molding and vacuum insulation material
US7846371B2 (en) 2005-06-07 2010-12-07 Mag Co., Ltd. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
USRE45450E1 (en) 2005-06-07 2015-04-07 Mag-Isover K.K. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
CN102971571A (en) * 2010-07-06 2013-03-13 日立空调·家用电器株式会社 Vacuum heat insulation member and refrigerator using same
WO2012004901A1 (en) * 2010-07-06 2012-01-12 日立アプライアンス株式会社 Vacuum heat insulation member and refrigerator using same
JP2012017752A (en) * 2010-07-06 2012-01-26 Hitachi Appliances Inc Vacuum heat insulation member and refrigerator using same
CN102401216A (en) * 2010-09-14 2012-04-04 日立空调·家用电器株式会社 Vacuum insulating material and fridge using the vacuum insulating material
JP2012082954A (en) * 2010-09-14 2012-04-26 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator using the same
JP2011122727A (en) * 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
JP2012202666A (en) * 2011-03-28 2012-10-22 Mitsubishi Electric Corp Hot water storage type water heater
DE102012215314A1 (en) * 2012-08-29 2014-03-06 BSH Bosch und Siemens Hausgeräte GmbH Housing for a household refrigerator and household refrigeration appliance
JP2014152830A (en) * 2013-02-06 2014-08-25 Samsung Electronics Co Ltd Vacuum heat insulation material, heat insulation box body, and refrigerator
JP2014163494A (en) * 2013-02-27 2014-09-08 Toshiba Home Technology Corp Heat insulator
JP2016194360A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2015165182A (en) * 2015-05-18 2015-09-17 三菱電機株式会社 Hot water storage water heater
CN106885411A (en) * 2017-01-04 2017-06-23 合肥美的电冰箱有限公司 One kind refrigeration electrical equipment
JP2018048807A (en) * 2017-11-17 2018-03-29 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP3793113B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP3456988B1 (en) Vacuum heat insulating material, method of manufacturing the same, and heat insulating box using vacuum heat insulating material
EP1510747B1 (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
JP3490426B1 (en) Vacuum heat insulating material, and refrigeration equipment, cooling / heating equipment using the same, and vacuum heat insulating material core material and manufacturing method thereof
JP3793113B2 (en) Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material
JP3478780B2 (en) Vacuum insulation material and refrigerator using vacuum insulation material
KR100695378B1 (en) Refrigerator and vacuum heat insulation material and method of production thereof
EP1275893B1 (en) Vacuum insulating material and device using the same
EP2554759A2 (en) High-performance vacuum insulation panel and manufacturing method thereof
KR20030007544A (en) Heat insulation box, and vacuum heat insulation material used therefor
JP2006194559A (en) Heat insulating box body using vacuum heat insulating material
JP2004245258A (en) Vacuum heat insulating material, and refrigerating equipment and chilled/hot equipment using the same
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2008185220A (en) Vacuum heat insulation material
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2004003534A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP3497500B1 (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material core material
KR20050016490A (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
JPH08291892A (en) Lamination layer type vacuum heat insulating panel
JP2004286050A (en) Vacuum heat insulation material, heat insulation box, and method for checking recess in vacuum heat insulation material
JP3527727B2 (en) Vacuum insulation material and equipment using the vacuum insulation material
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2007107877A (en) Refrigerator
US20220105702A1 (en) Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same
JP2016080063A (en) Process of manufacture of vacuum heat insulation material and refrigerator using this vacuum heat insulation material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Ref document number: 3793113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees