JP3580315B1 - Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board - Google Patents

Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board Download PDF

Info

Publication number
JP3580315B1
JP3580315B1 JP2004027650A JP2004027650A JP3580315B1 JP 3580315 B1 JP3580315 B1 JP 3580315B1 JP 2004027650 A JP2004027650 A JP 2004027650A JP 2004027650 A JP2004027650 A JP 2004027650A JP 3580315 B1 JP3580315 B1 JP 3580315B1
Authority
JP
Japan
Prior art keywords
heat insulating
fibers
glass fiber
core material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027650A
Other languages
Japanese (ja)
Other versions
JP2005220954A (en
Inventor
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004027650A priority Critical patent/JP3580315B1/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP3580315B1 publication Critical patent/JP3580315B1/en
Application granted granted Critical
Priority to CN2005100064574A priority patent/CN1657282A/en
Priority to KR1020067002899A priority patent/KR20060032656A/en
Priority to PCT/JP2005/001874 priority patent/WO2005075878A1/en
Priority to CA002539448A priority patent/CA2539448C/en
Priority to EP05709926.9A priority patent/EP1653146B1/en
Priority to US10/595,081 priority patent/US7638181B2/en
Publication of JP2005220954A publication Critical patent/JP2005220954A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

【課題】結合材から生じるガス成分による内圧増加による断熱性能の劣化を招かないだけでなく、繊維相互の交点に形成される結着部位が熱架橋として作用する熱伝導を抑制することで、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有する高性能な真空断熱材を提供する。
【解決手段】ガラス繊維の集合体からなる芯材2と、芯材2を被覆するガスバリア性を有する外包材3とを備え、外包材3の内部が減圧して密閉された真空断熱材1において、芯材2がガラス繊維の集合体をガラス繊維の熱変形温度以上の温度で加圧成形し、ガラス繊維の集合体を加圧時の状態で塑性変形させることでその形状を保持している。芯材に結合材を使用しないので、芯材固体成分の熱伝導を低減でき、経時的な断熱性能の劣化を改善できる。
【選択図】図1
An object of the present invention is to not only prevent heat insulation performance from deteriorating due to an increase in internal pressure due to a gas component generated from a binder but also suppress heat conduction in which a binding site formed at an intersection between fibers acts as a thermal bridge. The present invention provides a high-performance vacuum heat-insulating material having excellent heat-insulating performance 10 times or more that of rigid urethane foam.
Kind Code: A1 A vacuum heat insulating material provided with a core material made of an aggregate of glass fibers and an outer packaging material having a gas barrier property for covering the core material, wherein the inside of the outer packaging material is reduced in pressure and sealed. The core 2 press-molds the glass fiber aggregate at a temperature equal to or higher than the thermal deformation temperature of the glass fiber, and retains its shape by plastically deforming the glass fiber aggregate in a pressurized state. . Since no binder is used for the core material, the heat conduction of the solid component of the core material can be reduced, and the deterioration of the heat insulation performance over time can be improved.
[Selection diagram] Fig. 1

Description

本発明は、真空断熱材とその製造方法、および真空断熱材を適用した保温保冷機器、更には断熱ボードに関するものである。 The present invention relates to a vacuum heat insulating material and a method for manufacturing the same , and a heat insulating / cooling device to which the vacuum heat insulating material is applied, and further relates to a heat insulating board.

近年、地球環境問題である温暖化を防止することの重要性から、省エネルギー化が望まれており、民生用機器に対しても省エネルギーの推進が行われている。特に、冷凍冷蔵庫に関しては、冷熱を効率的に利用するという観点から、優れた断熱性を有する断熱材が求められている。   In recent years, energy saving has been demanded because of the importance of preventing global warming, which is a global environmental problem, and energy saving has been promoted for consumer appliances. In particular, regarding refrigerators, a heat insulating material having excellent heat insulating properties has been demanded from the viewpoint of efficiently utilizing cold heat.

一般的な断熱材としては、グラスウールなどの繊維体やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性を向上するためには断熱材の厚みを増大して適用する必要がある。よって、断熱材を設置できる空間に制限がある場合や、省スペースや空間の有効利用が必要な場合には従来断熱材の適用は望ましくない。   As a general heat insulating material, a fibrous body such as glass wool or a foamed body such as urethane foam is used. However, in order to improve the heat insulating properties of these heat insulating materials, it is necessary to increase the thickness of the heat insulating material and apply it. Therefore, when the space in which the heat insulating material can be installed is limited, or when space saving or effective use of the space is required, the application of the conventional heat insulating material is not desirable.

このような課題を解決する一手段として、多孔体からなる芯材と、芯材を外包材によって覆い内部を減圧密閉して構成した真空断熱材がある。真空断熱材の芯材としては、一般に、粉体材料、繊維材料、および連通化した発泡体などが使用され、近年では、省エネ競争が激化するなか、より一層、断熱性能の優れた真空断熱材が求められている。   As one means for solving such a problem, there is a core material made of a porous material, and a vacuum heat insulating material formed by covering the core material with an outer package material and sealing the inside under reduced pressure. In general, powder materials, fiber materials, and interconnected foams are used as the core material of the vacuum heat insulating material. In recent years, as the competition for energy saving has intensified, the vacuum heat insulating material having more excellent heat insulating performance has been used. Is required.

一般に、断熱材の伝熱機構は、固体および気体成分の熱伝導、輻射、流熱により引き起こされる。一方、外包材内部を減圧にしてなる真空断熱材は、気体成分の熱伝導と対流に関してはその影響は小さい。また、常温以下の温度領域での使用においては、輻射の寄与もほとんどない。よって、常温以下の冷凍冷蔵庫に適用する真空断熱材においては、固体成分の熱伝導を抑制することが重要となる。そこで、断熱性能に優れる真空断熱用芯材として、種々の繊維材料が報告されている。   Generally, the heat transfer mechanism of a heat insulator is caused by heat conduction, radiation, and heat flow of solid and gas components. On the other hand, the vacuum heat insulating material in which the inside of the outer packaging material is reduced in pressure has little effect on the heat conduction and convection of the gas component. In addition, when used in a temperature range equal to or lower than room temperature, there is almost no contribution of radiation. Therefore, it is important for a vacuum heat insulating material applied to a refrigerator at room temperature or lower to suppress heat conduction of solid components. Therefore, various fiber materials have been reported as core materials for vacuum insulation having excellent heat insulation performance.

例えば、繊維性材料全体にわたって低溶融ガラス組成物やホウ酸のような熱可塑性の性質を有する無機バインダー材料を分散させた芯材を用いた真空断熱材が提案されている。これは、図6のように、2本の隣接したガラス繊維61とガラス繊維62が無機バインダー材料により、交点63で結合部64を形成することを特徴としている(例えば、特許文献1参照)。   For example, a vacuum heat insulating material using a core material in which an inorganic binder material having a thermoplastic property such as boric acid is dispersed throughout a fibrous material has been proposed. This is characterized in that, as shown in FIG. 6, two adjacent glass fibers 61 and 62 form a joint portion 64 at an intersection 63 using an inorganic binder material (for example, see Patent Document 1).

これにより、繊維集合物の個々の繊維を一体化させることが可能である。このような製品の一例としては、絶縁材料のブランケット、マット、および断熱材がある。   Thereby, it is possible to integrate the individual fibers of the fiber assembly. Examples of such products include blankets, mats, and insulation of insulating materials.

また、汎用的な樹脂バインダーのように、外被材中の真空条件下においてバインダーから発生するガス成分が殆どなく、経時的な断熱性能の劣化が小さいことが提案されている。   Further, it has been proposed that, unlike a general-purpose resin binder, there is almost no gas component generated from the binder under vacuum conditions in the outer cover material, and the deterioration of the heat insulation performance with time is small.

また、平均繊維径2μm以下、好ましくは1μm以下の無機質繊維に酸性水溶液処理、および圧縮脱水処理を施し、無機質繊維の溶出成分を無機質繊維の交点に集め、結合材として作用させ、無機繊維に一体性を持たせたものを芯材とする真空断熱材が提案されている(例えば、特許文献2参照)。   In addition, the inorganic fibers having an average fiber diameter of 2 μm or less, preferably 1 μm or less are subjected to an acidic aqueous solution treatment and compression dehydration treatment, and the elution components of the inorganic fibers are collected at the intersections of the inorganic fibers and act as a binder, and are integrated with the inorganic fibers. A vacuum heat insulating material having a core material made of a material having properties has been proposed (for example, see Patent Document 2).

本構成の効果としては、繊維同士を結着させる結合材を含まないため、外被材中の真空条件下で結合材から発生するガス成分が少なく、経時的な断熱性能の劣化がないため、断熱性能に優れていることが報告されている。   As an effect of this configuration, since a binder that binds the fibers is not included, the gas component generated from the binder under vacuum conditions in the jacket material is small, and there is no deterioration of the heat insulation performance over time. It is reported that it has excellent heat insulation performance.

また、平均繊維径2μm以下、好ましくは1μm以下の無機質繊維を酸性抄造して得られたガラスペーパーを酸性雰囲気下で複数枚積層した後、圧縮処理を施し、無機質繊維同士をそれら繊維より溶出した成分により各交点で結着した芯材を用いた真空断熱材が提案されている(例えば、特許文献3参照)。   Moreover, after laminating a plurality of glass papers obtained by acid-making inorganic fibers having an average fiber diameter of 2 μm or less, preferably 1 μm or less under an acidic atmosphere, a compression treatment was performed, and the inorganic fibers were eluted from the fibers. A vacuum heat insulating material using a core material bound at each intersection by a component has been proposed (for example, see Patent Document 3).

本構成では、経時的な断熱性能の劣化が小さいことに加え、繊維の方向が伝熱方向に垂直に配向していることから、固体成分の熱伝導が低減し、優れた断熱性能を有する真空断熱材を提供できることが提案されている。
特表平11−506708号公報 特開平7−167376号公報 特開平7−139691号公報
In this configuration, the heat conduction of solid components is reduced because the fiber direction is perpendicular to the heat transfer direction in addition to the deterioration of the heat insulation performance over time being small, and the vacuum having excellent heat insulation performance is obtained. It has been proposed that thermal insulation could be provided.
Japanese Patent Publication No. 11-506708 JP-A-7-167376 JP-A-7-139691

しかしながら、上記従来の構成では、無機質繊維の交点において結着したバインダーや、無機質繊維からの溶出成分が結合材として作用するため、繊維相互の結着部位において、固形化したバインダーや溶出成分が熱架橋となることで断熱方向の熱伝導が増大する。この時、バインダーや溶出成分による結着部位のない繊維体からなる芯材と比較すると、真空断熱材の熱伝導率が増大するという課題を有していた。   However, in the above-described conventional configuration, since the binder bound at the intersection of the inorganic fibers and the components eluted from the inorganic fibers act as a binder, the solidified binder and the eluted components are heated at the binding site between the fibers. Crosslinking increases heat conduction in the heat-insulating direction. At this time, there was a problem that the thermal conductivity of the vacuum heat insulating material was increased as compared with a core material made of a fibrous body having no binding site due to a binder or an eluted component.

一方、バインダーや溶出成分による結着部位のない従来構成の繊維体は、固体成分の熱伝導は小さいものの、その状態は嵩高い綿状であり、非常に取り扱いが困難である。また、それを真空断熱材の芯材として用いた場合には、大気圧縮により外観表面性が損なわれる等の課題を有していた。   On the other hand, a fiber body having a conventional structure without a binding site due to a binder or an eluting component has a low thermal conductivity of a solid component, but is in a bulky cotton state, and is very difficult to handle. In addition, when it is used as a core material of a vacuum heat insulating material, there is a problem that the external appearance surface property is impaired by atmospheric compression.

本発明は、上記従来の課題を解決するもので、結合材から生じるガス成分による内圧増加による断熱性能の劣化を招かないだけでなく、繊維相互の交点に形成される結着部位が熱架橋として作用する熱伝導を抑制することで、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有する高性能な真空断熱材を提供するものである。   The present invention solves the above-mentioned conventional problems, and not only does the heat insulation performance not deteriorate due to the increase of the internal pressure due to the gas component generated from the binder, but also the binding site formed at the intersection of the fibers is formed as a thermal bridge. An object of the present invention is to provide a high-performance vacuum heat-insulating material having excellent heat-insulating performance 10 times or more that of a conventional rigid urethane foam by suppressing the acting heat conduction.

また、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有する高性能な真空断熱材を具備することにより、省エネルギーに貢献できる保温保冷機器を提供するものである。   Further, the present invention provides a heat insulation / cooling device that can contribute to energy saving by providing a high-performance vacuum heat insulating material having heat insulation performance 10 times or more superior to that of a conventional rigid urethane foam.

上記従来の課題を解決するために、本発明の真空断熱材は、ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材において、前記芯材は、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形されてガラス繊維の熱変形により繊維が延伸されており、かつ、繊維相互の結着でなく、ガラス繊維の一部が繊維相互間で絡み合って形状を保持しているものである。 In order to solve the above conventional problems, the vacuum heat insulating material of the present invention is a core material comprising a glass fiber laminate in which glass fibers are laminated in the thickness direction, and an outer packaging material having a gas barrier property for covering the core material. In the vacuum heat insulating material in which the inside of the outer packaging material is decompressed and hermetically closed, the core material is made of glass by a temperature at which the fiber starts to slightly deform due to its own weight of the glass fiber , or by a vertical load at the time of pressing. At a temperature at which the fibers can be deformed, and at a temperature at which the cross-sectional shape of the glass fibers does not change significantly, the fibers are stretched by thermal deformation of the glass fibers and bonded to each other. Instead, some of the glass fibers are entangled between the fibers to maintain the shape.

これは、ガラス繊維の一部が絡み合ったガラス繊維の積層体を、前記ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形することにより、ガラス繊維は軟化し加圧時の状態で熱変形する。その後、加熱温度を低下させるとガラス繊維からなる集合体は、成形前の弾性を失っているため加圧成形時の状態で形状が保持される。 This means that the glass fiber laminate in which a part of the glass fiber is entangled, the temperature at which the fiber starts to slightly deform by the weight of the glass fiber, or the glass fiber can be deformed by the load from the vertical direction at the time of pressing. By performing pressure molding at a temperature at which the cross-sectional shape of the glass fiber does not greatly change , the glass fiber is softened and thermally deformed in a pressurized state. Thereafter, when the heating temperature is lowered, the aggregate made of glass fibers loses its elasticity before molding, and thus retains its shape at the time of pressure molding.

よって、ガラス繊維の集合体からなる芯材は、繊維相互における結合材がなくとも、芯材を所定形状に保持することができる。   Therefore, the core material made of the aggregate of glass fibers can hold the core material in a predetermined shape without any binder between the fibers.

本発明の真空断熱材は、芯材であるガラス繊維相互間に、バインダー成分や繊維からの溶出成分による結合材を用いずに芯材を形成している。よって、繊維相互の交点部には、バインダー成分や繊維からの溶出成分による結合材が存在しない。その結果、従来、熱架橋として作用していた結着部位が存在しないことから、繊維相互の伝熱点数が大幅に低減し、伝熱量が抑制される。 In the vacuum heat insulating material of the present invention, the core material is formed between the glass fibers as the core material without using a binder component or a binder material eluted from the fiber. Therefore, there is no binder due to the binder component or the component eluted from the fiber at the intersection of the fibers. As a result, conventionally, since the binding sites not act as a thermal crosslinking is absent, the fibers mutual heat transfer number is greatly reduced, heat transfer is Ru is suppressed.

更に、加熱プレス時におけるガラス繊維集合体の熱変形により、繊維を延伸させる効果が期待できるため、ガラス繊維の積層配列がより一層改善されることで、繊維相互の熱抵抗が増大し、断熱性能が改善する。Further, since the effect of drawing the fibers can be expected due to the thermal deformation of the glass fiber aggregate during hot pressing, the lamination arrangement of the glass fibers is further improved, so that the thermal resistance between the fibers increases, and the heat insulating performance is increased. Improves.

以上の結果より、本発明の真空断熱材は断熱性能が大幅に改善する。From the above results, the vacuum heat insulating material of the present invention significantly improves the heat insulating performance.

また、バインダー成分を使用していないため、バインダー成分からの発生ガスも問題にならず、経時的に断熱性能の劣化が小さい真空断熱材を提供することができる。   Further, since the binder component is not used, the gas generated from the binder component does not cause a problem, and a vacuum heat insulating material with little deterioration of heat insulating performance over time can be provided.

また、芯材成形時にバインダー成分を使用する必要がないため、工数削減が可能となり効率的な芯材成形が可能となる。   Further, since it is not necessary to use a binder component at the time of molding the core material, the number of steps can be reduced, and efficient core material molding can be performed.

また、ガラス繊維の絡み合いによるアンカー効果と、ガラス繊維の熱変形による形状変化による効果により、ガラス繊維の集合体を所定形状としつつ一体性が発現される。よって、ガラス繊維の集合体からなる芯材は、芯材を所定形状に保持することができる。また、ガラス繊維の一部が、繊維相互間で絡み合うことで厚み方向における拘束性と一体性が強化されて、芯材の剛性が増大するため、芯材の取り扱い性が改善され外被材への挿入工程などでの作業性が向上する。更には、芯材の低密度化も容易になる。In addition, due to the anchor effect due to the entanglement of the glass fibers and the effect due to the change in shape due to the thermal deformation of the glass fibers, integrity is exhibited while the aggregate of the glass fibers is in a predetermined shape. Therefore, the core made of an aggregate of glass fibers can hold the core in a predetermined shape. In addition, since a part of the glass fiber is entangled between the fibers, the constraint and the integrity in the thickness direction are strengthened, and the rigidity of the core material is increased. The workability in the step of inserting a piece is improved. Further, the density of the core material can be easily reduced.

請求項1に記載の発明は、ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材において、前記芯材は、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形されてガラス繊維の熱変形により繊維が延伸されており、かつ、繊維相互の結着でなく、ガラス繊維の一部が繊維相互間で絡み合って形状を保持している真空断熱材である。 The invention according to claim 1 includes a core material made of a glass fiber laminate in which glass fibers are laminated in a thickness direction, and an outer packaging material having a gas barrier property for covering the core material, wherein the interior of the outer packaging material is In the vacuum heat-insulated material which is hermetically closed by decompression, the core material has a temperature at which the fibers start to slightly deform due to the weight of the glass fibers, or a temperature at which the glass fibers can be deformed by a vertical load during pressing. Therefore, the glass fiber is stretched due to thermal deformation of the glass fiber at a temperature at which the cross-sectional shape of the glass fiber does not significantly change , and a part of the glass fiber is It is a vacuum heat insulating material that is entangled between fibers and retains its shape.

よって、ガラス繊維の積層体を、前記ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形することにより、ガラス繊維は軟化し加圧時の状態で熱変形する。その後、加熱温度を低下させるとガラス繊維からなる集合体は、成形前の弾性を失い加圧成形時の状態で形状が保持される。 Therefore, the glass fiber laminate , the temperature at which the fiber starts to slightly deform under its own weight of the glass fiber , or the temperature at which the glass fiber can be deformed by the load from the vertical direction during pressing, the cross-section of the glass fiber By performing pressure molding at a temperature at which the shape does not significantly change , the glass fibers are softened and thermally deformed in the state of being pressed. Thereafter, when the heating temperature is lowered, the aggregate made of glass fibers loses its elasticity before molding and retains its shape at the time of pressure molding.

これは、ガラス繊維の絡み合いによるアンカー効果と、ガラス繊維の熱変形による形状変化による効果であり、これら機械的要素により、ガラス繊維の集合体を所定形状としつつ一体性が発現される。よって、ガラス繊維の集合体からなる芯材は、芯材を所定形状に保持することができる。   This is an anchor effect due to the entanglement of the glass fibers and an effect due to the shape change due to the thermal deformation of the glass fibers. These mechanical elements allow the glass fiber aggregate to be formed into a predetermined shape and to exhibit the integrity. Therefore, the core made of an aggregate of glass fibers can hold the core in a predetermined shape.

また、ガラス繊維の一部が、繊維相互間で絡み合うことで厚み方向における拘束性と一体性が強化されて、芯材の剛性が増大するため、芯材の取り扱い性が改善され外被材への挿入工程などでの作業性が向上する。更には、芯材の低密度化も容易になる。In addition, since a part of the glass fiber is entangled between the fibers, the constraint and the integrity in the thickness direction are strengthened, and the rigidity of the core material is increased. The workability in the step of inserting a piece is improved. Further, the density of the core material can be easily reduced.

更に、従来、熱架橋として作用していた繊維相互の結着部位が存在しないことから、伝熱点数が低減し伝熱量が低下するため、本発明の真空断熱材は断熱性能が大幅に改善する。   Furthermore, since there is no binding site between the fibers that has conventionally acted as a thermal crosslink, the number of heat transfer points is reduced and the amount of heat transfer is reduced, so that the vacuum heat insulating material of the present invention greatly improves the heat insulating performance. .

また、ガラス繊維が厚み方向に均一に積層されていることから、成形後の芯材を構成するガラス繊維は厚み方向と垂直の方向に均一に配列されるため、繊維相互の熱抵抗が一層増大する。In addition, since the glass fibers are uniformly laminated in the thickness direction, the glass fibers constituting the core material after molding are uniformly arranged in the direction perpendicular to the thickness direction, so that the thermal resistance between the fibers further increases. I do.

更に、加熱プレス時におけるガラス繊維集合体の熱変形により、繊維を延伸させる効果が期待できるため、ガラス繊維の積層配列がより一層改善されることで、繊維相互の熱抵抗が増大し、断熱性能が改善することも要因と考える。 Further, since the effect of drawing the fibers can be expected due to the thermal deformation of the glass fiber aggregate during hot pressing, the lamination arrangement of the glass fibers is further improved, so that the thermal resistance between the fibers increases, and the heat insulating performance is increased. Is also considered a factor.

以上の作用により、本発明の真空断熱材は断熱性能が大幅に改善する。   By the above operation, the vacuum heat insulating material of the present invention greatly improves the heat insulating performance.

請求項2に記載の発明は、請求項1に記載の芯材を構成するガラス繊維が、グラスウールである真空断熱材である。グラスウールは、汎用的な工業製品として、安価、かつ取り扱い性の観点からもより望ましい。 The invention according to claim 2 is a vacuum heat insulating material in which the glass fiber constituting the core material according to claim 1 is glass wool. Glass wool is more desirable as a general-purpose industrial product from the viewpoint of low cost and handleability.

請求項に記載の発明は、請求項1または2に記載の芯材が、ガラス繊維相互を結着する結合材を含まない真空断熱材である。 According to a third aspect of the present invention, the core material according to the first or second aspect is a vacuum heat insulating material that does not include a binder that binds glass fibers to each other.

よって、請求項1または2に記載の作用により、ガラス繊維の集合体からなる芯材は、芯材を所定形状に保持することができることに加えて、ガラス繊維相互を結着する結合材を含んでいない。その結果、従来、熱架橋として作用していた繊維相互の結着部位が存在しないことから、伝熱点数が低減し伝熱量が低下する。 Therefore, by the operation according to claim 1 or 2 , the core material made of an aggregate of glass fibers includes a bonding material that bonds the glass fibers to each other in addition to being able to hold the core material in a predetermined shape. Not. As a result, the number of heat transfer points is reduced and the amount of heat transfer is reduced because there is no binding site between the fibers which has conventionally functioned as thermal crosslinking.

以上の作用により、本発明の真空断熱材は断熱性能が一層改善する。   By the above operation, the heat insulating performance of the vacuum heat insulating material of the present invention is further improved.

請求項に記載の発明は、ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材において、前記芯材は、ガラス繊維相互を結着する結合材を含み、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形されてガラス繊維の熱変形により繊維が延伸されており、かつ、ガラス繊維の一部が繊維相互間で絡み合って形状を保持している真空断熱材である。 The invention according to claim 4 includes a core material made of a glass fiber laminate in which glass fibers are laminated in the thickness direction, and an outer packaging material having a gas barrier property for covering the core material, wherein the interior of the outer packaging material is In a vacuum heat insulating material that is sealed by decompression, the core material includes a bonding material that binds the glass fibers to each other, and the temperature at which the fibers start to slightly deform due to the weight of the glass fibers, or from the vertical direction during pressing. The glass fiber is deformed by pressure at a temperature at which the glass fiber can be deformed by the load, and at a temperature at which the cross-sectional shape of the glass fiber does not significantly change, and the glass fiber is stretched by thermal deformation of the glass fiber. Is a vacuum heat insulating material in which a part of the fibers is entangled with each other to keep the shape .

よって、請求項に記載の作用により、ガラス繊維の集合体からなる芯材は、芯材を所定形状に保持することができることに加えて、ガラス繊維相互を結着する結合材を含んでいる。その結果、結合材を含まないものと比較して、芯材の剛性が大幅に増大する。 Therefore, by the operation according to the first aspect , the core member made of the aggregate of the glass fibers includes a binder that bonds the glass fibers to each other in addition to being able to hold the core member in a predetermined shape. . As a result, the rigidity of the core material is greatly increased as compared with the case where the binder is not included.

よって、より強い芯材剛性を必要とする場合において優れた効果が得られる。   Therefore, an excellent effect can be obtained when stronger core material rigidity is required.

請求項に記載の発明の保温保冷機器は、請求項1からのいずれか一項に記載の真空断熱材を具備するものである。 According to a fifth aspect of the present invention, there is provided a warming / cooling apparatus comprising the vacuum heat insulating material according to any one of the first to fourth aspects.

よって、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できる。また、真空断熱材の表面性が良好であるため、取り付け性および保温保冷機器の箱体表面平滑性も良好なものが製造できる。   Therefore, since it has excellent heat insulation performance of 10 times or more of the conventional rigid urethane foam, high heat insulation is achieved and it can contribute to energy saving. Moreover, since the surface properties of the vacuum heat insulating material are good, it is possible to manufacture a vacuum insulating material having good box surface smoothness of the heat insulation and cooling equipment.

更に、結合材から生じるガス成分による内圧増加により、断熱性能の劣化を招くことないため、経時的な断熱性能の劣化が小さく、継続して省エネルギーに貢献することが可能である。   Further, since the heat insulation performance is not deteriorated due to the increase of the internal pressure due to the gas component generated from the binder, the deterioration of the heat insulation performance with time is small, and it is possible to continuously contribute to energy saving.

請求項に記載の発明の断熱ボードは、請求項1からのいずれか一項に記載の真空断熱材の芯材からなるものである。 According to a sixth aspect of the present invention, there is provided a heat insulating board comprising the core material of the vacuum heat insulating material according to any one of the first to third aspects.

よって、断熱ボードが、ガラス繊維の成形体であり、かつ有機系結合材を含まないため、ガラス繊維の耐熱温度である約400℃前後まで使用が可能であり、耐熱性に優れた高性能断熱ボードとして利用できる。また、ボード剛性も全く問題なく、取り扱い性に優れている。   Therefore, since the heat insulation board is a molded body of glass fiber and does not contain an organic binder, it can be used up to about 400 ° C., which is the heat resistance temperature of glass fiber, and has high heat insulation with high heat resistance. Available as a board. In addition, there is no problem with the board rigidity, and the handleability is excellent.

更には、その構造がガラス繊維の積層体であるため粉落ちが少ないこと、結合材を全く含まないことから高温使用時の異臭やガス成分の発生といった問題が生じないという利点も具備する。   Furthermore, it has the advantages that the structure is a laminated body of glass fibers, so that there is little powder dropping, and that it does not contain any binder, so that problems such as generation of off-flavors and gas components when used at high temperatures are not caused.

請求項7に記載の発明の真空断熱材の製造方法は、ガラス繊維を厚み方向に積層配列させて一部で繊維が絡まっているガラス繊維集合体を成形し、次に、前記ガラス繊維集合体を、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加熱プレスして、加熱プレス時の形状へと熱変形させ、その後、加熱プレス時の状態で熱変形したガラス繊維集合体を冷却することにより、加熱プレス時の形状が保持されて厚み方向における拘束性と一体性が強化されたボード状芯材をつくり、次に前記芯材を乾燥させた後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材に挿入し、その後、外包材内部を減圧し開口部を熱溶着により密閉封止する真空断熱材の製造方法である。 The method of manufacturing a vacuum heat insulating material according to claim 7, wherein the glass fibers are laminated and arranged in the thickness direction to form a glass fiber aggregate in which fibers are partially entangled, and then the glass fiber aggregate is formed. Is the temperature at which the glass fiber starts to slightly deform under its own weight, or the temperature at which the glass fiber can be deformed due to the vertical load during pressing, and at which the cross-sectional shape of the glass fiber does not change significantly Then, it is hot-pressed, thermally deformed to the shape at the time of hot pressing, and then cooled by heat-deformation of the glass fiber aggregate in the state at the time of hot pressing, so that the shape at the time of hot pressing is maintained and the thickness direction is maintained. After making a board-shaped core material with enhanced restraint and integrity, and then drying the core material, three sides of the laminated film are sealed by heat welding and inserted into a bag-shaped outer packaging material. Then, a manufacturing method of vacuum insulation material and reducing the pressure inside the outer cover material opening sealed sealing by thermal welding.

よって、厚み方向における拘束性と一体性が強化されて、芯材の剛性が増大するため、芯材の取り扱い性が改善され外被材への挿入工程などでの作業性が向上する。Therefore, the restraint and the integrity in the thickness direction are strengthened, and the rigidity of the core material is increased, so that the handleability of the core material is improved, and the workability in the step of inserting the core material into the sheath material is improved.

請求項8に記載の発明の真空断熱材の製造方法は、請求項7に記載の加熱プレスを、480℃にして5分間行うものである。An eighth aspect of the invention provides a method of manufacturing a vacuum heat insulating material, wherein the heating press according to the seventh aspect is performed at 480 ° C. for 5 minutes.

なお、本発明で使用できるガラス繊維は特に限定するものではないが、ガラス状態になり得るガラス形成酸化物が望ましく、更には、熱変形温度が低く、厚み方向に積層配列されたものが好適であり、汎用的な工業製品としてはグラスウールが安価、かつ取り扱い性の観点からもより望ましい。   In addition, the glass fiber that can be used in the present invention is not particularly limited, but a glass-forming oxide that can be in a glassy state is desirable, and furthermore, a heat-deformation temperature is low, and those that are laminated and arranged in the thickness direction are preferable. As a general-purpose industrial product, glass wool is more desirable from the viewpoint of low cost and handleability.

また、繊維径は、特に指定するものではないが、繊維径が微細なものがより優れた断熱性能が得られることは既に公知である。しかしながら、無機繊維の交点で結着部位を有する従来芯材においては、2μm以下の微細繊維径のものでしか得られなかった断熱性能が、本構成においては3μm以上の繊維径のガラス繊維にて実現可能であることから、グラスウールの汎用品を使用した場合にも優れた断熱性能が確保できる。   Although the fiber diameter is not particularly specified, it is already known that a fiber having a fine fiber diameter can obtain more excellent heat insulating performance. However, in the conventional core material having a binding site at the intersection of the inorganic fibers, the heat insulation performance obtained only with a fine fiber diameter of 2 μm or less is achieved by the glass fiber having a fiber diameter of 3 μm or more in the present configuration. Since it is feasible, excellent heat insulation performance can be ensured even when a general-purpose glass wool is used.

また、本発明の外被材は、ガスバリア性を有するものが利用できるが、表面保護層、ガスバリア層、および熱溶着層によって構成されるラミネートフィルムであることが好ましい。   As the jacket material of the present invention, a material having gas barrier properties can be used, but it is preferable that the jacket material is a laminate film composed of a surface protective layer, a gas barrier layer, and a heat welding layer.

また、本発明の真空断熱材には、各種ガス吸着剤が適用できる。一例としては、合成ゼオライト、活性炭、活性アルミナ、シリカゲル、ドーソナイト、ハイドロタルサイトなどの物理吸着剤、アルカリ金属やアルカリ土類金属単体やその酸化物および水酸化物などの化学吸着剤、あるいは空気成分が吸着できるゲッター剤等がある。   Various gas adsorbents can be applied to the vacuum heat insulating material of the present invention. Examples include physical sorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, hydrotalcite, chemical adsorbents such as alkali metals and alkaline earth metals alone and their oxides and hydroxides, or air components There is a getter agent or the like that can adsorb G.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面模式図を示すものである。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention.

また、図2は、本発明の実施の形態1における芯材2の芯材成形工程のフローについて示す。更に、図3には、本発明の実施の形態1における真空断熱材の芯材の顕微鏡写真を示す。   FIG. 2 shows a flow of a core material forming process of the core material 2 according to the first embodiment of the present invention. Further, FIG. 3 shows a micrograph of the core material of the vacuum heat insulating material according to Embodiment 1 of the present invention.

図1において、真空断熱材1は、芯材2と吸着剤4とを外包材3に挿入し、内部を減圧して構成している。   In FIG. 1, a vacuum heat insulating material 1 is configured by inserting a core material 2 and an adsorbent 4 into an outer packaging material 3 and depressurizing the inside.

真空断熱材1の作製は、芯材2を140℃の乾燥炉で30分間乾燥した後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材3に挿入し、減圧チャンバー内で、外包材内部が10Pa以下になるように減圧し、開口部を熱溶着により密閉封止している。   The vacuum heat insulating material 1 is manufactured by drying the core material 2 in a drying oven at 140 ° C. for 30 minutes, inserting the laminated film into a bag-shaped outer packaging material 3 by sealing three sides by heat welding, and inserting the laminated film into a vacuum chamber. Then, the pressure inside the outer packaging material is reduced to 10 Pa or less, and the opening is hermetically sealed by heat welding.

この時、外包材3は、表面保護層としてポリエチレンテレフタレートフィルム(12μm)、中間層にはアルミ箔(6μm)、熱溶着層として直鎖状低密度ポリエチレンフィルム(50μm)からなるラミネートフィルムにより構成している。   At this time, the outer packaging material 3 is composed of a laminated film composed of a polyethylene terephthalate film (12 μm) as a surface protective layer, an aluminum foil (6 μm) as an intermediate layer, and a linear low-density polyethylene film (50 μm) as a heat welding layer. ing.

また、吸着剤は、水分吸着剤として酸化カルシウムを適用している。   The adsorbent uses calcium oxide as a moisture adsorbent.

一方、芯材2は、ガラス繊維の集合体として平均繊維径3.5μmのグラスウールを所定密度になるまで積層したものを使用し、ガラス繊維の品温がガラス繊維の熱変形温度以上となる480℃にて5分間、加熱プレスすることで成形している。   On the other hand, the core material 2 is formed by laminating glass wool having an average fiber diameter of 3.5 μm as a glass fiber aggregate until a predetermined density is reached, and the temperature of the glass fiber is 480 or more, which is equal to or higher than the thermal deformation temperature of the glass fiber. It is molded by hot pressing at 5 ° C for 5 minutes.

併せて、図2は芯材成形工程のフローであり、(a)ガラス繊維集合体の成形、(b)加熱プレス、(c)冷却の3つの工程から構成される。更に、工程に沿って詳細に説明すると(a)ガラス繊維集合体の成形工程は、ガラス繊維を厚み方向に均一に積層配列させた集合体を成形する。この時、ガラス繊維集合体はその一部で繊維が絡み合っているため、アンカー効果的な作用からガラス繊維集合体に一体性が付与される。(b)加熱プレス工程は、ガラス繊維の熱変形温度以上の温度で加熱することで、ガラス繊維の集合体は加熱プレス時の形状へと熱変形する。その後、(c)冷却工程にて、プレス時の状態で熱変形したガラス繊維の集合体を冷却することで、ガラス繊維の集合体は塑性変形し加熱プレス時の形状が保持されたボード状芯材が成形できる。   2 shows a flow of a core material forming step, which includes three steps of (a) forming a glass fiber aggregate, (b) heating press, and (c) cooling. Further, a detailed description will be given along the steps. (A) In the step of forming a glass fiber aggregate, an aggregate in which glass fibers are uniformly laminated and arranged in the thickness direction is formed. At this time, since the fiber is entangled in a part of the glass fiber aggregate, the glass fiber aggregate is given an integrity from the effect of the anchor effect. (B) In the hot pressing step, the glass fiber aggregate is thermally deformed into a shape at the time of hot pressing by heating at a temperature equal to or higher than the thermal deformation temperature of the glass fiber. Thereafter, in a cooling step (c), the aggregate of glass fibers that has been thermally deformed in the pressing state is cooled, whereby the aggregate of glass fibers is plastically deformed and the shape of the board-shaped core that has been maintained during the hot pressing is maintained. Material can be molded.

よって、ガラス繊維の集合体からなる芯材は、繊維相互における結合材がなくとも、芯材を所定形状に保持することができる。図3は、上記方法にて作製した芯材表面の顕微鏡写真であるが、繊維相互間には結合材は存在していないことが判る。   Therefore, the core material made of the aggregate of glass fibers can hold the core material in a predetermined shape without any binder between the fibers. FIG. 3 is a micrograph of the surface of the core material produced by the above method, and it can be seen that there is no binder between the fibers.

なお、熱変形温度とは、ガラス繊維が軟化し、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度を指し、ガラス繊維の断面形状が大きく変化しない程度の軟化状態となる温度である。   The heat deformation temperature refers to a temperature at which the glass fiber softens and the glass fiber starts to slightly deform under its own weight, or a temperature at which the glass fiber can be deformed by a vertical load during pressing. This is a temperature at which the cross-sectional shape of the fiber is in a softened state that does not significantly change.

以上の方法で形成した真空断熱材1の熱伝導率を英弘精機製のオートラムダにて測定した。結果、熱伝導率は、平均温度24℃にて0.002W/mKであり、汎用的な硬質ウレタンフォームの10倍以上の断熱性能を有していた。   The thermal conductivity of the vacuum heat insulating material 1 formed by the above method was measured with an automatic lambda manufactured by Eiko Seiki. As a result, the thermal conductivity was 0.002 W / mK at an average temperature of 24 ° C., and had heat insulation performance 10 times or more that of a general-purpose rigid urethane foam.

このように、本構成により作製した真空断熱材は、優れた断熱性能を有している。これは、繊維相互の交点部には、バインダー成分や繊維からの溶出成分による結合材が存在しない。よって、従来、熱架橋として作用していた結着部位が存在しないことから、繊維相互の伝熱点数が低減することから芯材厚み方向の熱伝導が低減し、断熱性能が改善するものである。   As described above, the vacuum heat insulating material produced by this configuration has excellent heat insulating performance. This is because there is no binder due to the binder component or the component eluted from the fiber at the intersection of the fibers. Therefore, since there is no binding site conventionally acting as a thermal bridge, the number of heat transfer points between fibers is reduced, so that heat conduction in the thickness direction of the core material is reduced, and heat insulation performance is improved. .

更には、加熱プレス時におけるガラス繊維集合体の熱変形により、繊維が延伸する効果も期待できるため、ガラス繊維の積層配列がより一層改善されることで、繊維相互の熱抵抗が増大し、断熱性能が改善することも要因と考える。   Furthermore, since the effect of stretching the fibers due to the thermal deformation of the glass fiber aggregate at the time of hot pressing can also be expected, the lamination arrangement of the glass fibers is further improved, so that the thermal resistance between the fibers increases, and the heat insulation is increased. We also consider that the performance is improved.

加えて、バインダー成分を使用していないため、バインダー成分からの発生ガスも問題にならず、経時的に断熱性能の劣化が小さい真空断熱材を提供することができる。   In addition, since a binder component is not used, gas generated from the binder component does not pose a problem, and a vacuum heat insulating material with little deterioration in heat insulating performance over time can be provided.

また、芯材成形時にバインダー成分を使用する必要がないため、工数削減が可能となり効率的な芯材成形が可能となる。   Further, since it is not necessary to use a binder component at the time of molding the core material, the number of steps can be reduced, and efficient core material molding can be performed.

(実施の形態2)
以下、本発明の実施の形態2の真空断熱材について説明する。真空断熱材1は、芯材2の仕様を変更している以外は、実施の形態1と同様の方法にて成形した。
(Embodiment 2)
Hereinafter, the vacuum heat insulating material according to the second embodiment of the present invention will be described. The vacuum heat insulating material 1 was formed in the same manner as in Embodiment 1 except that the specifications of the core material 2 were changed.

芯材2は、ガラス繊維の集合体に含まれる結合材の有無、および芯材密度を変化させた場合の芯材物性と真空断熱材物性を評価した(表1)。また、比較として、ガラス繊維の集合体にバインダーや繊維からの溶出成分が結合材と作用している芯材における芯材物性と真空断熱材物性についても同様に評価した。   The core material 2 was evaluated for the presence or absence of a binder contained in the glass fiber aggregate, and the physical properties of the core material and the vacuum heat insulating material when the core material density was changed (Table 1). As a comparison, core material properties and vacuum heat insulating material properties of a core material in which a binder or a component eluted from a fiber acts as a binder in an aggregate of glass fibers were similarly evaluated.

Figure 0003580315
Figure 0003580315

結果、結合材を仕様しない本発明の構成における真空断熱材の熱伝導率は、平均温度24℃にて0.0018〜0.002W/mKであり、汎用的な硬質ウレタンフォームの10倍以上の断熱性能を有していた。   As a result, the thermal conductivity of the vacuum heat insulating material in the configuration of the present invention in which the binder is not specified is 0.0018 to 0.002 W / mK at an average temperature of 24 ° C., which is 10 times or more that of a general-purpose rigid urethane foam. It had heat insulation performance.

加えて、バインダー成分を使用していないため、バインダー成分からの発生ガスも問題にならず、経時的に断熱性能の劣化が小さい真空断熱材を提供することができる。   In addition, since a binder component is not used, gas generated from the binder component does not pose a problem, and a vacuum heat insulating material with little deterioration in heat insulating performance over time can be provided.

また、芯材成形時にバインダー成分を使用する必要がないため、工数削減が可能となり効率的な芯材成形が可能となる。   Further, since it is not necessary to use a binder component at the time of molding the core material, the number of steps can be reduced, and efficient core material molding can be performed.

(実施の形態3)
図4は、本発明の実施の形態3における冷凍冷蔵庫の断面図であり、保温保冷機器の一例として示すものである。
(Embodiment 3)
FIG. 4 is a cross-sectional view of a refrigerator-freezer according to Embodiment 3 of the present invention, which is shown as an example of a warming / cooling device.

図4は冷蔵庫41であり、冷蔵庫の筐体を形成する断熱箱体42と冷凍サイクルとからなる。断熱箱体42は、鉄板をプレス成形した外箱43と、ABS樹脂等を成形した内箱44とが、フランジ(図示せず)を介して構成している。前記断熱箱体42の内部には、予め真空断熱材1を配設し、真空断熱材1以外の空間部を、硬質ウレタンフォーム45にて発泡充填したものである。硬質ウレタンフォーム45は、発泡剤としてシクロペンタンを使用している。   FIG. 4 shows a refrigerator 41, which comprises a heat insulating box 42 forming a housing of the refrigerator and a refrigeration cycle. The heat insulation box 42 includes an outer box 43 formed by pressing an iron plate and an inner box 44 formed by molding ABS resin or the like via a flange (not shown). The heat insulating box 42 is provided with the vacuum heat insulating material 1 in advance, and the space other than the vacuum heat insulating material 1 is foam-filled with a hard urethane foam 45. The rigid urethane foam 45 uses cyclopentane as a blowing agent.

断熱箱体42は仕切り板46にて区切られており、上部が冷蔵室47、下部が冷凍室48となっている。仕切り板46には電動ダンパー49が、冷凍室48の内箱44には冷却用のファンモーター50とデフヒーター51が取付けられている。   The heat insulating box 42 is divided by a partition plate 46, and the upper part is a refrigerator compartment 47 and the lower part is a freezer compartment 48. An electric damper 49 is attached to the partition plate 46, and a fan motor 50 for cooling and a differential heater 51 are attached to the inner box 44 of the freezing compartment 48.

一方、冷凍サイクルは、蒸発器52、圧縮機53、凝縮器54、キャピラリチューブ55とを順次環状に接続しこれを形成している。なお、蒸発器52は冷蔵室47と冷凍室48の2カ所に設け、それらを直列に、また並列に繋ぎ冷凍サイクルを形成してもよい。   On the other hand, in the refrigerating cycle, an evaporator 52, a compressor 53, a condenser 54, and a capillary tube 55 are sequentially connected to form an annular shape. In addition, the evaporator 52 may be provided in two places of the refrigerating room 47 and the freezing room 48, and they may be connected in series or in parallel to form a refrigerating cycle.

また、冷蔵庫41にはドア体56が取付けられており、ドア体56の内部には真空断熱材1が配設され、真空断熱材1以外の空間部は硬質ウレタンフォーム45にて発泡充填されている。   Further, a door body 56 is attached to the refrigerator 41, the vacuum heat insulating material 1 is provided inside the door body 56, and a space other than the vacuum heat insulating material 1 is foam-filled with a hard urethane foam 45. I have.

なお、真空断熱材1は実施の形態1に示したものと同様の構成のものを用いている。   The vacuum heat insulating material 1 has the same configuration as that shown in the first embodiment.

このように構成された冷凍冷蔵庫は、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。 The refrigerator having the above-described structure has excellent heat insulation performance, which is 10 times or more that of the conventional rigid urethane foam, and thus achieves high heat insulation and contributes to energy saving .

また、真空断熱材の芯材は、結合材により結着していないため、結合材から生じるガス成分による内圧増加により、断熱性能の劣化を招くことないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。In addition, since the core material of the vacuum heat insulating material is not bound by the binder, the heat insulation performance does not deteriorate due to an increase in the internal pressure due to the gas component generated from the binder, and the heat insulation performance deteriorates with time. It is possible to continuously contribute to energy saving.

なお、本発明の保温保冷機器は、冷凍冷蔵庫、冷凍機器、野菜保冷庫、および米保冷庫等の作動温度帯である30℃から常温、更には自動販売機、給湯タンク等のより高温までの範囲で温冷熱を利用した機器を指す。また、電気機器に限ったものではなく、ガス機器なども含むものである。 Incidentally, heat insulation cold appliance of the present invention, refrigerators, refrigeration equipment, vegetables cold storage, and rice is the operating temperature range of the cool box, etc. - normal temperature 30 ° C., and more vending machines, to higher temperatures such as hot water tank Refers to equipment that uses thermal energy in the range of Further, the present invention is not limited to electric equipment, but also includes gas equipment and the like.

(実施の形態4)
図5は、本発明の実施の形態4における断熱ボードの斜視図である。
(Embodiment 4)
FIG. 5 is a perspective view of a heat insulating board according to Embodiment 4 of the present invention.

図5は断熱ボード59であり、実施の形態1に示した真空断熱材の芯材をそのまま断熱ボードとして適用している。   FIG. 5 shows a heat insulating board 59 in which the core material of the vacuum heat insulating material shown in the first embodiment is directly used as a heat insulating board.

この断熱ボードの断熱性能は、京都電子工業社製の熱流センサーで求めた熱流束から、熱伝導率を算出して求めた。結果、平均温度100℃にて0.04W/mK、150℃にて0.05W/mKと優れた断熱性能を有していることが判った。   The heat insulation performance of this heat insulation board was obtained by calculating the heat conductivity from the heat flux obtained by a heat flow sensor manufactured by Kyoto Electronics Industry Co., Ltd. As a result, it turned out that it has excellent heat insulation performance of 0.04 W / mK at an average temperature of 100 ° C. and 0.05 W / mK at an average temperature of 150 ° C.

なお、本構成の断熱ボードは、ガラス繊維の成形体であり、かつ有機系結合材を含まないため、ガラス繊維の耐熱温度である約400℃前後まで使用が可能であり、耐熱性に優れた高性能断熱ボードとして利用できる。また、ボード剛性も問題なく、取り扱い性に優れている。   In addition, the heat insulating board of this configuration is a molded body of glass fiber and does not contain an organic binder, so that it can be used up to about 400 ° C., which is the heat resistant temperature of glass fiber, and has excellent heat resistance. Can be used as a high-performance insulation board. Also, there is no problem in board rigidity, and the handleability is excellent.

更には、その構造がガラス繊維の積層体であるため粉落ちが少ないこと、結合材を全く含まないことから高温使用時の異臭やガス成分の発生といった問題が生じないという利点も併せて具備している。   In addition, it has the advantage that the structure is a laminate of glass fibers, so that there is little powder falling off, and since it does not contain any binder, there is no problem such as generation of off-flavors and gas components when used at high temperatures. ing.

以上のように、本発明にかかる真空断熱材は、芯材の固体成分の熱伝導を著しく低減し、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するものである。   As described above, the vacuum heat insulating material according to the present invention significantly reduces the heat conduction of the solid component of the core material, and has excellent heat insulating performance 10 times or more that of the conventional rigid urethane foam.

その結果、冷凍冷蔵庫および冷凍機器をはじめとした温冷熱を効率的に利用することが可能となり、あらゆる機器の省エネルギー化に貢献できる。更には、熱や冷熱から保護すべき物象などのあらゆる断熱、遮熱用途や、熱害対策用途等に適用できる。   As a result, it is possible to efficiently use hot and cold heat, including refrigerators and refrigerators, and to contribute to energy saving of all devices. Further, the present invention can be applied to all kinds of heat insulation, heat shielding use, heat damage countermeasure use, and the like of objects to be protected from heat and cold.

また、本発明の真空断熱材の芯材は、耐熱性に優れた高性能な断熱ボードとしても適用できる。   Further, the core material of the vacuum heat insulating material of the present invention can also be applied as a high-performance heat insulating board having excellent heat resistance.

本発明の実施の形態1における真空断熱材の断面模式図Sectional schematic view of the vacuum heat insulating material according to Embodiment 1 of the present invention. 本発明の実施の形態1における真空断熱材の芯材の成形の工程を示す工程図Process drawing showing a process of forming a core material of a vacuum heat insulating material according to Embodiment 1 of the present invention. 本発明の実施の形態1における芯材の顕微鏡写真Photomicrograph of core material according to Embodiment 1 of the present invention 本発明の実施の形態3における冷凍冷蔵庫の断面図Sectional view of a refrigerator-freezer according to Embodiment 3 of the present invention. 本発明の実施の形態4における断熱ボードの斜視図4 is a perspective view of a heat insulating board according to Embodiment 4 of the present invention. 特許文献1における芯材の交点の概略図Schematic diagram of the intersection of the core material in Patent Document 1

符号の説明Explanation of reference numerals

1 真空断熱材
2 芯材
3 外包材
41 冷蔵庫
59 断熱ボード
DESCRIPTION OF SYMBOLS 1 Vacuum insulation material 2 Core material 3 Outer packaging material 41 Refrigerator 59 Insulation board

Claims (8)

ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材において、前記芯材は、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形されてガラス繊維の熱変形により繊維が延伸されており、かつ、繊維相互の結着でなく、ガラス繊維の一部が繊維相互間で絡み合って形状を保持している真空断熱材。 A vacuum heat insulating material comprising: a core material made of a glass fiber laminate in which glass fibers are laminated in a thickness direction ; and an outer packaging material having a gas barrier property for covering the core material. In the core material , the temperature at which the fiber starts to be slightly deformed by its own weight of the glass fiber , or the temperature at which the glass fiber can be deformed by the load from the vertical direction at the time of pressing, the cross-sectional shape of the glass fiber is large At a temperature that does not change, the fibers are stretched due to thermal deformation of the glass fibers due to pressure molding , and some of the glass fibers are not tied to each other but are entangled between the fibers to maintain the shape Has vacuum insulation. ガラス繊維が、グラスウールである請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the glass fiber is glass wool . 芯材が、ガラス繊維相互を結着する結合材を含まない請求項1または2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 , wherein the core material does not include a binding material that binds the glass fibers to each other . ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材において、前記芯材は、ガラス繊維相互を結着する結合材を含み、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形されてガラス繊維の熱変形により繊維が延伸されており、かつ、ガラス繊維の一部が繊維相互間で絡み合って形状を保持している真空断熱材。 A vacuum heat insulating material comprising: a core material made of a glass fiber laminate in which glass fibers are laminated in a thickness direction ; and an outer packaging material having a gas barrier property for covering the core material. In the above, the core material includes a binder for binding the glass fibers to each other, and the glass fibers can be deformed by the temperature at which the fibers start to slightly deform due to the weight of the glass fibers, or by the load from the vertical direction at the time of pressing. The temperature is such that the cross-sectional shape of the glass fiber does not change significantly, and the fiber is stretched due to the thermal deformation of the glass fiber under pressure, and a part of the glass fiber is entangled between the fibers. Vacuum insulation material that keeps its shape together . 請求項1から4のいずれか一項に記載の真空断熱材を具備する保温保冷機器。A heat insulation / cooling device comprising the vacuum heat insulating material according to claim 1. 請求項1から3のいずれか一項に記載の真空断熱材の芯材からなる断熱ボード。A heat insulating board comprising the core material of the vacuum heat insulating material according to claim 1. ガラス繊維を厚み方向に積層配列させて一部で繊維が絡まっているガラス繊維集合体を成形し、次に、前記ガラス繊維集合体を、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加熱プレスして、加熱プレス時の形状へと熱変形させ、その後、加熱プレス時の状態で熱変形したガラス繊維集合体を冷却することにより、加熱プレス時の形状が保持されて厚み方向における拘束性と一体性が強化されたボード状芯材をつくり、次に前記芯材を乾燥させた後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材に挿入し、その後、外包材内部を減圧し開口部を熱溶着により密閉封止する真空断熱材の製造方法。The glass fibers are laminated and arranged in the thickness direction to form a glass fiber aggregate in which fibers are partially entangled, and then the glass fiber aggregate is heated at a temperature at which the fibers start to slightly deform due to the weight of the glass fibers, Alternatively, heat-press at a temperature at which the glass fiber can be deformed by applying a load from the vertical direction during pressing, but do not significantly change the cross-sectional shape of the glass fiber, and thermally deform to the shape at the time of hot pressing. Then, by cooling the glass fiber aggregate thermally deformed in the state of the hot press, the shape of the hot press is maintained, and a board-shaped core material with enhanced restraint and integrity in the thickness direction is formed. Then, after drying the core material, three sides of the laminated film are sealed by heat welding and inserted into a bag-shaped outer packaging material, and then the inside of the outer packaging material is depressurized and the opening is thermally welded. Manufacturing method of the vacuum heat insulating material for hermetic seal. 加熱プレスは、480℃にして5分間行う請求項7記載の真空断熱材の製造方法。The method according to claim 7, wherein the heating press is performed at 480 ° C. for 5 minutes.
JP2004027650A 2004-02-04 2004-02-04 Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board Expired - Lifetime JP3580315B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004027650A JP3580315B1 (en) 2004-02-04 2004-02-04 Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board
CN2005100064574A CN1657282A (en) 2004-02-04 2005-02-01 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
US10/595,081 US7638181B2 (en) 2004-02-04 2005-02-02 Vacuum heat insulator and hot insulation/cold insulation apparatus incorporating the vacuum insulator
KR1020067002899A KR20060032656A (en) 2004-02-04 2005-02-02 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
PCT/JP2005/001874 WO2005075878A1 (en) 2004-02-04 2005-02-02 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
CA002539448A CA2539448C (en) 2004-02-04 2005-02-02 Vacuum heat insulator, manufacturing method of the same, hot-insulation cold-insulation apparatus having the same, and heat insulation board
EP05709926.9A EP1653146B1 (en) 2004-02-04 2005-02-02 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027650A JP3580315B1 (en) 2004-02-04 2004-02-04 Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board

Publications (2)

Publication Number Publication Date
JP3580315B1 true JP3580315B1 (en) 2004-10-20
JP2005220954A JP2005220954A (en) 2005-08-18

Family

ID=33411195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027650A Expired - Lifetime JP3580315B1 (en) 2004-02-04 2004-02-04 Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board

Country Status (1)

Country Link
JP (1) JP3580315B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846371B2 (en) 2005-06-07 2010-12-07 Mag Co., Ltd. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
WO2012035671A1 (en) 2010-09-17 2012-03-22 富士電機株式会社 Vacuum insulation material and method for producing same
JP2015052337A (en) * 2013-09-06 2015-03-19 三菱電機株式会社 Vacuum heat insulation material, heat insulation box, and method of manufacturing vacuum heat insulation material
CN105840957A (en) * 2014-08-07 2016-08-10 三菱电机株式会社 Vacuum heat insulation material, manufacturing apparatus for vacuum heat insulation material and heat insulation box using vacuum heat insulation material
CN105992902A (en) * 2014-02-03 2016-10-05 三菱电机株式会社 Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
US9664330B2 (en) 2011-08-30 2017-05-30 Fuji Electric Co., Ltd. Method for producing vacuum insulation material
US10001320B2 (en) 2014-12-26 2018-06-19 Samsung Electronics Co., Ltd. Laminated structure and vacuum insulating material including the same
CN112092471A (en) * 2020-09-22 2020-12-18 南通远顺耐纤有限公司 Staggered overlapped VIP glass fiber core material
WO2021095391A1 (en) * 2019-11-14 2021-05-20 三菱電機株式会社 Method of manufacturing heat insulation member, heat insulation member, cooling device using heat insulation member, and method of manufacturing cooling device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015323A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
JP5218485B2 (en) * 2010-07-13 2013-06-26 東芝ホームテクノ株式会社 Insulation
EP2873902B1 (en) 2012-07-12 2017-09-27 Kcc Corporation Vacuum insulation panel including annealed binderless glass fiber
JP2016080063A (en) * 2014-10-16 2016-05-16 日立アプライアンス株式会社 Process of manufacture of vacuum heat insulation material and refrigerator using this vacuum heat insulation material
JP7109001B2 (en) * 2018-06-18 2022-07-29 マグ・イゾベール株式会社 Molded article containing glass fiber, heat insulating material containing the molded article, and method for manufacturing the molded article

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45450E1 (en) 2005-06-07 2015-04-07 Mag-Isover K.K. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
US7846371B2 (en) 2005-06-07 2010-12-07 Mag Co., Ltd. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
WO2012035671A1 (en) 2010-09-17 2012-03-22 富士電機株式会社 Vacuum insulation material and method for producing same
JP2012062987A (en) * 2010-09-17 2012-03-29 Fuji Electric Co Ltd Vacuum insulation material and method for producing the same
CN103210250A (en) * 2010-09-17 2013-07-17 富士电机株式会社 Vacuum insulation material and method for producing same
CN103210250B (en) * 2010-09-17 2015-07-22 富士电机株式会社 Vacuum insulation material and method for producing same
US9664330B2 (en) 2011-08-30 2017-05-30 Fuji Electric Co., Ltd. Method for producing vacuum insulation material
JP2015052337A (en) * 2013-09-06 2015-03-19 三菱電機株式会社 Vacuum heat insulation material, heat insulation box, and method of manufacturing vacuum heat insulation material
KR20160020535A (en) 2013-09-06 2016-02-23 미쓰비시덴키 가부시키가이샤 Vacuum insulation material, insulated box, and method for producing vacuum insulation material
CN105992902B (en) * 2014-02-03 2018-06-26 三菱电机株式会社 The manufacturing method of vacuum heat insulation materials
CN105992902A (en) * 2014-02-03 2016-10-05 三菱电机株式会社 Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
CN105840957A (en) * 2014-08-07 2016-08-10 三菱电机株式会社 Vacuum heat insulation material, manufacturing apparatus for vacuum heat insulation material and heat insulation box using vacuum heat insulation material
CN105840957B (en) * 2014-08-07 2018-09-28 三菱电机株式会社 Vacuumed insulation panel and its manufacturing device and the hot box for having used Vacuumed insulation panel
US10001320B2 (en) 2014-12-26 2018-06-19 Samsung Electronics Co., Ltd. Laminated structure and vacuum insulating material including the same
WO2021095391A1 (en) * 2019-11-14 2021-05-20 三菱電機株式会社 Method of manufacturing heat insulation member, heat insulation member, cooling device using heat insulation member, and method of manufacturing cooling device
JPWO2021095391A1 (en) * 2019-11-14 2021-05-20
JP7374207B2 (en) 2019-11-14 2023-11-06 三菱電機株式会社 Method for manufacturing a heat insulating member, heat insulating member, cooling equipment using the heat insulating member, and method for manufacturing the cooling equipment
CN112092471A (en) * 2020-09-22 2020-12-18 南通远顺耐纤有限公司 Staggered overlapped VIP glass fiber core material

Also Published As

Publication number Publication date
JP2005220954A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
CA2539448C (en) Vacuum heat insulator, manufacturing method of the same, hot-insulation cold-insulation apparatus having the same, and heat insulation board
JP3580315B1 (en) Vacuum heat insulating material and method for manufacturing the same, heat insulating / cooling device equipped with the vacuum heat insulating material, and heat insulating board
US6938968B2 (en) Vacuum insulating material and device using the same
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP5162377B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
KR20030007544A (en) Heat insulation box, and vacuum heat insulation material used therefor
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
CN204114473U (en) Vacuum heat insulation material and hot box
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4797387B2 (en) Insulator and refrigeration / refrigeration equipment or refrigeration equipment
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2012225389A (en) Method of manufacturing vacuum heat insulator, vacuum heat insulator, and refrigerator equipped with the same
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2004251304A (en) Manufacturing method for vacuum insulator, vacuum insulator, insulating box body and insulation appliance using the vacuum insulator
JP2005273696A (en) Vacuum heat insulating material, heat-retaining and cold-keeping apparatus equipped with vacuum insulating material, and heat insulating board
JP3488229B2 (en) Insulated box and refrigerator
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2004251303A (en) Vacuum heat insulation material, freezing and cooling devices using vacuum heat insulation material
JP3527727B2 (en) Vacuum insulation material and equipment using the vacuum insulation material
JP2005351438A (en) Glass wool board, vacuum thermal insulation material, and equipment using glass wool board and vacuum thermal insulation material
JP4449630B2 (en) VACUUM INSULATOR AND REFRIGERATOR HAVING VACUUM INSULATOR
JP2019138531A (en) refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R151 Written notification of patent or utility model registration

Ref document number: 3580315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 10

EXPY Cancellation because of completion of term