WO2006009063A1 - Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer - Google Patents

Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer Download PDF

Info

Publication number
WO2006009063A1
WO2006009063A1 PCT/JP2005/013028 JP2005013028W WO2006009063A1 WO 2006009063 A1 WO2006009063 A1 WO 2006009063A1 JP 2005013028 W JP2005013028 W JP 2005013028W WO 2006009063 A1 WO2006009063 A1 WO 2006009063A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
vacuum heat
insulating material
groove
film
Prior art date
Application number
PCT/JP2005/013028
Other languages
French (fr)
Japanese (ja)
Inventor
Keisuke Tsunetsugu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE112005000069.9T priority Critical patent/DE112005000069B4/en
Publication of WO2006009063A1 publication Critical patent/WO2006009063A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present invention relates to a vacuum heat insulating material, a heat and cold insulation device using the same, a refrigerator-freezer and the like.
  • a vacuum heat insulating material is very rigid because the inside of a film as a covering material is depressurized and atmospheric pressure is applied to the covering material. For this reason, the film tends to be damaged when trying to form, so it is used as it is in most applications. Depending on the shape of the application location, multiple pieces are used.
  • a gas-nore film consists of a laminate film in which metal foil and plastic film are laminated, and a laminate film in which vapor-deposited plastic film is laminated, and a laminate film in which vapor-deposited plastic film is laminated. The groove is bent so that the surface becomes the outer surface.
  • a groove for folding the vacuum heat insulating material is formed in the vacuum heat insulating material, and the fin adjacent to the end of the groove of the fins around the vacuum heat insulating material is not bent and is bent at the groove. Provide vacuum insulation.
  • the present invention is such that a groove is formed on the laminated film surface on which the outer cover material is vapor-deposited, and is folded at the groove so that the laminated film surface on which the vapor-deposited plastic film is laminated is the inner surface.
  • Provide vacuum insulation material that can be used.
  • the laminate film on which the bent portion, which is the portion where the stress is most applied to the film by bending, is deposited is a film on which particles are deposited, and is flexible.
  • the depth of a crack can be made smaller than the size of a crack generated in a metal foil when a deep groove is formed and bent in a laminated film in which a plastic film is laminated. As a result, the increase in gas penetration into the vacuum insulation can be reduced.
  • the present invention provides a heat and cold insulation device and a refrigerator using the vacuum heat insulating material.
  • FIG. 1 is a cross-sectional view of a vacuum heat insulating material in Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the vacuum heat insulating material in Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of the vacuum heat insulating material according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a vacuum heat insulating material according to Embodiment 1 of the present invention.
  • FIG. 5 is a view showing a vacuum heat insulating material in Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing a vacuum heat insulating material in Embodiment 3 of the present invention.
  • FIG. 7 is a cross-sectional view of a refrigerator-freezer according to Embodiment 8 of the present invention.
  • FIG. 8 is a cross-sectional view of a refrigerator-freezer according to Embodiment 9 of the present invention.
  • FIG. 9 is a cross-sectional view of the refrigerator-freezer according to Embodiment 10 of the present invention.
  • the present invention provides a core material composed of an aggregate of inorganic fibers and a vacuum heat insulating material in which the core material is covered with a jacket material and the inside is depressurized and sealed, and a groove portion for bending the vacuum heat insulating material is formed in the vacuum.
  • a vacuum heat insulating material that is formed on a heat insulating material, and is not bent at a fin portion adjacent to the end of the groove portion among the fin portions around the vacuum heat insulating material, and the vacuum heat insulating material is bent at the groove portion.
  • the fin part in this invention means the fin-shaped part which only the jacket material which can be formed in the outer peripheral part of a vacuum heat insulating material also has force.
  • the present invention provides a vacuum heat insulating material in which the groove width is set so that the core material outside the groove does not contact the groove when bent, and the groove is bent around one groove.
  • the groove width is set so that the core material outside the groove does not contact the groove when bent, and the groove is bent around one groove.
  • the jacket material includes a laminate film in which a metal foil and a plastic film are laminated, and a laminate film in which a vapor-deposited plastic film is laminated.
  • a vacuum heat insulating material in which a groove is formed on the surface of a laminated film on which vapor deposition has been performed, and the groove is formed so that the surface on which the groove is formed becomes an inner surface.
  • the laminate film force where the bent part, which is the most stressful part of the film by folding, is deposited. Because the film is a film on which particles are deposited, it is flexible, so a laminate in which metal foil and plastic film are laminated.
  • the depth of a crack can be made smaller than the size of a crack generated in a metal foil when a groove is formed in a depth and bent. As a result, it is possible to reduce the increase in gas intrusion into the vacuum heat insulating material and to reduce the temporal deterioration of the heat insulating performance.
  • the present invention also provides a vacuum heat insulating material in which the core material has a flexural strength of 0.02-0.05 MPa. In this way, it is possible to reduce the bending strength required when bending the vacuum heat insulating material while maintaining the handleability of the core material during the production of the vacuum heat insulating material, thereby improving the work efficiency of the operator. This can reduce labor costs during mass production.
  • the bending strength is measured with Shimadzu Autograph AGS-H 5KN, and the sample size at that time is 120mm x 25mm.
  • the present invention also provides a vacuum heat insulating material in which a laminate film includes a film layer made of an ethylene butyl alcohol copolymer (EVA).
  • EVA ethylene butyl alcohol copolymer
  • a film layer made of the above is included in the laminating structure !, so the deterioration of the heat insulation performance due to gas intrusion can be minimized.
  • the present invention provides a vacuum heat insulating material in which the core has a surface hardness of 40-80.
  • the handling of the core material at the time of vacuum insulation material production is maintained, and the surface of the vacuum insulation material is maintained. Since the hardness is set to the minimum, the pressing pressure when forming the groove by press molding can be reduced. As a result, damage to the outer bag due to the fiber core material inside the vacuum heat insulating material piercing the internal force can be minimized, and the deterioration of the heat insulating performance over time can be reduced.
  • the present invention also provides a vacuum heat insulating material whose core material is binder-free.
  • the groove is formed in the vacuum heat insulating material by press working or when the groove is bent in the groove, the core material is crushed in the groove and no gas is generated. In other words, it is possible to minimize the possibility of a decrease in the heat insulation performance due to gas generation, so that the heat insulation performance can be improved.
  • the present invention provides a vacuum heat insulating material in which the jacket material has a tensile strength of 70-220N. In this way, the cost can be reduced, and even if the groove is formed and bent by press molding, damage to the outer bag can be suppressed and the deterioration of the heat insulation performance over time can be reduced.
  • the present invention provides a heat and cold insulation device in which the vacuum heat insulating material of the present invention is disposed in a space formed by an outer box, an inner box, and the outer box and the inner box.
  • the present invention provides a refrigerator in which the vacuum heat insulating material of the present invention is attached to a freezer compartment.
  • the present invention also provides a refrigerator in which the vacuum heat insulating material of the present invention is attached to an inner box.
  • the laminated film surface which has been vapor-deposited inferior to that of a gas foil with a metal foil, can be attached to the inner box on the low temperature side after processing the vacuum insulation. Therefore, it is possible to suppress the deterioration of heat insulation performance over time, and at the same time, the conventional seam Since the heat loss that was also generated can be prevented, the power consumption of the refrigerator can be further reduced.
  • the vacuum heat insulating material 1 is a material in which the core material 3 is covered with an outer covering material 2 and the inside is decompressed and sealed.
  • the outer cover material 2 is composed of a laminate film in which a metal foil and a plastic film are laminated, and a plastic film on which vapor deposition has been performed.
  • the laminate film in which the metal foil and the plastic film are laminated is composed of a nylon film 4, a nylon film 5, an aluminum foil film 6, and a low density polyethylene film 7 in addition to the outer cover.
  • the plastic film on which the vapor deposition has been performed is composed of a nylon film 4 having an outer force, a polyethylene terephthalate (PET) film 8 on which the vapor deposition has been performed, a PET film 9 on which the vapor deposition has been performed, and a low density polyethylene film 7.
  • PET polyethylene terephthalate
  • the core material 3 also has an aggregate strength of glass fibers, and was used after being dried in a drying furnace at 140 ° C for 1 hour.
  • the core material 3 was inserted into the jacket material 2, the inside was depressurized to lOPa, and the opening was sealed by heat welding. In FIG. 1, the groove is not formed.
  • the vacuum heat insulating material 1 having a thickness of 11 mm has a groove portion 10 having a width of 5 mm and a depth of 4.5 mm, a groove end portion 11, upper and lower fin portions 12, and a fin adjacent to the groove portion 10. Part 13 is provided. Further, only the upper and lower fin portions 12 are bent, and the fin portion 13 adjacent to the groove portion 10 is not bent. Further, as shown in FIG. 4, the vacuum heat insulating material 1 is bent 60 degrees at the groove 10 portion.
  • the stress on the laminating film that occurs at the groove end 11, that is, at the boundary between the groove 10 and the peripheral fin 13 can be reduced.
  • the area of minute cracks in the aluminum foil film or the vapor-deposited PET film generated at the groove end 11 can be minimized, so that the heat insulation performance can be improved even when the vacuum heat insulating material 1 is folded. Over time The decrease can be reduced.
  • the range of application is widened by imparting bendability, it is possible to provide the vacuum heat insulating material 1 with little thermal change and excellent heat insulating performance.
  • the inorganic fiber used for the core material 3 is preferably glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, or carbonized fiber. In particular, it is not limited to these.
  • a binder may be used to improve handling when the board is heated and pressed.
  • the nylon of the jacket material 2 having a laminate structure is preferably a nylon film excellent in various mechanical properties such as impact resistance, flex resistance and tensile strength.
  • examples include Nai Nun 6, Nylon-66, MXD Nylon and the like.
  • aromatic nylon is particularly preferable because it can further improve the gas noriness.
  • As the form of the nylon film a single layer nylon film, a multilayer nylon film co-extruded with different types of nylon, and the like are used, and are not particularly limited.
  • a stretched product of a PET film or a polypropylene (PP) film can be used, and the use of the PET film can improve the water vapor nooriety.
  • the metal foil and vapor deposition particles of the outer cover material 2 having a laminate structure are not limited to these forces capable of using aluminum, stainless steel, iron or the like.
  • the thermal welding layer of the jacket material 2 has the highest gas permeability among the films constituting the jacket material 2.
  • the properties of the heat-welded layer greatly affect the time-dependent change in the heat insulating performance of the vacuum heat insulating material 1.
  • the thickness of the heat-welded layer is the stability of the sealing quality in the reduced-pressure sealing process, the suppression of gas intrusion from the end face of the heat-welded part, and the heat in the case of using metal foil as a laminated film on which vapor deposition has been performed. Considering heat leak of surface force due to conduction, 25 m-60 ⁇ m force is suitable.
  • Examples of the material of the heat-welded layer include, but are not limited to, a force capable of using an unstretched PP film, a high-density polyethylene film, a linear low-density polyethylene film, and the like.
  • Examples of the bag shape of the jacket material 2 include forces such as a four-side seal bag, a gusset bag, a three-side seal bag, a pillow bag, a center tape seal bag, and the like.
  • a getter material such as a gas adsorbent or a water adsorbent may be used.
  • the adsorption mechanism may be any of physical adsorption, chemical adsorption, occlusion, and sorption, but a substance that acts as a non-evaporable getter is good. Specific examples include physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, and hydrated talcite.
  • alkali metal or alkaline earth metal oxides alkali metal or alkaline earth metal hydroxides, or the like can be used.
  • lithium oxide, lithium hydroxide, calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, barium oxide, and barium hydroxide are effective.
  • calcium sulfate, magnesium sulfate, sodium sulfate, sodium carbonate, potassium carbonate, calcium chloride salt, lithium carbonate, unsaturated fatty acid, iron compound, etc. also act effectively.
  • the manufacturing method of the vacuum heat insulating material 1 is as follows. First, the jacket material 2 is produced, and then the core material 3 is placed in the jacket material 2. It may be inserted and the inside reduced in pressure and sealed. Alternatively, the core material 3 and the outer cover material 2 that also has a roll-like or sheet-like laminate film force are installed in the decompression tank, and the roll-like or sheet-like outer cover material 2 is placed along the core material 3.
  • the vacuum heat insulating material 1 may be produced by thermally welding the outer covering material 2. In particular, it is not limited to these.
  • FIG. 5 is a schematic diagram showing a vacuum heat insulating material in Embodiment 2 of the present invention.
  • the vacuum heat insulating material having a thickness of 11 mm is bent 60 degrees by a groove portion 14 having a width of 12 mm and a depth of 4.5 mm, and the core material 15 outside the groove portion is not in contact with the groove portion 14. That is, they do not interfere with each other.
  • the number of the groove portions 14 is one, the number of ridge lines generated at the end portions of the groove portions, that is, at the boundary between the groove portions 14 and the peripheral fin portions can be minimized.
  • the presence of the ridgeline applies abrupt stress to the film, minimizing the area of minute cracks that occur in the laminated film that has been deposited, thereby minimizing the deterioration of thermal insulation performance over time. be able to.
  • the width of the groove portion 14 is set so that the core material 15 outside the groove portion at the time of bending, that is, the core material adjacent to the groove portion 14 does not come into contact with the groove portion, extra generated by the contact of the core material. Ridgelines can be eliminated. As a result, the presence of the ridgeline applies abrupt stress to the film, minimizing the area of minute cracks generated in the laminated film that has been vapor-deposited. it can.
  • FIG. 6 is a schematic diagram showing a vacuum heat insulating material in Embodiment 3 of the present invention.
  • the vacuum heat insulating material having a thickness of 11 mm is bent 90 degrees by the groove portion 16 having a width of 12 mm and a depth of 6.5 mm, and the core material 17 outside the groove portion is not in contact with the groove portion 16. . That is, there is no interference. Further, the groove 16 exists on the side of the laminated film surface on which the vapor deposition has been performed, and is bent with the portion inside.
  • the portion of the film that is most stressed by bending is a laminated film on which the bent portion is vapor-deposited. Because it is a film on which particles have been deposited and is flexible, the crack size is larger than the size of the crack that occurs in the metal foil when the metal film and plastic film are laminated and the groove is formed and bent. The depth can be reduced. As a result, the increase in gas penetration into the vacuum heat insulating material can be reduced, and the deterioration of the heat insulation performance with time can be reduced.
  • the vacuum insulation material that was bent at a depth of 6.5 mm and a bending angle of 90 degrees was subjected to an accelerated test for 30 days in a 100 ° C aging furnace. Compared with flat plate vacuum insulation, which was not 1. 2 times, the thermal conductivity was degraded.
  • the outer jacket material configuration of the present embodiment uses a vapor-deposited EVA film instead of the vapor-deposited PET 8 of the first embodiment.
  • a groove part having a width of 12mm and a depth of 7. Omm is formed on the laminated film surface on which the vapor deposition has been performed on the vacuum heat insulating material having a thickness of 11mm and having the above-described covering material structure. It is bent 90 degrees.
  • the laminate structure includes a layer of an EVA-powered film having excellent gas barrier properties, the following effects can be obtained.
  • stress is applied to the laminated film surface on which vapor deposition has been applied, and even if the space between the vapor deposition particles on the vapor deposition surface becomes larger than usual, heat insulation performance due to gas intrusion Can be minimized.
  • a vacuum insulation material that was folded at a groove angle of 7. Omm and a bending angle of 90 degrees was subjected to an acceleration test in a 100 ° C aging furnace for 30 days. Compared to the flat plate vacuum insulation material that has not been applied, it has been 1.times.
  • the core has a surface hardness of 40-80. Maintains the handling of the core material at the time of vacuum insulation material preparation, and sets the surface hardness of the vacuum insulation material to a minimum. As a result, the press pressure when forming the groove by press molding can be reduced, and the damage to the outer bag due to the fiber core material inside the vacuum heat insulating material piercing from the inside is minimized, and the heat insulating performance is improved. The change with time can be reduced.
  • the surface hardness was measured with a TECLOCK TECLOCK durometer (rubber / plastic hardness meter) GS-721N typeE in accordance with IS K6253.
  • the core material is binder-free, that is, does not include a binder. Since the core material does not contain a binder, the groove is formed by pressing the vacuum heat insulating material, or when the groove is formed in the vacuum heat insulating material and bent at the groove. Gas generation caused by pulverizing the core material in the portion can be suppressed. In other words, it is possible to minimize the generation of gas that may deteriorate the heat insulation performance, and thus improve the heat insulation performance.
  • This embodiment is a vacuum heat insulating material whose outer shell material has a tensile strength of 70-220N. Since the tensile strength of the jacket material is 70 N or more, damage to the outer bag can be minimized and the change over time in the heat insulation performance can be reduced even if the groove is formed and bent by press molding. Further, if the tensile strength is 220 N, damage to the outer bag can be reduced even if the core is pressed until the core thickness at the time of pressing becomes zero. In addition, it will be expensive to provide a jacket material with a tensile strength exceeding 200N.
  • the tensile strength was the force at break when a sample with a shape of 100 mm X 15 mm was pulled at 200 mm / min using an autograph AGS-H 5KN manufactured by Shimadzu Corporation.
  • FIG. 7 shows a cross-sectional view of a refrigerator-freezer as an example of a heat and cold insulation device in Embodiment 8 of the present invention.
  • the refrigerator body 18a includes a flat vacuum heat insulating material lb on one side of a space formed by an outer box 19a made of a steel plate casing and an inner box 20a made of ABS resin. Folded vacuum insulation material lc is provided.
  • the space other than the vacuum heat insulating material 1 is foam-filled with a hard urethane foam 21a. Furthermore, it has a refrigerator compartment 22a, a freezer compartment 23a, a machine compartment 24a, and a compressor 25a.
  • the vacuum heat insulating material lc is applied by bending in advance according to the shape of the inner wall of the outer box. Therefore, even if the vacuum heat insulating material is folded and used, the temporal deterioration of the heat insulating performance can be minimized.
  • heat leakage from the machine room 24a into the refrigerator cabinet is greatly reduced, and the power consumption of the refrigerator can be greatly reduced, so that energy saving and cost performance are excellent.
  • a refrigerator can be provided.
  • the core material of the vacuum heat insulating material is made of inorganic fibers, so that the core material is nonflammable, which is excellent in terms of refrigerator safety.
  • FIG. 8 is a cross-sectional view of the refrigerator-freezer according to Embodiment 9 of the present invention.
  • the refrigerator main body 18b has a flat vacuum heat insulating material Id and a vacuum folded on one side of a space formed by an outer box 19b made of a steel plate and an inner box 20b made of ABS resin.
  • a heat insulating material le is provided, and the space other than the vacuum heat insulating material 1 is foam-filled with rigid urethane foam 21b.
  • it has a refrigerator compartment 22b, a freezer compartment 23b, a machine compartment 24b, and a compressor 25b.
  • the vacuum heat insulating material le is preliminarily bent and applied to the complicated shape of the freezer compartment 23b in accordance with the shape of the inner wall of the outer box. Therefore, even if the vacuum heat insulating material is folded and used, the deterioration of the heat insulating performance with time can be minimized.
  • FIG. 9 is a sectional view of the refrigerator-freezer according to Embodiment 10 of the present invention.
  • the refrigerator main body 18c is a vacuum heat insulating material which is bent with a flat vacuum heat insulating material If on one side of a space composed of an outer box 19c made of a steel plate and an inner box 20c made of ABS resin. 1 g of material is placed, and the space other than the vacuum heat insulating material 1 is foam-filled with rigid urethane foam 21c. Furthermore, it has a refrigerator compartment 22c, a freezer compartment 23c, a machine compartment 24c, and a compressor 25c.
  • the vacuum heat insulating material lg is preliminarily folded and applied in accordance with the shape of the outer wall of the inner box having the surface protrusions. Therefore, even if the vacuum heat insulating material is folded and used, the deterioration of the heat insulating performance with time can be minimized.
  • the refrigerator has a laminate constituting surface including a flexible vapor deposition film on the outer surface of the inner box which originally has a surface protrusion and is difficult to apply the vacuum heat insulating material.
  • a laminate constituting surface including a flexible vapor deposition film on the outer surface of the inner box which originally has a surface protrusion and is difficult to apply the vacuum heat insulating material.
  • vacuum heat insulating material according to the present invention Even if the vacuum heat insulating material according to the present invention is used after being bent, the deterioration of the heat insulating performance with time can be minimized. As a result, the range of application of vacuum heat insulating material is expanded, and it can be applied to heat and cold insulation devices, hot water heaters that can be used only with refrigerators, vending machines, vehicles, and houses.

Abstract

At least one or more grooves are formed in a vacuum thermal insulation material, and the insulation material is bent at the grooves and not at surrounding fillet sections adjacent to the grooves. By this, stress in a laminated film occurring at groove end sections, which are boundaries between the grooves and the surrounding fillet sections, can be reduced. This enables the area of small cracks occurring in that portion of the laminated film which is in the groove end sections to be restricted to minimum. As a result, reduction in thermal insulation performance over time can be restricted even if the vacuum thermal insulation material is bent.

Description

明 細 書  Specification
真空断熱材と、それを用いた保温保冷機器および冷凍冷蔵庫  Vacuum heat insulating material, heat insulation equipment and refrigerator using the same
技術分野  Technical field
[0001] 本発明は、真空断熱材と、それを用いた保温保冷機器、冷凍冷蔵庫等に関する。  TECHNICAL FIELD [0001] The present invention relates to a vacuum heat insulating material, a heat and cold insulation device using the same, a refrigerator-freezer and the like.
背景技術  Background art
[0002] 真空断熱材は、外被材であるフィルムの内部が減圧され、外被材には大気圧がか 力つているため非常に硬直である。そのため、成形しょうとするとフィルムに損傷を与 えやすいので、ほとんどの適用例において平板のまま使用される。適用箇所の形状 によっては、分割して複数枚使用されている。  [0002] A vacuum heat insulating material is very rigid because the inside of a film as a covering material is depressurized and atmospheric pressure is applied to the covering material. For this reason, the film tends to be damaged when trying to form, so it is used as it is in most applications. Depending on the shape of the application location, multiple pieces are used.
[0003] そこで、真空断熱材の継ぎ目部分力もの熱漏洩を抑制するため、真空断熱材に折 り曲げ性を付与する方法の例力 特開 2001— 336691号公報に開示されている。そ の真空断熱材は、芯材をガスノ リア性フィルムで覆い、その内部を減圧し、密封され ている。そして、圧縮成形により、真空断熱材の厚み方向に垂直な側面部に、少なく とも一本以上の溝部を形成する。ガスノ リア性フィルムは金属箔とプラスチックフィル ムが積層されたラミネートフィルムと、蒸着が施されたプラスチックフィルムが積層され たラミネートフィルムとからなり、蒸着が施されたプラスチックフィルムが積層されたラミ ネートフィルム面が外面になるように上記溝部で折り曲げを行うものである。  [0003] Therefore, an example of a method for imparting a bendability to the vacuum heat insulating material in order to suppress heat leakage of the seam partial force of the vacuum heat insulating material is disclosed in Japanese Patent Laid-Open No. 2001-336691. The vacuum heat insulating material is hermetically sealed by covering the core material with a gas-nore film and depressurizing the inside. Then, at least one groove is formed on the side surface perpendicular to the thickness direction of the vacuum heat insulating material by compression molding. A gas-nore film consists of a laminate film in which metal foil and plastic film are laminated, and a laminate film in which vapor-deposited plastic film is laminated, and a laminate film in which vapor-deposited plastic film is laminated. The groove is bent so that the surface becomes the outer surface.
[0004] し力しながら、真空断熱材に折り曲げ性を付与するため、溝部に隣接する周囲のヒ レ部を折り曲げた状態で、少なくとも一本以上の溝部を形成し、溝部で真空断熱材を 折り曲げた場合、以下の課題がある。溝部の端部、つまり溝部と周囲のヒレ部との境 界において、金属箔ゃ蒸着が施されたプラスチックフィルムに微小なクラックが発生し 、その部分力 ガス侵入の増加が起こる可能性があるため、断熱性能の経時低下を 改善させる必要がある。 [0004] In order to impart bending properties to the vacuum heat insulating material while pressing, at least one groove portion is formed in a state where the peripheral fin portion adjacent to the groove portion is bent, and the vacuum heat insulating material is used in the groove portion. When bent, there are the following problems. At the end of the groove, that is, at the boundary between the groove and the surrounding fin, a plastic film on which metal foil has been vapor-deposited may cause minute cracks, which may increase partial force gas penetration. It is necessary to improve the deterioration of heat insulation performance over time.
[0005] さらに、少なくとも一本以上の深い溝部を金属箔とプラスチックフィルムが積層され たラミネートフィルム面に形成し、その面が内面になるように前記溝部で折り曲げると 、溝部全域において、金属箔に微小なクラックが発生し、その部分力 ガス侵入が起 こる可能性があるため、断熱性能の経時低下をより改善させる必要がある。 発明の開示 [0005] Further, when at least one deep groove is formed on the laminated film surface in which the metal foil and the plastic film are laminated, and is bent at the groove so that the surface becomes the inner surface, the metal foil is formed over the entire groove. Since minute cracks may occur and partial force gas intrusion may occur, it is necessary to further improve the deterioration of heat insulation performance over time. Disclosure of the invention
[0006] 本発明は、真空断熱材を折り曲げるための溝部を真空断熱材に形成し、真空断熱 材の周囲のヒレ部のうち溝部端部に隣接するヒレ部を折り曲げないで、溝部で折り曲 げて 、る真空断熱材を提供する。  [0006] According to the present invention, a groove for folding the vacuum heat insulating material is formed in the vacuum heat insulating material, and the fin adjacent to the end of the groove of the fins around the vacuum heat insulating material is not bent and is bent at the groove. Provide vacuum insulation.
[0007] これによつて、溝部端部、つまり溝部と周囲のヒレ部との境界において生じるラミネ 一トフイルムへのストレスを減らすことができるため、溝部端部に生じる金属箔ゃ蒸着 が施されたプラスチックフィルムの微小なクラックの面積を最小限に抑えることができ る。  [0007] This reduces the stress on the laminating film that occurs at the end of the groove, that is, the boundary between the groove and the surrounding fin, so that the metal foil generated at the end of the groove is deposited. The area of small cracks in the plastic film can be minimized.
[0008] また、本発明は、外被材の蒸着が施されたラミネートフィルム面に溝部が形成され、 蒸着が施されたプラスチックフィルムが積層されたラミネートフィルム面が内面になる ように溝部で折り曲げて ヽる真空断熱材を提供する。  [0008] Further, the present invention is such that a groove is formed on the laminated film surface on which the outer cover material is vapor-deposited, and is folded at the groove so that the laminated film surface on which the vapor-deposited plastic film is laminated is the inner surface. Provide vacuum insulation material that can be used.
[0009] これによつて、折り曲げることにより最もフィルムにストレスの力かる部分である折り曲 げ部の蒸着が施されたラミネートフィルムが、粒子を蒸着したフィルムで柔軟性がある ため、金属箔とプラスチックフィルムが積層されたラミネートフィルムに深 、溝部を形 成し折り曲げた場合に金属箔に生じるクラックの大きさよりも、クラックの大きさを小さく することができる。その結果、真空断熱材内部へのガス侵入の増加を減少させること ができる。  [0009] Accordingly, since the laminate film on which the bent portion, which is the portion where the stress is most applied to the film by bending, is deposited, is a film on which particles are deposited, and is flexible, The depth of a crack can be made smaller than the size of a crack generated in a metal foil when a deep groove is formed and bent in a laminated film in which a plastic film is laminated. As a result, the increase in gas penetration into the vacuum insulation can be reduced.
[0010] さらに、本発明は上記真空断熱材を用いた保温保冷機器および冷蔵庫を提供する 図面の簡単な説明  [0010] Furthermore, the present invention provides a heat and cold insulation device and a refrigerator using the vacuum heat insulating material.
[0011] [図 1]図 1は本発明の実施の形態 1における真空断熱材の断面図である。  FIG. 1 is a cross-sectional view of a vacuum heat insulating material in Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施の形態 1における真空断熱材の要部断面図である。  FIG. 2 is a cross-sectional view of a main part of the vacuum heat insulating material in Embodiment 1 of the present invention.
[図 3]図 3は本発明の実施の形態 1における真空断熱材の平面図である。  FIG. 3 is a plan view of the vacuum heat insulating material according to Embodiment 1 of the present invention.
[図 4]図 4は本発明の実施の形態 1における真空断熱材を示す図である。  FIG. 4 is a diagram showing a vacuum heat insulating material according to Embodiment 1 of the present invention.
[図 5]図 5は本発明の実施の形態 2における真空断熱材を示す図である。  FIG. 5 is a view showing a vacuum heat insulating material in Embodiment 2 of the present invention.
[図 6]図 6は本発明の実施の形態 3における真空断熱材を示す図である。  FIG. 6 is a diagram showing a vacuum heat insulating material in Embodiment 3 of the present invention.
[図 7]図 7は本発明の実施の形態 8における冷凍冷蔵庫の断面図である。  FIG. 7 is a cross-sectional view of a refrigerator-freezer according to Embodiment 8 of the present invention.
[図 8]図 8は本発明の実施の形態 9における冷凍冷蔵庫の断面図である。 [図 9]図 9は本発明の実施の形態 10における冷凍冷蔵庫の断面図である。 FIG. 8 is a cross-sectional view of a refrigerator-freezer according to Embodiment 9 of the present invention. FIG. 9 is a cross-sectional view of the refrigerator-freezer according to Embodiment 10 of the present invention.
符号の説明  Explanation of symbols
[0012] 1 真空断熱材 [0012] 1 Vacuum insulation
2 外被材  2 Jacket material
3 芯材  3 Core material
10, 14, 16 溝部  10, 14, 16 Groove
12 ヒレ咅  12 Fins
13 溝部に隣接するヒレ部  13 Fins adjacent to the groove
15, 17 溝部外側の芯材  15, 17 Core material outside the groove
18a, 18b, 18c 冷蔵庫本体  18a, 18b, 18c refrigerator body
19a, 19b, 19c 外箱  19a, 19b, 19c outer box
20a, 20b, 20c 内箱  20a, 20b, 20c inner box
23a, 23b, 23c 冷凍室  23a, 23b, 23c Freezer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明は、無機繊維の集合体からなる芯材と、前記芯材を外被材で覆い内部を減 圧し密閉した真空断熱材において、前記真空断熱材を折り曲げるための溝部を前記 真空断熱材に形成し、前記真空断熱材の周囲のヒレ部のうち前記溝部端部に隣接 するヒレ部を折り曲げな ヽで、前記溝部で前記真空断熱材を折り曲げて 、る真空断 熱材を提供する。溝部端部、つまり溝部と周囲のヒレ部との境界において生じるラミネ 一トフイルムへのストレスを減らすことができるため、溝部端部に生じる金属箔ゃ蒸着 が施されたプラスチックフィルムの微小なクラックの面積を最小限に抑えることができ る。また、真空断熱材を折り曲げた場合においても断熱性能の経時低下を小さくする ことができる。また、折り曲げ性が付与されることにより適用範囲が広がるので、断熱 性能の経時変化が小さい真空断熱材を提供することができる。なお、本発明におけ るヒレ部とは、真空断熱材の外周部にできる外被材のみ力もなるヒレ状の部分を意味 している。 [0013] The present invention provides a core material composed of an aggregate of inorganic fibers and a vacuum heat insulating material in which the core material is covered with a jacket material and the inside is depressurized and sealed, and a groove portion for bending the vacuum heat insulating material is formed in the vacuum. Provided is a vacuum heat insulating material that is formed on a heat insulating material, and is not bent at a fin portion adjacent to the end of the groove portion among the fin portions around the vacuum heat insulating material, and the vacuum heat insulating material is bent at the groove portion. To do. Since the stress on the laminating film that occurs at the end of the groove, that is, the boundary between the groove and the surrounding fin, can be reduced, the area of minute cracks in the plastic film on which metal foil is deposited at the end of the groove Can be minimized. Further, even when the vacuum heat insulating material is bent, the temporal deterioration of the heat insulating performance can be reduced. Further, since the range of application is widened by imparting bendability, it is possible to provide a vacuum heat insulating material having a small change with time in the heat insulating performance. In addition, the fin part in this invention means the fin-shaped part which only the jacket material which can be formed in the outer peripheral part of a vacuum heat insulating material also has force.
[0014] さらに本発明は、折り曲げ時に溝部外側の芯材が溝部に接触しな 、ように溝部幅 を設定し、一本の溝部を中心に折り曲げている真空断熱材を提供する。このようにし て、溝部端部、つまり溝部と周囲のヒレ部との境界において生じる稜線の個数を最小 限にすることができる。その結果、稜線が存在することによってフィルムに急激なスト レスが力かり生じるラミネートフィルムの微小なクラックの面積を最小限に抑えることが できるので、断熱性能の経時低下を小さくすることができる。 Furthermore, the present invention provides a vacuum heat insulating material in which the groove width is set so that the core material outside the groove does not contact the groove when bent, and the groove is bent around one groove. Like this Thus, it is possible to minimize the number of ridge lines generated at the end of the groove, that is, at the boundary between the groove and the peripheral fin. As a result, it is possible to minimize the area of minute cracks in the laminate film in which a rapid stress is exerted on the film due to the presence of the ridgeline, so that the deterioration in heat insulation performance with time can be reduced.
[0015] さらに本発明は、外被材が、金属箔とプラスチックフィルムが積層されたラミネートフ イルムと、蒸着が施されたプラスチックフィルムが積層されたラミネートフィルムとからな り、前記外被材の蒸着が施されたラミネートフィルム面に溝部が形成され、溝部が形 成された面が内面になるように溝部で折り曲げている真空断熱材を提供する。こうし て、折り曲げることにより最もフィルムにストレスの力かる部分である折り曲げ部の蒸着 が施されたラミネートフィルム力 粒子を蒸着したフィルムで柔軟性があるため、金属 箔とプラスチックフィルムが積層されたラミネートフィルムに深 、溝部を形成し折り曲 げた場合に金属箔に生じるクラックの大きさよりも、クラックの大きさを小さくすることが できる。その結果、真空断熱材内部へのガス侵入の増加を減少させ、断熱性能の経 時低下を小さくすることができる。  [0015] Further, in the present invention, the jacket material includes a laminate film in which a metal foil and a plastic film are laminated, and a laminate film in which a vapor-deposited plastic film is laminated. Provided is a vacuum heat insulating material in which a groove is formed on the surface of a laminated film on which vapor deposition has been performed, and the groove is formed so that the surface on which the groove is formed becomes an inner surface. In this way, the laminate film force where the bent part, which is the most stressful part of the film by folding, is deposited. Because the film is a film on which particles are deposited, it is flexible, so a laminate in which metal foil and plastic film are laminated. The depth of a crack can be made smaller than the size of a crack generated in a metal foil when a groove is formed in a depth and bent. As a result, it is possible to reduce the increase in gas intrusion into the vacuum heat insulating material and to reduce the temporal deterioration of the heat insulating performance.
[0016] また本発明は、芯材の曲げ強度が 0. 02-0. 05MPaである真空断熱材を提供す る。このようにして、真空断熱材作製時の芯材の取り扱い性を維持しつつ、なおかつ 真空断熱材を折り曲げる時に必要な曲げ強度を少なくすることができるので、作業者 の作業効率を向上させることができ、量産時の人件費を削減することができる。なお、 曲げ強度の測定は島津製作所製のオートグラフ AGS—H 5KNで行い、その時 のサンプルサイズは 120mm X 25mmである。  [0016] The present invention also provides a vacuum heat insulating material in which the core material has a flexural strength of 0.02-0.05 MPa. In this way, it is possible to reduce the bending strength required when bending the vacuum heat insulating material while maintaining the handleability of the core material during the production of the vacuum heat insulating material, thereby improving the work efficiency of the operator. This can reduce labor costs during mass production. The bending strength is measured with Shimadzu Autograph AGS-H 5KN, and the sample size at that time is 120mm x 25mm.
[0017] また本発明は、ラミネートフィルムに、エチレン ビュルアルコール共重合体(EVA )からなるフィルムの層を含んでいる真空断熱材を提供する。このようにして、溝部を 形成した時や、溝部を形成し折り曲げた時に、金属箔ゃ蒸着が施されたプラスチック フィルムにストレスが力かりクラックが発生した場合においても、ガスノ リア性に優れた EVAからなるフィルムの層をラミネート構成に含んで!/ヽるため、ガス侵入による断熱 性能の経時低下を最小限に抑えることができる。  [0017] The present invention also provides a vacuum heat insulating material in which a laminate film includes a film layer made of an ethylene butyl alcohol copolymer (EVA). In this way, even when a groove is formed, or when a groove is formed and bent, even if a plastic film deposited with metal foil is stressed and cracks occur, EVA is excellent in gas noria. A film layer made of the above is included in the laminating structure !, so the deterioration of the heat insulation performance due to gas intrusion can be minimized.
[0018] さらに本発明は、芯材の表面硬度が 40— 80である真空断熱材を提供する。このよ うにして、真空断熱材作製時の芯材の取り扱い性を維持し、且つ真空断熱材の表面 硬度を最小限に設定しているため、プレス成形により溝部を形成する際のプレス圧を 少なくすることができる。その結果、真空断熱材内部の繊維芯材が内部力も突き刺す ことによる外袋へのダメージを最小限に抑え、断熱性能の経時低下を小さくすること ができる。 [0018] Furthermore, the present invention provides a vacuum heat insulating material in which the core has a surface hardness of 40-80. In this way, the handling of the core material at the time of vacuum insulation material production is maintained, and the surface of the vacuum insulation material is maintained. Since the hardness is set to the minimum, the pressing pressure when forming the groove by press molding can be reduced. As a result, damage to the outer bag due to the fiber core material inside the vacuum heat insulating material piercing the internal force can be minimized, and the deterioration of the heat insulating performance over time can be reduced.
[0019] また本発明は、芯材がバインダフリーである真空断熱材を提供する。真空断熱材に プレス加工で溝部を形成した時や、溝部形成後に溝部において折り曲げた時に、溝 部において芯材が粉砕されてバインダカ 生じるガス発生がない。つまり、ガス発生 による断熱性能が低下する可能性を最小限に抑えることができるので、断熱性能を 向上させることができる。  The present invention also provides a vacuum heat insulating material whose core material is binder-free. When the groove is formed in the vacuum heat insulating material by press working or when the groove is bent in the groove, the core material is crushed in the groove and no gas is generated. In other words, it is possible to minimize the possibility of a decrease in the heat insulation performance due to gas generation, so that the heat insulation performance can be improved.
[0020] 本発明は、外被材の引張強度が 70— 220Nである真空断熱材を提供する。このよ うにして、コストを抑え、なおかつプレス成形により溝部を形成し折り曲げても、外袋へ のダメージを抑え、断熱性能の経時低下を小さくすることができる。  [0020] The present invention provides a vacuum heat insulating material in which the jacket material has a tensile strength of 70-220N. In this way, the cost can be reduced, and even if the groove is formed and bent by press molding, damage to the outer bag can be suppressed and the deterioration of the heat insulation performance over time can be reduced.
[0021] さらに本発明は、外箱と、内箱と、前記外箱と内箱とにより形成された空間に本発明 の真空断熱材を配設した保温保冷機器を提供する。その結果、折り曲げ部が存在す る部分においても、従来のように角部を避けて複数枚の真空断熱材を使用する必要 が無くなり、 2枚使用していた場合の、その継ぎ目力も発生していた熱損失を防止す ることが可能となり、保温保冷機器の断熱性能を向上させることができる。  [0021] Furthermore, the present invention provides a heat and cold insulation device in which the vacuum heat insulating material of the present invention is disposed in a space formed by an outer box, an inner box, and the outer box and the inner box. As a result, it is no longer necessary to use a plurality of vacuum heat insulating materials to avoid the corners as in the past, even in the areas where the bent portions exist, and the seam force when two sheets are used is also generated. Heat loss can be prevented, and the heat insulation performance of the heat and cold insulation equipment can be improved.
[0022] さらに本発明は、冷凍室に本発明の真空断熱材を貼りつけた冷蔵庫を提供する。  Furthermore, the present invention provides a refrigerator in which the vacuum heat insulating material of the present invention is attached to a freezer compartment.
このようにして、折り曲げ箇所が多い冷凍室において、従来のように折り曲げ箇所を 避けて複数枚の真空断熱材を使用する必要が無くなり、その継ぎ目力 発生してい た熱損失を大幅に防止することができので、冷蔵庫の消費電力を削減することができ る。また、従来は複数枚、真空断熱材を作製する必要があり、製造コストが余分にか 力つていた場合においても、 1枚の真空断熱材を作製すれば良くなるため、製造コス トを削減することができる。  In this way, it is not necessary to use multiple vacuum insulation materials in the freezer compartment where there are many folding points, as in the past, so that the heat loss caused by the joint force can be greatly prevented. As a result, the power consumption of the refrigerator can be reduced. In addition, it has been necessary to produce multiple vacuum insulation materials in the past, and even if the manufacturing cost is excessive, it is only necessary to produce one vacuum insulation material, thus reducing production costs. can do.
[0023] また本発明は、内箱に本発明の真空断熱材を貼りつけた冷蔵庫を提供する。ガス ノリア性が金属箔であるラミネートフィルムよりもガスノリア性に劣る蒸着が施されたラ ミネートフィルム面側を、真空断熱材に加工を施した後に、低温側の内箱に貼りつけ ることができるため、断熱性能の経時低下を抑えることができると同時に、従来継ぎ目 力も発生していた熱損失を防止することができるので、冷蔵庫の消費電力を更に削 減することができる。 [0023] The present invention also provides a refrigerator in which the vacuum heat insulating material of the present invention is attached to an inner box. The laminated film surface, which has been vapor-deposited inferior to that of a gas foil with a metal foil, can be attached to the inner box on the low temperature side after processing the vacuum insulation. Therefore, it is possible to suppress the deterioration of heat insulation performance over time, and at the same time, the conventional seam Since the heat loss that was also generated can be prevented, the power consumption of the refrigerator can be further reduced.
[0024] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実 施の形態によってこの発明が限定されるものではない。また、図面は模式図であり、 各位置関係を寸法的に正しく示すものではな 、。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments. In addition, the drawing is a schematic diagram and does not show each positional relationship correctly in dimension.
[0025] (実施の形態 1)  [Embodiment 1]
図 1—図 4を用いて本発明の実施の形態 1を説明する。図 1に示すように、真空断 熱材 1は、外被材 2で芯材 3を覆 、内部を減圧し密閉したものである。  Embodiment 1 of the present invention will be described with reference to FIGS. As shown in FIG. 1, the vacuum heat insulating material 1 is a material in which the core material 3 is covered with an outer covering material 2 and the inside is decompressed and sealed.
[0026] 図 2に示すように、外被材 2は金属箔とプラスチックフィルムが積層されたラミネート フィルムと蒸着が施されたプラスチックフィルムとから構成されて ヽる。金属箔とプラス チックフィルムが積層されたラミネートフィルムは、外側カゝらナイロンフィルム 4、ナイ口 ンフィルム 5、アルミニウム箔フィルム 6、低密度ポリエチレンフィルム 7から構成されて いる。蒸着が施されたプラスチックフィルムは、外側力もナイロンフィルム 4、蒸着が施 されたポリエチレンテレフタレート(PET)フィルム 8、蒸着が施された PETフィルム 9、 低密度ポリエチレンフィルム 7から構成されて 、る。 2枚のラミネートフィルムは三方シ ールにて製袋されている。  As shown in FIG. 2, the outer cover material 2 is composed of a laminate film in which a metal foil and a plastic film are laminated, and a plastic film on which vapor deposition has been performed. The laminate film in which the metal foil and the plastic film are laminated is composed of a nylon film 4, a nylon film 5, an aluminum foil film 6, and a low density polyethylene film 7 in addition to the outer cover. The plastic film on which the vapor deposition has been performed is composed of a nylon film 4 having an outer force, a polyethylene terephthalate (PET) film 8 on which the vapor deposition has been performed, a PET film 9 on which the vapor deposition has been performed, and a low density polyethylene film 7. The two laminated films are made in a three-sided seal.
[0027] 芯材 3は、ガラス繊維の集合体力もなるもので、 140°Cの乾燥炉で 1時間乾燥したも のを使用した。芯材 3を外被材 2中に挿入し、内部を lOPaまで減圧し、開口部を熱 溶着により封止した。なお、図 1では溝部は形成されていない。  [0027] The core material 3 also has an aggregate strength of glass fibers, and was used after being dried in a drying furnace at 140 ° C for 1 hour. The core material 3 was inserted into the jacket material 2, the inside was depressurized to lOPa, and the opening was sealed by heat welding. In FIG. 1, the groove is not formed.
[0028] 次に図 3に示すように、厚み 11mmの真空断熱材 1は幅 5mm、深さ 4. 5mmの溝 部 10、溝部端部 11、上下のヒレ部 12、溝部 10に隣接するヒレ部 13を備えている。又 、上下のヒレ部 12のみを折り曲げ、溝部 10に隣接するヒレ部 13は折り曲げない。ま た、図 4に示すように、真空断熱材 1は溝部 10の部分で 60度折り曲げられている。  Next, as shown in FIG. 3, the vacuum heat insulating material 1 having a thickness of 11 mm has a groove portion 10 having a width of 5 mm and a depth of 4.5 mm, a groove end portion 11, upper and lower fin portions 12, and a fin adjacent to the groove portion 10. Part 13 is provided. Further, only the upper and lower fin portions 12 are bent, and the fin portion 13 adjacent to the groove portion 10 is not bent. Further, as shown in FIG. 4, the vacuum heat insulating material 1 is bent 60 degrees at the groove 10 portion.
[0029] 以上のように構成された真空断熱材 1について、以下その動作、作用を説明する。  [0029] The operation and action of the vacuum heat insulating material 1 configured as described above will be described below.
まず、溝部端部 11、つまり溝部 10と周囲のヒレ部 13との境界、において生じるラミネ 一トフイルムへのストレスを減らすことができる。その結果、溝部端部 11に生じるアルミ ユウム箔フィルムや蒸着が施された PETフィルムの微小なクラックの面積を最小限に 抑えることができるので、真空断熱材 1を折り曲げた場合においても断熱性能の経時 低下を小さくすることができる。また、折り曲げ性が付与されることにより適用範囲が広 がるので、経時変化の少な 、断熱性能に優れた真空断熱材 1を提供することができ る。 First, the stress on the laminating film that occurs at the groove end 11, that is, at the boundary between the groove 10 and the peripheral fin 13 can be reduced. As a result, the area of minute cracks in the aluminum foil film or the vapor-deposited PET film generated at the groove end 11 can be minimized, so that the heat insulation performance can be improved even when the vacuum heat insulating material 1 is folded. Over time The decrease can be reduced. In addition, since the range of application is widened by imparting bendability, it is possible to provide the vacuum heat insulating material 1 with little thermal change and excellent heat insulating performance.
[0030] 例えば、上記のように折り曲げカ卩ェされた真空断熱材 1を 100°Cのエージング炉で 30日間加速試験を行うと、折り曲げ加工を施していない平板真空断熱材に比べて熱 伝導率の劣化が 1. 2倍であった。  [0030] For example, when the vacuum insulation material 1 bent and bent as described above is subjected to an acceleration test for 30 days in an aging furnace at 100 ° C, heat conduction is higher than that of a flat plate vacuum insulation material that has not been bent. The rate degradation was 1.2 times.
[0031] 一方、溝部 10に隣接するヒレ部 13を折り曲げて、溝部 10で真空断熱材 1を折り曲 げると溝部 10と溝部 10と隣接するヒレ部 13との境界において生じる稜線の個数が増 加し、ラミネートフィルムへのストレスが増加する。その結果、溝部端部 11に生じるァ ルミ-ゥム箔や蒸着が施された PETフィルムの微小なクラックの面積が増えるので、 上記と同一の加速試験を行うと平板真空断熱材の 1. 5倍熱伝導率の劣化が確認さ れた。  On the other hand, when the fin portion 13 adjacent to the groove portion 10 is bent and the vacuum heat insulating material 1 is bent at the groove portion 10, the number of ridge lines generated at the boundary between the groove portion 10 and the groove portion 13 adjacent to the groove portion 10 is reduced. The stress on the laminate film increases. As a result, the area of minute cracks in the aluminum foil and vapor deposited PET film generated at the groove end 11 is increased. Degradation of double thermal conductivity was confirmed.
[0032] なお、芯材 3に使用する無機繊維としては、グラスウール、グラスファイバー、アルミ ナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化ケィ素繊維等が好まし い。特にこれらに限定されるものではない。また、ボード状に加熱加圧成形する時に は、取り扱い性向上のためバインダを使用しても良い。  [0032] The inorganic fiber used for the core material 3 is preferably glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, or carbonized fiber. In particular, it is not limited to these. In addition, a binder may be used to improve handling when the board is heated and pressed.
[0033] ラミネート構成の外被材 2のナイロンとしては、耐衝撃性、耐屈曲性や引張強度など 様々な機械的特性に優れているナイロンフィルムが好ましい。その例としては、ナイ口 ンー6、ナイロン—66、 MXDナイロン等が挙げられる。芳香族系ナイロンを使用する とガスノ リア性をより向上させることができるので、特に好ましい。しかし、これらに限 定されるものではない。また、ナイロンフィルムの形態としては、単層ナイロンフィルム 、異種のナイロンを共押出しカ卩ェした多層ナイロンフィルムなどが用いられ、特に限 定されるものではない。  [0033] The nylon of the jacket material 2 having a laminate structure is preferably a nylon film excellent in various mechanical properties such as impact resistance, flex resistance and tensile strength. Examples include Nai Nun 6, Nylon-66, MXD Nylon and the like. The use of aromatic nylon is particularly preferable because it can further improve the gas noriness. However, it is not limited to these. As the form of the nylon film, a single layer nylon film, a multilayer nylon film co-extruded with different types of nylon, and the like are used, and are not particularly limited.
[0034] ナイロンフィルムの他にも PETフィルム、ポリプロピレン(PP)フィルムの延伸加工品 などが利用でき、 PETフィルムを用いると水蒸気ノ リア性を向上させることができる。  [0034] In addition to the nylon film, a stretched product of a PET film or a polypropylene (PP) film can be used, and the use of the PET film can improve the water vapor nooriety.
[0035] ラミネート構成の外被材 2の金属箔ゃ蒸着粒子は、アルミニウム、ステンレス、鉄等 を用いることができる力 これらに限定されるものではな 、。  [0035] The metal foil and vapor deposition particles of the outer cover material 2 having a laminate structure are not limited to these forces capable of using aluminum, stainless steel, iron or the like.
[0036] 外被材 2の熱溶着層は、外被材 2を構成するフィルムの中で最もガス透過度が大き い部分であり、熱溶着層の性質は真空断熱材 1の断熱性能の経時変化に大きく影響 する。熱溶着層の厚さは、減圧封止工程における封止品質の安定性や、熱溶着部 端面からのガス侵入の抑制や、蒸着が施されたラミネートフィルムとして金属箔を使 用した場合における熱伝導による表面力 のヒートリークを考慮すると、 25 m— 60 μ m力適して ヽる。 [0036] The thermal welding layer of the jacket material 2 has the highest gas permeability among the films constituting the jacket material 2. The properties of the heat-welded layer greatly affect the time-dependent change in the heat insulating performance of the vacuum heat insulating material 1. The thickness of the heat-welded layer is the stability of the sealing quality in the reduced-pressure sealing process, the suppression of gas intrusion from the end face of the heat-welded part, and the heat in the case of using metal foil as a laminated film on which vapor deposition has been performed. Considering heat leak of surface force due to conduction, 25 m-60 μm force is suitable.
[0037] 熱溶着層の材料の例としては、無延伸 PPフィルム、高密度ポリエチレンフィルム、 直鎖状低密度ポリエチレンフィルム等を用いることができる力 これらに限定されるも のではない。  [0037] Examples of the material of the heat-welded layer include, but are not limited to, a force capable of using an unstretched PP film, a high-density polyethylene film, a linear low-density polyethylene film, and the like.
[0038] また、外被材 2の袋形状の例としては、四方シール袋、ガゼット袋、三方シール袋、 ピロ一袋、センターテープシール袋等がある力 これらに限定されるものではない。  [0038] Examples of the bag shape of the jacket material 2 include forces such as a four-side seal bag, a gusset bag, a three-side seal bag, a pillow bag, a center tape seal bag, and the like.
[0039] また、真空断熱材 1の初期断熱性能および断熱性能の経時変化をより一層向上さ せるために、ガス吸着剤や水分吸着剤等のゲッター物質を使用してもよい。その吸 着機構は、物理吸着、化学吸着、および吸蔵、収着等のいずれでもよいが、非蒸発 型ゲッターとして作用する物質が良好である。具体的には、合成ゼォライト、活性炭、 活性アルミナ、シリカゲル、ドーソナイト、ハイド口タルサイト等の物理吸着剤が挙げら れる。  [0039] Further, in order to further improve the initial heat insulating performance and the temporal change of the heat insulating performance of the vacuum heat insulating material 1, a getter material such as a gas adsorbent or a water adsorbent may be used. The adsorption mechanism may be any of physical adsorption, chemical adsorption, occlusion, and sorption, but a substance that acts as a non-evaporable getter is good. Specific examples include physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, and hydrated talcite.
[0040] 化学吸着剤としては、アルカリ金属やアルカリ土類金属の酸ィ匕物や、アルカリ金属 やアルカリ土類金属の水酸ィ匕物等が利用できる。特に、酸化リチウム、水酸化リチウ ム、酸化カルシウム、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、酸 ィ匕バリウム、水酸化バリウムが効果的に作用する。また、硫酸カルシウム、硫酸マグネ シゥム、硫酸ナトリウム、炭酸ナトリウム、炭酸カリウム、塩ィ匕カルシウム、炭酸リチウム 、不飽和脂肪酸、鉄化合物等も効果的に作用する。  [0040] As the chemical adsorbent, alkali metal or alkaline earth metal oxides, alkali metal or alkaline earth metal hydroxides, or the like can be used. In particular, lithium oxide, lithium hydroxide, calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, barium oxide, and barium hydroxide are effective. In addition, calcium sulfate, magnesium sulfate, sodium sulfate, sodium carbonate, potassium carbonate, calcium chloride salt, lithium carbonate, unsaturated fatty acid, iron compound, etc. also act effectively.
[0041] また、ノ リウム、マグネシウム、カルシウム、ストロンチウム、チタン、ジルコニウム、ノ ナジゥム等の物質を単独、もしくは合金化したゲッター物質を適用するのがより効果 的である。  [0041] Further, it is more effective to apply a getter material obtained by singly or alloying a material such as norium, magnesium, calcium, strontium, titanium, zirconium, or nonadium.
[0042] さらには、このようなゲッター物質を少なくとも窒素、酸素、水分、二酸化炭素を吸着 除去するため、種々混合して適用することも可能である。  [0042] Furthermore, in order to adsorb and remove at least nitrogen, oxygen, moisture, and carbon dioxide, such a getter substance can be mixed and applied.
[0043] 真空断熱材 1の製造方法は、まず外被材 2を作製し、その後外被材 2中に芯材 3を 挿入し内部を減圧し封止してもよい。あるいは、減圧槽中に芯材 3とロール状あるい はシート状のラミネートフィルム力もなる外被材 2を設置し、ロール状あるいはシート状 の外被材 2を芯材 3に沿わせた状態にして力 外被材 2を熱溶着することにより、真空 断熱材 1を作製してもよい。特にこれらに限定されるものではない。 [0043] The manufacturing method of the vacuum heat insulating material 1 is as follows. First, the jacket material 2 is produced, and then the core material 3 is placed in the jacket material 2. It may be inserted and the inside reduced in pressure and sealed. Alternatively, the core material 3 and the outer cover material 2 that also has a roll-like or sheet-like laminate film force are installed in the decompression tank, and the roll-like or sheet-like outer cover material 2 is placed along the core material 3. The vacuum heat insulating material 1 may be produced by thermally welding the outer covering material 2. In particular, it is not limited to these.
[0044] (実施の形態 2)  [0044] (Embodiment 2)
図 5は、本発明の実施の形態 2における真空断熱材を示す模式図である。  FIG. 5 is a schematic diagram showing a vacuum heat insulating material in Embodiment 2 of the present invention.
[0045] 図 5において、厚み 11mmの真空断熱材は幅 12mm、深さ 4. 5mmの溝部 14で 6 0度折り曲げられており、溝部外側の芯材 15は溝部 14に接触していない。すなわち 、互いに干渉していない。  In FIG. 5, the vacuum heat insulating material having a thickness of 11 mm is bent 60 degrees by a groove portion 14 having a width of 12 mm and a depth of 4.5 mm, and the core material 15 outside the groove portion is not in contact with the groove portion 14. That is, they do not interfere with each other.
[0046] 以上のように構成された真空断熱材について、以下その動作、作用を説明する。  The operation and action of the vacuum heat insulating material configured as described above will be described below.
[0047] まず、溝部 14を 1本としているため、溝部端部、つまり溝部 14と周囲のヒレ部との境 界において生じる稜線の個数を最小限にすることができる。その結果、稜線が存在 することによってフィルムに急激なストレスがかかり、蒸着が施されたラミネートフィル ムに生じる微小なクラックの面積を最小限に抑えることができるので、断熱性能の経 時低下を抑えることができる。  [0047] First, since the number of the groove portions 14 is one, the number of ridge lines generated at the end portions of the groove portions, that is, at the boundary between the groove portions 14 and the peripheral fin portions can be minimized. As a result, the presence of the ridgeline applies abrupt stress to the film, minimizing the area of minute cracks that occur in the laminated film that has been deposited, thereby minimizing the deterioration of thermal insulation performance over time. be able to.
[0048] また、折り曲げ時に溝部外側の芯材 15、つまり溝部 14に隣接する芯材、が溝部に 接触しないように溝部 14の幅を設定しているため、芯材が接触することにより生じる 余分な稜線を無くすることができる。その結果、稜線が存在することによってフィルム に急激なストレスがかかり、蒸着が施されたラミネートフィルムに生じる微小なクラック の面積を最小限に抑えることができるので、断熱性能の経時低下を抑えることができ る。  [0048] Further, since the width of the groove portion 14 is set so that the core material 15 outside the groove portion at the time of bending, that is, the core material adjacent to the groove portion 14 does not come into contact with the groove portion, extra generated by the contact of the core material. Ridgelines can be eliminated. As a result, the presence of the ridgeline applies abrupt stress to the film, minimizing the area of minute cracks generated in the laminated film that has been vapor-deposited. it can.
[0049] つぎに、上記折り曲げカ卩ェされた真空断熱材を 100°Cのエージング炉で 30日間加 速試験を行うと、加工を施していない平板真空断熱材の 1. 1倍しか熱伝導率の劣化 が無力つた。一方、溝部 14の幅を 5mmにして、溝部で真空断熱材を折り曲げると、 溝部 14と溝部 14と隣接するヒレ部との境界において生じる稜線の個数が増加する。 その結果、ラミネートフィルムへのストレスが増加し、溝部端部に生じるラミネートフィ ルムの微小なクラックの面積が増えるため、平板真空断熱材に比べて 1. 2倍の熱伝 導率の劣化が確認された。 [0050] (実施の形態 3) [0049] Next, when the accelerating test for 30 days in a 100 ° C aging furnace was performed on the above-mentioned folded vacuum insulation material, the heat conduction was only 1.1 times that of the unprocessed flat plate vacuum insulation material. Deterioration of rate was ineffective. On the other hand, when the width of the groove portion 14 is set to 5 mm and the vacuum heat insulating material is bent at the groove portion, the number of ridge lines generated at the boundary between the groove portion 14 and the fin portion adjacent to the groove portion 14 increases. As a result, the stress on the laminate film increases and the area of the micro cracks in the laminate film generated at the end of the groove increases, confirming that the thermal conductivity has deteriorated by a factor of 1.2 compared to flat plate vacuum insulation. It was done. [0050] (Embodiment 3)
図 6は、本発明の実施の形態 3における真空断熱材を示す模式図である。  FIG. 6 is a schematic diagram showing a vacuum heat insulating material in Embodiment 3 of the present invention.
[0051] 図 6に示すように、厚み 11mmの真空断熱材は幅 12mm、深さ 6. 5mmの溝部 16 で 90度折り曲げられており、溝部外側の芯材 17は溝部 16に接触していない。つまり 、干渉していない。また、溝部 16は蒸着が施されたラミネートフィルム面側に存在し、 その部分を内側にして折り曲げられている。  [0051] As shown in FIG. 6, the vacuum heat insulating material having a thickness of 11 mm is bent 90 degrees by the groove portion 16 having a width of 12 mm and a depth of 6.5 mm, and the core material 17 outside the groove portion is not in contact with the groove portion 16. . That is, there is no interference. Further, the groove 16 exists on the side of the laminated film surface on which the vapor deposition has been performed, and is bent with the portion inside.
[0052] 以上のように構成された真空断熱材について、以下その動作、作用を説明する。  The operation and action of the vacuum heat insulating material configured as described above will be described below.
[0053] まず、折り曲げることにより最もフィルムにストレスの力かる部分は折り曲げ部の蒸着 が施されたラミネートフィルムである。それが粒子を蒸着したフィルムで柔軟性がある ため、金属箔とプラスチックフィルムが積層されたラミネートフィルムに深 、溝部を形 成し折り曲げた場合に金属箔に生じるクラックの大きさよりも、クラックの大きさを小さく することができる。その結果、真空断熱材内部へのガス侵入の増加を減少させ、断熱 性能の経時低下を小さくすることができる。上記溝部 16の深さを 6. 5mmとし、折り曲 げ角度を 90度にして折り曲げ加工された真空断熱材を、 100°Cのエージング炉で 3 0日間加速試験を行うと、加工を施していない平板真空断熱材に比べ 1. 2倍しか熱 伝導率の劣化がなかった。  [0053] First, the portion of the film that is most stressed by bending is a laminated film on which the bent portion is vapor-deposited. Because it is a film on which particles have been deposited and is flexible, the crack size is larger than the size of the crack that occurs in the metal foil when the metal film and plastic film are laminated and the groove is formed and bent. The depth can be reduced. As a result, the increase in gas penetration into the vacuum heat insulating material can be reduced, and the deterioration of the heat insulation performance with time can be reduced. The vacuum insulation material that was bent at a depth of 6.5 mm and a bending angle of 90 degrees was subjected to an accelerated test for 30 days in a 100 ° C aging furnace. Compared with flat plate vacuum insulation, which was not 1. 2 times, the thermal conductivity was degraded.
[0054] 一方、同様の溝部 16を金属箔とプラスチックフィルムが積層されたラミネートフィル ム面側に成形し、溝部 16を内側にして折り曲げた場合以下のようになった。金属箔 フィルムの柔軟性が蒸着フィルムより劣るために、金属箔に生じる微小なクラックの面 積が、蒸着フィルムに生じる微笑なクラックの面積より増えるために、平板真空断熱材 にくらべて 1. 3倍の熱伝導率の劣化が確認された。  On the other hand, when the same groove portion 16 was formed on the laminated film surface side where the metal foil and the plastic film were laminated and bent with the groove portion 16 inside, the following was obtained. Metal foil The film is less flexible than the vapor-deposited film, so the area of minute cracks that occur in the metal foil is larger than the area of the smiley cracks that occur in the vapor-deposited film. Double degradation of thermal conductivity was confirmed.
[0055] (実施の形態 4)  [Embodiment 4]
本実施の形態の外被材構成は、実施の形態 1の蒸着が施された PET8の代わりに 蒸着が施された EVAフィルムを使用したものである。  The outer jacket material configuration of the present embodiment uses a vapor-deposited EVA film instead of the vapor-deposited PET 8 of the first embodiment.
[0056] 本実施の形態は上記外被材構成を持つ厚み 11mmの真空断熱材に、幅 12mm、 深さ 7. Ommの溝部を、蒸着が施されたラミネートフィルム面側に形成し、溝部で 90 度折り曲げたものである。  [0056] In the present embodiment, a groove part having a width of 12mm and a depth of 7. Omm is formed on the laminated film surface on which the vapor deposition has been performed on the vacuum heat insulating material having a thickness of 11mm and having the above-described covering material structure. It is bent 90 degrees.
[0057] 以上のように構成された真空断熱材について、以下その動作、作用を説明する。 [0058] まず、ガスバリア性に優れた EVA力 なるフィルムの層をラミネート構成に含んでい るため、以下の効果がある。すなわち溝部を形成した時や、溝部を形成し折り曲げた 時に、蒸着が施されたラミネートフィルム面にストレスがかかり、蒸着面の蒸着粒子間 が通常より大きくなつた場合においても、ガス侵入による断熱性能の経時低下を最小 限に抑えることができる。 The operation and action of the vacuum heat insulating material configured as described above will be described below. [0058] First, since the laminate structure includes a layer of an EVA-powered film having excellent gas barrier properties, the following effects can be obtained. In other words, when a groove is formed, or when a groove is formed and bent, stress is applied to the laminated film surface on which vapor deposition has been applied, and even if the space between the vapor deposition particles on the vapor deposition surface becomes larger than usual, heat insulation performance due to gas intrusion Can be minimized.
[0059] 上記溝部の深さを 7. Ommにして、折り曲げ角度を 90度にして折り曲げカ卩ェされた 真空断熱材を、 100°Cのエージング炉で 30日間加速試験を行うと、加工を施してい ない平板真空断熱材に比べ 1. 1倍し力熱伝導率の劣化が無力つた。  [0059] A vacuum insulation material that was folded at a groove angle of 7. Omm and a bending angle of 90 degrees was subjected to an acceleration test in a 100 ° C aging furnace for 30 days. Compared to the flat plate vacuum insulation material that has not been applied, it has been 1.times.
[0060] (実施の形態 5)  [0060] (Embodiment 5)
本実施の形態は、芯材の表面硬度を 40— 80としたものである。真空断熱材作製時 の芯材の取り扱い性を維持し、真空断熱材の表面硬度を最小限に設定している。そ の結果、プレス成形により溝部を形成する際のプレス圧を少なくすることができ、真空 断熱材内部の繊維芯材が内部から突き刺すことによる外袋へのダメージを最小限に 抑え、断熱性能の経時変化を小さくすることができる。  In this embodiment, the core has a surface hardness of 40-80. Maintains the handling of the core material at the time of vacuum insulation material preparation, and sets the surface hardness of the vacuum insulation material to a minimum. As a result, the press pressure when forming the groove by press molding can be reduced, and the damage to the outer bag due to the fiber core material inside the vacuum heat insulating material piercing from the inside is minimized, and the heat insulating performance is improved. The change with time can be reduced.
[0061] 従って実施の形態 3に示すような折り曲げカ卩ェを、真空断熱材 100枚について行つ ても、全ての真空断熱材において初期熱伝導率 25 X 10— 4WZmK以下を維持する ことができた。 [0061] Thus the bending mosquitoes卩E as shown in the third embodiment, even Gyotsu about 100 sheets vacuum heat insulating material, to maintain the initial thermal conductivity of 25 X 10- 4 WZmK less in all of the vacuum heat insulating material I was able to.
[0062] 一方、表面硬度が 81— 100の真空断熱材を作製し、実施の形態 3に示すような折 り曲げ加工をした場合、 100枚の真空断熱材うち 2枚が初期熱伝導率 100 x—4wZ mK以上を示した。 [0062] On the other hand, when a vacuum heat insulating material having a surface hardness of 81-100 is manufactured and bent as shown in Embodiment 3, two of the 100 vacuum heat insulating materials have an initial thermal conductivity of 100. x—More than 4 wZ mK.
[0063] また、表面硬度を 40より小さくすると、真空断熱材作製時の芯材取り扱い性が劣る ため、真空断熱材作製時の作業効率が悪くなつた。  [0063] When the surface hardness is less than 40, the handling efficiency of the vacuum heat insulating material is deteriorated because the core material handling property at the time of manufacturing the vacuum heat insulating material is poor.
[0064] なお、表面硬度 ίお IS K6253に準拠し、 TECLOCK製 テクロック'デュロメータ( ゴム ·プラスチック硬度計) GS - 721N typeEにより測定した。 [0064] The surface hardness was measured with a TECLOCK TECLOCK durometer (rubber / plastic hardness meter) GS-721N typeE in accordance with IS K6253.
[0065] (実施の形態 6) [Embodiment 6]
本実施の形態における真空断熱材において、芯材はバインダフリー、つまりバイン ダを含んでいない。芯材がバインダを含んでいないため、真空断熱材にプレスするこ とにより、溝部を形成したり、真空断熱材に溝部を形成し溝部で折り曲げた時に、溝 部において芯材が粉砕されることにより生じるガス発生を抑えることができる。すなわ ち、断熱性能が低下する可能性のあるガス発生を最小限に抑えることができるので、 断熱性能を向上させることができる。 In the vacuum heat insulating material in the present embodiment, the core material is binder-free, that is, does not include a binder. Since the core material does not contain a binder, the groove is formed by pressing the vacuum heat insulating material, or when the groove is formed in the vacuum heat insulating material and bent at the groove. Gas generation caused by pulverizing the core material in the portion can be suppressed. In other words, it is possible to minimize the generation of gas that may deteriorate the heat insulation performance, and thus improve the heat insulation performance.
[0066] 従って実施の形態 3に示すような折り曲げカ卩ェを、真空断熱材 10枚について行つ ても、全ての真空断熱材においてカ卩ェ前の初期熱伝導率 25 X 10_4WZmKを維持 することができた。 [0066] Therefore, even if the folding cache as shown in the third embodiment is performed on 10 vacuum heat insulating materials, the initial thermal conductivity 25 X 10 _4 WZmK before the caking is obtained in all the vacuum heat insulating materials. I was able to maintain it.
[0067] 一方、バインダを含んでいる芯材について実施の形態 3に示すような、折り曲げカロ ェを、真空断熱材 10枚について行うと、 10枚のうち 2枚の真空断熱材において初期 熱伝導率が 26 X 10— 4WZmKを示した。 [0067] On the other hand, when the bending calorie as shown in Embodiment 3 is performed on 10 vacuum heat insulating materials for the core material including the binder, initial heat conduction is performed on two of the 10 vacuum heat insulating materials. rate showed 26 X 10- 4 WZmK.
[0068] (実施の形態 7)  [0068] (Embodiment 7)
本実施の形態は、外被材の引張強度が 70— 220Nである真空断熱材である。外 被材の引張強度を 70N以上としているため、プレス成形により溝部を形成し折り曲げ ても、外袋へのダメージを最小限に抑え、断熱性能の経時変化を小さくすることがで きる。また、引張強度が 220Nであれば、プレス時の芯材肉厚が 0になるまで、プレス しても外袋へのダメージを少なく抑えられることができる。なお、引張強度が 200Nを 超える外被材を備えることはコスト高となる。  This embodiment is a vacuum heat insulating material whose outer shell material has a tensile strength of 70-220N. Since the tensile strength of the jacket material is 70 N or more, damage to the outer bag can be minimized and the change over time in the heat insulation performance can be reduced even if the groove is formed and bent by press molding. Further, if the tensile strength is 220 N, damage to the outer bag can be reduced even if the core is pressed until the core thickness at the time of pressing becomes zero. In addition, it will be expensive to provide a jacket material with a tensile strength exceeding 200N.
[0069] なお、引張強度は島津製作所製のオートグラフ AGS—H 5KNを使用して、形 状が 100mm X 15mmのサンプルを 200mm/minで引つ張った際の破断時の力とし た。  [0069] The tensile strength was the force at break when a sample with a shape of 100 mm X 15 mm was pulled at 200 mm / min using an autograph AGS-H 5KN manufactured by Shimadzu Corporation.
[0070] (実施の形態 8)  [0070] (Embodiment 8)
図 7は、本発明の実施の形態 8における保温保冷機器の一例としての冷凍冷蔵庫 の断面図を示すものである。  FIG. 7 shows a cross-sectional view of a refrigerator-freezer as an example of a heat and cold insulation device in Embodiment 8 of the present invention.
[0071] 図 7に示すように、冷蔵庫本体 18aは、鋼板カゝらなる外箱 19aと、 ABS榭脂からなる 内箱 20aとで構成される空間の片面に、平板の真空断熱材 lbと折り曲げた真空断熱 材 lcとを配設している。そして、真空断熱材 1以外の空間を硬質ウレタンフォーム 21 aで発泡充填している。さらに、冷蔵室 22a、冷凍室 23a、機械室 24a、圧縮機 25aと を有している。  [0071] As shown in FIG. 7, the refrigerator body 18a includes a flat vacuum heat insulating material lb on one side of a space formed by an outer box 19a made of a steel plate casing and an inner box 20a made of ABS resin. Folded vacuum insulation material lc is provided. The space other than the vacuum heat insulating material 1 is foam-filled with a hard urethane foam 21a. Furthermore, it has a refrigerator compartment 22a, a freezer compartment 23a, a machine compartment 24a, and a compressor 25a.
[0072] 以上のように構成された真空断熱材について、以下その動作、作用を説明する。 [0073] まず、真空断熱材 lcは、外箱内壁形状に合わせて、予め、折り曲げ加工を施し適 用している。よって真空断熱材を折り曲げて使用しても、断熱性能の経時低下を最小 限に抑えることができる。 [0072] The operation and action of the vacuum heat insulating material configured as described above will be described below. [0073] First, the vacuum heat insulating material lc is applied by bending in advance according to the shape of the inner wall of the outer box. Therefore, even if the vacuum heat insulating material is folded and used, the temporal deterioration of the heat insulating performance can be minimized.
[0074] また、本実施の形態では、冷蔵庫は、本来なら 2枚平板の真空断熱材を適用する 箇所に、折り曲げた 1枚の真空断熱材を適用しているため、継ぎ目部からの熱漏洩 が大幅に低減できる。 [0074] Further, in the present embodiment, since the refrigerator applies one folded vacuum heat insulating material to the place where two flat plate vacuum heat insulating material is originally applied, heat leakage from the joint portion. Can be greatly reduced.
[0075] また、本実施の形態では、機械室 24aからの冷蔵庫庫内への熱漏洩が大幅に低減 され、冷蔵庫の消費電力量を大きく低減することができるので、省エネルギーとコスト パフォーマンスに優れた冷蔵庫を提供することができる。  [0075] Further, in the present embodiment, heat leakage from the machine room 24a into the refrigerator cabinet is greatly reduced, and the power consumption of the refrigerator can be greatly reduced, so that energy saving and cost performance are excellent. A refrigerator can be provided.
[0076] また、本実施の形態では、真空断熱材の芯材を無機繊維とすることにより、芯材は 不燃性であるため、冷蔵庫安全性の面からも優れて ヽる。  [0076] Further, in the present embodiment, the core material of the vacuum heat insulating material is made of inorganic fibers, so that the core material is nonflammable, which is excellent in terms of refrigerator safety.
[0077] (実施の形態 9)  [0077] (Embodiment 9)
図 8は、本発明の実施の形態 9おける冷凍冷蔵庫の断面図である。  FIG. 8 is a cross-sectional view of the refrigerator-freezer according to Embodiment 9 of the present invention.
[0078] 図 8において、冷蔵庫本体 18bは、鋼板カゝらなる外箱 19bと、 ABS榭脂からなる内 箱 20bとで構成される空間の片面に、平板の真空断熱材 Idと折り曲げた真空断熱材 leとを配設し、真空断熱材 1以外の空間を硬質ウレタンフォーム 21bで発泡充填して いる。さらに、冷蔵室 22b、冷凍室 23b、機械室 24b、圧縮機 25bとを有している。  [0078] In FIG. 8, the refrigerator main body 18b has a flat vacuum heat insulating material Id and a vacuum folded on one side of a space formed by an outer box 19b made of a steel plate and an inner box 20b made of ABS resin. A heat insulating material le is provided, and the space other than the vacuum heat insulating material 1 is foam-filled with rigid urethane foam 21b. Furthermore, it has a refrigerator compartment 22b, a freezer compartment 23b, a machine compartment 24b, and a compressor 25b.
[0079] 以上のように構成された真空断熱材について、以下その動作、作用を説明する。  [0079] The operation and action of the vacuum heat insulating material configured as described above will be described below.
[0080] まず、真空断熱材 leは、複雑な形状の冷凍室 23bの部分に外箱内壁形状に合わ せて、予め、折り曲げ加工を施し適用している。よって真空断熱材を折り曲げて使用 しても、断熱性能の経時低下を最小限に抑えることができる。  [0080] First, the vacuum heat insulating material le is preliminarily bent and applied to the complicated shape of the freezer compartment 23b in accordance with the shape of the inner wall of the outer box. Therefore, even if the vacuum heat insulating material is folded and used, the deterioration of the heat insulating performance with time can be minimized.
[0081] また、本実施の形態の冷蔵庫では、本来なら複数枚の平板の真空断熱材を適用す る箇所に、折り曲げた 1枚の真空断熱材を適用しているため、継ぎ目部からの熱漏洩 が大幅に低減できる。  [0081] In addition, in the refrigerator of the present embodiment, since a single folded vacuum heat insulating material is applied to a place where a plurality of flat plate vacuum heat insulating materials are originally applied, heat from the joint portion is used. Leakage can be greatly reduced.
[0082] また、従来は複数枚の真空断熱材を作製する必要があつたので作業時間がかかつ たが、本実施の形態では折り曲げた 1枚の真空断熱材を作製すれば良いため、製造 コストを削減することができる。  [0082] In addition, conventionally, since it was necessary to produce a plurality of vacuum heat insulating materials, it took a long time to work. However, in this embodiment, it is only necessary to produce a single vacuum heat insulating material that is bent. Cost can be reduced.
[0083] (実施の形態 10) 図 9は、本発明の実施の形態 10における冷凍冷蔵庫の断面図である。 [0083] (Embodiment 10) FIG. 9 is a sectional view of the refrigerator-freezer according to Embodiment 10 of the present invention.
[0084] 図 9において、冷蔵庫本体 18cは、鋼板カゝらなる外箱 19cと、 ABS榭脂からなる内 箱 20cとで構成される空間の片面に平板の真空断熱材 Ifと折り曲げた真空断熱材 1 gを配設し、真空断熱材 1以外の空間を硬質ウレタンフォーム 21cで発泡充填してい る。さらに、冷蔵室 22c、冷凍室 23c、機械室 24c、圧縮機 25cを有する。 [0084] In FIG. 9, the refrigerator main body 18c is a vacuum heat insulating material which is bent with a flat vacuum heat insulating material If on one side of a space composed of an outer box 19c made of a steel plate and an inner box 20c made of ABS resin. 1 g of material is placed, and the space other than the vacuum heat insulating material 1 is foam-filled with rigid urethane foam 21c. Furthermore, it has a refrigerator compartment 22c, a freezer compartment 23c, a machine compartment 24c, and a compressor 25c.
[0085] 以上のように構成された真空断熱材について、以下その動作、作用を説明する。 The operation and action of the vacuum heat insulating material configured as described above will be described below.
[0086] まず、真空断熱材 lgは、表面突起部がある内箱外壁形状に合わせて、予め、折り 曲げ加工を施し適用している。よって真空断熱材を折り曲げて使用しても、断熱性能 の経時低下を最小限に抑えることができる。 [0086] First, the vacuum heat insulating material lg is preliminarily folded and applied in accordance with the shape of the outer wall of the inner box having the surface protrusions. Therefore, even if the vacuum heat insulating material is folded and used, the deterioration of the heat insulating performance with time can be minimized.
[0087] また、本実施の形態では、冷蔵庫は、本来なら表面突起部があり真空断熱材を適 用し難い内箱外面に、表面に柔軟性のある蒸着フィルムを含むラミネート構成面を貼 り付け面とすることにより、内箱に直接貼りつけて折り曲げて適用しているため冷蔵庫 内部への熱漏洩を大幅に低減できる。 [0087] Further, in the present embodiment, the refrigerator has a laminate constituting surface including a flexible vapor deposition film on the outer surface of the inner box which originally has a surface protrusion and is difficult to apply the vacuum heat insulating material. By using it as an affixed surface, it can be applied directly after being affixed directly to the inner box, so that heat leakage into the refrigerator can be greatly reduced.
産業上の利用可能性  Industrial applicability
[0088] 本発明にかかる真空断熱材は、折り曲げて使用しても、断熱性能の経時低下を最 小限に抑えることができる。その結果、真空断熱材の適用範囲が広がり、保温保冷機 器、冷凍冷蔵庫だけでなぐ給湯器、自動販売機、車輛、住宅等にも適用することが できる。 [0088] Even if the vacuum heat insulating material according to the present invention is used after being bent, the deterioration of the heat insulating performance with time can be minimized. As a result, the range of application of vacuum heat insulating material is expanded, and it can be applied to heat and cold insulation devices, hot water heaters that can be used only with refrigerators, vending machines, vehicles, and houses.

Claims

請求の範囲 The scope of the claims
[1] 無機繊維の集合体からなる芯材と、  [1] a core material composed of an aggregate of inorganic fibers;
前記芯材を覆い内部を減圧し密閉する外被材と、  A jacket material covering the core material and depressurizing and sealing the inside;
溝部と、  A groove,
ヒレ部と、  The fin section,
を有する真空断熱材であって、  A vacuum insulation material having
前記真空断熱材を前記溝部で折り曲げるとともに、前記真空断熱材の外周部にある 前記ヒレ部のうち前記溝部端部に隣接するヒレ部を除いて前記ヒレ部を折り曲げてい る真空断熱材。  The vacuum heat insulating material which is bending the said fin part except the fin part adjacent to the said groove part edge part among the said fin parts in the outer peripheral part of the said vacuum heat insulating material while bending the said vacuum heat insulating material.
[2] 前記溝部の幅は折り曲げ時に溝部外側の前記芯材が前記溝部に接触しないよう に設定され、一本の前記溝部を中心に折り曲げられている請求項 1に記載の真空断 熱材。  [2] The vacuum heat insulating material according to [1], wherein the width of the groove is set so that the core material outside the groove does not come into contact with the groove when bent, and is bent around the single groove.
[3] 前記外被材は、金属箔とプラスチックフィルムが積層されたラミネートフィルムと、蒸 着が施されたプラスチックフィルムが積層されたラミネートフィルムとからなり、前記外 被材の蒸着が施されたラミネートフィルム面に前記溝部が形成され、前記溝部が形 成された面が内面になるように前記溝部で折り曲げられている請求項 1に記載の真 空断熱材。  [3] The jacket material is composed of a laminate film in which a metal foil and a plastic film are laminated, and a laminate film in which a vapor-deposited plastic film is laminated, and the jacket material is vapor-deposited. 2. The vacuum heat insulating material according to claim 1, wherein the groove is formed on a laminate film surface, and the groove is bent at the groove so that the surface on which the groove is formed becomes an inner surface.
[4] 前記ラミネートフィルムはエチレン ビュルアルコール共重合体からなるフィルムの 層を含んで!/、る請求項 3に記載の真空断熱材。  4. The vacuum heat insulating material according to claim 3, wherein the laminate film includes a layer of a film made of an ethylene butyl alcohol copolymer! /.
[5] 前記芯材の無機繊維はガラス繊維力 なる請求項 1または 2に記載の真空断熱材 [5] The vacuum heat insulating material according to claim 1 or 2, wherein the inorganic fiber of the core material has a glass fiber strength.
[6] 前記芯材の曲げ強度が 0. 02-0. 05MPaである請求項 5に記載の真空断熱材。 6. The vacuum heat insulating material according to claim 5, wherein the bending strength of the core material is 0.02-0.05 MPa.
[7] 前記芯材の表面硬度が 40— 80である請求項 5に記載の真空断熱材。  7. The vacuum heat insulating material according to claim 5, wherein the core material has a surface hardness of 40-80.
[8] 前記芯材がバインダフリーである請求項 5に記載の真空断熱材。  8. The vacuum heat insulating material according to claim 5, wherein the core material is binder-free.
[9] 前記外被材の引張強度が 70— 220Nである請求項 1または 3に記載の真空断熱材  [9] The vacuum heat insulating material according to claim 1 or 3, wherein the outer jacket material has a tensile strength of 70-220N.
[10] 外箱と、内箱と、前記外箱と内箱とにより形成された空間に配設された真空断熱材 とを備え、前記真空断熱材に請求項 1または 3に記載の真空断熱材を用いた保温保 冷機器。 [10] The vacuum insulation according to claim 1 or 3, comprising an outer box, an inner box, and a vacuum heat insulating material disposed in a space formed by the outer box and the inner box. Thermal insulation using wood Cold equipment.
[11] 外箱と、内箱と、冷凍室と、冷蔵室と、前記外箱と内箱とにより形成された空間に配 設された真空断熱材とを備え、前記冷凍室に貼りつけた前記真空断熱材は請求項 1 または 3に記載の真空断熱材である冷凍冷蔵庫。  [11] An outer box, an inner box, a freezing room, a refrigeration room, and a vacuum heat insulating material disposed in a space formed by the outer box and the inner box are attached to the freezing room. The refrigerator according to claim 1 or 3, wherein the vacuum heat insulating material is a vacuum heat insulating material.
[12] 外箱と、内箱と、冷凍室と、冷蔵室と、前記外箱と内箱とにより形成された空間に配 設された真空断熱材とを備え、前記内箱に貼りつけた前記真空断熱材は請求項 1ま たは 3に記載の真空断熱材である冷凍冷蔵庫。 [12] An outer box, an inner box, a freezer compartment, a refrigerator compartment, and a vacuum heat insulating material disposed in a space formed by the outer box and the inner box are attached to the inner box. The refrigerator according to claim 1 or 3, wherein the vacuum heat insulating material is a vacuum heat insulating material.
PCT/JP2005/013028 2004-07-16 2005-07-14 Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer WO2006009063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005000069.9T DE112005000069B4 (en) 2004-07-16 2005-07-14 Vacuum heat insulating material, heat insulating device in which this material is used and refrigerator-freezer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-209494 2004-07-16
JP2004209494A JP2006029456A (en) 2004-07-16 2004-07-16 Vacuum heat insulating material, heat insulation/cold insulation unit comprising the same, and refrigerator

Publications (1)

Publication Number Publication Date
WO2006009063A1 true WO2006009063A1 (en) 2006-01-26

Family

ID=35785176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013028 WO2006009063A1 (en) 2004-07-16 2005-07-14 Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer

Country Status (5)

Country Link
JP (1) JP2006029456A (en)
KR (1) KR20060063982A (en)
CN (1) CN100529504C (en)
DE (1) DE112005000069B4 (en)
WO (1) WO2006009063A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857931B2 (en) 2010-10-28 2014-10-14 Lg Electronics Inc. Refrigerator with vacuum space
EP3620084A1 (en) * 2018-09-07 2020-03-11 Clabo S.P.A Refrigerated display counter with improved insulation system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729177B1 (en) * 2006-06-14 2007-06-19 주식회사 폴리테크 Adiabatic panel for vender
DE102008040367A1 (en) * 2008-07-11 2010-02-25 Evonik Degussa Gmbh Component for the production of vacuum insulation systems
CN102278571A (en) 2008-12-26 2011-12-14 三菱电机株式会社 Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
JP5312605B2 (en) 2009-10-16 2013-10-09 三菱電機株式会社 Vacuum insulation, refrigerator and equipment
EP2489919A4 (en) 2009-10-16 2014-01-29 Mitsubishi Electric Corp Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
CN102686929B (en) 2009-10-19 2015-11-25 三菱电机株式会社 Vacuum thermal insulating material and the equipment with Vacuum thermal insulating material
JP2013007462A (en) * 2011-06-27 2013-01-10 Sanden Corp Vacuum heat insulator and bending process method of vacuum heat insulator
JP2014070710A (en) * 2012-10-01 2014-04-21 Asahi Fiber Glass Co Ltd Vacuum heat insulating material
CN104565683A (en) * 2015-02-04 2015-04-29 滁州银兴电气有限公司 Double-layer hot-seal high-obstruction composite vacuum insulation board
JP6683246B2 (en) * 2016-03-29 2020-04-15 三菱電機株式会社 Refrigerator and manufacturing method thereof
CN111810770B (en) * 2019-04-10 2022-09-20 青岛海尔电冰箱有限公司 Vacuum heat insulation plate, preparation method thereof and refrigerator using vacuum heat insulation plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241594A (en) * 1985-04-19 1986-10-27 松下電器産業株式会社 Vacuum heat-insulating material
JPH10253243A (en) * 1997-03-17 1998-09-25 Sanyo Electric Co Ltd Refrigerator
JP2001336691A (en) * 2000-05-25 2001-12-07 Matsushita Refrig Co Ltd Vacuum insulation material and refrigerator using vacuum insulation material
JP2003532845A (en) * 2000-05-12 2003-11-05 コリア インスティテュート オブ サイエンス アンド テクノロジー Vacuum insulation material using glass white wool and method for manufacturing the same
JP2004011708A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method, and thermal insulation box using vacuum heat insulating material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687170A (en) 1970-10-26 1972-08-29 Ind Insulations Inc Heat insulating assembly
US3757559A (en) 1972-02-09 1973-09-11 Hughes Aircraft Co Method for making structural panel bent from laminated honeycomb
JPH09138058A (en) 1995-11-14 1997-05-27 Sanyo Electric Co Ltd Vacuum heat insulating material
ITMI20012190A1 (en) 2001-10-19 2003-04-19 Getters Spa PROCESS FOR THE PRODUCTION OF A FLEXIBLE THERMAL INSULATION DEVICE AND DEVICE SO OBTAINED

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241594A (en) * 1985-04-19 1986-10-27 松下電器産業株式会社 Vacuum heat-insulating material
JPH10253243A (en) * 1997-03-17 1998-09-25 Sanyo Electric Co Ltd Refrigerator
JP2003532845A (en) * 2000-05-12 2003-11-05 コリア インスティテュート オブ サイエンス アンド テクノロジー Vacuum insulation material using glass white wool and method for manufacturing the same
JP2001336691A (en) * 2000-05-25 2001-12-07 Matsushita Refrig Co Ltd Vacuum insulation material and refrigerator using vacuum insulation material
JP2004011708A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method, and thermal insulation box using vacuum heat insulating material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857931B2 (en) 2010-10-28 2014-10-14 Lg Electronics Inc. Refrigerator with vacuum space
US10174989B2 (en) 2010-10-28 2019-01-08 Lg Electronics Inc. Refrigerator with vacuum space
US10591199B2 (en) 2010-10-28 2020-03-17 Lg Electronics Inc. Refrigerator with vacuum space
US11199357B2 (en) 2010-10-28 2021-12-14 Lg Electronics Inc. Refrigerator with vacuum space
US11732951B2 (en) 2010-10-28 2023-08-22 Lg Electronics Inc. Refrigerator with vacuum space
EP3620084A1 (en) * 2018-09-07 2020-03-11 Clabo S.P.A Refrigerated display counter with improved insulation system

Also Published As

Publication number Publication date
CN1860326A (en) 2006-11-08
DE112005000069B4 (en) 2018-11-22
CN100529504C (en) 2009-08-19
DE112005000069T5 (en) 2006-08-24
JP2006029456A (en) 2006-02-02
KR20060063982A (en) 2006-06-12

Similar Documents

Publication Publication Date Title
WO2006009063A1 (en) Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
EP1275893B1 (en) Vacuum insulating material and device using the same
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
KR101495127B1 (en) Vacuum heat insulation member and refrigerator using same
WO2010092627A1 (en) Refrigerator
KR20040094790A (en) Refrigerator
KR20070078415A (en) Vacuum heat insulation material and refrigerator using the same
JP3482408B2 (en) Vacuum insulation and refrigerators using vacuum insulation
JP2001165557A (en) Refrigerator
JP2007155065A (en) Vacuum heat insulating material and its manufacturing method
JP2006118638A (en) Vacuum insulation material and insulation housing
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2012225389A (en) Method of manufacturing vacuum heat insulator, vacuum heat insulator, and refrigerator equipped with the same
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2001165389A (en) Insulated box body
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
KR102186839B1 (en) Vacuum insulation material and the refrigerator which is applied it
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP2004011908A (en) Vacuum heat insulating material, and refrigerator using vacuum heat insulating material
KR101714569B1 (en) Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
JP3513143B2 (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP2006029448A (en) Vacuum heat insulating panel, and refrigerator using the same
JP2004218747A (en) Vacuum heat insulating material
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001093.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067006795

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050000699

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067006795

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005000069

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000069

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase