WO2022071425A1 - Battery cover - Google Patents

Battery cover Download PDF

Info

Publication number
WO2022071425A1
WO2022071425A1 PCT/JP2021/035946 JP2021035946W WO2022071425A1 WO 2022071425 A1 WO2022071425 A1 WO 2022071425A1 JP 2021035946 W JP2021035946 W JP 2021035946W WO 2022071425 A1 WO2022071425 A1 WO 2022071425A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cover
side wall
layer
heat
Prior art date
Application number
PCT/JP2021/035946
Other languages
French (fr)
Japanese (ja)
Inventor
誠 甲斐
拓道 齋藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022071425A1 publication Critical patent/WO2022071425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cover.
  • a side wall covering the side surface of the battery is provided, and the side wall includes a porous layer having heat insulating properties and a protective layer arranged on one side and the other side in the thickness direction of the porous layer.
  • a battery cover has been proposed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a battery cover capable of improving heat insulation while suppressing an increase in thickness.
  • heat is transferred between a heat insulating layer having a first portion and a second portion separated from the first portion, and the first portion and the second portion, and the thermal conductivity is increased.
  • It includes a battery cover having a heat transfer layer higher than that of the heat insulating layer and having a thermal conductivity of 0.5 W / (m ⁇ K) or more of the heat transfer layer.
  • the heat of the first portion is separated from the first portion by the heat transfer layer. It can be efficiently communicated to the second part.
  • the heat from the heat source can be suppressed from being transferred to the battery by transferring the heat of the first part to the second part.
  • the present invention [2] includes the battery cover of the above [1] in which the heat transfer layer is made of metal.
  • the heat insulating property of the battery cover can be further improved.
  • the present invention [3] includes the battery cover of the above [1] or [2] in which the thickness of the heat insulating layer is 1 mm or more.
  • the present invention [4] includes a battery cover according to any one of the above [1] to [3], which is removable from the battery.
  • the present invention [5] includes the battery cover of the above [4], which is a side wall covering the side surface of the battery and includes a side wall having the heat insulating layer and the heat transfer layer.
  • the present invention [6] provides a sealing member in which the side wall faces the side surface of the battery at a distance, and the battery cover seals between the edge of the side wall and the side surface of the battery. Further, the battery cover of the above [5] is included.
  • the air heated by the heat source can be suppressed from entering between the battery cover and the battery by the sealing member.
  • the present invention [7] includes the battery cover of the above [5] or [6] in which the heat transfer layer is arranged between the side surface of the battery and the heat insulating layer.
  • the heat insulating property of the battery cover can be further improved.
  • the present invention [8] includes a battery cover according to any one of [4] to [7], wherein the first portion is arranged between a heat source arranged away from the battery and the battery. ..
  • the heat of the first portion heated by the heat source can be transferred to the second portion away from the first portion by the heat transfer layer. ..
  • the heat from the heat source can be suppressed from being transferred to the battery by transferring the heat of the first part to the second part.
  • the present invention includes the battery cover of the above [8] in which the distance between the second portion and the heat source is longer than the distance between the first portion and the heat source.
  • the heat of the first part can be transferred to the second part away from the heat source.
  • the present invention [10] includes any one of the battery covers [4] to [9], wherein the second portion is arranged on the opposite side of the first portion with respect to the battery.
  • the heat of the first part can be transferred to the opposite side of the first part to the battery.
  • the battery cover of the present invention it is possible to improve the heat insulating property while suppressing the increase in thickness.
  • FIG. 1 is a perspective view of a battery to which a battery cover as an embodiment of the present invention is attached.
  • FIG. 2 is a perspective view of the battery shown in FIG.
  • FIG. 3 is a perspective view of the battery cover shown in FIG.
  • FIG. 4 is an explanatory diagram for explaining the positional relationship between the battery cover and the heat source.
  • FIG. 5 shows a first modification of the battery cover.
  • FIG. 6 shows a second modification of the battery cover.
  • FIG. 7 shows a third modification of the battery cover.
  • FIG. 8 shows a fourth modification of the battery cover.
  • FIG. 9 shows a fifth modification of the battery cover.
  • FIG. 10 shows a sixth modification of the battery cover.
  • FIG. 11 shows a seventh modification of the battery cover.
  • FIG. 12 shows an eighth modification of the battery cover.
  • FIG. 5 shows a first modification of the battery cover.
  • FIG. 6 shows a second modification of the battery cover.
  • FIG. 7 shows a third modification of the battery cover.
  • FIG. 13 shows a ninth modification of the battery cover.
  • FIG. 14 shows a tenth modification of the battery cover.
  • FIG. 15 shows an eleventh modification of the battery cover.
  • FIG. 16A is an explanatory diagram for explaining the configuration of the heat insulating property evaluation device.
  • FIG. 16B is an explanatory diagram illustrating points for measuring the temperature of the heat insulating layer and the temperature of the resin plate in the evaluation device of FIG. 16A.
  • FIG. 17A is an explanatory diagram for explaining a method for evaluating the heat insulating properties of Examples and Comparative Examples shown in Table 2.
  • FIG. 17B is an explanatory diagram for explaining a method for evaluating the heat insulating properties of Examples and Comparative Examples shown in Table 3.
  • the battery cover 1 as an embodiment of the present invention is attached to the battery 100.
  • the battery cover 1 attached to the battery 100 is removable from the battery 100. That is, the battery cover 1 is removable from the battery 100.
  • the battery 100 is a lead storage battery.
  • the battery 100 is not limited to a lead storage battery, and may be a secondary battery such as a lithium ion secondary battery.
  • the battery 100 has a substantially rectangular parallelepiped shape.
  • the battery 100 includes a battery case 101, a lid 102, a positive electrode plate (not shown), a negative electrode plate (not shown), a positive electrode terminal 103 as an example of a terminal, and a negative electrode terminal 104 as an example of a terminal. To prepare for.
  • the battery case 101 has an opening (not shown). The opening is arranged at one end of the battery case 101 in the first direction.
  • the battery case 101 houses a positive electrode plate, a negative electrode plate, and an electrolyte.
  • the battery case 101 may accommodate a plurality of cells.
  • the lid 102 is attached to one end of the battery case 101 in the first direction.
  • the lid 102 closes the opening of the battery case 101.
  • the positive electrode terminal 103 and the negative electrode terminal 104 are attached to the lid 102.
  • the positive electrode terminal 103 is electrically connected to the positive electrode plate.
  • the negative electrode terminal 104 is electrically connected to the negative electrode plate.
  • the negative electrode terminal 104 is arranged at a distance from the positive electrode terminal 103 in the second direction. The second direction is orthogonal to the first direction.
  • the battery 100 has a first surface S1, a second surface S2, and a side surface S3.
  • the first surface S1 is the upper outer surface of the lid 102.
  • the positive electrode terminal 103 and the negative electrode terminal 104 are arranged on the first surface S1.
  • the second surface S2 is the lower outer surface of the battery case 101.
  • the second surface S2 is separated from the first surface S1 in the first direction.
  • the side surface S3 is a side surface of the battery case 101.
  • the side surface S3 is arranged between the first surface S1 and the second surface S2 in the first direction.
  • the side surface S3 extends in the first direction.
  • the side surface S3 includes a first side surface S31, a second side surface S32, a third side surface S33, and a fourth side surface S34.
  • the first side surface S31 is the outer surface of one side of the battery case 101 in the third direction.
  • the third direction is orthogonal to the first and second directions.
  • the first side surface S31 extends in the first direction and the second direction.
  • the second side surface S32 is the outer surface of the other side of the battery case 101 in the third direction.
  • the second side surface S32 extends in the first direction and the second direction.
  • the third side surface S33 is the outer surface of one side of the battery case 101 in the second direction.
  • the third side surface S33 extends in the first direction and the third direction.
  • One end of the third side surface S33 in the third direction is connected to one end of the first side surface S31 in the second direction.
  • the other end of the third side surface S33 in the third direction is connected to one end of the second side surface S32 in the second direction.
  • the fourth side surface S34 is the outer surface of the other side of the battery case 101 in the second direction.
  • the fourth side surface S34 extends in the first direction and the third direction.
  • One end of the fourth side surface S34 in the third direction is connected to the other end of the first side surface S31 in the second direction.
  • the other end of the fourth side surface S34 in the third direction is connected to the other end of the second side surface S32 in the second direction.
  • the battery cover 1 covers the outer surface of the battery 100. With the battery cover 1 attached to the battery 100, the battery cover 1 suppresses the transfer of ambient heat to the battery 100.
  • the battery cover 1 may expose a part of the outer surface of the battery 100.
  • the battery cover 1 covers the side surface S3 of the battery 100 and exposes the first surface S1 and the second surface S2 (see FIG. 2) of the battery 100. do.
  • the battery cover 1 surrounds the battery 100.
  • the battery cover 1 has a tubular shape.
  • the battery cover 1 extends in the first direction.
  • the battery cover 1 includes a side wall 2.
  • the battery cover 1 includes only the side wall 2.
  • the side wall 2 covers the side surface S3 of the battery 100.
  • the side wall 2 includes a first side wall 2A, a second side wall 2B, a third side wall 2C, and a fourth side wall 2D.
  • the first side wall 2A is arranged at one end of the battery cover 1 in the third direction.
  • the first side wall 2A extends in the first direction and the second direction.
  • the first side wall 2A has a flat plate shape. With the battery cover 1 attached to the battery 100, the first side wall 2A covers the first side surface S31 (see FIG. 2) of the battery 100.
  • the second side wall 2B is arranged at the other end of the battery cover 1 in the third direction.
  • the second side wall 2B is arranged at a distance from the first side wall 2A in the third direction.
  • the second side wall 2B With the battery cover 1 attached to the battery 100, the second side wall 2B is arranged on the opposite side of the first side wall 2A with respect to the battery 100 in the third direction.
  • the second side wall 2B extends in the first direction and the second direction.
  • the second side wall 2B has a flat plate shape. With the battery cover 1 attached to the battery 100, the second side wall 2B covers the second side surface S32 (see FIG. 2) of the battery 100.
  • the third side wall 2C is arranged at one end of the battery cover 1 in the second direction.
  • the third side wall 2C extends in the first direction and the third direction.
  • the third side wall 2C has a flat plate shape. With the battery cover 1 attached to the battery 100, the third side wall 2C covers the third side surface S33 (see FIG. 2) of the battery 100.
  • One end of the third side wall 2C in the third direction is connected to one end of the first side wall 2A in the second direction.
  • the other end of the third side wall 2C in the third direction is connected to one end of the second side wall 2B in the second direction.
  • the fourth side wall 2D is arranged at the other end of the battery cover 1 in the second direction.
  • the fourth side wall 2D is arranged at a distance from the third side wall 2C in the second direction.
  • the fourth side wall 2D With the battery cover 1 attached to the battery 100, the fourth side wall 2D is arranged in the second direction on the opposite side of the third side wall 2C with respect to the battery 100.
  • the fourth side wall 2D extends in the first direction and the third direction.
  • the fourth side wall 2D has a flat plate shape.
  • the fourth side wall 2D covers the fourth side surface S34 (see FIG. 2) of the battery 100.
  • One end of the fourth side wall 2D in the third direction is connected to the other end of the first side wall 2A in the second direction.
  • the other end of the fourth side wall 2D in the third direction is connected to the other end of the second side wall 2B in the second direction.
  • the side wall 2 has an inner surface S11, an outer surface S12, and edges 3A and 3B.
  • the inner surface S11 faces the side surface S3 of the battery 100 at a distance in the thickness direction of the side wall 2.
  • the side wall 2 faces the side surface S3 of the battery 100 at a distance.
  • the "thickness direction” is the third direction.
  • the "thickness direction” is the second direction.
  • the outer surface S12 is arranged on the opposite side of the side surface S3 (see FIG. 2) of the battery 100 with respect to the inner surface S11 in the thickness direction.
  • the edge 3A is arranged at one end (upper end) of the battery cover 1 in the first direction.
  • the edge 3A extends over the entire circumference of the battery cover 1.
  • the edge 3B is arranged at a distance from the edge 3A in the first direction.
  • the edge 3B is arranged at the other end (lower end) of the battery cover 1 in the first direction.
  • the edge 3B extends over the entire circumference of the battery cover 1 in the same manner as the edge 3A.
  • the battery cover 1 includes a first surface layer 11, a second surface layer 12, a heat insulating layer 13, a heat transfer layer 14, and sealing members 15A and 15B.
  • the side wall 2 has a first surface layer 11, a second surface layer 12, a heat insulating layer 13, and a heat transfer layer 14.
  • the first surface layer 11 is the innermost layer of the side wall 2 in the thickness direction. With the battery cover 1 attached to the battery 100, in the thickness direction, the first surface layer 11 is between the side surface S3 of the battery 100 and the heat insulating layer 13, or between the side surface S3 of the battery 100 and the heat transfer layer 14. Placed in between. The first surface layer 11 protects the heat insulating layer 13 and the heat transfer layer 14 inside in the thickness direction. The first surface layer 11 is arranged on the entire side wall 2. With the battery cover 1 attached to the battery 100, the first surface layer 11 faces the side surface S3 of the battery 100 at a distance. The first surface layer 11 has an inner surface S11.
  • Examples of the material of the first surface layer 11 include non-woven fabric, woven fabric, plastic sheet and plastic film.
  • Non-woven fabrics and woven fabrics examples include natural fibers and chemical fibers. Natural fibers include, for example, cotton, hemp, pulp, wool, silk and mineral fibers. Examples of the chemical fiber include polyester fiber, polyethylene fiber, polypropylene fiber, nylon fiber, aramid fiber, acrylic fiber, vinylon fiber, rayon and glass fiber.
  • the non-woven fabric and the woven fabric may consist of a single type of fiber or may consist of a plurality of types of fibers.
  • thermosetting resin examples include polyester resin, polyurethane resin and polycarbonate resin.
  • thermoplastic resin examples include polyolefin resins, polyvinyl chloride and styrene-butadiene rubber.
  • the plastic sheet and the plastic film may be made of a single kind of resin or may be made of a plurality of kinds of resins.
  • the first surface layer 11 is preferably made of a non-woven fabric.
  • the material of the non-woven fabric is preferably chemical fiber, more preferably polyester fiber and polypropylene fiber, and even more preferably polyethylene terephthalate (PET) fiber and.
  • PET polyethylene terephthalate
  • Polypropylene fiber can be mentioned.
  • the heat resistance of the first surface layer 11 can be improved.
  • the first surface layer 11 contains polypropylene fibers
  • the first surface layer 11 can be easily heat-welded to the second surface layer 12.
  • both the heat resistance of the first surface layer 11 and the heat welding property of the first surface layer 11 to the heat insulating layer 13 or the second surface layer 12 can be achieved at the same time.
  • the method for manufacturing the non-woven fabric is not limited.
  • Examples of the method for producing a nonwoven fabric include a fleece forming method and a fleece bonding method.
  • Examples of the fleece forming method include a dry method, a wet method, a spunbond method and a melt blow method.
  • Examples of the fleece bonding method include a thermal bond method, a chemical bond method, a stitch bond method, a needle punch method, a spunlace method and a steam jet method.
  • the non-woven fabric may be impregnated with resin.
  • the resin impregnated in the non-woven fabric is not limited.
  • Examples of the resin impregnated in the non-woven fabric include thermosetting resin and thermoplastic resin.
  • Examples of the thermosetting resin include phenol resin and resilcinol resin.
  • Examples of the thermoplastic resin include vinyl acetate-based resins and olefin-based resins.
  • Examples of the vinyl acetate resin include ethylene vinyl acetate (EVA).
  • Examples of the olefin resin include amorphous polyolefin (APAO).
  • the nonwoven fabric may be a laminate of a resin layer and a fiber layer.
  • the resin layer include the above-mentioned layer made of vinyl acetate resin.
  • the fiber layer include the above-mentioned layer made of a non-woven fabric and a woven material.
  • vinyl acetate-based resin, polyester fiber (more specifically, polyethylene terephthalate fiber), and polypropylene fiber are vinyl acetate-based resin (resin layer), polyester fiber (fiber layer), polypropylene fiber (fiber layer).
  • the thickness of the first surface layer 11 is thinner than the thickness of the heat insulating layer 13.
  • the thickness of the first surface layer 11 is, for example, 0.01 mm or more, preferably 0.1 mm or more, and for example, 10.0 mm or less, preferably 5.0 mm or less.
  • the second surface layer 12 is the outermost layer of the side wall 2 in the thickness direction.
  • the second surface layer 12 is arranged on the opposite side of the first surface layer 11 with respect to the heat insulating layer 13 in the thickness direction.
  • the second surface layer 12 protects the heat insulating layer 13 on the outside in the thickness direction.
  • the second surface layer 12 is arranged on the opposite side of the side surface S3 of the battery 100 with respect to the first surface layer 11 in the thickness direction.
  • the second surface layer 12 is arranged on the entire side wall 2.
  • the second surface layer 12 has an outer surface S12. At edges 3A and 3B, the second surface layer 12 is adhered to the first surface layer 11.
  • the second surface layer 12 may be made of the same material as the first surface layer 11, or may be made of a material different from that of the first surface layer 11.
  • the thickness of the second surface layer 12 is thinner than the thickness of the heat insulating layer 13.
  • the thickness of the second surface layer 12 is, for example, 0.01 mm or more, preferably 0.1 mm or more, and for example, 10.0 mm or less, preferably 5.0 mm or less.
  • the thickness of the second surface layer 12 may be the same as the thickness of the first surface layer 11 or may be different from the thickness of the first surface layer 11.
  • the insulation layer 13 is arranged between the first surface layer 11 and the second surface layer 12 in the thickness direction.
  • the heat insulating layer 13 is provided on the entire side wall 2.
  • the heat insulating layer 13 is made of a heat insulating material.
  • Examples of the heat insulating material include foam-based heat insulating materials, fiber-based heat insulating materials, and resin-based heat insulating materials.
  • Examples of the foam-based heat insulating material include urethane foam, phenol foam, polyethylene foam and polystyrene foam.
  • Examples of the fiber-based heat insulating material include glass wool, rock wool, a non-woven fabric containing silica airgel, and cellulose fiber.
  • Examples of the resin-based heat insulating material include plastic corrugated cardboard.
  • the heat insulating layer 13 is preferably made of a foam-based heat insulating material or a resin-based heat insulating material, more preferably a foam-based heat insulating material, and more preferably urethane foam or phenol foam.
  • the thermal conductivity of the heat insulating layer 13 is 0.045 W / (m ⁇ K) or less, preferably 0.043 W / (m ⁇ K) or less, more preferably 0.040 W / (m ⁇ K) or less, and further. It is preferably 0.035 W / (m ⁇ K) or less, more preferably 0.033 W / (m ⁇ K) or less, still more preferably 0.030 W / (m ⁇ K) or less, for example, 0. It is 015 W / (m ⁇ K) or more. Thermal conductivity is measured by the hot wire method (probe method) in accordance with JIS R 2616: 2001 or ASTM D 5930.
  • the thermal conductivity is measured at room temperature using a rapid thermal conductivity meter (manufactured by Kyoto Electronics Industry Co., Ltd., trade name "QTM-500").
  • the thermal conductivity of the heat insulating layer 13 is a main factor that affects the heat insulating property of the battery cover 1.
  • the heat insulating property of the battery cover 1 can be evaluated by the method described in Examples described later.
  • the thermal conductivity of the heat transfer layer 14 described later the air permeability of the heat insulating layer 13, and the air permeability of the sealing members 15A and 15B. If the air permeability of the heat insulating layer 13 is excessively high, it becomes difficult for the battery cover 1 to block the high temperature airflow, so that the heat insulating property of the battery cover 1 tends to decrease.
  • the air permeability can be measured by the B method defined by JIS K 6400-7: 2012 for foams and by the Frazier method defined by JIS L 1913: 2010 for non-woven fabrics.
  • the air permeability of the heat insulating layer 13 is, for example, 160 ml / cm 2 / sec or less, preferably 100 ml / cm 2 / sec or less, and more preferably 75 ml / cm 2 / sec or less.
  • the air permeability of the heat insulating layer 13 is not more than the above upper limit value, it is possible to suppress the deterioration of the heat insulating property of the battery cover 1.
  • the heat insulating layer 13 is harder than the sealing members 15A and 15B.
  • the 50% compression hardness of the heat insulating layer 13 is higher than the 50% compression hardness of the sealing members 15A and 15B.
  • the 50% compression hardness is measured according to JIS K 6767: 1999. Specifically, the dimensions (width x length) of the test piece used for measuring the 50% compression hardness are 100 mm x 100 mm.
  • the 50% compression hardness is measured immediately after the test piece is placed between the parallel flat plates of the tester, compressed at a compression rate of 5 mm / min by 50% of the initial thickness and stopped, and the compression is stopped. It is calculated by the following formula based on the applied load P.
  • the 50% compression hardness of the heat insulating layer 13 is, for example, 10.0 kPa or more, preferably 11.0 kPa or more, and more preferably 12.0 kPa or more.
  • the upper limit of the 50% compressive hardness of the heat insulating layer 13 is not limited as long as the heat insulating layer 13 can be formed by hot pressing.
  • the thickness of the heat insulating layer 13 is, for example, 1 mm or more, preferably 3 mm or more, and more preferably 5 mm or more. When the thickness of the heat insulating layer 13 is at least the above lower limit value, the heat insulating property of the battery cover 1 can be ensured.
  • the thickness of the heat insulating layer 13 is, for example, 25 mm or less, preferably 20 mm or less. When the thickness of the heat insulating layer 13 is not more than the above upper limit value, it is possible to prevent the battery cover 1 from becoming excessively large.
  • the heat transfer layer 14 is arranged between the first surface layer 11 and the heat insulating layer 13 in the thickness direction. With the battery cover 1 attached to the battery 100, the heat transfer layer 14 is arranged between the side surface S3 of the battery 100 and the heat insulating layer 13. The heat transfer layer 14 comes into contact with the heat insulating layer 13.
  • the heat transfer layer 14 extends in a direction orthogonal to the thickness direction.
  • the heat transfer layer 14 transfers heat between the first side wall 2A and the second side wall 2B through the third side wall 2C and the fourth side wall 2D.
  • the heat transfer layer 14 has a first heat transfer layer 14A, a second heat transfer layer 14B, and a third heat transfer layer 14C.
  • the first heat transfer layer 14A is arranged on the first side wall 2A.
  • the first heat transfer layer 14A extends in the second direction.
  • the second heat transfer layer 14B is arranged on the third side wall 2C.
  • the second heat transfer layer 14B is connected to one end of the first heat transfer layer 14A in the second direction.
  • the second heat transfer layer 14B extends in the third direction.
  • the second heat transfer layer 14B extends closer to the second side wall 2B than the center of the third side wall 2C in the third direction.
  • the second heat transfer layer 14B may extend to the second side wall 2B.
  • the third heat transfer layer 14C is arranged on the fourth side wall 2D.
  • the third heat transfer layer 14C is connected to the other end of the first heat transfer layer 14A in the second direction.
  • the third heat transfer layer 14C extends in the third direction.
  • the third heat transfer layer 14C extends closer to the second side wall 2B than the center of the fourth side wall 2D in the third direction.
  • the third heat transfer layer 14C may extend to the second side wall 2B.
  • the thermal conductivity of the heat transfer layer 14 is higher than that of the heat insulating layer 13.
  • the thermal conductivity of the heat transfer layer 14 is, for example, 0.5 W / (m ⁇ K) or more, preferably 1.0 W / (m ⁇ K) or more, more preferably 3.0 W / (m ⁇ K) or more. That is all.
  • the upper limit of the thermal conductivity of the heat transfer layer 14 is not limited.
  • the thermal conductivity of the heat transfer layer 14 is, for example, 3000 W / (m ⁇ K) or less.
  • the heat transfer layer 14 is made of, for example, a metal, a carbon material, a foam, or a heat conductive tape.
  • the metal include aluminum, copper, tin and steel.
  • the carbon material include graphite.
  • the foam include acrylic foam.
  • the heat transfer layer 14 is preferably made of metal, more preferably aluminum.
  • the heat transfer layer 14 is made of metal, the emissivity of the heat transfer layer 14 is lower than that of the case where the heat transfer layer 14 is made of a carbon material or the like. Therefore, the heat absorption by the heat transfer layer 14 can be reduced, and the heat transfer in the thickness direction can be reduced by the heat transfer layer 14. As a result, the heat insulating property can be further improved.
  • the heat transfer layer 14 is thinner than the heat insulating layer 13.
  • the thickness of the heat transfer layer 14 is, for example, 0.001 mm or more, preferably 0.010 mm or more, and for example, 1.0 mm or less, preferably 0.5 mm or less.
  • the seal member 15A is arranged on the inner surface S11 of the edge 3A of the side wall 2. With the battery cover 1 attached to the battery 100, the seal member 15A is arranged between the edge 3A of the side wall 2 and the side surface S3 of the battery 100 in the thickness direction. The seal member 15A is elastically deformable. With the battery cover 1 attached to the battery 100, the sealing member 15A seals between the edge 3A of the side wall 2 and the side surface S3 of the battery 100. As a result, it is possible to suppress the inflow of air around the battery 100 between the edge 3A of the side wall 2 and the side surface S3 of the battery 100, and it is possible to suppress the transfer of ambient heat to the battery 100.
  • the material of the sealing member 15A examples include the above-mentioned heat insulating material.
  • the sealing member 15A is preferably made of a foam-based heat insulating material, more preferably urethane foam.
  • the seal member 15A is softer than the heat insulating layer 13.
  • the 50% compression hardness of the sealing member 15A is lower than the 50% compression hardness of the heat insulating layer 13.
  • the 50% compressive hardness of the sealing member 15A is, for example, less than 10.0 kPa, preferably 8.0 kPa or less, more preferably 6.0 kPa or less, and for example, 1.0 kPa or more, preferably 1.5 kPa. As mentioned above, more preferably 2.0 kPa or more.
  • the 50% compression hardness of the seal member 15A is not more than the above upper limit value, the seal member 15A can be easily deformed when the battery cover 1 is attached to the battery 100. As a result, the battery cover 1 can be smoothly attached to the battery 100.
  • the 50% compressive hardness of the seal member 15A is at least the above lower limit value, the shape of the seal member 15A can be maintained.
  • the thermal conductivity of the sealing member 15A is 0.045 W / (m ⁇ K) or less, preferably 0.043 W / (m ⁇ K) or less, more preferably 0.040 W / (m ⁇ K) or less, and further. It is preferably 0.035 W / (m ⁇ K) or less, more preferably 0.033 W / (m ⁇ K) or less, still more preferably 0.030 W / (m ⁇ K) or less, for example, 0. It is 015 W / (m ⁇ K) or more.
  • the thickness of the seal member 15A is, for example, 1 mm or more, preferably 5 mm or more, for example, 15 mm or less, preferably 10 mm or less.
  • the thickness of the seal member 15A is equal to or greater than the above lower limit, the amount of deformation of the seal member 15A can be secured when the battery cover 1 is attached to the battery 100, and the attachability of the battery cover 1 to the battery 100 can be improved. Can be improved.
  • the thickness of the seal member 15A is not more than the above upper limit value, it is possible to prevent the battery cover 1 from becoming excessively large.
  • the width of the seal member 15A in the first direction is, for example, 3 mm or more, preferably 7 mm or more, for example, 15 mm or less, preferably 10 mm or less. be.
  • the width of the seal member 15A in the first direction is equal to or larger than the above lower limit value, the sealing performance of the seal member 15A (air around the battery 100 flows between the edge 3A of the side wall 2 and the side surface S3 of the battery 100). Performance to suppress this) can be ensured.
  • the width of the seal member 15A in the first direction is equal to or less than the above upper limit value, it is possible to prevent the battery cover 1 from becoming excessively large.
  • the seal member 15B is arranged on the inner surface S11 of the edge 3B of the side wall 2. With the battery cover 1 attached to the battery 100, the seal member 15B is arranged between the edge 3B of the side wall 2 and the side surface S3 of the battery 100 in the thickness direction. The seal member 15B is elastically deformable. With the battery cover 1 attached to the battery 100, the sealing member 15B seals between the edge 3B of the side wall 2 and the side surface S3 of the battery 100.
  • the description of the seal member 15B is the same as the description of the seal member 15A. Therefore, the description of the seal member 15B will be omitted.
  • the battery 100 to which the battery cover 1 is attached is arranged in the engine room of the automobile.
  • an engine as an example of the heat source H is arranged in the engine room.
  • the heat source in the engine room for example, a radiator, a motor when the automobile is a hybrid vehicle, or the like is assumed.
  • the heat source H is the heat source having the highest temperature among the heat sources in the engine room.
  • the heat source H is arranged away from the battery 100 and the battery cover 1.
  • the first side wall 2A of the battery cover 1 is arranged between the heat source H and the battery 100.
  • the heat insulating layer 13 of the first side wall 2A is defined as the first portion 13A of the heat insulating layer 13. That is, the heat insulating layer 13 has the first portion 13A.
  • the first portion 13A is arranged between the heat source H and the battery 100.
  • the second side wall 2B of the battery cover 1 is arranged on the opposite side of the heat source H with respect to the battery 100.
  • the second side wall 2B of the battery cover 1 is arranged on the opposite side of the first side wall 2A of the battery cover 1 with respect to the battery 100.
  • the heat insulating layer 13 of the second side wall 2B is defined as the second portion 13B of the heat insulating layer 13. That is, the heat insulating layer 13 has a second portion 13B.
  • the second portion 13B is arranged on the opposite side of the heat source H with respect to the battery 100.
  • the second portion 13B is arranged on the opposite side of the first portion 13A with respect to the battery 100.
  • the second portion 13B is separated from the first portion 13A.
  • the second portion 13B may be a portion separated from the first portion 13A and having a lower temperature than the first portion 13A, and is limited to a portion arranged on the opposite side of the heat source H with respect to the battery 100. not.
  • the distance between the second portion 13B and the heat source H is longer than the distance between the first portion 13A and the heat source H.
  • the heat transfer layer 14 transfers heat between the first side wall 2A and the second side wall 2B. That is, the heat transfer layer 14 transfers heat between the first portion 13A and the second portion 13B.
  • the heat of the first portion 13A heated by the heat source H is transferred to the second portion 13B whose temperature is lower than that of the first portion 13A by the heat transfer layer 14.
  • the temperature rise of the battery 100 can be suppressed.
  • the battery cover 1 includes a heat insulating layer 13 and a heat transfer layer 14 having a thermal conductivity of 0.5 W / (m ⁇ K) or more.
  • the heat of the first portion 13A is transferred to the first portion by the heat transfer layer 14 (see FIG. 3). It can be efficiently transmitted to the second portion 13B away from 13A.
  • the heat from the heat source H can be suppressed from being transferred to the battery 100 by transferring the heat of the first portion 13A to the second portion 13B.
  • the heat transfer layer 14 is made of metal.
  • the heat insulating property of the battery cover 1 can be further improved.
  • the thickness of the heat insulating layer 13 is 1 mm or more.
  • the sealing members 15A and 15B seal between the edges 3A and 3B of the side wall 2 and the side surface S3 of the battery 100.
  • the air heated by the heat source H can be suppressed from entering between the battery cover 1 and the battery 100 by the sealing members 15A and 15B.
  • the heat insulating property of the battery cover 1 can be further improved.
  • the heat transfer layer 14 is arranged between the side surface S3 of the battery 100 and the heat insulating layer 13.
  • the heat insulating property of the battery cover 1 can be further improved.
  • the distance between the second portion 13B and the heat source H is longer than the distance between the first portion 13A and the heat source H.
  • the heat of the first portion 13A can be transferred to the second portion 13B away from the heat source H.
  • the second portion 13B is arranged on the opposite side of the first portion 13A with respect to the battery 100.
  • the heat of the first portion 13A can be transferred to the battery 100 to the opposite side of the first portion 13A.
  • the shape of the battery cover 1 is not limited.
  • the shape of the battery cover 1 can be appropriately changed according to the shape of the battery.
  • the battery cover 1 may have a cylindrical shape.
  • the battery cover 1 has a flat shape such as a flat plate shape, the battery cover 1 has a first side wall and a second side wall, and the battery may be sandwiched between the first side wall and the second side wall.
  • the inner surface S11 of the battery cover 1 may be in contact with the side surface S3 of the battery 100.
  • the battery cover 1 may have a recess for avoiding interference with a member arranged around the battery 100.
  • the arrangement of the heat transfer layer 14 is not limited as long as heat can be transferred from the first portion 13A to the second portion 13B of the heat insulating layer 13.
  • the heat transfer layer 14 may be provided on all of the side walls 2.
  • the heat transfer layer 14 may be provided on the first side wall 2A and one of the side walls in the second direction, and may not be provided on the other side walls. Specifically, as shown in FIG. 6, the heat transfer layer 14 may be provided on the first side wall 2A and the fourth side wall 2D, and may not be provided on the second side wall 2B and the third side wall 2C. ..
  • the heat transfer layer 14 may be provided on at least one side wall of the battery cover 1 in the second direction, and may not be provided on the other side wall. Specifically, as shown in FIG. 7, it may be provided on the third side wall 2C and the fourth side wall 2D, and may not be provided on the first side wall 2A and the second side wall 2B. Further, as shown in FIG. 8, it may be provided on the third side wall 2C and may not be provided on the first side wall 2A, the second side wall 2B, and the fourth side wall 2D.
  • the heat transfer layer 14 may be provided on the first side wall 2A only at both ends in the second direction.
  • the battery cover 1 may have two heat transfer layers 141 and 142 separated from each other in the first direction.
  • the heat transfer layers 141 and 142 extend in a direction intersecting the first direction.
  • the two heat transfer layers 141 and 142 may be connected via the heat transfer layer 143 extending in the first direction.
  • the heat transfer layer 14 may be arranged on the opposite side of the side surface S3 of the battery 100 with respect to the heat insulating layer 13 in the thickness direction.
  • the battery cover 1 has a heat insulating layer 13 and a second heat insulating layer 16 that overlaps the heat insulating layer 13, and the heat transfer layer 14 is between the heat insulating layer 13 and the second heat insulating layer 16. May be placed in.
  • Urethane foam Urethane foam A (thermal conductivity: 0.0400 W / m ⁇ K, thickness: 15 mm, density: 16 kg / m 3 )
  • Urethane foam B (thermal conductivity: 0.0409 W / m ⁇ K, thickness: 3 mm, density: 25 kg / m 3 , glue thickness: 65 ⁇ m (acrylic))
  • Urethane foam C (thermal conductivity: 0.0409 W / m ⁇ K, thickness: 4 mm, density: 25 kg / m 3 )
  • Urethane foam D (thermal conductivity: 0.0409 W / m ⁇ K, thickness: 5 mm, density: 25 kg / m 3 , glue thickness: 65 ⁇ m (acrylic))
  • Phenolic foam (thermal conductivity: 0.02 W / m ⁇ K, thickness 12 mm, density: 40 kg / m 3 )
  • Plastic corrugated cardboard (thermal conductivity: 0.0
  • Aluminum foil A (thickness: 11 ⁇ m, thermal conductivity: 200 W / m ⁇ K) (2) Aluminum foil B (thickness: 100 ⁇ m, thermal conductivity: 200 W / m ⁇ K) (3) Graphite sheet (trade name: TG828CR, manufactured by NeoGraf, thermal conductivity in the plane direction: 1400 W / m ⁇ K) (4) Acrylic foam (thickness: 0.4 mm, thermal conductivity: 3 W / m ⁇ K) (5) Steel (thickness: 100 ⁇ m, thermal conductivity: 50 W / m ⁇ K) (6) Thermal conductive tape A (thickness: 100 ⁇ m, thermal conductivity: 0.4 W / m ⁇ K, TR5310EX, manufactured by Nitto Denko KK) (7) Thermal conductive tape B (thickness: 250 ⁇ m, thermal conductivity: 0.7 W / m ⁇ K, TR5325FEX, manufactured by Nitto Denko KK) 2.
  • the partition wall 112 is arranged in the constant temperature bath 111.
  • the partition wall 112 partitions the internal space of the constant temperature bath 111. Hot air is supplied to the space 111A on one side of the partition wall 112 by a fan of the constant temperature bath 111. Hot air is not supplied to the space 111B on the other side of the partition wall 112.
  • the partition wall 112 is made of phenolic foam having a total thickness of 33 mm.
  • the partition wall 112 has an opening 112A.
  • the opening 112A is square. The dimension of one side of the opening 112A is 200 mm.
  • the resin plate 113 is a heat insulating target.
  • the resin plate 113 is assumed to be the battery case 101 (see FIG. 2) of the battery 100 described above.
  • the resin plate 113 is attached to the partition wall 112.
  • the resin plate 113 closes the opening 112A.
  • the resin plate 113 is made of polypropylene.
  • the thickness of the resin plate 113 is 2 mm.
  • the resin plate 113 has a first surface S41 on the space 111A side and a second surface S42 on the space 111B side.
  • the heat insulating layer 13 and the heat transfer layer 14 shown in Table 1 are arranged in the order of the heat insulating layer 13, the heat transfer layer 14, and the resin plate 113 in the direction from the space 111A to the space 111B. It was attached to the partition wall 112.
  • the heat insulating layer 13 has a first surface S51 on the space 111A side and a second surface S52 on the space 111B side.
  • the heat transfer layer 14 comes into contact with the second surface S52 of the heat insulating layer 13.
  • the resin plate 113 comes into contact with the heat transfer layer 14.
  • the constant temperature tank 111 is operated at a constant value with the set temperature of the constant temperature tank 111 set to 80 ° C, and the K thermoelectric defined in JIS C 1602: 2015 is operated.
  • the temperature T1 of the second surface S52 of the heat insulating layer 13 and the temperature T2 of the second surface S42 of the resin plate 113 were measured.
  • the temperatures T1 and T2 are average values of the temperatures at the five points P1 to P5 shown in FIG. 16B.
  • Table 1 shows the temperature T0, the temperature T1, T2, the difference ⁇ T between the temperature T2 and the temperature T0 in the space 111A, and the effect of the heat transfer layer.
  • Effect of heat transfer layer ( ⁇ T of Example- ⁇ T of Comparative Example) / ⁇ T of Comparative Example ⁇ 100
  • the effect of the heat transfer layer is calculated by the following formula.
  • Effect of heat transfer layer of Example 1 ( ⁇ T of Example 1- ⁇ T of Comparative Example 1) / ⁇ T of Comparative Example 1 ⁇ 100
  • Effect of heat transfer layer of Example 2 ( ⁇ T of Example 2 ⁇ ⁇ T of Comparative Example 1) / ⁇ T ⁇ 100 of Comparative Example 1
  • Effect of heat transfer layer of Example 4 ( ⁇ T of Example 4 ⁇ ⁇ T of Comparative Example 2) / ⁇ T ⁇ 100 of Comparative Example 2
  • Examples 11 and 12 and Comparative Example 5 As shown in FIG. 17A, the heat transfer layer 13 and the heat transfer layer 14 shown in Table 1 are arranged in the order of the heat transfer layer 14, the heat transfer layer 13, and the resin plate 113 in the direction from the space 111A to the space 111B.
  • the temperatures T1 and T2 were measured in the same manner as in Example 1 except that they were attached to the partition wall 112.
  • Table 2 shows the effects of the temperatures T0 to T2, the difference ⁇ T between the temperature T1 and the temperature T0, and the heat transfer layer.
  • Examples 13 to 15 and Comparative Examples 6 to 8> As shown in FIG. 17B, the heat insulating layer 13, the heat transfer layer 14, and the second heat transfer layer 16 shown in Table 1 are arranged in the direction from the space 111A to the space 111B, and the heat insulating layer 13, the heat transfer layer 14, and the second heat transfer layer 16.
  • the temperatures T1 and T2 were measured in the same manner as in Example 1 except that the heat insulating layer 16 and the resin plate 113 were attached to the partition wall 112 in this order.
  • Table 3 shows the effects of the temperatures T0 to T2, the difference ⁇ T between the temperature T1 and the temperature T0, and the heat transfer layer.
  • the battery cover of the present invention is used to suppress the transfer of ambient heat to the battery.

Abstract

A battery cover 1 comprises a thermal insulation layer 13 and a heat transfer layer 14. The thermal insulation layer 13 comprises a first portion 13A and a second portion 13B separated from the first portion 13A. The heat transfer layer 14 transmits heat between the first portion 13A and the second portion 13B. The thermal conductivity of the heat transfer layer 14 is 0.5 W/(m•K) or greater and is higher than the thermal conductivity of the thermal insulation layer 13.

Description

バッテリーカバーBattery cover
 本発明は、バッテリーカバーに関する。 The present invention relates to a battery cover.
 従来、バッテリーに装着されるバッテリーカバーとして、バッテリーの側面を覆う側壁を備え、側壁が、断熱性を有する多孔層と、多孔層の厚み方向一方側および他方側に配置される保護層とを備えるバッテリーカバーが提案されている(例えば、特許文献1参照。)。 Conventionally, as a battery cover attached to a battery, a side wall covering the side surface of the battery is provided, and the side wall includes a porous layer having heat insulating properties and a protective layer arranged on one side and the other side in the thickness direction of the porous layer. A battery cover has been proposed (see, for example, Patent Document 1).
国際公開2019/098231号公報International Publication No. 2019/098231
 特許文献1に記載のバッテリーカバーにおいて、厚みの増大を抑制しつつ、断熱性を向上させることが望まれている。 In the battery cover described in Patent Document 1, it is desired to improve the heat insulating property while suppressing the increase in thickness.
 例えば、自動車のエンジンルームなどの限られた空間内に多数の部品とともに収容されるバッテリーに、バッテリーカバーが装着される場合、周囲の部品との干渉を避けつつ、断熱性を向上させることが望まれる。 For example, when a battery cover is attached to a battery that is housed together with a large number of parts in a limited space such as an automobile engine room, it is desirable to improve heat insulation while avoiding interference with surrounding parts. Is done.
 そこで、本発明の目的は、厚みの増大を抑制しつつ、断熱性の向上を図ることができるバッテリーカバーを提供することにある。 Therefore, an object of the present invention is to provide a battery cover capable of improving heat insulation while suppressing an increase in thickness.
 本発明[1]は、第1部分と、前記第1部分から離れた第2部分とを有する断熱層と、前記第1部分と前記第2部分との間で熱を伝え、熱伝導率が前記断熱層よりも高い伝熱層とを備え、前記伝熱層の熱伝導率が、0.5W/(m・K)以上である、バッテリーカバーを含む。 In the present invention [1], heat is transferred between a heat insulating layer having a first portion and a second portion separated from the first portion, and the first portion and the second portion, and the thermal conductivity is increased. It includes a battery cover having a heat transfer layer higher than that of the heat insulating layer and having a thermal conductivity of 0.5 W / (m · K) or more of the heat transfer layer.
 このような構成によれば、例えば、バッテリーカバーがバッテリーに装着された状態で、熱源によって第1部分が加熱された場合、第1部分の熱を、伝熱層によって、第1部分から離れた第2部分に効率よく伝えることができる。 According to such a configuration, for example, when the first portion is heated by the heat source while the battery cover is attached to the battery, the heat of the first portion is separated from the first portion by the heat transfer layer. It can be efficiently communicated to the second part.
 これにより、バッテリーカバーの厚みを増大させなくても、第1部分の熱を第2部分に伝えることにより、熱源からの熱がバッテリーに伝わることを抑制できる。 Thereby, even if the thickness of the battery cover is not increased, the heat from the heat source can be suppressed from being transferred to the battery by transferring the heat of the first part to the second part.
 その結果、バッテリーカバーの厚みの増大を抑制しつつ、断熱性の向上を図ることができる。 As a result, it is possible to improve the heat insulating property while suppressing the increase in the thickness of the battery cover.
 本発明[2]は、前記伝熱層が、金属からなる、上記[1]のバッテリーカバーを含む。 The present invention [2] includes the battery cover of the above [1] in which the heat transfer layer is made of metal.
 このような構成によれば、バッテリーカバーの断熱性のさらなる向上を図ることができる。 With such a configuration, the heat insulating property of the battery cover can be further improved.
 本発明[3]は、前記断熱層の厚みが、1mm以上である、上記[1]または[2]のバッテリーカバーを含む。 The present invention [3] includes the battery cover of the above [1] or [2] in which the thickness of the heat insulating layer is 1 mm or more.
 このような構成によれば、バッテリーカバーの断熱性を確保できる。 With such a configuration, the heat insulating property of the battery cover can be ensured.
 本発明[4]は、バッテリーに対して着脱可能である、上記[1]から[3]のいずれか1つのバッテリーカバーを含む。 The present invention [4] includes a battery cover according to any one of the above [1] to [3], which is removable from the battery.
 本発明[5]は、前記バッテリーの側面を覆う側壁であって、前記断熱層と前記伝熱層とを有する側壁を備える、上記[4]のバッテリーカバーを含む。 The present invention [5] includes the battery cover of the above [4], which is a side wall covering the side surface of the battery and includes a side wall having the heat insulating layer and the heat transfer layer.
 本発明[6]は、前記側壁が、前記バッテリーの前記側面に対して、間隔を隔てて向かい合い、前記バッテリーカバーが、前記側壁の縁と前記バッテリーの前記側面との間をシールするシール部材を、さらに備える、上記[5]のバッテリーカバーを含む。 The present invention [6] provides a sealing member in which the side wall faces the side surface of the battery at a distance, and the battery cover seals between the edge of the side wall and the side surface of the battery. Further, the battery cover of the above [5] is included.
 このような構成によれば、熱源によって加熱された空気がバッテリーカバーとバッテリーとの間に入ることを、シール部材によって、抑制できる。 According to such a configuration, the air heated by the heat source can be suppressed from entering between the battery cover and the battery by the sealing member.
 これにより、バッテリーカバーの断熱性のさらなる向上を図ることができる。 This makes it possible to further improve the heat insulating properties of the battery cover.
 本発明[7]は、前記伝熱層が、前記バッテリーの前記側面と前記断熱層との間に配置される、上記[5]または[6]のバッテリーカバーを含む。 The present invention [7] includes the battery cover of the above [5] or [6] in which the heat transfer layer is arranged between the side surface of the battery and the heat insulating layer.
 このような構成によれば、バッテリーカバーの断熱性のさらなる向上を図ることができる。 With such a configuration, the heat insulating property of the battery cover can be further improved.
 本発明[8]は、前記第1部分が、前記バッテリーから離れて配置される熱源と前記バッテリーとの間に配置される、上記[4]から[7]のいずれか1つのバッテリーカバーを含む。 The present invention [8] includes a battery cover according to any one of [4] to [7], wherein the first portion is arranged between a heat source arranged away from the battery and the battery. ..
 このような構成によれば、バッテリーカバーがバッテリーに装着された状態で、熱源によって加熱された第1部分の熱を、伝熱層によって、第1部分から離れた第2部分に伝えることができる。 According to such a configuration, with the battery cover attached to the battery, the heat of the first portion heated by the heat source can be transferred to the second portion away from the first portion by the heat transfer layer. ..
 これにより、バッテリーカバーの厚みを増大させなくても、第1部分の熱を第2部分に伝えることにより、熱源からの熱がバッテリーに伝わることを抑制できる。 Thereby, even if the thickness of the battery cover is not increased, the heat from the heat source can be suppressed from being transferred to the battery by transferring the heat of the first part to the second part.
 その結果、バッテリーカバーの厚みの増大を抑制しつつ、断熱性の向上を図ることができる。 As a result, it is possible to improve the heat insulating property while suppressing the increase in the thickness of the battery cover.
 本発明[9]は、前記第2部分と前記熱源との距離が、前記第1部分と前記熱源との距離よりも長い、上記[8]のバッテリーカバーを含む。 The present invention [9] includes the battery cover of the above [8] in which the distance between the second portion and the heat source is longer than the distance between the first portion and the heat source.
 このような構成によれば、第1部分の熱を、熱源から離れた第2部分に伝えることができる。 According to such a configuration, the heat of the first part can be transferred to the second part away from the heat source.
 本発明[10]は、前記第2部分が、前記バッテリーに対して、前記第1部分の反対側に配置される、上記[4]から[9]のいずれか1つのバッテリーカバーを含む。 The present invention [10] includes any one of the battery covers [4] to [9], wherein the second portion is arranged on the opposite side of the first portion with respect to the battery.
 このような構成によれば、第1部分の熱を、バッテリーに対して第1部分の反対側まで伝えることができる。 According to such a configuration, the heat of the first part can be transferred to the opposite side of the first part to the battery.
 本発明のバッテリーカバーによれば、厚みの増大を抑制しつつ、断熱性の向上を図ることができる。 According to the battery cover of the present invention, it is possible to improve the heat insulating property while suppressing the increase in thickness.
図1は、本発明の一実施形態のとしてのバッテリーカバーが装着されたバッテリーの斜視図である。FIG. 1 is a perspective view of a battery to which a battery cover as an embodiment of the present invention is attached. 図2は、図1に示すバッテリーの斜視図である。FIG. 2 is a perspective view of the battery shown in FIG. 図3は、図1に示すバッテリーカバーの斜視図である。FIG. 3 is a perspective view of the battery cover shown in FIG. 図4は、バッテリーカバーと熱源との位置関係を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining the positional relationship between the battery cover and the heat source. 図5は、バッテリーカバーの第1の変形例を示す。FIG. 5 shows a first modification of the battery cover. 図6は、バッテリーカバーの第2の変形例を示す。FIG. 6 shows a second modification of the battery cover. 図7は、バッテリーカバーの第3の変形例を示す。FIG. 7 shows a third modification of the battery cover. 図8は、バッテリーカバーの第4の変形例を示す。FIG. 8 shows a fourth modification of the battery cover. 図9は、バッテリーカバーの第5の変形例を示す。FIG. 9 shows a fifth modification of the battery cover. 図10は、バッテリーカバーの第6の変形例を示す。FIG. 10 shows a sixth modification of the battery cover. 図11は、バッテリーカバーの第7の変形例を示す。FIG. 11 shows a seventh modification of the battery cover. 図12は、バッテリーカバーの第8の変形例を示す。FIG. 12 shows an eighth modification of the battery cover. 図13は、バッテリーカバーの第9の変形例を示す。FIG. 13 shows a ninth modification of the battery cover. 図14は、バッテリーカバーの第10の変形例を示す。FIG. 14 shows a tenth modification of the battery cover. 図15は、バッテリーカバーの第11の変形例を示す。FIG. 15 shows an eleventh modification of the battery cover. 図16Aは、断熱性の評価装置の構成を説明するための説明図である。図16Bは、図16Aの評価装置において、断熱層の温度、および、樹脂板の温度を測定するポイントを説明する説明図である。FIG. 16A is an explanatory diagram for explaining the configuration of the heat insulating property evaluation device. FIG. 16B is an explanatory diagram illustrating points for measuring the temperature of the heat insulating layer and the temperature of the resin plate in the evaluation device of FIG. 16A. 図17Aは、表2に示す実施例および比較例の断熱性の評価方法を説明するための説明図である。図17Bは、表3に示す実施例および比較例の断熱性の評価方法を説明するための説明図である。FIG. 17A is an explanatory diagram for explaining a method for evaluating the heat insulating properties of Examples and Comparative Examples shown in Table 2. FIG. 17B is an explanatory diagram for explaining a method for evaluating the heat insulating properties of Examples and Comparative Examples shown in Table 3.
 図1に示すように、本発明の一実施形態としてのバッテリーカバー1は、バッテリー100に装着される。バッテリー100に装着されたバッテリーカバー1は、バッテリー100から取り外し可能である。つまり、バッテリーカバー1は、バッテリー100に対して着脱可能である。 As shown in FIG. 1, the battery cover 1 as an embodiment of the present invention is attached to the battery 100. The battery cover 1 attached to the battery 100 is removable from the battery 100. That is, the battery cover 1 is removable from the battery 100.
 1.バッテリー
 図2を参照して、バッテリー100について説明する。
1. 1. Battery The battery 100 will be described with reference to FIG.
 本実施形態では、バッテリー100は、鉛蓄電池である。なお、バッテリー100は、鉛蓄電池に限られず、リチウムイオン二次電池などの二次電池であってもよい。 In this embodiment, the battery 100 is a lead storage battery. The battery 100 is not limited to a lead storage battery, and may be a secondary battery such as a lithium ion secondary battery.
 バッテリー100は、略直方体形状を有する。バッテリー100は、バッテリーケース101と、蓋102と、正極板(図示せず)と、負極板(図示せず)と、端子の一例としての正極端子103と、端子の一例としての負極端子104とを備える。 The battery 100 has a substantially rectangular parallelepiped shape. The battery 100 includes a battery case 101, a lid 102, a positive electrode plate (not shown), a negative electrode plate (not shown), a positive electrode terminal 103 as an example of a terminal, and a negative electrode terminal 104 as an example of a terminal. To prepare for.
 バッテリーケース101は、開口(図示せず)を有する。開口は、第1方向におけるバッテリーケース101の一端部に配置される。バッテリーケース101は、正極板、負極板、および電解質を収容する。バッテリー100がリチウムイオン二次電池などの二次電池である場合、バッテリーケース101は、複数のセルを収容してもよい。 The battery case 101 has an opening (not shown). The opening is arranged at one end of the battery case 101 in the first direction. The battery case 101 houses a positive electrode plate, a negative electrode plate, and an electrolyte. When the battery 100 is a secondary battery such as a lithium ion secondary battery, the battery case 101 may accommodate a plurality of cells.
 蓋102は、第1方向におけるバッテリーケース101の一端部に取り付けられる。蓋102は、バッテリーケース101の開口を閉鎖する。 The lid 102 is attached to one end of the battery case 101 in the first direction. The lid 102 closes the opening of the battery case 101.
 正極端子103および負極端子104は、蓋102に取り付けられる。正極端子103は、正極板と電気的に接続される。負極端子104は、負極板と電気的に接続される。負極端子104は、第2方向において、正極端子103と間隔を隔てて配置される。第2方向は、第1方向と直交する。 The positive electrode terminal 103 and the negative electrode terminal 104 are attached to the lid 102. The positive electrode terminal 103 is electrically connected to the positive electrode plate. The negative electrode terminal 104 is electrically connected to the negative electrode plate. The negative electrode terminal 104 is arranged at a distance from the positive electrode terminal 103 in the second direction. The second direction is orthogonal to the first direction.
 バッテリー100は、第1面S1と、第2面S2と、側面S3とを有する。本実施形態では、第1面S1は、蓋102の上側の外面である。正極端子103および負極端子104は、第1面S1に配置される。第2面S2は、バッテリーケース101の下側の外面である。第2面S2は、第1方向において、第1面S1から離れている。側面S3は、バッテリーケース101の側面である。側面S3は、第1方向において、第1面S1と第2面S2との間に配置される。側面S3は、第1方向に延びる。本実施形態では、側面S3は、第1側面S31、第2側面S32、第3側面S33および第4側面S34からなる。 The battery 100 has a first surface S1, a second surface S2, and a side surface S3. In the present embodiment, the first surface S1 is the upper outer surface of the lid 102. The positive electrode terminal 103 and the negative electrode terminal 104 are arranged on the first surface S1. The second surface S2 is the lower outer surface of the battery case 101. The second surface S2 is separated from the first surface S1 in the first direction. The side surface S3 is a side surface of the battery case 101. The side surface S3 is arranged between the first surface S1 and the second surface S2 in the first direction. The side surface S3 extends in the first direction. In the present embodiment, the side surface S3 includes a first side surface S31, a second side surface S32, a third side surface S33, and a fourth side surface S34.
 第1側面S31は、第3方向におけるバッテリーケース101の一方側の外面である。第3方向は、第1方向および第2方向と直交する。第1側面S31は、第1方向および第2方向に延びる。 The first side surface S31 is the outer surface of one side of the battery case 101 in the third direction. The third direction is orthogonal to the first and second directions. The first side surface S31 extends in the first direction and the second direction.
 第2側面S32は、第3方向におけるバッテリーケース101の他方側の外面である。第2側面S32は、第1方向および第2方向に延びる。 The second side surface S32 is the outer surface of the other side of the battery case 101 in the third direction. The second side surface S32 extends in the first direction and the second direction.
 第3側面S33は、第2方向におけるバッテリーケース101の一方側の外面である。第3側面S33は、第1方向および第3方向に延びる。第3方向における第3側面S33の一端部は、第2方向における第1側面S31の一端部と接続する。第3方向における第3側面S33の他端部は、第2方向における第2側面S32の一端部と接続する。 The third side surface S33 is the outer surface of one side of the battery case 101 in the second direction. The third side surface S33 extends in the first direction and the third direction. One end of the third side surface S33 in the third direction is connected to one end of the first side surface S31 in the second direction. The other end of the third side surface S33 in the third direction is connected to one end of the second side surface S32 in the second direction.
 第4側面S34は、第2方向におけるバッテリーケース101の他方側の外面である。第4側面S34は、第1方向および第3方向に延びる。第3方向における第4側面S34の一端部は、第2方向における第1側面S31の他端部と接続する。第3方向における第4側面S34の他端部は、第2方向における第2側面S32の他端部と接続する。 The fourth side surface S34 is the outer surface of the other side of the battery case 101 in the second direction. The fourth side surface S34 extends in the first direction and the third direction. One end of the fourth side surface S34 in the third direction is connected to the other end of the first side surface S31 in the second direction. The other end of the fourth side surface S34 in the third direction is connected to the other end of the second side surface S32 in the second direction.
 2.バッテリーカバー
 次に、図1~図4を参照して、バッテリーカバー1について説明する。
2. 2. Battery cover Next, the battery cover 1 will be described with reference to FIGS. 1 to 4.
 図1に示すように、バッテリーカバー1がバッテリー100に装着された状態で、バッテリーカバー1は、バッテリー100の外面を覆う。バッテリーカバー1がバッテリー100に装着された状態で、バッテリーカバー1は、周囲の熱がバッテリー100に伝わることを抑制する。 As shown in FIG. 1, with the battery cover 1 attached to the battery 100, the battery cover 1 covers the outer surface of the battery 100. With the battery cover 1 attached to the battery 100, the battery cover 1 suppresses the transfer of ambient heat to the battery 100.
 なお、バッテリーカバー1は、バッテリー100の外面の一部を露出してもよい。本実施形態では、バッテリーカバー1がバッテリー100に装着された状態で、バッテリーカバー1は、バッテリー100の側面S3を覆い、バッテリー100の第1面S1および第2面S2(図2参照)を露出する。バッテリーカバー1がバッテリー100に装着された状態で、バッテリーカバー1は、バッテリー100を囲む。 The battery cover 1 may expose a part of the outer surface of the battery 100. In the present embodiment, with the battery cover 1 attached to the battery 100, the battery cover 1 covers the side surface S3 of the battery 100 and exposes the first surface S1 and the second surface S2 (see FIG. 2) of the battery 100. do. With the battery cover 1 attached to the battery 100, the battery cover 1 surrounds the battery 100.
 (1) バッテリーカバーの形状
 図3に示すように、バッテリーカバー1は、筒形状を有する。バッテリーカバー1は、第1方向に延びる。バッテリーカバー1は、側壁2を備える。本実施形態では、バッテリーカバー1は、側壁2のみからなる。バッテリーカバー1がバッテリー100に装着された状態(図1参照)で、側壁2は、バッテリー100の側面S3を覆う。本実施形態では、側壁2は、第1側壁2A、第2側壁2B、第3側壁2Cおよび第4側壁2Dからなる。
(1) Shape of battery cover As shown in FIG. 3, the battery cover 1 has a tubular shape. The battery cover 1 extends in the first direction. The battery cover 1 includes a side wall 2. In the present embodiment, the battery cover 1 includes only the side wall 2. With the battery cover 1 attached to the battery 100 (see FIG. 1), the side wall 2 covers the side surface S3 of the battery 100. In the present embodiment, the side wall 2 includes a first side wall 2A, a second side wall 2B, a third side wall 2C, and a fourth side wall 2D.
 第1側壁2Aは、第3方向におけるバッテリーカバー1の一端部に配置される。第1側壁2Aは、第1方向および第2方向に延びる。第1側壁2Aは、平板形状を有する。バッテリーカバー1がバッテリー100に装着された状態で、第1側壁2Aは、バッテリー100の第1側面S31(図2参照)を覆う。 The first side wall 2A is arranged at one end of the battery cover 1 in the third direction. The first side wall 2A extends in the first direction and the second direction. The first side wall 2A has a flat plate shape. With the battery cover 1 attached to the battery 100, the first side wall 2A covers the first side surface S31 (see FIG. 2) of the battery 100.
 第2側壁2Bは、第3方向におけるバッテリーカバー1の他端部に配置される。第2側壁2Bは、第3方向において、第1側壁2Aと間隔を隔てて配置される。バッテリーカバー1がバッテリー100に装着された状態で、第2側壁2Bは、第3方向において、バッテリー100に対して第1側壁2Aの反対側に配置される。第2側壁2Bは、第1方向および第2方向に延びる。第2側壁2Bは、平板形状を有する。バッテリーカバー1がバッテリー100に装着された状態で、第2側壁2Bは、バッテリー100の第2側面S32(図2参照)を覆う。 The second side wall 2B is arranged at the other end of the battery cover 1 in the third direction. The second side wall 2B is arranged at a distance from the first side wall 2A in the third direction. With the battery cover 1 attached to the battery 100, the second side wall 2B is arranged on the opposite side of the first side wall 2A with respect to the battery 100 in the third direction. The second side wall 2B extends in the first direction and the second direction. The second side wall 2B has a flat plate shape. With the battery cover 1 attached to the battery 100, the second side wall 2B covers the second side surface S32 (see FIG. 2) of the battery 100.
 第3側壁2Cは、第2方向におけるバッテリーカバー1の一端部に配置される。第3側壁2Cは、第1方向および第3方向に延びる。第3側壁2Cは、平板形状を有する。バッテリーカバー1がバッテリー100に装着された状態で、第3側壁2Cは、バッテリー100の第3側面S33(図2参照)を覆う。第3方向における第3側壁2Cの一端部は、第2方向における第1側壁2Aの一端部と接続する。第3方向における第3側壁2Cの他端部は、第2方向における第2側壁2Bの一端部と接続する。 The third side wall 2C is arranged at one end of the battery cover 1 in the second direction. The third side wall 2C extends in the first direction and the third direction. The third side wall 2C has a flat plate shape. With the battery cover 1 attached to the battery 100, the third side wall 2C covers the third side surface S33 (see FIG. 2) of the battery 100. One end of the third side wall 2C in the third direction is connected to one end of the first side wall 2A in the second direction. The other end of the third side wall 2C in the third direction is connected to one end of the second side wall 2B in the second direction.
 第4側壁2Dは、第2方向におけるバッテリーカバー1の他端部に配置される。第4側壁2Dは、第2方向において、第3側壁2Cと間隔を隔てて配置される。バッテリーカバー1がバッテリー100に装着された状態で、第4側壁2Dは、第2方向において、バッテリー100に対して第3側壁2Cの反対側に配置される。第4側壁2Dは、第1方向および第3方向に延びる。第4側壁2Dは、平板形状を有する。バッテリーカバー1がバッテリー100に装着された状態で、第4側壁2Dは、バッテリー100の第4側面S34(図2参照)を覆う。第3方向における第4側壁2Dの一端部は、第2方向における第1側壁2Aの他端部と接続する。第3方向における第4側壁2Dの他端部は、第2方向における第2側壁2Bの他端部と接続する。 The fourth side wall 2D is arranged at the other end of the battery cover 1 in the second direction. The fourth side wall 2D is arranged at a distance from the third side wall 2C in the second direction. With the battery cover 1 attached to the battery 100, the fourth side wall 2D is arranged in the second direction on the opposite side of the third side wall 2C with respect to the battery 100. The fourth side wall 2D extends in the first direction and the third direction. The fourth side wall 2D has a flat plate shape. With the battery cover 1 attached to the battery 100, the fourth side wall 2D covers the fourth side surface S34 (see FIG. 2) of the battery 100. One end of the fourth side wall 2D in the third direction is connected to the other end of the first side wall 2A in the second direction. The other end of the fourth side wall 2D in the third direction is connected to the other end of the second side wall 2B in the second direction.
 また、図4に示すように、側壁2は、内面S11と、外面S12と、縁3A、3Bとを有する。 Further, as shown in FIG. 4, the side wall 2 has an inner surface S11, an outer surface S12, and edges 3A and 3B.
 バッテリーカバー1がバッテリー100に装着された状態で、内面S11は、側壁2の厚み方向において、バッテリー100の側面S3と、間隔を隔てて向かい合う。言い換えると、バッテリーカバー1がバッテリー100に装着された状態で、側壁2は、バッテリー100の側面S3に対して、間隔を隔てて向かい合う。なお、本実施形態では、第1側壁2Aおよび第2側壁2Bでは、「厚み方向」は、第3方向である。また、第3側壁2C(図1参照)および第4側壁2D(図1参照)では、「厚み方向」は、第2方向である。 With the battery cover 1 attached to the battery 100, the inner surface S11 faces the side surface S3 of the battery 100 at a distance in the thickness direction of the side wall 2. In other words, with the battery cover 1 attached to the battery 100, the side wall 2 faces the side surface S3 of the battery 100 at a distance. In the present embodiment, in the first side wall 2A and the second side wall 2B, the "thickness direction" is the third direction. Further, in the third side wall 2C (see FIG. 1) and the fourth side wall 2D (see FIG. 1), the "thickness direction" is the second direction.
 バッテリーカバー1がバッテリー100に装着された状態で、外面S12は、厚み方向において、内面S11に対して、バッテリー100の側面S3(図2参照)の反対側に配置される。 With the battery cover 1 attached to the battery 100, the outer surface S12 is arranged on the opposite side of the side surface S3 (see FIG. 2) of the battery 100 with respect to the inner surface S11 in the thickness direction.
 縁3Aは、第1方向におけるバッテリーカバー1の一端部(上端部)に配置される。縁3Aは、バッテリーカバー1の全周にわたって延びる。 The edge 3A is arranged at one end (upper end) of the battery cover 1 in the first direction. The edge 3A extends over the entire circumference of the battery cover 1.
 縁3Bは、第1方向において、縁3Aと間隔を隔てて配置される。縁3Bは、第1方向におけるバッテリーカバー1の他端部(下端部)に配置される。縁3Bは、縁3Aと同様に、バッテリーカバー1の全周にわたって延びる。 The edge 3B is arranged at a distance from the edge 3A in the first direction. The edge 3B is arranged at the other end (lower end) of the battery cover 1 in the first direction. The edge 3B extends over the entire circumference of the battery cover 1 in the same manner as the edge 3A.
 (2) バッテリーカバーの層構造
 バッテリーカバー1は、第1表層11と、第2表層12と、断熱層13と、伝熱層14と、シール部材15A、15Bとを備える。本実施形態では、側壁2は、第1表層11と、第2表層12と、断熱層13と、伝熱層14とを有する。
(2) Layer structure of the battery cover The battery cover 1 includes a first surface layer 11, a second surface layer 12, a heat insulating layer 13, a heat transfer layer 14, and sealing members 15A and 15B. In the present embodiment, the side wall 2 has a first surface layer 11, a second surface layer 12, a heat insulating layer 13, and a heat transfer layer 14.
 (2-1) 第1表層
 第1表層11は、厚み方向において、側壁2の最も内側の層である。バッテリーカバー1がバッテリー100に装着された状態で、厚み方向において、第1表層11は、バッテリー100の側面S3と断熱層13との間、または、バッテリー100の側面S3と伝熱層14との間に配置される。第1表層11は、厚み方向の内側において、断熱層13および伝熱層14を保護する。第1表層11は、側壁2の全部に配置される。バッテリーカバー1がバッテリー100に装着された状態で、第1表層11は、バッテリー100の側面S3に対して、間隔を隔てて向かい合う。第1表層11は、内面S11を有する。
(2-1) First surface layer The first surface layer 11 is the innermost layer of the side wall 2 in the thickness direction. With the battery cover 1 attached to the battery 100, in the thickness direction, the first surface layer 11 is between the side surface S3 of the battery 100 and the heat insulating layer 13, or between the side surface S3 of the battery 100 and the heat transfer layer 14. Placed in between. The first surface layer 11 protects the heat insulating layer 13 and the heat transfer layer 14 inside in the thickness direction. The first surface layer 11 is arranged on the entire side wall 2. With the battery cover 1 attached to the battery 100, the first surface layer 11 faces the side surface S3 of the battery 100 at a distance. The first surface layer 11 has an inner surface S11.
 第1表層11の材料としては、例えば、不織布、織物、プラスチックシートおよびプラスチックフィルムが挙げられる。 Examples of the material of the first surface layer 11 include non-woven fabric, woven fabric, plastic sheet and plastic film.
 不織布および織物の材料としては、例えば、天然繊維および化学繊維が挙げられる。天然繊維としては、例えば、綿、麻、パルプ、羊毛、絹および鉱物繊維が挙げられる。化学繊維としては、例えば、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ナイロン繊維、アラミド繊維、アクリル繊維、ビニロン繊維、レーヨンおよびガラス繊維が挙げられる。不織布および織物は、単一種類の繊維からなってもよいし、複数種類の繊維からなってもよい。 Examples of materials for non-woven fabrics and woven fabrics include natural fibers and chemical fibers. Natural fibers include, for example, cotton, hemp, pulp, wool, silk and mineral fibers. Examples of the chemical fiber include polyester fiber, polyethylene fiber, polypropylene fiber, nylon fiber, aramid fiber, acrylic fiber, vinylon fiber, rayon and glass fiber. The non-woven fabric and the woven fabric may consist of a single type of fiber or may consist of a plurality of types of fibers.
 プラスチックシートおよびプラスチックフィルムの材料としては、例えば、熱硬化性樹脂および熱可塑性樹脂が挙げられる。熱硬化性樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂およびポリカーボネート樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリ塩化ビニルおよびスチレンブタジエンゴムが挙げられる。プラスチックシートおよびプラスチックフィルムは、単一種類の樹脂からなってもよいし、複数種類の樹脂からなってもよい。 Examples of the material of the plastic sheet and the plastic film include thermosetting resin and thermoplastic resin. Examples of the thermosetting resin include polyester resin, polyurethane resin and polycarbonate resin. Examples of the thermoplastic resin include polyolefin resins, polyvinyl chloride and styrene-butadiene rubber. The plastic sheet and the plastic film may be made of a single kind of resin or may be made of a plurality of kinds of resins.
 第1表層11は、好ましくは、不織布からなる。第1表層11が不織布からなる場合、不織布の材料としては、好ましくは、化学繊維が挙げられ、より好ましくは、ポリエステル繊維およびポリプロピレン繊維が挙げられ、より一層好ましくは、ポリエチレンテレフタレート(PET)繊維およびポリプロピレン繊維が挙げられる。 The first surface layer 11 is preferably made of a non-woven fabric. When the first surface layer 11 is made of a non-woven fabric, the material of the non-woven fabric is preferably chemical fiber, more preferably polyester fiber and polypropylene fiber, and even more preferably polyethylene terephthalate (PET) fiber and. Polypropylene fiber can be mentioned.
 第1表層11がポリエチレンテレフタレート繊維を含むと、第1表層11の耐熱性を向上させることができる。第1表層11がポリプロピレン繊維を含むと、第1表層11を第2表層12に対して容易に熱溶着することができる。第1表層11がポリエチレンテレフタレート繊維およびポリプロピレン繊維を含むと、第1表層11の耐熱性と、断熱層13または第2表層12に対する第1表層11の熱溶着性とを両立できる。 When the first surface layer 11 contains polyethylene terephthalate fiber, the heat resistance of the first surface layer 11 can be improved. When the first surface layer 11 contains polypropylene fibers, the first surface layer 11 can be easily heat-welded to the second surface layer 12. When the first surface layer 11 contains polyethylene terephthalate fibers and polypropylene fibers, both the heat resistance of the first surface layer 11 and the heat welding property of the first surface layer 11 to the heat insulating layer 13 or the second surface layer 12 can be achieved at the same time.
 不織布の製造方法は、限定されない。不織布の製造方法としては、例えば、フリース形成法およびフリース結合法が挙げられる。フリース形成法としては、例えば、乾式法、湿式法、スパンボンド法およびメルトブロー法が挙げられる。フリース結合法としては、例えば、サーマルボンド法、ケミカルボンド法、ステッチボンド法、ニードルパンチ法、スパンレース法およびスチームジェット法が挙げられる。 The method for manufacturing the non-woven fabric is not limited. Examples of the method for producing a nonwoven fabric include a fleece forming method and a fleece bonding method. Examples of the fleece forming method include a dry method, a wet method, a spunbond method and a melt blow method. Examples of the fleece bonding method include a thermal bond method, a chemical bond method, a stitch bond method, a needle punch method, a spunlace method and a steam jet method.
 不織布は、樹脂を含浸してもよい。不織布に含浸される樹脂は、限定されない。不織布に含浸される樹脂としては、例えば、熱硬化性樹脂および熱可塑性樹脂が挙げられる。熱硬化性樹脂としては、例えば、フェノール樹脂およびレジルシノール樹脂が挙げられる。熱可塑性樹脂としては、例えば、酢酸ビニル系樹脂およびオレフィン系樹脂が挙げられる。酢酸ビニル系樹脂としては、例えば、エチレン酢酸ビニル(EVA)が挙げられる。オレフィン系樹脂としては、例えば、非晶質ポリオレフィン(APAO)が挙げられる。 The non-woven fabric may be impregnated with resin. The resin impregnated in the non-woven fabric is not limited. Examples of the resin impregnated in the non-woven fabric include thermosetting resin and thermoplastic resin. Examples of the thermosetting resin include phenol resin and resilcinol resin. Examples of the thermoplastic resin include vinyl acetate-based resins and olefin-based resins. Examples of the vinyl acetate resin include ethylene vinyl acetate (EVA). Examples of the olefin resin include amorphous polyolefin (APAO).
 また、不織布は、樹脂層と、繊維層との積層体であってもよい。樹脂層としては、例えば、上記した酢酸ビニル系樹脂からなる層が挙げられる。繊維層としては、上記した不織布および織物の材料からなる層が挙げられる。具体的には、酢酸ビニル系樹脂、ポリエステル繊維(より具体的には、ポリエチレンテレフタレート繊維)、およびポリプロピレン繊維が、酢酸ビニル系樹脂(樹脂層)、ポリエステル繊維(繊維層)、ポリプロピレン繊維(繊維層)、酢酸ビニル系樹脂(樹脂層)の順で積層された不織布が挙げられる。 Further, the nonwoven fabric may be a laminate of a resin layer and a fiber layer. Examples of the resin layer include the above-mentioned layer made of vinyl acetate resin. Examples of the fiber layer include the above-mentioned layer made of a non-woven fabric and a woven material. Specifically, vinyl acetate-based resin, polyester fiber (more specifically, polyethylene terephthalate fiber), and polypropylene fiber are vinyl acetate-based resin (resin layer), polyester fiber (fiber layer), polypropylene fiber (fiber layer). ), A non-woven fabric laminated in the order of vinyl acetate resin (resin layer).
 第1表層11の厚みは、断熱層13の厚みよりも薄い。第1表層11の厚みは、例えば、0.01mm以上、好ましくは、0.1mm以上であり、また、例えば、10.0mm以下、好ましくは、5.0mm以下である。 The thickness of the first surface layer 11 is thinner than the thickness of the heat insulating layer 13. The thickness of the first surface layer 11 is, for example, 0.01 mm or more, preferably 0.1 mm or more, and for example, 10.0 mm or less, preferably 5.0 mm or less.
 (2-2) 第2表層
 第2表層12は、厚み方向において、側壁2の最も外側の層である。第2表層12は、厚み方向において、断熱層13に対して、第1表層11の反対側に配置される。第2表層12は、厚み方向の外側において、断熱層13を保護する。バッテリーカバー1がバッテリー100に装着された状態で、第2表層12は、厚み方向において、第1表層11に対して、バッテリー100の側面S3の反対側に配置される。第2表層12は、側壁2の全部に配置される。第2表層12は、外面S12を有する。縁3Aおよび縁3Bにおいて、第2表層12は、第1表層11と接着される。
(2-2) Second surface layer The second surface layer 12 is the outermost layer of the side wall 2 in the thickness direction. The second surface layer 12 is arranged on the opposite side of the first surface layer 11 with respect to the heat insulating layer 13 in the thickness direction. The second surface layer 12 protects the heat insulating layer 13 on the outside in the thickness direction. With the battery cover 1 attached to the battery 100, the second surface layer 12 is arranged on the opposite side of the side surface S3 of the battery 100 with respect to the first surface layer 11 in the thickness direction. The second surface layer 12 is arranged on the entire side wall 2. The second surface layer 12 has an outer surface S12. At edges 3A and 3B, the second surface layer 12 is adhered to the first surface layer 11.
 第2表層12の材料としては、第1表層11の材料と同じ材料が挙げられる。なお、第2表層12は、第1表層11と同じ材料からなってもよく、第1表層11と異なる材料からなってもよい。 As the material of the second surface layer 12, the same material as the material of the first surface layer 11 can be mentioned. The second surface layer 12 may be made of the same material as the first surface layer 11, or may be made of a material different from that of the first surface layer 11.
 第2表層12の厚みは、断熱層13の厚みよりも薄い。第2表層12の厚みは、例えば、0.01mm以上、好ましくは、0.1mm以上であり、また、例えば、10.0mm以下、好ましくは、5.0mm以下である。なお、第2表層12の厚みは、第1表層11の厚みと同じであってもよく、第1表層11の厚みと異なってもよい。 The thickness of the second surface layer 12 is thinner than the thickness of the heat insulating layer 13. The thickness of the second surface layer 12 is, for example, 0.01 mm or more, preferably 0.1 mm or more, and for example, 10.0 mm or less, preferably 5.0 mm or less. The thickness of the second surface layer 12 may be the same as the thickness of the first surface layer 11 or may be different from the thickness of the first surface layer 11.
 (2-3) 断熱層
 断熱層13は、厚み方向において、第1表層11と第2表層12との間に配置される。断熱層13は、側壁2の全部に設けられる。断熱層13は、断熱材からなる。
(2-3) Insulation layer The insulation layer 13 is arranged between the first surface layer 11 and the second surface layer 12 in the thickness direction. The heat insulating layer 13 is provided on the entire side wall 2. The heat insulating layer 13 is made of a heat insulating material.
 断熱材としては、例えば、発泡系断熱材、繊維系断熱材および樹脂系断熱材が挙げられる。発泡系断熱材としては、例えば、ウレタンフォーム、フェノールフォーム、ポリエチレンフォームおよびポリスチレンフォームが挙げられる。繊維系断熱材としては、例えば、グラスウール、ロックウール、シリカエアロゲルを含有した不織布、および、セルロースファイバーが挙げられる。樹脂系断熱材としては、例えば、プラスチック段ボールが挙げられる。 Examples of the heat insulating material include foam-based heat insulating materials, fiber-based heat insulating materials, and resin-based heat insulating materials. Examples of the foam-based heat insulating material include urethane foam, phenol foam, polyethylene foam and polystyrene foam. Examples of the fiber-based heat insulating material include glass wool, rock wool, a non-woven fabric containing silica airgel, and cellulose fiber. Examples of the resin-based heat insulating material include plastic corrugated cardboard.
 断熱層13は、好ましくは、発泡系断熱材または樹脂系断熱材、より好ましくは、発泡系断熱材、より好ましくは、ウレタンフォームまたはフェノールフォームからなる。 The heat insulating layer 13 is preferably made of a foam-based heat insulating material or a resin-based heat insulating material, more preferably a foam-based heat insulating material, and more preferably urethane foam or phenol foam.
 断熱層13の熱伝導率は、0.045W/(m・K)以下、好ましくは、0.043W/(m・K)以下、より好ましくは、0.040W/(m・K)以下、さらに好ましくは、0.035W/(m・K)以下、さらに好ましくは、0.033W/(m・K)以下、さらに好ましくは、0.030W/(m・K)以下であり、例えば、0.015W/(m・K)以上である。熱伝導率は、JIS R 2616:2001またはASTM D 5930に準拠して、熱線法(プローブ法)によって測定される。具体的には、熱伝導率は、迅速熱伝導率計(京都電子工業社製、商品名「QTM-500」)を用いて、室温で測定される。断熱層13の熱伝導率は、バッテリーカバー1の断熱性に影響する主な因子である。バッテリーカバー1の断熱性は、後述する実施例に記載される方法で評価できる。 The thermal conductivity of the heat insulating layer 13 is 0.045 W / (m · K) or less, preferably 0.043 W / (m · K) or less, more preferably 0.040 W / (m · K) or less, and further. It is preferably 0.035 W / (m · K) or less, more preferably 0.033 W / (m · K) or less, still more preferably 0.030 W / (m · K) or less, for example, 0. It is 015 W / (m · K) or more. Thermal conductivity is measured by the hot wire method (probe method) in accordance with JIS R 2616: 2001 or ASTM D 5930. Specifically, the thermal conductivity is measured at room temperature using a rapid thermal conductivity meter (manufactured by Kyoto Electronics Industry Co., Ltd., trade name "QTM-500"). The thermal conductivity of the heat insulating layer 13 is a main factor that affects the heat insulating property of the battery cover 1. The heat insulating property of the battery cover 1 can be evaluated by the method described in Examples described later.
 なお、バッテリーカバー1の断熱性に影響する他の因子としては、例えば、後述する伝熱層14の熱伝導率、断熱層13の通気性、シール部材15A、15Bの通気性などが挙げられる。断熱層13の通気性が過度に高いと、高温の気流をバッテリーカバー1で遮ることが困難になるため、バッテリーカバー1の断熱性が低下する傾向にある。 Other factors that affect the heat insulating property of the battery cover 1 include, for example, the thermal conductivity of the heat transfer layer 14 described later, the air permeability of the heat insulating layer 13, and the air permeability of the sealing members 15A and 15B. If the air permeability of the heat insulating layer 13 is excessively high, it becomes difficult for the battery cover 1 to block the high temperature airflow, so that the heat insulating property of the battery cover 1 tends to decrease.
 なお、通気性は、発泡体であれば、JIS K 6400-7:2012で定められるB法によって、不織布であれば、JIS L 1913:2010で定められるフラジール形法によって測定できる。 The air permeability can be measured by the B method defined by JIS K 6400-7: 2012 for foams and by the Frazier method defined by JIS L 1913: 2010 for non-woven fabrics.
 断熱層13の通気性は、例えば、160ml/cm/sec以下、好ましくは、100ml/cm/sec以下、より好ましくは、75ml/cm/sec以下である。断熱層13の通気性が上記上限値以下であると、バッテリーカバー1の断熱性が低下することを抑制できる。 The air permeability of the heat insulating layer 13 is, for example, 160 ml / cm 2 / sec or less, preferably 100 ml / cm 2 / sec or less, and more preferably 75 ml / cm 2 / sec or less. When the air permeability of the heat insulating layer 13 is not more than the above upper limit value, it is possible to suppress the deterioration of the heat insulating property of the battery cover 1.
 断熱層13は、シール部材15A、15Bよりも硬い。断熱層13の50%圧縮硬さは、シール部材15A、15Bの50%圧縮硬さよりも高い。50%圧縮硬さは、JIS K 6767:1999に準拠して測定する。詳しくは、50%圧縮硬さの測定に供する試験片の寸法(幅×長さ)は、100mm×100mmである。50%圧縮硬さは、試験片を試験機の平行な平面板の間に置き、5mm/分の圧縮速度で、初めの厚さの50%だけ圧縮して停止し、圧縮を停止した直後に測定された荷重Pに基づいて、次の式により計算される。 The heat insulating layer 13 is harder than the sealing members 15A and 15B. The 50% compression hardness of the heat insulating layer 13 is higher than the 50% compression hardness of the sealing members 15A and 15B. The 50% compression hardness is measured according to JIS K 6767: 1999. Specifically, the dimensions (width x length) of the test piece used for measuring the 50% compression hardness are 100 mm x 100 mm. The 50% compression hardness is measured immediately after the test piece is placed between the parallel flat plates of the tester, compressed at a compression rate of 5 mm / min by 50% of the initial thickness and stopped, and the compression is stopped. It is calculated by the following formula based on the applied load P.
 式:50%圧縮硬さ=荷重P÷試験片の面積(100mm×100mm)
 断熱層13の50%圧縮硬さは、例えば、10.0kPa以上、好ましくは、11.0kPa以上、より好ましくは、12.0kPa以上である。断熱層13の50%圧縮硬さが上記下限値以上であることにより、断熱層13が変形することを抑制できる。なお、断熱層13の50%圧縮硬さの上限値は、断熱層13を熱プレスにより成形できる程度であれば、限定されない。
Formula: 50% compression hardness = load P ÷ area of test piece (100 mm x 100 mm)
The 50% compression hardness of the heat insulating layer 13 is, for example, 10.0 kPa or more, preferably 11.0 kPa or more, and more preferably 12.0 kPa or more. When the 50% compressive hardness of the heat insulating layer 13 is at least the above lower limit value, it is possible to suppress the deformation of the heat insulating layer 13. The upper limit of the 50% compressive hardness of the heat insulating layer 13 is not limited as long as the heat insulating layer 13 can be formed by hot pressing.
 断熱層13の厚みは、例えば、1mm以上、好ましくは、3mm以上、より好ましくは、5mm以上である。断熱層13の厚みが上記下限値以上であることにより、バッテリーカバー1の断熱性を確保できる。 The thickness of the heat insulating layer 13 is, for example, 1 mm or more, preferably 3 mm or more, and more preferably 5 mm or more. When the thickness of the heat insulating layer 13 is at least the above lower limit value, the heat insulating property of the battery cover 1 can be ensured.
 断熱層13の厚みは、例えば、25mm以下、好ましくは、20mm以下である。断熱層13の厚みが上記上限値以下であることにより、バッテリーカバー1が過度に大型化することを抑制できる。 The thickness of the heat insulating layer 13 is, for example, 25 mm or less, preferably 20 mm or less. When the thickness of the heat insulating layer 13 is not more than the above upper limit value, it is possible to prevent the battery cover 1 from becoming excessively large.
 (2-4) 伝熱層
 伝熱層14は、厚み方向において、第1表層11と断熱層13との間に配置される。バッテリーカバー1がバッテリー100に装着された状態で、伝熱層14は、バッテリー100の側面S3と断熱層13との間に配置される。伝熱層14は、断熱層13と接触する。
(2-4) Heat transfer layer The heat transfer layer 14 is arranged between the first surface layer 11 and the heat insulating layer 13 in the thickness direction. With the battery cover 1 attached to the battery 100, the heat transfer layer 14 is arranged between the side surface S3 of the battery 100 and the heat insulating layer 13. The heat transfer layer 14 comes into contact with the heat insulating layer 13.
 図3に示すように、伝熱層14は、厚み方向と直交する方向に延びる。本実施形態では、伝熱層14は、第3側壁2Cおよび第4側壁2Dを通して、第1側壁2Aと第2側壁2Bとの間で熱を伝える。詳しくは、伝熱層14は、第1伝熱層14Aと、第2伝熱層14Bと、第3伝熱層14Cとを有する。 As shown in FIG. 3, the heat transfer layer 14 extends in a direction orthogonal to the thickness direction. In this embodiment, the heat transfer layer 14 transfers heat between the first side wall 2A and the second side wall 2B through the third side wall 2C and the fourth side wall 2D. Specifically, the heat transfer layer 14 has a first heat transfer layer 14A, a second heat transfer layer 14B, and a third heat transfer layer 14C.
 第1伝熱層14Aは、第1側壁2Aに配置される。第1伝熱層14Aは、第2方向に延びる。 The first heat transfer layer 14A is arranged on the first side wall 2A. The first heat transfer layer 14A extends in the second direction.
 第2伝熱層14Bは、第3側壁2Cに配置される。第2伝熱層14Bは、第2方向における第1伝熱層14Aの一端部と接続する。第2伝熱層14Bは、第3方向に延びる。第2伝熱層14Bは、第3方向における第3側壁2Cの中央よりも第2側壁2Bの近くまで延びる。第2伝熱層14Bは、第2側壁2Bまで延びていてもよい。 The second heat transfer layer 14B is arranged on the third side wall 2C. The second heat transfer layer 14B is connected to one end of the first heat transfer layer 14A in the second direction. The second heat transfer layer 14B extends in the third direction. The second heat transfer layer 14B extends closer to the second side wall 2B than the center of the third side wall 2C in the third direction. The second heat transfer layer 14B may extend to the second side wall 2B.
 第3伝熱層14Cは、第4側壁2Dに配置される。第3伝熱層14Cは、第2方向における第1伝熱層14Aの他端部と接続する。第3伝熱層14Cは、第3方向に延びる。第3伝熱層14Cは、第3方向における第4側壁2Dの中央よりも第2側壁2Bの近くまで延びる。第3伝熱層14Cは、第2側壁2Bまで延びていてもよい。 The third heat transfer layer 14C is arranged on the fourth side wall 2D. The third heat transfer layer 14C is connected to the other end of the first heat transfer layer 14A in the second direction. The third heat transfer layer 14C extends in the third direction. The third heat transfer layer 14C extends closer to the second side wall 2B than the center of the fourth side wall 2D in the third direction. The third heat transfer layer 14C may extend to the second side wall 2B.
 伝熱層14の熱伝導率は、断熱層13よりも高い。伝熱層14の熱伝導率は、例えば、0.5W/(m・K)以上、好ましくは、1.0W/(m・K)以上、より好ましくは、3.0W/(m・K)以上である。伝熱層14の熱伝導率の上限値は、限定されない。伝熱層14の熱伝導率は、例えば、3000W/(m・K)以下である。 The thermal conductivity of the heat transfer layer 14 is higher than that of the heat insulating layer 13. The thermal conductivity of the heat transfer layer 14 is, for example, 0.5 W / (m · K) or more, preferably 1.0 W / (m · K) or more, more preferably 3.0 W / (m · K) or more. That is all. The upper limit of the thermal conductivity of the heat transfer layer 14 is not limited. The thermal conductivity of the heat transfer layer 14 is, for example, 3000 W / (m · K) or less.
 伝熱層14は、例えば、金属、炭素材料、発泡体、熱伝導テープからなる。金属としては、例えば、アルミニウム、銅、スズ、鋼が挙げられる。炭素材料としては、例えば、グラファイトが挙げられる。発泡体としては、例えば、アクリルフォームが挙げられる。伝熱層14は、好ましくは、金属、より好ましくは、アルミニウムからなる。 The heat transfer layer 14 is made of, for example, a metal, a carbon material, a foam, or a heat conductive tape. Examples of the metal include aluminum, copper, tin and steel. Examples of the carbon material include graphite. Examples of the foam include acrylic foam. The heat transfer layer 14 is preferably made of metal, more preferably aluminum.
 伝熱層14が金属からなると、伝熱層14が炭素材料などからなる場合と比較して、伝熱層14の放射率が低くなる。そのため、伝熱層14による熱の吸収を低減でき、伝熱層14によって、厚み方向への熱伝導を低減できる。その結果、断熱性のさらなる向上を図ることができる。 When the heat transfer layer 14 is made of metal, the emissivity of the heat transfer layer 14 is lower than that of the case where the heat transfer layer 14 is made of a carbon material or the like. Therefore, the heat absorption by the heat transfer layer 14 can be reduced, and the heat transfer in the thickness direction can be reduced by the heat transfer layer 14. As a result, the heat insulating property can be further improved.
 伝熱層14は、断熱層13よりも薄い。伝熱層14の厚みは、例えば、0.001mm以上、好ましくは、0.010mm以上であり、例えば、1.0mm以下、好ましくは、0.5mm以下である。 The heat transfer layer 14 is thinner than the heat insulating layer 13. The thickness of the heat transfer layer 14 is, for example, 0.001 mm or more, preferably 0.010 mm or more, and for example, 1.0 mm or less, preferably 0.5 mm or less.
 (2-5) シール部材
 図4に示すように、シール部材15Aは、側壁2の縁3Aの内面S11に配置される。バッテリーカバー1がバッテリー100に装着された状態で、シール部材15Aは、厚み方向において、側壁2の縁3Aと、バッテリー100の側面S3との間に配置される。シール部材15Aは、弾性変形可能である。バッテリーカバー1がバッテリー100に装着された状態で、シール部材15Aは、側壁2の縁3Aと、バッテリー100の側面S3との間をシールする。その結果、側壁2の縁3Aとバッテリー100の側面S3との間にバッテリー100の周囲の空気が流入することを抑制でき、バッテリー100に周囲の熱が伝わることを抑制できる。
(2-5) Seal member As shown in FIG. 4, the seal member 15A is arranged on the inner surface S11 of the edge 3A of the side wall 2. With the battery cover 1 attached to the battery 100, the seal member 15A is arranged between the edge 3A of the side wall 2 and the side surface S3 of the battery 100 in the thickness direction. The seal member 15A is elastically deformable. With the battery cover 1 attached to the battery 100, the sealing member 15A seals between the edge 3A of the side wall 2 and the side surface S3 of the battery 100. As a result, it is possible to suppress the inflow of air around the battery 100 between the edge 3A of the side wall 2 and the side surface S3 of the battery 100, and it is possible to suppress the transfer of ambient heat to the battery 100.
 シール部材15Aの材料としては、上記した断熱材が挙げられる。シール部材15Aは、好ましくは、発泡系断熱材、より好ましくは、ウレタンフォームからなる。 Examples of the material of the sealing member 15A include the above-mentioned heat insulating material. The sealing member 15A is preferably made of a foam-based heat insulating material, more preferably urethane foam.
 シール部材15Aは、断熱層13よりも柔らかい。シール部材15Aの50%圧縮硬さは、断熱層13の50%圧縮硬さよりも低い。シール部材15Aの50%圧縮硬さは、例えば、10.0kPa未満、好ましくは、8.0kPa以下、より好ましくは、6.0kPa以下であり、例えば、1.0kPa以上、好ましくは、1.5kPa以上、より好ましくは、2.0kPa以上である。シール部材15Aの50%圧縮硬さが上記上限値以下であることにより、バッテリーカバー1がバッテリー100に装着するときに、シール部材15Aを容易に変形させることができる。これにより、バッテリーカバー1をバッテリー100に円滑に装着できる。シール部材15Aの50%圧縮硬さが上記下限値以上であることにより、シール部材15Aの形状を維持できる。 The seal member 15A is softer than the heat insulating layer 13. The 50% compression hardness of the sealing member 15A is lower than the 50% compression hardness of the heat insulating layer 13. The 50% compressive hardness of the sealing member 15A is, for example, less than 10.0 kPa, preferably 8.0 kPa or less, more preferably 6.0 kPa or less, and for example, 1.0 kPa or more, preferably 1.5 kPa. As mentioned above, more preferably 2.0 kPa or more. When the 50% compression hardness of the seal member 15A is not more than the above upper limit value, the seal member 15A can be easily deformed when the battery cover 1 is attached to the battery 100. As a result, the battery cover 1 can be smoothly attached to the battery 100. When the 50% compressive hardness of the seal member 15A is at least the above lower limit value, the shape of the seal member 15A can be maintained.
 シール部材15Aの熱伝導率は、0.045W/(m・K)以下、好ましくは、0.043W/(m・K)以下、より好ましくは、0.040W/(m・K)以下、さらに好ましくは、0.035W/(m・K)以下、さらに好ましくは、0.033W/(m・K)以下、さらに好ましくは、0.030W/(m・K)以下であり、例えば、0.015W/(m・K)以上である。 The thermal conductivity of the sealing member 15A is 0.045 W / (m · K) or less, preferably 0.043 W / (m · K) or less, more preferably 0.040 W / (m · K) or less, and further. It is preferably 0.035 W / (m · K) or less, more preferably 0.033 W / (m · K) or less, still more preferably 0.030 W / (m · K) or less, for example, 0. It is 015 W / (m · K) or more.
 バッテリーカバー1がバッテリー100から取り外された状態で、シール部材15Aの厚みは、例えば、1mm以上、好ましくは、5mm以上であり、例えば、15mm以下、好ましくは、10mm以下である。シール部材15Aの厚みが上記下限値以上であることにより、バッテリーカバー1をバッテリー100に装着するときに、シール部材15Aの変形量を確保することができ、バッテリー100に対するバッテリーカバー1の装着性を向上させることができる。シール部材15Aの厚みが上記上限値以下であることにより、バッテリーカバー1が過度に大型化することを抑制できる。 With the battery cover 1 removed from the battery 100, the thickness of the seal member 15A is, for example, 1 mm or more, preferably 5 mm or more, for example, 15 mm or less, preferably 10 mm or less. When the thickness of the seal member 15A is equal to or greater than the above lower limit, the amount of deformation of the seal member 15A can be secured when the battery cover 1 is attached to the battery 100, and the attachability of the battery cover 1 to the battery 100 can be improved. Can be improved. When the thickness of the seal member 15A is not more than the above upper limit value, it is possible to prevent the battery cover 1 from becoming excessively large.
 また、バッテリーカバー1がバッテリー100から取り外された状態で、第1方向におけるシール部材15Aの幅は、例えば、3mm以上、好ましくは、7mm以上であり、例えば、15mm以下、好ましくは、10mm以下である。第1方向におけるシール部材15Aの幅が上記下限値以上であることにより、シール部材15Aのシール性能(側壁2の縁3Aとバッテリー100の側面S3との間にバッテリー100の周囲の空気が流入することを抑制する性能)を確保することができる。第1方向におけるシール部材15Aの幅が上記上限値以下であることにより、バッテリーカバー1が過度に大型化することを抑制できる。 Further, with the battery cover 1 removed from the battery 100, the width of the seal member 15A in the first direction is, for example, 3 mm or more, preferably 7 mm or more, for example, 15 mm or less, preferably 10 mm or less. be. When the width of the seal member 15A in the first direction is equal to or larger than the above lower limit value, the sealing performance of the seal member 15A (air around the battery 100 flows between the edge 3A of the side wall 2 and the side surface S3 of the battery 100). Performance to suppress this) can be ensured. When the width of the seal member 15A in the first direction is equal to or less than the above upper limit value, it is possible to prevent the battery cover 1 from becoming excessively large.
 シール部材15Bは、側壁2の縁3Bの内面S11に配置される。バッテリーカバー1がバッテリー100に装着された状態で、シール部材15Bは、厚み方向において、側壁2の縁3Bと、バッテリー100の側面S3との間に配置される。シール部材15Bは、弾性変形可能である。バッテリーカバー1がバッテリー100に装着された状態で、シール部材15Bは、側壁2の縁3Bと、バッテリー100の側面S3との間をシールする。 The seal member 15B is arranged on the inner surface S11 of the edge 3B of the side wall 2. With the battery cover 1 attached to the battery 100, the seal member 15B is arranged between the edge 3B of the side wall 2 and the side surface S3 of the battery 100 in the thickness direction. The seal member 15B is elastically deformable. With the battery cover 1 attached to the battery 100, the sealing member 15B seals between the edge 3B of the side wall 2 and the side surface S3 of the battery 100.
 シール部材15Bについての説明は、シール部材15Aについての説明と同様である。そのため、シール部材15Bについての説明は、省略される。 The description of the seal member 15B is the same as the description of the seal member 15A. Therefore, the description of the seal member 15B will be omitted.
 (3)バッテリーカバーと熱源との位置関係
 次に、バッテリーカバー1と熱源Hとの位置関係について説明する。
(3) Positional relationship between the battery cover and the heat source Next, the positional relationship between the battery cover 1 and the heat source H will be described.
 本実施形態では、バッテリーカバー1が装着されたバッテリー100は、自動車のエンジンルーム内に配置される。 In the present embodiment, the battery 100 to which the battery cover 1 is attached is arranged in the engine room of the automobile.
 図4に示すように、エンジンルーム内には、熱源Hの一例としてのエンジンが配置される。なお、エンジンルーム内の熱源としては、例えば、ラジエータ、自動車がハイブリッド車である場合におけるモーターなどが想定される。熱源Hは、エンジンルーム内の熱源のうち、最も高温になる熱源である。熱源Hは、バッテリー100およびバッテリーカバー1から離れて配置される。 As shown in FIG. 4, an engine as an example of the heat source H is arranged in the engine room. As the heat source in the engine room, for example, a radiator, a motor when the automobile is a hybrid vehicle, or the like is assumed. The heat source H is the heat source having the highest temperature among the heat sources in the engine room. The heat source H is arranged away from the battery 100 and the battery cover 1.
 本実施形態では、バッテリーカバー1の第1側壁2Aは、熱源Hとバッテリー100との間に配置される。第1側壁2Aの断熱層13を、断熱層13の第1部分13Aと定義する。つまり、断熱層13は、第1部分13Aを有する。第1部分13Aは、熱源Hとバッテリー100との間に配置される。 In the present embodiment, the first side wall 2A of the battery cover 1 is arranged between the heat source H and the battery 100. The heat insulating layer 13 of the first side wall 2A is defined as the first portion 13A of the heat insulating layer 13. That is, the heat insulating layer 13 has the first portion 13A. The first portion 13A is arranged between the heat source H and the battery 100.
 バッテリーカバー1の第2側壁2Bは、バッテリー100に対して、熱源Hの反対側に配置される。バッテリーカバー1の第2側壁2Bは、バッテリー100に対して、バッテリーカバー1の第1側壁2Aの反対側に配置される。第2側壁2Bの断熱層13を、断熱層13の第2部分13Bと定義する。つまり、断熱層13は、第2部分13Bを有する。第2部分13Bは、バッテリー100に対して、熱源Hの反対側に配置される。第2部分13Bは、バッテリー100に対して、第1部分13Aの反対側に配置される。第2部分13Bは、第1部分13Aから離れている。なお、第2部分13Bは、第1部分13Aから離れており、かつ、第1部分13Aよりも低温の部分であればよく、バッテリー100に対して熱源Hの反対側に配置される部分に限らない。第2部分13Bと熱源Hとの距離は、第1部分13Aと熱源Hとの距離よりも長い。 The second side wall 2B of the battery cover 1 is arranged on the opposite side of the heat source H with respect to the battery 100. The second side wall 2B of the battery cover 1 is arranged on the opposite side of the first side wall 2A of the battery cover 1 with respect to the battery 100. The heat insulating layer 13 of the second side wall 2B is defined as the second portion 13B of the heat insulating layer 13. That is, the heat insulating layer 13 has a second portion 13B. The second portion 13B is arranged on the opposite side of the heat source H with respect to the battery 100. The second portion 13B is arranged on the opposite side of the first portion 13A with respect to the battery 100. The second portion 13B is separated from the first portion 13A. The second portion 13B may be a portion separated from the first portion 13A and having a lower temperature than the first portion 13A, and is limited to a portion arranged on the opposite side of the heat source H with respect to the battery 100. not. The distance between the second portion 13B and the heat source H is longer than the distance between the first portion 13A and the heat source H.
 上記し、図3に示すように、伝熱層14は、第1側壁2Aと第2側壁2Bとの間で熱を伝える。つまり、伝熱層14は、第1部分13Aと第2部分13Bとの間で熱を伝える。熱源Hによって加熱された第1部分13Aの熱は、伝熱層14により、第1部分13Aよりも温度が低い第2部分13Bへ伝えられる。これにより、第1部分13Aの熱がバッテリー100に伝わることを抑制できる。その結果、バッテリー100の温度上昇を抑制できる。 As described above, as shown in FIG. 3, the heat transfer layer 14 transfers heat between the first side wall 2A and the second side wall 2B. That is, the heat transfer layer 14 transfers heat between the first portion 13A and the second portion 13B. The heat of the first portion 13A heated by the heat source H is transferred to the second portion 13B whose temperature is lower than that of the first portion 13A by the heat transfer layer 14. As a result, it is possible to suppress the heat of the first portion 13A from being transferred to the battery 100. As a result, the temperature rise of the battery 100 can be suppressed.
 5.作用効果
 (1)バッテリーカバー1は、図4に示すように、断熱層13と、熱伝導率が0.5W/(m・K)以上である伝熱層14とを備える。
5. Action Effect (1) As shown in FIG. 4, the battery cover 1 includes a heat insulating layer 13 and a heat transfer layer 14 having a thermal conductivity of 0.5 W / (m · K) or more.
 そのため、バッテリーカバー1がバッテリー100に装着された状態で、熱源Hによって第1部分13Aが加熱された場合、第1部分13Aの熱を、伝熱層14(図3参照)によって、第1部分13Aから離れた第2部分13Bに効率よく伝えることができる。 Therefore, when the first portion 13A is heated by the heat source H while the battery cover 1 is attached to the battery 100, the heat of the first portion 13A is transferred to the first portion by the heat transfer layer 14 (see FIG. 3). It can be efficiently transmitted to the second portion 13B away from 13A.
 これにより、バッテリーカバー1の厚みを増大させなくても、第1部分13Aの熱を第2部分13Bに伝えることにより、熱源Hからの熱がバッテリー100に伝わることを抑制できる。 Thereby, even if the thickness of the battery cover 1 is not increased, the heat from the heat source H can be suppressed from being transferred to the battery 100 by transferring the heat of the first portion 13A to the second portion 13B.
 その結果、バッテリーカバー1の厚みの増大を抑制しつつ、断熱性の向上を図ることができる。 As a result, it is possible to improve the heat insulating property while suppressing the increase in the thickness of the battery cover 1.
 (2)バッテリーカバー1によれば、伝熱層14は、金属からなる。 (2) According to the battery cover 1, the heat transfer layer 14 is made of metal.
 そのため、バッテリーカバー1の断熱性のさらなる向上を図ることができる。 Therefore, the heat insulating property of the battery cover 1 can be further improved.
 (3)バッテリーカバー1によれば、断熱層13の厚みは、1mm以上である。 (3) According to the battery cover 1, the thickness of the heat insulating layer 13 is 1 mm or more.
 そのため、バッテリーカバー1の断熱性を確保できる。 Therefore, the heat insulating property of the battery cover 1 can be ensured.
 (4)バッテリーカバー1によれば、図4に示すように、シール部材15A、15Bが、側壁2の縁3A、3Bとバッテリー100の側面S3との間をシールする。 (4) According to the battery cover 1, as shown in FIG. 4, the sealing members 15A and 15B seal between the edges 3A and 3B of the side wall 2 and the side surface S3 of the battery 100.
 これにより、熱源Hによって加熱された空気がバッテリーカバー1とバッテリー100との間に入ることを、シール部材15A、15Bによって、抑制できる。 Thereby, the air heated by the heat source H can be suppressed from entering between the battery cover 1 and the battery 100 by the sealing members 15A and 15B.
 その結果、バッテリーカバー1の断熱性のさらなる向上を図ることができる。 As a result, the heat insulating property of the battery cover 1 can be further improved.
 (5)バッテリーカバー1によれば、図4に示すように、伝熱層14は、バッテリー100の側面S3と断熱層13との間に配置される。 (5) According to the battery cover 1, as shown in FIG. 4, the heat transfer layer 14 is arranged between the side surface S3 of the battery 100 and the heat insulating layer 13.
 そのため、バッテリーカバー1の断熱性のさらなる向上を図ることができる。 Therefore, the heat insulating property of the battery cover 1 can be further improved.
 (6)バッテリーカバー1によれば、図4に示すように、第2部分13Bと熱源Hとの距離は、第1部分13Aと熱源Hとの距離よりも長い。 (6) According to the battery cover 1, as shown in FIG. 4, the distance between the second portion 13B and the heat source H is longer than the distance between the first portion 13A and the heat source H.
 そのため、第1部分13Aの熱を、熱源Hから離れた第2部分13Bに伝えることができる。 Therefore, the heat of the first portion 13A can be transferred to the second portion 13B away from the heat source H.
 (7)バッテリーカバー1によれば、図4に示すように、第2部分13Bは、バッテリー100に対して、第1部分13Aの反対側に配置される。 (7) According to the battery cover 1, as shown in FIG. 4, the second portion 13B is arranged on the opposite side of the first portion 13A with respect to the battery 100.
 そのため、第1部分13Aの熱を、バッテリー100に対して第1部分13Aの反対側まで伝えることができる。 Therefore, the heat of the first portion 13A can be transferred to the battery 100 to the opposite side of the first portion 13A.
 6.変形例
 以下、バッテリーカバー1の変形例について説明する。変形例の説明において、上記した実施形態と同様の部材には、同じ符号を付し、説明を省略する。
6. Modification Example Hereinafter, a modification of the battery cover 1 will be described. In the description of the modification, the same members as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 (1)バッテリーカバー1の形状は、限定されない。バッテリーカバー1の形状は、バッテリーの形状に合わせて、適宜変更可能である。例えば、バッテリーが、円柱形状である場合、バッテリーカバー1は、円筒形状であってもよい。また、バッテリーが、平板形状など、扁平な形状を有する場合、バッテリーカバー1は、第1側壁および第2側壁を有し、第1側壁と第2側壁との間にバッテリーを挟んでもよい。 (1) The shape of the battery cover 1 is not limited. The shape of the battery cover 1 can be appropriately changed according to the shape of the battery. For example, when the battery has a cylindrical shape, the battery cover 1 may have a cylindrical shape. Further, when the battery has a flat shape such as a flat plate shape, the battery cover 1 has a first side wall and a second side wall, and the battery may be sandwiched between the first side wall and the second side wall.
 (2)バッテリーカバー1の内面S11は、バッテリー100の側面S3と接触していてもよい。 (2) The inner surface S11 of the battery cover 1 may be in contact with the side surface S3 of the battery 100.
 (3)バッテリーカバー1は、バッテリー100の周辺に配置される部材との干渉を避けるための凹部を有してもよい。 (3) The battery cover 1 may have a recess for avoiding interference with a member arranged around the battery 100.
 (4)図5から図13に示すように、伝熱層14の配置は、断熱層13の第1部分13Aから第2部分13Bに熱を伝えることができれば、限定されない。 (4) As shown in FIGS. 5 to 13, the arrangement of the heat transfer layer 14 is not limited as long as heat can be transferred from the first portion 13A to the second portion 13B of the heat insulating layer 13.
 例えば、図5に示すように、伝熱層14は、側壁2の全てに設けられていてもよい。 For example, as shown in FIG. 5, the heat transfer layer 14 may be provided on all of the side walls 2.
 また、伝熱層14は、第1側壁2Aと、第2方向におけるいずれか一方の側壁とに設けられ、それ以外の側壁に設けられていなくてもよい。具体的には、図6に示すように、伝熱層14は、第1側壁2Aと第4側壁2Dとに設けられ、第2側壁2Bと第3側壁2Cとに設けられていなくてもよい。 Further, the heat transfer layer 14 may be provided on the first side wall 2A and one of the side walls in the second direction, and may not be provided on the other side walls. Specifically, as shown in FIG. 6, the heat transfer layer 14 may be provided on the first side wall 2A and the fourth side wall 2D, and may not be provided on the second side wall 2B and the third side wall 2C. ..
 また、伝熱層14は、第2方向におけるバッテリーカバー1の少なくとも一方の側壁に設けられ、それ以外の側壁に設けられていなくてもよい。具体的には、図7に示すように、第3側壁2Cと第4側壁2Dとに設けられ、第1側壁2Aと第2側壁2Bに設けられていなくてもよい。また、図8に示すように、第3側壁2Cに設けられ、第1側壁2A、第2側壁2Bおよび第4側壁2Dに設けられていなくてもよい。 Further, the heat transfer layer 14 may be provided on at least one side wall of the battery cover 1 in the second direction, and may not be provided on the other side wall. Specifically, as shown in FIG. 7, it may be provided on the third side wall 2C and the fourth side wall 2D, and may not be provided on the first side wall 2A and the second side wall 2B. Further, as shown in FIG. 8, it may be provided on the third side wall 2C and may not be provided on the first side wall 2A, the second side wall 2B, and the fourth side wall 2D.
 また、図9に示すように、第1側壁2Aには、第2方向における両端にのみ、伝熱層14が設けられていてもよい。 Further, as shown in FIG. 9, the heat transfer layer 14 may be provided on the first side wall 2A only at both ends in the second direction.
 また、図10および図11に示すように、バッテリーカバー1は、互いに第1方向に離れた2つの伝熱層141、142を有してもよい。伝熱層141、142は、第1方向と交差する方向に延びる。図12および図13に示すように、2つの伝熱層141、142は、第1方向に延びる伝熱層143を介して接続されていてもよい。 Further, as shown in FIGS. 10 and 11, the battery cover 1 may have two heat transfer layers 141 and 142 separated from each other in the first direction. The heat transfer layers 141 and 142 extend in a direction intersecting the first direction. As shown in FIGS. 12 and 13, the two heat transfer layers 141 and 142 may be connected via the heat transfer layer 143 extending in the first direction.
 (5)図14に示すように、伝熱層14は、厚み方向において、断熱層13に対して、バッテリー100の側面S3の反対側に配置されてもよい。図15に示すように、バッテリーカバー1は、断熱層13と、断熱層13に重なる第2断熱層16とを有し、伝熱層14は、断熱層13と第2断熱層16との間に配置されてもよい。 (5) As shown in FIG. 14, the heat transfer layer 14 may be arranged on the opposite side of the side surface S3 of the battery 100 with respect to the heat insulating layer 13 in the thickness direction. As shown in FIG. 15, the battery cover 1 has a heat insulating layer 13 and a second heat insulating layer 16 that overlaps the heat insulating layer 13, and the heat transfer layer 14 is between the heat insulating layer 13 and the second heat insulating layer 16. May be placed in.
 (6)上記した変形例は、適宜、組み合わせることができる。 (6) The above-mentioned modifications can be combined as appropriate.
 次に、本発明を、実施例および比較例に基づいて説明する。本発明は、下記の実施例によって限定されない。また、以下の記載において用いられる物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する、物性値、パラメータなどの上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」として定義されている数値)に代替することができる。 Next, the present invention will be described based on Examples and Comparative Examples. The present invention is not limited to the following examples. In addition, specific numerical values such as physical property values and parameters used in the following description are the upper limit values such as physical property values and parameters described in the above-mentioned "mode for carrying out the invention" (corresponding to them). It can be replaced with a lower limit (a number defined as "less than or equal to") or a lower limit (a number defined as "greater than or equal to").
 1.断熱層の材料
 断熱層の材料として、以下の材料を準備した。
1. 1. Material of heat insulating layer The following materials were prepared as the material of the heat insulating layer.
 (1)ウレタンフォーム
 ウレタンフォームA(熱伝導率:0.0400W/m・K、厚み:15mm、密度:16kg/m
 ウレタンフォームB(熱伝導率:0.0409W/m・K、厚み:3mm、密度:25kg/m、糊厚:65μm(アクリル系))
 ウレタンフォームC(熱伝導率:0.0409W/m・K、厚み:4mm、密度:25kg/m
 ウレタンフォームD(熱伝導率:0.0409W/m・K、厚み:5mm、密度:25kg/m、糊厚:65μm(アクリル系))
 (2)フェノールフォーム(熱伝導率:0.02W/m・K、厚み12mm、密度:40kg/m
 (3)プラスチック段ボール(熱伝導率:0.037W/m・K、厚み:2.5mm、目付:550g/m
 2.伝熱層の材料
 伝熱層の材料として、以下の材料を準備した。
(1) Urethane foam Urethane foam A (thermal conductivity: 0.0400 W / m · K, thickness: 15 mm, density: 16 kg / m 3 )
Urethane foam B (thermal conductivity: 0.0409 W / m · K, thickness: 3 mm, density: 25 kg / m 3 , glue thickness: 65 μm (acrylic))
Urethane foam C (thermal conductivity: 0.0409 W / m · K, thickness: 4 mm, density: 25 kg / m 3 )
Urethane foam D (thermal conductivity: 0.0409 W / m · K, thickness: 5 mm, density: 25 kg / m 3 , glue thickness: 65 μm (acrylic))
(2) Phenolic foam (thermal conductivity: 0.02 W / m · K, thickness 12 mm, density: 40 kg / m 3 )
(3) Plastic corrugated cardboard (thermal conductivity: 0.037 W / m · K, thickness: 2.5 mm, basis weight: 550 g / m 2 )
2. 2. Materials for heat transfer layer The following materials were prepared as materials for the heat transfer layer.
 (1)アルミニウム箔A(厚み:11μm、熱伝導率:200W/m・K)
 (2)アルミニウム箔B(厚み:100μm、熱伝導率:200W/m・K)
 (3)グラファイトシート(商品名:TG828CR、NeoGraf社製、面方向にける熱伝導率:1400W/m・K)
 (4)アクリルフォーム(厚み:0.4mm、熱伝導率:3W/m・K)
 (5)鋼(厚み:100μm、熱伝導率:50W/m・K)
 (6)熱伝導テープA(厚み:100μm、熱伝導率:0.4W/m・K、TR5310EX、日東電工社製)
 (7)熱伝導テープB(厚み:250μm、熱伝導率:0.7W/m・K、TR5325FEX、日東電工社製)
 2.評価装置の構成
 図16Aに示すように、評価装置110は、恒温槽111と、隔壁112と、樹脂板113とを備える。
(1) Aluminum foil A (thickness: 11 μm, thermal conductivity: 200 W / m · K)
(2) Aluminum foil B (thickness: 100 μm, thermal conductivity: 200 W / m · K)
(3) Graphite sheet (trade name: TG828CR, manufactured by NeoGraf, thermal conductivity in the plane direction: 1400 W / m · K)
(4) Acrylic foam (thickness: 0.4 mm, thermal conductivity: 3 W / m · K)
(5) Steel (thickness: 100 μm, thermal conductivity: 50 W / m · K)
(6) Thermal conductive tape A (thickness: 100 μm, thermal conductivity: 0.4 W / m · K, TR5310EX, manufactured by Nitto Denko KK)
(7) Thermal conductive tape B (thickness: 250 μm, thermal conductivity: 0.7 W / m · K, TR5325FEX, manufactured by Nitto Denko KK)
2. 2. Configuration of Evaluation Device As shown in FIG. 16A, the evaluation device 110 includes a constant temperature bath 111, a partition wall 112, and a resin plate 113.
 恒温槽111としては、Espec社製の「SH-641」を使用した。 As the constant temperature bath 111, "SH-641" manufactured by Espec was used.
 隔壁112は、恒温槽111内に配置される。隔壁112は、恒温槽111の内部空間を仕切る。隔壁112の一方側の空間111Aには、恒温槽111のファンによって、熱風が供給される。隔壁112の他方側の空間111Bには、熱風は、供給されない。隔壁112は、総厚み33mmのフェノールフォームからなる。隔壁112は、開口112Aを有する。開口112Aは、正方形である。開口112Aの一辺の寸法は、200mmである。 The partition wall 112 is arranged in the constant temperature bath 111. The partition wall 112 partitions the internal space of the constant temperature bath 111. Hot air is supplied to the space 111A on one side of the partition wall 112 by a fan of the constant temperature bath 111. Hot air is not supplied to the space 111B on the other side of the partition wall 112. The partition wall 112 is made of phenolic foam having a total thickness of 33 mm. The partition wall 112 has an opening 112A. The opening 112A is square. The dimension of one side of the opening 112A is 200 mm.
 樹脂板113は、断熱対象である。樹脂板113は、上記したバッテリー100のバッテリーケース101(図2参照)として想定される。樹脂板113は、隔壁112に取り付けられる。樹脂板113は、開口112Aを閉鎖する。樹脂板113は、ポリプロピレンからなる。樹脂板113の厚みは、2mmである。樹脂板113は、空間111A側の第1表面S41と、空間111B側の第2表面S42とを有する。 The resin plate 113 is a heat insulating target. The resin plate 113 is assumed to be the battery case 101 (see FIG. 2) of the battery 100 described above. The resin plate 113 is attached to the partition wall 112. The resin plate 113 closes the opening 112A. The resin plate 113 is made of polypropylene. The thickness of the resin plate 113 is 2 mm. The resin plate 113 has a first surface S41 on the space 111A side and a second surface S42 on the space 111B side.
 3.実施例および比較例
 <実施例1~10および比較例1~4>
 表1に示す断熱層13と伝熱層14とを、図16Aに示すように、空間111Aから空間111Bへ向かう方向において、断熱層13、伝熱層14、樹脂板113の順に並ぶように、隔壁112に取り付けた。断熱層13は、空間111A側の第1表面S51と、空間111B側の第2表面S52とを有する。伝熱層14は、断熱層13の第2表面S52と接触する。樹脂板113は、伝熱層14と接触する。
3. 3. Examples and Comparative Examples <Examples 1 to 10 and Comparative Examples 1 to 4>
As shown in FIG. 16A, the heat insulating layer 13 and the heat transfer layer 14 shown in Table 1 are arranged in the order of the heat insulating layer 13, the heat transfer layer 14, and the resin plate 113 in the direction from the space 111A to the space 111B. It was attached to the partition wall 112. The heat insulating layer 13 has a first surface S51 on the space 111A side and a second surface S52 on the space 111B side. The heat transfer layer 14 comes into contact with the second surface S52 of the heat insulating layer 13. The resin plate 113 comes into contact with the heat transfer layer 14.
 次に、恒温槽111内の温度が常温(25℃)である状態から、恒温槽111の設定温度を80℃として恒温槽111内を定値運転し、JIS C 1602:2015で定義されるK熱電対を用いて、断熱層13の第2表面S52の温度T1と、樹脂板113の第2表面S42の温度T2とを測定した。なお、温度T1、T2は、図16Bに示す5つのポイントP1~P5の温度の平均値である。 Next, from the state where the temperature inside the constant temperature bath 111 is normal temperature (25 ° C), the constant temperature tank 111 is operated at a constant value with the set temperature of the constant temperature tank 111 set to 80 ° C, and the K thermoelectric defined in JIS C 1602: 2015 is operated. Using a pair, the temperature T1 of the second surface S52 of the heat insulating layer 13 and the temperature T2 of the second surface S42 of the resin plate 113 were measured. The temperatures T1 and T2 are average values of the temperatures at the five points P1 to P5 shown in FIG. 16B.
 空間111A内の温度T0、温度T1、T2、温度T2と温度T0との差ΔT、および、伝熱層の効果を表1に示す。 Table 1 shows the temperature T0, the temperature T1, T2, the difference ΔT between the temperature T2 and the temperature T0 in the space 111A, and the effect of the heat transfer layer.
 なお、各実施例および比較例3の伝熱層の効果は、同一の断熱層を有し、伝熱層を有さない比較例を基準として、以下の式によって計算される。 The effect of the heat transfer layer of each Example and Comparative Example 3 is calculated by the following formula based on the comparative example having the same heat insulating layer and no heat transfer layer.
 伝熱層の効果=(実施例のΔT-比較例のΔT)/比較例のΔT×100
 例えば、実施例1、2、4を例に挙げて、伝熱層の効果は、以下の式によって計算される。
Effect of heat transfer layer = (ΔT of Example-ΔT of Comparative Example) / ΔT of Comparative Example × 100
For example, taking Examples 1, 2 and 4 as an example, the effect of the heat transfer layer is calculated by the following formula.
 実施例1の伝熱層の効果=(実施例1のΔT-比較例1のΔT)/比較例1のΔT×100
 実施例2の伝熱層の効果=(実施例2のΔT-比較例1のΔT)/比較例1のΔT×100
 実施例4の伝熱層の効果=(実施例4のΔT-比較例2のΔT)/比較例2のΔT×100
Effect of heat transfer layer of Example 1 = (ΔT of Example 1-ΔT of Comparative Example 1) / ΔT of Comparative Example 1 × 100
Effect of heat transfer layer of Example 2 = (ΔT of Example 2 − ΔT of Comparative Example 1) / ΔT × 100 of Comparative Example 1
Effect of heat transfer layer of Example 4 = (ΔT of Example 4 − ΔT of Comparative Example 2) / ΔT × 100 of Comparative Example 2
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例11、12および比較例5>
 表1に示す断熱層13と伝熱層14とを、図17Aに示すように、空間111Aから空間111Bへ向かう方向において、伝熱層14、断熱層13、樹脂板113の順に並ぶように、隔壁112に取り付けた以外は、実施例1と同様にして、温度T1、T2を測定した。温度T0~T2、温度T1と温度T0との差ΔT、および、伝熱層の効果を表2に示す。
<Examples 11 and 12 and Comparative Example 5>
As shown in FIG. 17A, the heat transfer layer 13 and the heat transfer layer 14 shown in Table 1 are arranged in the order of the heat transfer layer 14, the heat transfer layer 13, and the resin plate 113 in the direction from the space 111A to the space 111B. The temperatures T1 and T2 were measured in the same manner as in Example 1 except that they were attached to the partition wall 112. Table 2 shows the effects of the temperatures T0 to T2, the difference ΔT between the temperature T1 and the temperature T0, and the heat transfer layer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例13~15および比較例6~8>
 表1に示す断熱層13、伝熱層14、および、第2断熱層16を、図17Bに示すように、空間111Aから空間111Bへ向かう方向において、断熱層13、伝熱層14、第2断熱層16、樹脂板113の順に並ぶように、隔壁112に取り付けた以外は、実施例1と同様にして、温度T1、T2を測定した。温度T0~T2、温度T1と温度T0との差ΔT、および、伝熱層の効果を表3に示す。
<Examples 13 to 15 and Comparative Examples 6 to 8>
As shown in FIG. 17B, the heat insulating layer 13, the heat transfer layer 14, and the second heat transfer layer 16 shown in Table 1 are arranged in the direction from the space 111A to the space 111B, and the heat insulating layer 13, the heat transfer layer 14, and the second heat transfer layer 16. The temperatures T1 and T2 were measured in the same manner as in Example 1 except that the heat insulating layer 16 and the resin plate 113 were attached to the partition wall 112 in this order. Table 3 shows the effects of the temperatures T0 to T2, the difference ΔT between the temperature T1 and the temperature T0, and the heat transfer layer.
Figure JPOXMLDOC01-appb-T000003

 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
Figure JPOXMLDOC01-appb-T000003

The above invention has been provided as an exemplary embodiment of the present invention, but this is merely an example and should not be construed in a limited manner. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
 本発明のバッテリーカバーは、周囲の熱がバッテリーに伝わることを抑制するために利用される。 The battery cover of the present invention is used to suppress the transfer of ambient heat to the battery.
 1    バッテリーカバー
 2    側壁
 3A   縁
 13   断熱層
 13A  第1部分
 13B  第2部分
 14   伝熱層
 15A  シール部材
 100  バッテリー
 H    熱源
 S3   側面
1 Battery cover 2 Side wall 3A Edge 13 Insulation layer 13A 1st part 13B 2nd part 14 Heat transfer layer 15A Seal member 100 Battery H Heat source S3 Side surface

Claims (10)

  1.  第1部分と、前記第1部分から離れた第2部分とを有する断熱層と、
     前記第1部分と前記第2部分との間で熱を伝え、熱伝導率が前記断熱層よりも高い伝熱層と
     を備え、
     前記伝熱層の熱伝導率は、0.5W/(m・K)以上であることを特徴とする、バッテリーカバー。
    A heat insulating layer having a first portion and a second portion separated from the first portion.
    It is provided with a heat transfer layer that transfers heat between the first portion and the second portion and has a higher thermal conductivity than the heat insulating layer.
    A battery cover characterized in that the thermal conductivity of the heat transfer layer is 0.5 W / (m · K) or more.
  2.  前記伝熱層は、金属からなることを特徴とする、請求項1に記載のバッテリーカバー。 The battery cover according to claim 1, wherein the heat transfer layer is made of metal.
  3.  前記断熱層の厚みは、1mm以上であることを特徴とする、請求項1または請求項2に記載のバッテリーカバー。 The battery cover according to claim 1 or 2, wherein the heat insulating layer has a thickness of 1 mm or more.
  4.  バッテリーに対して着脱可能であることを特徴とする、請求項1から請求項3のいずれか一項に記載のバッテリーカバー。 The battery cover according to any one of claims 1 to 3, characterized in that it is removable from the battery.
  5.  前記バッテリーの側面を覆う側壁であって、前記断熱層と前記伝熱層とを有する側壁を備えることを特徴とする、請求項4に記載のバッテリーカバー。 The battery cover according to claim 4, wherein the side wall covers the side surface of the battery and includes the side wall having the heat insulating layer and the heat transfer layer.
  6.  前記側壁は、前記バッテリーの前記側面に対して、間隔を隔てて向かい合い、
     前記バッテリーカバーは、
      前記側壁の縁と前記バッテリーの前記側面との間をシールするシール部材を、さらに備えることを特徴とする、請求項5に記載のバッテリーカバー。
    The sidewalls face the sides of the battery at a distance from each other.
    The battery cover is
    The battery cover according to claim 5, further comprising a sealing member that seals between the edge of the side wall and the side surface of the battery.
  7.  前記伝熱層は、前記バッテリーの前記側面と前記断熱層との間に配置されることを特徴とする、請求項5または請求項6に記載のバッテリーカバー。 The battery cover according to claim 5 or 6, wherein the heat transfer layer is arranged between the side surface of the battery and the heat insulating layer.
  8.  前記第1部分は、前記バッテリーから離れて配置される熱源と前記バッテリーとの間に配置されることを特徴とする、請求項4から請求項7のいずれか一項に記載のバッテリーカバー。 The battery cover according to any one of claims 4 to 7, wherein the first portion is arranged between a heat source arranged away from the battery and the battery.
  9.  前記第2部分と前記熱源との距離は、前記第1部分と前記熱源との距離よりも長いことを特徴とする、請求項8に記載のバッテリーカバー。 The battery cover according to claim 8, wherein the distance between the second portion and the heat source is longer than the distance between the first portion and the heat source.
  10.  前記第2部分は、前記バッテリーに対して、前記第1部分の反対側に配置されることを特徴とする、請求項4から請求項9のいずれか一項に記載のバッテリーカバー。 The battery cover according to any one of claims 4 to 9, wherein the second portion is arranged on the opposite side of the first portion with respect to the battery.
PCT/JP2021/035946 2020-09-30 2021-09-29 Battery cover WO2022071425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165971A JP2022057619A (en) 2020-09-30 2020-09-30 Battery cover
JP2020-165971 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071425A1 true WO2022071425A1 (en) 2022-04-07

Family

ID=80950637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035946 WO2022071425A1 (en) 2020-09-30 2021-09-29 Battery cover

Country Status (2)

Country Link
JP (1) JP2022057619A (en)
WO (1) WO2022071425A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613059A (en) * 1992-06-29 1994-01-21 Tokai Rubber Ind Ltd Heat insulation device for battery protection
JP2009283148A (en) * 2008-05-19 2009-12-03 Furukawa Battery Co Ltd:The Battery pack module
JP2013157599A (en) * 2012-01-04 2013-08-15 Jnc Corp Heat radiation member, electronic device, and battery
JP2014213678A (en) * 2013-04-24 2014-11-17 日東電工株式会社 Battery cover
JP2016084836A (en) * 2014-10-23 2016-05-19 日東電工株式会社 Heat insulation material and battery cover
JP2016188812A (en) * 2015-03-30 2016-11-04 株式会社デンソー Electronic control device and method for manufacturing electronic control device
JP2016190630A (en) * 2015-03-30 2016-11-10 株式会社デンソー Electronic control device
JP2016192888A (en) * 2015-03-30 2016-11-10 株式会社デンソー Electronic control device
JP2017175854A (en) * 2016-03-25 2017-09-28 株式会社デンソー Electronic control device
JP2017171220A (en) * 2016-03-25 2017-09-28 株式会社デンソー Electronic control device
JP2018079933A (en) * 2018-02-13 2018-05-24 日東電工株式会社 Battery cover
WO2019098231A1 (en) * 2017-11-17 2019-05-23 日東電工株式会社 Battery cover

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613059A (en) * 1992-06-29 1994-01-21 Tokai Rubber Ind Ltd Heat insulation device for battery protection
JP2009283148A (en) * 2008-05-19 2009-12-03 Furukawa Battery Co Ltd:The Battery pack module
JP2013157599A (en) * 2012-01-04 2013-08-15 Jnc Corp Heat radiation member, electronic device, and battery
JP2014213678A (en) * 2013-04-24 2014-11-17 日東電工株式会社 Battery cover
JP2016084836A (en) * 2014-10-23 2016-05-19 日東電工株式会社 Heat insulation material and battery cover
JP2016188812A (en) * 2015-03-30 2016-11-04 株式会社デンソー Electronic control device and method for manufacturing electronic control device
JP2016190630A (en) * 2015-03-30 2016-11-10 株式会社デンソー Electronic control device
JP2016192888A (en) * 2015-03-30 2016-11-10 株式会社デンソー Electronic control device
JP2017175854A (en) * 2016-03-25 2017-09-28 株式会社デンソー Electronic control device
JP2017171220A (en) * 2016-03-25 2017-09-28 株式会社デンソー Electronic control device
WO2019098231A1 (en) * 2017-11-17 2019-05-23 日東電工株式会社 Battery cover
JP2018079933A (en) * 2018-02-13 2018-05-24 日東電工株式会社 Battery cover

Also Published As

Publication number Publication date
JP2022057619A (en) 2022-04-11

Similar Documents

Publication Publication Date Title
JP7227155B2 (en) battery cover
JP6506942B2 (en) Insulation and battery cover
US8728649B2 (en) Battery system
US20210376405A1 (en) Thermal barrier material for electric vehicle battery applications
US20110030894A1 (en) Vacuum heat insulator and its manufacturing method
CN112805070A (en) Fire protection device with composite system, composite system and battery pack with fire protection device
WO2020129274A1 (en) Power source device and thermal insulation sheet for power source device
WO2010116719A1 (en) Vacuum insulation material and appliance provided therewith
JP7179927B2 (en) Use of absorbent materials to absorb and/or distribute liquids in actively and/or passively cooled current carrying systems
JP6073005B1 (en) Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
WO2022071425A1 (en) Battery cover
WO2021117336A1 (en) Battery cover
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP5331148B2 (en) Refrigerator and manufacturing method thereof
JP4907480B2 (en) Vacuum insulation
JP2022177784A (en) Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member
JP2022086028A (en) Heat dissipation sheet and method for producing the same
JP2012063007A (en) Cylindrical heat insulating material and thermal device using the same
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP2017002949A (en) Vacuum heat insulation material and equipment using the same
US20240116266A1 (en) Composite System to Shield and Protect Batteries from Radiation and Fire
JP5788714B2 (en) Vacuum insulation panel and refrigerator using the same
JP7233070B2 (en) vacuum insulation
JP2024056641A (en) Fire protection device with composite system, battery pack with composite system and fire protection device
WO2022204492A1 (en) Multi-layered thermal insulation system for battery thermal runaway management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875722

Country of ref document: EP

Kind code of ref document: A1