JP2022177784A - Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member - Google Patents

Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member Download PDF

Info

Publication number
JP2022177784A
JP2022177784A JP2021211443A JP2021211443A JP2022177784A JP 2022177784 A JP2022177784 A JP 2022177784A JP 2021211443 A JP2021211443 A JP 2021211443A JP 2021211443 A JP2021211443 A JP 2021211443A JP 2022177784 A JP2022177784 A JP 2022177784A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
condensed water
heat insulating
fibers
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021211443A
Other languages
Japanese (ja)
Inventor
英史 小澤
Hidefumi Ozawa
功一 河井
Koichi Kawai
太郎 海野
Taro Unno
俊司 山本
Shunji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of JP2022177784A publication Critical patent/JP2022177784A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Building Environments (AREA)

Abstract

To provide a structure of a nonwoven fabric for condensation water dropping prevention, a heat insulator using the same, and its applications to a piping structure and a building structure.SOLUTION: A condensation water dropping-preventive heat insulator 3 has a nonwoven fabric 8 disposed on at least one surface of a polyethylene resin foam 7. The constituent fibers of the nonwoven fabric are at least partially fused or bonded to the surface of the polyethylene resin foam. The fiber has an average fiber diameter of 10-30 μm, the fiber has a voidage of 85-98%, and a 5% tensile stress value is 25 MPa or less and 1 MPa or more.SELECTED DRAWING: Figure 2

Description

本発明は、結露水の滴下防止用保温材とこれを用いた結露水の滴下防止冷媒配管と給水給湯用配管構造及び結露水の滴下防止建築用構造、結露水の滴下防止用不織布、並びにこの保温材を用いた冷媒配管の結露水滴下防止構造の形成方法、建築用部材の結露水の滴下防止構造の形成方法に関する。 The present invention provides a heat insulating material for preventing the dripping of condensed water, a refrigerant pipe for preventing the dripping of condensed water using the same, a piping structure for water supply and hot water supply, an architectural structure for preventing the dripping of condensed water, a non-woven fabric for preventing the dripping of condensed water, and the same. The present invention relates to a method for forming a structure for preventing dripping of condensed water for a refrigerant pipe using a heat insulating material, and a method for forming a structure for preventing dripping of condensed water for a building member.

従来は、ポリエチレン発泡体の少なくとも一方の表面にポリエチレンやポリプロピレンフィルムを貼合して、貼合した樹脂発泡体の表面をエンボス加工した材料が空調機器の冷媒などの配管用保温材として使用されていた。しかし、このような保温材の場合には、冷媒用配管の外周に使用される保温材の表面に結露が生じ、これらの結露水となって、天井裏の配管スペース等に結露水が滴下することで、天井裏などの配管スペースにカビが発生する問題があった。 Conventionally, a polyethylene or polypropylene film is attached to at least one surface of a polyethylene foam, and the surface of the attached resin foam is embossed. rice field. However, in the case of such a heat insulating material, condensation occurs on the surface of the heat insulating material used on the outer circumference of the refrigerant pipe, and the condensed water becomes water that drips into the piping space behind the ceiling. As a result, there was a problem of mold growing in the piping space such as the attic.

特許文献1には、ダクト本体に不織布が一体成形されたダクトが記載されている。ダクト本体に不織布が一体成形されたダクトであって、前記ダクト本体は、発泡ブロー成形体である。発泡ブロー成形体であるダクト本体に不織布が一体成型されているので、ダクト本体の表面での結露が生じにくく、たとえ結露が生じたとしても結露水が不織布に吸収されるので、結露水の滴下が抑制される。 Patent Literature 1 describes a duct in which a nonwoven fabric is integrally formed with a duct body. A duct in which a non-woven fabric is integrally formed with a duct body, wherein the duct body is a foam blow molded body. Since the non-woven fabric is integrally molded with the duct body, which is a foam blow molding, dew condensation is less likely to occur on the surface of the duct body. is suppressed.

特許文献1の発明は、ダクト本体に不織布が一体成型されているので、不織布がダクト本体から剥がれることが抑制される。ダクト本体に不織布が一体成形されたものであるため、発泡体と不織布を熱融着したものではない。 In the invention of Patent Document 1, the nonwoven fabric is molded integrally with the duct main body, so that the nonwoven fabric is suppressed from peeling off from the duct main body. Since the nonwoven fabric is integrally formed with the duct main body, the foam and the nonwoven fabric are not heat-sealed.

特許文献2には、独立気泡構造の発泡体からなる内部層と熱可塑性樹脂製の不織布からなる空調ダクトの分割体が記載されている。この分割体は、外部層は融点が異なる2種の熱可塑性樹脂を含み、融点が低い樹脂層が融着により相互に結合している。さらに内部層の発泡体と外部層を形成する2種の繊維の低融点側の繊維の融点よりも低温で接着できるホットメルト接着剤にて、相互に接着させた構造を有する空調ダクトの分割体が形成されている。 Patent Literature 2 describes an air-conditioning duct divided body composed of an internal layer made of a foam having a closed-cell structure and a non-woven fabric made of a thermoplastic resin. In this split body, the outer layer contains two kinds of thermoplastic resins with different melting points, and the resin layers with the lower melting point are bonded to each other by fusion. Furthermore, the divided body of the air-conditioning duct having a structure in which the foam of the inner layer and the two kinds of fibers forming the outer layer are adhered to each other with a hot-melt adhesive that can be bonded at a temperature lower than the melting point of the fiber on the low melting point side. is formed.

また、この出願には、発泡体には、ポリエチレンやポリプロピレンなどのオレフィン系等の熱可塑性樹脂フォームや、ポリウレタンフォームを使用することができ、さらに不織布としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの熱可塑性樹脂からなる熱可塑性樹脂繊維を用いること、また融点が異なる樹脂を用いて芯鞘構造を形成することが記載されている。 In addition, in this application, as the foam, a thermoplastic resin foam such as an olefin-based foam such as polyethylene or polypropylene, or a polyurethane foam can be used. It is described that a thermoplastic resin fiber made of a plastic resin is used, and a core-sheath structure is formed using resins having different melting points.

この出願には、不織布が2種類の繊維を用いた芯鞘構造を有する複層の不織布であり、さらに発泡体層と不織布がホットメルト接着剤で接着されていることが記載されている。 This application describes that the nonwoven fabric is a multi-layered nonwoven fabric having a core-sheath structure using two types of fibers, and that the foam layer and the nonwoven fabric are bonded with a hot-melt adhesive.

特許文献3には、多孔性フィルムと不織布が積層され、フィルム面に滴下した水滴の吸収速度が60秒以内であることを特徴とする保温材が開示されている。不織布の繊維は一般的な天然繊維、コットン、麻、羊毛等を用いることができるが一部吸水性の繊維を用いることに特徴がある。この保温材を食品に使用するため再生繊維、例えばレーヨン、アセテート等が好ましく、価格的には合成繊維、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレートが使用できる。 Patent Literature 3 discloses a heat insulating material in which a porous film and a nonwoven fabric are laminated, and the rate of absorption of water droplets dropped on the film surface is within 60 seconds. Common natural fibers such as cotton, hemp, and wool can be used for the fibers of the non-woven fabric. Regenerated fibers, such as rayon and acetate, are preferred for use as the heat insulating material for food, and synthetic fibers, such as polyethylene, polypropylene, and polyethylene terephthalate, can be used because of their low cost.

この発明の特徴は、上記の繊維に、吸水性の繊維として、親水性のポリアクリル酸ナトリウム塩の架橋物からなる繊維を1~10%の範囲で含むものである。さらに、不織布の厚さが0.3~3mm(0.5~1.5mm)で、不織布の目付量が20~250g/mであることが記載され、さらに好ましくは50~150g/mであることが記載されている。 A feature of the present invention is that the above fibers contain 1 to 10% of fibers made of a crosslinked product of hydrophilic sodium polyacrylate as water-absorbing fibers. Further, it is described that the nonwoven fabric has a thickness of 0.3 to 3 mm (0.5 to 1.5 mm) and a basis weight of 20 to 250 g/m 2 , more preferably 50 to 150 g/m 2 . It is stated that

特殊な吸水性樹脂を使用することで、シートの保水量が向上するが、コストアップする問題があり、不織布の基材が発泡体でなく、樹脂フィルムであるため、断熱性が不足する問題がある。 By using a special water-absorbent resin, the water retention capacity of the sheet is improved, but there is a problem of increased cost, and the base material of the non-woven fabric is not a foam but a resin film, so there is a problem of insufficient heat insulation. be.

特許文献4には、樹脂発泡体シートと樹脂フィルムとを貼着してなる積層シートに対してエンボス模様を連続的に彫刻するエンボスシートの形成方法が開示されている。
この発明においては、前記樹脂フィルムに、互いに隣接する凹部が模様をなして形成するエンボスロールを圧接して回転させて、エンボスロールがシートに圧接されたときに空気を溜める空気溜まり部が形成されるように、凹部底面に凸部が形成されるエンボスロールと、これにより製造されるエンボスシートが開示されている。さらにエンボス模様が外面に位置するように円筒状に成形加工してなることを特徴とするパイプカバーが開示されている。
Patent Literature 4 discloses a method of forming an embossed sheet in which an embossed pattern is continuously engraved on a laminated sheet formed by adhering a resin foam sheet and a resin film.
In the present invention, an embossing roll having a pattern of mutually adjacent concave portions is pressed against the resin film and rotated to form an air reservoir for storing air when the embossing roll is pressed against the sheet. , an embossing roll in which convex portions are formed on the bottom surface of concave portions, and an embossed sheet manufactured by this roll are disclosed. Furthermore, a pipe cover is disclosed which is characterized by being formed into a cylindrical shape so that the embossed pattern is positioned on the outer surface.

特開2020-197315号公報JP 2020-197315 A 特開2014-065382号公報JP 2014-065382 A 特開平9-300511号公報JP-A-9-300511 特開平9-314661号公報JP-A-9-314661

これまでに、保温材の表面に不織布を貼り付けた構造とすることで結露水の滴下防止可能な場合があることは知られていたが、結露水の滴下防止構造を得るには、不織布を表面に配置するだけでは不十分であり、不織布の材質に関係なく、不織自体が特定の構造を有していることが必要なことを解明したため、このような構造を具体的に特定することを課題とした。 Until now, it was known that it was possible to prevent the dripping of condensed water by attaching a nonwoven fabric to the surface of the heat insulating material. It is not enough to just place it on the surface, and it has been clarified that the nonwoven fabric itself must have a specific structure regardless of the material of the nonwoven fabric. was the subject.

本来、不織布の材質、構造によって、不織布の吸水性や結露特性が異なるはずであるが、特許文献1と特許文献2の、不織布を用いた結露水の滴下防止構造には、不織布の構造と吸水性に関する記載がない。特許文献3では、ポリアクリル酸ナトリウムの架橋物のような特殊な吸水性樹脂を使用するが、本発明では、このような樹脂を使用せずに、吸水性を有しない汎用樹脂化学繊維材料や吸水性を有する再生繊維材料のいずれの材料を使用しても、結露水の滴下防止が可能なポリエチレン系樹脂発泡体の表面に所定の構造を有する不織布を融着して配置した結露水の滴下防止用保温材とするものである。 Originally, the water absorption and dew condensation characteristics of a nonwoven fabric should differ depending on the material and structure of the nonwoven fabric. No mention of gender. In Patent Document 3, a special water-absorbent resin such as a cross-linked product of sodium polyacrylate is used. A non-woven fabric having a predetermined structure is placed on the surface of a polyethylene resin foam that can prevent the dripping of condensed water, regardless of whether the regenerated fiber material having water absorption is used. It is used as a heat insulating material for prevention.

本発明の結露水の滴下防止用保温材は、ポリエチレン系樹脂発泡体の少なくとも一方の表面に所定の構造を有する不織布を融着または接着したものである。本発明は、結露水の滴下防止用保温材とこれを用いた結露水の滴下防止冷媒配管と給水給湯用配管構造及び結露水の滴下防止建築用構造、結露水の滴下防止用不織布、並びにこの保温材を用いた冷媒配管の結露水滴下防止構造の形成方法、建築用部材の結露水の滴下防止構造の形成方法に関する。 The heat insulating material for preventing dripping of condensed water of the present invention is obtained by fusing or adhering a nonwoven fabric having a predetermined structure to at least one surface of a polyethylene-based resin foam. The present invention provides a heat insulating material for preventing the dripping of condensed water, a refrigerant pipe for preventing the dripping of condensed water using the same, a piping structure for water supply and hot water supply, an architectural structure for preventing the dripping of condensed water, a non-woven fabric for preventing the dripping of condensed water, and the same. The present invention relates to a method for forming a structure for preventing dripping of condensed water for a refrigerant pipe using a heat insulating material, and a method for forming a structure for preventing dripping of condensed water for a building member.

ここで、このような配管構造には、結露水の滴下防止ために、保温材である発泡体に不織布を貼合することで、不織布の内部に結露水を担持することが結露水の滴下を防止できる可能性がある。しかしながら、不織布を発泡体の表面に貼合すれば、単純に結露水の滴下を防止できるものではなく、不織布の構造により、結露を防止できる場合と、できない場合があることを発見して、不織布の空隙率、繊維の屈曲の度合い、繊維の接続部の構造、繊維の絡み合いなどの繊維の3次元構造などが影響するが、不織布の構造は不雑であり、これを直接的に規定することができないが、不織布の複雑な構造の結露水の滴下性に対する影響を反映する代替パラメータを見出してこれを規定することで本発明をなすにいたった。 Here, in order to prevent dripping of condensed water in such a piping structure, a non-woven fabric is attached to a foam that is a heat insulating material so that the condensed water is supported inside the non-woven fabric. may be preventable. However, it is not possible to simply prevent dripping of condensed water by laminating a nonwoven fabric on the surface of a foam. The porosity of the fiber, the degree of bending of the fiber, the structure of the connecting part of the fiber, the three-dimensional structure of the fiber such as the entanglement of the fiber, etc. have an effect, but the structure of the nonwoven fabric is untidy, so it should be specified directly. However, the present invention was accomplished by finding and defining an alternative parameter that reflects the influence of the complex structure of the nonwoven fabric on the dripping property of condensed water.

また、本発明においては、保温材に用いる不織布の構造を規定する要因として、使用する不織布の繊維径と所定厚さにおける繊維の空隙率などを基本として繊維の空間的な構造規定するとともに、さらに繊維の屈曲部が多く捲縮性が高い方が結露水の滴下防止特性に優れることを見出した。また、この繊維の捲縮性、繊維の接続部の構造、繊維の絡み合いの程度など含めた3次元構造を評価するパラメータとして、引張試験で所定ひずみ時の引張モジュラス値と結露水の滴下防止性に相関があることを見出した。上記構造に基づく保水特性は、所定不織布厚さ当たりの保水量を評価して、所定の保水量以上を有する不織布が結露水の滴下防止特性に優れることを確認した。ここで引張モジュラスとは、引張試験における所定方向の引張伸び値が5%における同方向の見かけ引張応力を充填率で割った実効引張応力値をいうが、所定の引張モジュラス値あるいは、実効引張応力値が所定の値を満足するとは、引張試験における所定方向の引張伸び値が5%における同方向の見かけ引張応力を充填率で割った値である実効引張応力が25MP以下1MPa以上を満足することをいう。すなわち、引張モジュラスと実効引張応力値は同義である。また、見かけの引張応力とは、見かけ引張荷重を不織布の、JISL1913に基づいて測定した不織布の見かけ厚さと試験片幅から定義される断面積で割った値をいう。 In addition, in the present invention, as factors for defining the structure of the nonwoven fabric used as a heat insulating material, the spatial structure of the fiber is defined based on the fiber diameter of the nonwoven fabric used and the porosity of the fiber at a predetermined thickness. It has been found that a fiber having a large number of bent portions and a high crimpability is excellent in the drip prevention property of dew condensation water. In addition, as parameters for evaluating the three-dimensional structure including the crimpability of this fiber, the structure of the connection part of the fiber, the degree of entanglement of the fiber, etc., the tensile modulus value at a predetermined strain in the tensile test and the drip prevention property was found to be correlated with As for the water retention property based on the above structure, the water retention amount per predetermined nonwoven fabric thickness was evaluated, and it was confirmed that a nonwoven fabric having a predetermined water retention amount or more is excellent in the drip prevention property of condensed water. Here, the tensile modulus refers to the effective tensile stress value obtained by dividing the apparent tensile stress in the same direction when the tensile elongation value in the predetermined direction is 5% in the tensile test by the filling ratio, but the predetermined tensile modulus value or the effective tensile stress The value satisfies a predetermined value means that the effective tensile stress, which is the value obtained by dividing the apparent tensile stress in the same direction when the tensile elongation value in the predetermined direction in the tensile test is 5% by the filling rate, satisfies 25 MPa or less and 1 MPa or more. Say. That is, the tensile modulus and the effective tensile stress value are synonymous. The apparent tensile stress is the value obtained by dividing the apparent tensile load by the cross-sectional area of the nonwoven fabric defined from the apparent thickness of the nonwoven fabric measured according to JISL1913 and the width of the test piece.

さらに、本発明の不織布は、下地のポリエチレン樹脂発泡体に融着または接着して保温材とした後、所定形状のエンボス加工を行なうが、このエンボス加工における賦形性も、不織布の立体構造、特に充填率や引張モジュラス値の影響を受けるものと考えられたため、エンボス加工における賦形性を確認した。 Further, the nonwoven fabric of the present invention is fused or adhered to a base polyethylene resin foam to form a heat insulating material, and then embossed into a predetermined shape. Since it was considered that the filling rate and tensile modulus value were particularly affected, the formability in embossing was confirmed.

また、保水性は、不織布に用いる繊維に吸水性がないポリエチレン樹脂,ポリプロピレン樹脂,PET等の樹脂であっても、不織布が所定の構造的条件を満足することで保水性を高くすることが可能であり、さらに、結露水の滴下防止性能に優れることを発見して本発明をなすに至ったものである。 In addition, even if the fibers used for the non-woven fabric are polyethylene resin, polypropylene resin, PET, or other resins that do not absorb water, the non-woven fabric can have a high water retentivity if it satisfies predetermined structural conditions. Furthermore, the inventors have discovered that the dew condensation water drip prevention performance is excellent, and have completed the present invention.

もちろん、不織布が所定の構造的条件を満足することで、吸水性を有するセルロース、パルプなどの天然繊維やレーヨンやアセテート等の再生繊維や半合成繊維を所定量範囲で使用することも可能である。この場合には、ポリエチレン樹脂,ポリエチレン樹脂,ポリエステル系のPET等の吸水性がない樹脂繊維を使用する場合よりも、結露水の滴下防止性がさらに向上するが不織布の強度が低下するため、吸水性繊維の使用は繊維総重量の内所定量範囲に制限する必要がある。また、特に不織布にセルロース繊維、パルプ等の天然繊維を使用する場合には、天然繊維の特性として長繊維を製造することが困難であり、繊維長が安定しないため、短繊維を用いることが望ましい。 Of course, if the nonwoven fabric satisfies predetermined structural conditions, it is also possible to use water-absorbing natural fibers such as cellulose and pulp, regenerated fibers such as rayon and acetate, and semi-synthetic fibers within a predetermined amount range. . In this case, compared to the case of using non-water-absorbing resin fibers such as polyethylene resin, polyethylene resin, polyester PET, etc., the ability to prevent dripping of condensed water is further improved, but the strength of the non-woven fabric is reduced, so the water-absorbing property is reduced. The use of synthetic fibers should be limited to a certain amount of the total fiber weight. In particular, when natural fibers such as cellulose fibers and pulp are used for the non-woven fabric, it is difficult to produce long fibers due to the characteristics of natural fibers, and the fiber length is not stable, so it is desirable to use short fibers. .

尚、本発明は保温材に用いる不織布により担保されるものであるため、本発明では、結露水の滴下防止用保温材とこれを用いた結露水の滴下防止配管構造と結露水の滴下防止建築用構造に加えて、これに用いる結露水の滴下防止用不織布の発明も加えた。また、この保温材を用いた冷媒配管構造と建築用部材の結露水の滴下防止構造の形成方法の発明も加えた。 Since the present invention is secured by the non-woven fabric used for the heat insulating material, the present invention includes a heat insulating material for preventing dripping of condensed water, a pipe structure for preventing dripping of condensed water using the same, and a construction for preventing dripping of condensed water. In addition to the structure, we have also invented a non-woven fabric for preventing dripping of condensed water. In addition, inventions of a method for forming a refrigerant pipe structure using this heat insulating material and a structure for preventing dripping of condensed water from building members are also added.

ポリエチレン系樹脂発泡体の表面に不織布を配置した結露水の滴下防止用保温材であって、基材がシート状の独立気泡を有するポリエチレン系樹脂発泡体であり、当該基材の一方の表面に不織布が融着または接着されており、前記不織布を構成する繊維の平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%で、さらに、前記不織布は引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足する結露水の滴下防止用保温材である。これは、MD方向の実効引張応力が25MPa以下1MPa以上を満足すればよく、TD方向の実効引張応力は、必ずしも25MPa以下1MPa以上の範囲を満足してもしなくてもよい。ここで、ポリエチレン系樹脂発泡体の厚さは、断熱性を確保するため、少なくとも10mm以上あれば十分であるため、所望の断熱性能を得るには、通常は10mmあればよい。逆に発泡体の厚さを厚くし過ぎると保温材の被覆後の製品厚さや製品直径などの製品寸法が大きくなるため、10mmが望ましい。 A heat insulating material for preventing dripping of condensed water in which a nonwoven fabric is arranged on the surface of a polyethylene resin foam, the base material is a polyethylene resin foam having sheet-like closed cells, and one surface of the base material has The nonwoven fabric is fused or bonded, the average fiber diameter of the fibers constituting the nonwoven fabric is in the range of 10 to 30 μm, the porosity of the fibers is 85 to 98%, and the nonwoven fabric is measured in the MD direction in a tensile test. The effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction at a tensile elongation value of 5% by the filling rate, satisfies 25 MPa or less and 1 MPa or more. It is sufficient that the effective tensile stress in the MD direction satisfies 25 MPa or less and 1 MPa or more, and the effective tensile stress in the TD direction may or may not necessarily satisfy the range of 25 MPa or less and 1 MPa or more. Here, the thickness of the polyethylene-based resin foam should be at least 10 mm or more in order to ensure the heat insulating properties. Conversely, if the thickness of the foam is too thick, the product dimensions such as the product thickness and the product diameter after covering with the heat insulating material will increase, so 10 mm is desirable.

このとき、前記繊維の平均繊維径が10~30μmの範囲とするのは、繊維径が10μm以下であると、不織布の強度が不足ため、保護部材表面の使用時の耐久性が低下し、保温材が不織布と発泡体を熱融着される際に、不織布自体が変形して融着後の弾性回復が不十分になると同時に繊維が倒れ込んで面状に融着されるなどの問題を生じるからであり、逆に繊維径が30μmを超えると、繊維径の増加により、繊維自体の空間占有率が高くなり、3次元的に安定した空隙率の高い空間を形成することが困難になるため、空隙率を85~98%の範囲に保つことが難しくなるためである。ここで、不織布が複数の繊維から構成されている場合には、本発明でいう平均繊維径は、それぞれの構成繊維の平均繊維径が上記の範囲を満足することが好ましいが、それらの平均繊維径(数平均)が上記範囲を満足するものとなる。 At this time, the average fiber diameter of the fibers is in the range of 10 to 30 μm. This is because when the nonwoven fabric and the foam are thermally fused, the nonwoven fabric itself is deformed and the elastic recovery after fusion becomes insufficient, and at the same time, the fibers fall down and are fused in a plane. On the other hand, if the fiber diameter exceeds 30 μm, the space occupation ratio of the fiber itself increases due to the increase in fiber diameter, and it becomes difficult to form a three-dimensionally stable space with a high porosity. This is because it becomes difficult to keep the porosity in the range of 85 to 98%. Here, when the nonwoven fabric is composed of a plurality of fibers, the average fiber diameter referred to in the present invention preferably satisfies the above range for the average fiber diameter of each constituent fiber. The diameter (number average) satisfies the above range.

ここで、空隙率についてみると、ここで、空隙率についてみると、空隙率が85%未満になると、単位体積あたりの中に占める繊維の割合が大きくなるため、十分な保水量を発揮できなくなる。また、空隙率が98%を超えると、水膜を作る空間は増加するものの、水膜を維持できなくなり、保水性が低下するとともに、不織布自体の形状安定性や成形加工後の不織布の弾性回復性等が低下する。 Here, looking at the porosity, if the porosity is less than 85%, the proportion of fibers in the unit volume will increase, so it will not be possible to exhibit a sufficient water retention capacity. . On the other hand, when the porosity exceeds 98%, although the space for forming the water film increases, the water film cannot be maintained, and the water retention decreases. Decrease in sexuality, etc.

また、引張モジュラス(実効引張応力)は、通常の引張応力値を充填率で除した値であることから、繊維の充填率(空隙率)の影響を排除した値となっている。このことから、不織布内における繊維自体の捲縮性および不織布内の繊維の配向性の多寡の情報を包括的に含む値と考えられる。これは、仮に同じ空隙率であれば、繊維が捲縮しているほど、また、配向性が小さいほど、三次元的に隣り合う繊維間の距離が小さくなることから、その不織布は多く水を保持できると考えられることからも、重要なパラメータである。実際、実効引張応力が25MPaを超えると、不織布の剛性が増加するとともに保水性が低下し、保水量が不十分になると同時に、エンボス加工性も低下するため、好ましくない。また、MD方向、TD方向の実効引張応力がともに1MPaを下まわると、結露水を保持する空間は十分であるが、不織布内部の繊維の結合や絡み合いが不十分となるため、不織布としての形状保持性が担保できなくなり、本発明の製造工程上、取り扱いが難しくなる。そのため、少なくともいずれかの方向の実効引張応力がともに1MPaを超える必要があると考えられる。 Further, since the tensile modulus (effective tensile stress) is a value obtained by dividing a normal tensile stress value by the filling rate, it is a value that excludes the influence of the filling rate (porosity) of fibers. From this, it is considered that the value comprehensively includes information on crimpability of the fibers themselves in the nonwoven fabric and information on the degree of orientation of the fibers in the nonwoven fabric. This is because, if the porosity is the same, the more crimped the fibers and the smaller the orientation, the smaller the distance between the three-dimensionally adjacent fibers, so the nonwoven fabric absorbs more water. It is an important parameter because it can be considered to hold. In fact, when the effective tensile stress exceeds 25 MPa, the rigidity of the nonwoven fabric increases and the water retention decreases, resulting in insufficient water retention and embossability, which is not preferable. Also, when the effective tensile stress in both the MD and TD directions is less than 1 MPa, although there is sufficient space to hold the condensed water, the bonding and entanglement of the fibers inside the nonwoven fabric becomes insufficient. The retainability cannot be guaranteed, and the handling becomes difficult in terms of the manufacturing process of the present invention. Therefore, it is considered that the effective tensile stress in at least one direction must exceed 1 MPa.

前記保温材の不織布のJISL1913に基づいて測定した厚さが1.0mm以下であり、前記不織布の見かけ厚さ1mm当たりに換算した保水量が500g/m以上であってもよい。 The nonwoven fabric of the heat insulating material may have a thickness of 1.0 mm or less as measured according to JISL1913, and a water retention capacity of 500 g/m 2 or more per 1 mm of apparent thickness of the nonwoven fabric.

前記保温材の不織布を構成する前記繊維がPET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、又はアクリル系樹脂を少なくとも一種以上含む繊維により構成されているかのいずれかであってもよい。また、前記保温材の不織布を構成する繊維が、さらに前記繊維に加えてセルロース、パルプ、レーヨン繊維のいずれかを繊維総重量の30%以下含むものであってもよい。また、上記の繊維総重量は、不織布強度の点では、15%以下とすることがより好ましい。天然繊維を使用する場合には、長繊維を得ることが困難なため、短繊維を使用することが好ましい。 The fibers constituting the nonwoven fabric of the heat insulating material may be composed of fibers containing at least one of PET resin, polyethylene resin, polypropylene resin, and acrylic resin. Further, the fibers constituting the nonwoven fabric of the heat insulating material may further contain any one of cellulose, pulp, and rayon fibers in an amount of 30% or less of the total weight of the fibers in addition to the above fibers. Further, the total fiber weight is more preferably 15% or less in terms of nonwoven fabric strength. When using natural fibers, it is difficult to obtain long fibers, so it is preferable to use short fibers.

前記保温材の不織布を構成する前記繊維の少なくとも一部が芯鞘構造を有する繊維を含み、前記芯鞘構造を有する繊維の鞘部が芯部より低融点の樹脂で形成されてされているか、あるいは芯鞘構造の芯部繊維が中空繊維であり、前記中空繊維の回りに鞘部が形成された中空複層構造繊維であり、前記芯部あるいは前記中空芯部を形成する繊維の鞘部が芯部より低融点の樹脂で形成されていてもよい。芯部を中空構造とすることで、不織布の柔軟性を向上させることができる。前記不織布を構成する繊維の少なくとも一部が短繊維により形成されるか、経緯直交長繊維や経緯斜交長繊維により形成されるかのいずれかの不織であってもよい。 At least part of the fibers constituting the nonwoven fabric of the heat insulating material includes fibers having a core-sheath structure, and the sheath of the fibers having the core-sheath structure is formed of a resin having a lower melting point than the core, Alternatively, the core fiber of the core-sheath structure is a hollow fiber, the hollow multi-layer structure fiber has a sheath formed around the hollow fiber, and the core or the sheath of the fiber forming the hollow core is It may be made of a resin having a melting point lower than that of the core. By forming the core into a hollow structure, the flexibility of the nonwoven fabric can be improved. At least part of the fibers constituting the nonwoven fabric may be formed of staple fibers, or may be nonwoven fabrics formed of long weft or weft orthogonal filaments or weft or weft oblique filaments.

さらに、前記樹脂発泡体の表面に形成された前記不織布がエンボス加工された結露水の滴下防止保温材であってもよい。このようにエンボス加工を行うことで、不織布の外表面の形状を安定させることができ、不織布を配管やダクトなどに巻き付けるときの形状安定性を増加させることができる。 Further, the non-woven fabric formed on the surface of the resin foam may be embossed to prevent dripping of condensed water. By performing embossing in this way, the shape of the outer surface of the nonwoven fabric can be stabilized, and the shape stability when the nonwoven fabric is wound around pipes, ducts, or the like can be increased.

前記結露水の滴下防止用保温材は、ポリエチレン系樹脂発泡体と不織布からなる結露水の滴下防止用保温材であって、基材がシート状の独立気泡を有するポリエチレン系樹脂発泡体の一方の表面に不織布が融着されており、前記繊維の平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%で、さらに、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足し、さらに引張試験におけるTD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足する結露水の滴下防止用保温材であってもよい。 The heat insulating material for preventing dripping of condensed water is a heat insulating material for preventing dripping of condensed water made of polyethylene resin foam and nonwoven fabric, and the base material is a sheet-like polyethylene resin foam having closed cells. A nonwoven fabric is fused to the surface, the average fiber diameter of the fibers is in the range of 10 to 30 μm, the porosity of the fibers is 85 to 98%, and the tensile elongation value in the MD direction in a tensile test is 5. The effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction at % by the filling rate, satisfies 25 MPa or less and 1 MPa or more, and the value of tensile elongation in the TD direction in the tensile test is 5%. A heat insulating material for preventing dripping of dew condensation water having an effective tensile stress of 25 MPa or less and 1 MPa or more, which is a value obtained by dividing by a ratio, may be used.

すなわち、引張試験におけるMD方向、TD方向の引張伸びの値が5%における見かけ応力を充填率で割った実効引張応力値が20MPa以下1MPa以上であることがさらに望ましい。より好ましくは、MD方向、TD方向のいずれかの方向の引張試験における引張伸びの値が5%における見かけ応力を充填率で割った実効引張応力値20MPa以下2MPa以上であることが好ましい。このような特性を満足することで、MD方向、TD方向の両方向の実効引張応力が所定値を満たす保温材を得ることができるため、保温材の使用時に方向性への影響が少ない結露水の滴下防止性能に優れる保温材を得ることができるため、保温材を垂直方向に使用しても結露水が滴下することを防止することができる。 That is, it is more desirable that the effective tensile stress value obtained by dividing the apparent stress at a tensile elongation value of 5% in the MD direction and the TD direction in the tensile test by the filling rate is 20 MPa or less and 1 MPa or more. More preferably, the effective tensile stress value obtained by dividing the apparent stress at 5% by the filling ratio in a tensile test in either the MD direction or the TD direction is 20 MPa or less and 2 MPa or more. By satisfying these characteristics, it is possible to obtain a heat insulating material that satisfies the prescribed values of the effective tensile stress in both the MD and TD directions. Since it is possible to obtain a heat insulating material having excellent drip prevention performance, dripping of condensed water can be prevented even when the heat insulating material is used in the vertical direction.

前記結露水の滴下防止用保温材が冷媒用配管または温水用配管の外周に不織布を外周面に向けて被覆されていることを特徴とする配管であってもよい。このようにすることで、配管の保温性を向上させるとともに結露を防止することが可能になる。 The piping may be characterized in that the heat insulating material for preventing dripping of condensed water is coated with a non-woven fabric on the outer circumference of the refrigerant piping or the hot water piping. By doing so, it is possible to improve the heat retention of the piping and prevent dew condensation.

前記冷媒用配管の外周部に被覆された結露水の滴下防止用保温材を相互に対向させて熱融着または熱接着させることで、2本の配管を一体化させたものである眼鏡型の配管構造である。 A pair of spectacle-shaped pipes are integrated by heat-sealing or heat-bonding the heat insulating materials for preventing dripping of condensed water coated on the outer circumference of the refrigerant pipes to face each other. It is a piping structure.

複数本の冷媒用配管、ドレン管と配線の配管に内装される部品が用意され、前記結露水の滴下防止保温材が不織布形成面を外周面として、前記結露水の滴下防止保温材の外周面形状が断面略円筒形状となるように前記複数本の冷媒用配管、ドレン管と配線を囲うことで、前記配管に内装される部品を前記結露水の滴下防止保温材の内部に収納することを特徴とする冷媒用配管の筒状配管構造であってもよい。このような配管構造とすることで複数本の配管をまとめて保温して結露を防止することができる冷媒用配管の筒状配管構造であってもよい。 A plurality of refrigerant pipes, drain pipes, and wiring pipes are internally provided with parts, and the outer peripheral surface of the heat insulating material for preventing dripping of condensed water has a non-woven fabric forming surface as an outer peripheral surface. By enclosing the plurality of refrigerant pipes, drain pipes, and wiring so that the cross section has a substantially cylindrical shape, the components inside the pipes are housed inside the heat insulating material for preventing dripping of condensed water. It may be a cylindrical piping structure of the refrigerant piping that is characterized. Such a piping structure may be a cylindrical piping structure for a refrigerant pipe that can collectively heat a plurality of pipes and prevent dew condensation.

給水給湯用配管として架橋ポリエチレン管と架橋ポリエチレン管の外周を覆う樹脂製鞘管が用意され、前記架橋ポリエチレン管と前記架橋ポリエチレン管の外周を覆う樹脂製鞘管を囲んで、前記結露水の滴下防止保温材が不織布形成面を外周面として、前記結露水の滴下防止保温材の外周面形状が断面略円筒形状となるように、前記結露水の滴下防止保温材の内部に前記架橋ポリエチレン管と前記鞘管とを収納する給水給湯用配管の筒状配管構造であってもよい。 A crosslinked polyethylene pipe and a resin sheath pipe covering the outer periphery of the crosslinked polyethylene pipe are prepared as a water supply pipe, and the condensed water is dripped around the crosslinked polyethylene pipe and the resin sheath pipe covering the outer periphery of the crosslinked polyethylene pipe. The crosslinked polyethylene pipe and the crosslinked polyethylene pipe are placed inside the heat insulating material for preventing dripping of dew condensation water so that the non-woven fabric forming surface is the outer peripheral surface of the heat insulating material, and the outer peripheral surface shape of the heat insulating material for preventing dripping of dew condensation water is approximately cylindrical in cross section. It may be a tubular pipe structure of a hot water supply pipe that accommodates the sheath pipe.

前記樹脂製鞘管は、前記鞘管の外周を囲うように樹脂発泡体で被覆されている給水給湯用配管の筒状配管構造であってもよい。 The resin sheath pipe may have a tubular pipe structure of a water supply and hot water supply pipe covered with a resin foam so as to surround the outer circumference of the sheath pipe.

前記結露水の滴下防止保温材が冷媒用配管の外周に被覆される配管構造であって、前記配管の少なくとも一部に垂直配管を含み、前記垂直配管に結露水の滴下防止保温材の不織布形成面が外周面となるように前記垂直配管に被覆される垂直配管の配管構造であってもよい。ここで、垂直配管に巻き付ける結露水の滴下防止保護部材は、平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%であり、MD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値が20MPa以下で1MPa以上を満足する不織布であることが望ましい。 A pipe structure in which the outer periphery of the refrigerant pipe is covered with the heat insulating material to prevent dripping of condensed water, wherein at least a part of the pipe includes a vertical pipe, and the vertical pipe is formed of a non-woven fabric of the heat insulating material to prevent dripping of condensed water. The pipe structure may be a vertical pipe covered with the vertical pipe so that the surface is the outer peripheral surface. Here, the protective member for preventing dripping of condensed water wound around the vertical pipe has an average fiber diameter in the range of 10 to 30 μm, the porosity of the fiber is 85 to 98%, and the tensile elongation values in the MD and TD directions are It is preferable that the nonwoven fabric satisfies the value obtained by dividing the apparent stress in the same direction at 5% by the filling ratio of 20 MPa or less and 1 MPa or more.

前記結露水の滴下防止用保温材が空調用ダクトの外表面に不織布形成面を外表面に向けて接着されている空調用ダクトの構造であってもよい。このように空調用ダクトの外周部を本発明の結露水の滴下防止保温材で覆うことで、空調用ダクトの断熱性を向上させるとともに、ダクト外周部の結露を防止することができる。この際、空調用ダクトの外周面に接着される不織布は、引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足する不織布であることが望ましい。 The air-conditioning duct may have a structure in which the heat insulating material for preventing dripping of condensed water is adhered to the outer surface of the air-conditioning duct with the non-woven fabric forming surface facing the outer surface. By covering the outer periphery of the air-conditioning duct with the heat insulating material for preventing dripping of condensed water in this way, it is possible to improve the heat insulation of the air-conditioning duct and prevent condensation on the outer periphery of the duct. At this time, the nonwoven fabric adhered to the outer peripheral surface of the air conditioning duct has an effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD and TD directions in the tensile test is 5% by the filling rate. It is desirable that the non-woven fabric satisfies a viscosity of 25 MPa or less and 1 MPa or more.

前記結露水の滴下防止用保温材が無機系建築用板材の表面に不織布形成面を外表面として載置されているか、さらに前記無機系建築用板材の表面に不織布形成面を外表面として載置された前記結露水の滴下防止用保温材の樹脂発泡体面と前記無機系建築用板材の表面の対向面同士が相互に接着されて水平面方向に配置されているかのいずれかであり、前記無機系建築用板材が石膏ボード、ケイ酸カルシウム板の少なくともいずれかである無機系建築用板材の結露水の滴下防止構造であってもよい。 The heat insulating material for preventing the dripping of condensed water is placed on the surface of the inorganic building board with the nonwoven fabric forming surface as the outer surface, or further placed on the surface of the inorganic building board with the nonwoven fabric forming surface as the outer surface. the resin foam surface of the heat insulating material for preventing dripping of condensed water and the surface of the inorganic building board are adhered to each other and arranged in the horizontal direction, and the inorganic The construction board material may be a gypsum board or a calcium silicate board, and may be a structure for preventing dripping of condensed water of an inorganic building board material.

前記結露水の滴下防止用保温材が無機系建築用板材の表面に不織布形成面を外表面として載置された前記結露水の滴下防止用保温材の樹脂発泡体面と前記無機系建築用板材の表面の対向面同士が相互に接着されている前記無機系建築用板材が垂直面方向に配置されていて、前記無機系建築用板材は、石膏ボード、ケイ酸カルシウム板の少なくともいずれかである無機系建築用板材の結露水の滴下防止構造であってもよい。 The heat insulating material for preventing dripping of condensed water is placed on the surface of the inorganic building board with the non-woven fabric forming surface as the outer surface, and the resin foam surface of the heat insulating material for preventing dripping of condensed water and the inorganic building board. The inorganic building board material having the surfaces facing each other bonded to each other is arranged in a vertical plane direction, and the inorganic building board material is at least one of a gypsum board and a calcium silicate board. It may be a drip prevention structure for dew condensed water of a system building plate material.

この際、前記無機系建築用板材が垂直面方向に配置されて、前記無機系建築用板材の外周面に接着される不織布は、引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足する不織布であることが望ましい。 At this time, the inorganic building board is arranged in the vertical plane direction, and the nonwoven fabric adhered to the outer peripheral surface of the inorganic building board has a tensile elongation value of 5% in the MD and TD directions in a tensile test. It is desirable that the nonwoven fabric satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more, which is the value obtained by dividing the apparent stress in the same direction at the filling rate.

前記結露水の滴下防止用保温材が折半屋根の内面に接着されている折板屋根の結露水の滴下防止構造であってもよい。このように折板屋根の内面に結露水の滴下防止保温材を接着することで、屋根内面の断熱性を向上させるとともに、屋根の内面の結露を防止することが可能になる。この際、折板屋根の結露水の滴下防止構造に用いられる不織布は、空調用ダクトと同様のMD方向、TD方向の両方向の引張モジュラスが所定値を満たす不織布であることが望ましい。 A structure for preventing dripping of condensed water may be provided for a folded-plate roof in which the heat insulating material for preventing dripping of condensed water is adhered to the inner surface of the folded roof. By adhering the heat insulating material for preventing dripping of condensed water to the inner surface of the folded plate roof in this way, it is possible to improve the heat insulating properties of the inner surface of the roof and prevent condensation on the inner surface of the roof. In this case, it is desirable that the nonwoven fabric used for the drip prevention structure of the condensed water of the folded plate roof is a nonwoven fabric that satisfies predetermined values of tensile modulus in both the MD direction and the TD direction similar to the air conditioning duct.

前記不織布を構成する繊維の平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%であり、さらに、JISL1913に基づいて測定した前記不織布の厚さが1.0mm以下であり、さらに、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値が25MPa以下1MPa以上を満足する結露水の滴下防止用不織布であってもよい。 The average fiber diameter of the fibers constituting the nonwoven fabric is in the range of 10 to 30 μm, the porosity of the fibers is 85 to 98%, and the thickness of the nonwoven fabric measured based on JISL1913 is 1.0 mm or less. Further, it may be a nonwoven fabric for preventing dripping of condensed water that satisfies the value obtained by dividing the apparent stress in the same direction at a tensile elongation value of 5% in the MD direction in a tensile test by the filling rate of 25 MPa or less and 1 MPa or more. .

前記不織布の見かけ厚さ1mm当たりに換算した保水量が500g/m以上であることを特徴とする不織布をポリエチレン系樹脂発泡体の表面に融着して使用する結露水の滴下防止用不織布であってもよい。 A non-woven fabric for preventing dripping of condensed water, wherein the non-woven fabric is fused to the surface of a polyethylene-based resin foam, wherein the non-woven fabric has a water retention capacity of 500 g/m 2 or more per 1 mm of apparent thickness of the non-woven fabric. There may be.

前記不織布を構成する繊維は、PET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、又はアクリル系樹脂を少なくとも一種以上含む繊維により構成され、さらに前記繊維が芯鞘構造でない繊維で構成されていてもよい。また、前記不織布を構成する繊維が、さらにセルロース繊維、パルプ、レーヨン繊維のいずれかの吸水性繊維を総重量の30%以下含むものであってもよい。ここで、吸水性繊維の含有量を所定値以下にするのは、給水量の増加による強度低下を防止するためである。セルロース繊維やパルプなどの天然繊維を使用する場合には、所定長さの長繊維を用いることが難しいため、短繊維を用いる方が望ましい。 The fibers constituting the nonwoven fabric may be composed of fibers containing at least one type of PET resin, polyethylene resin, polypropylene resin, or acrylic resin, and the fibers may be composed of fibers that do not have a core-sheath structure. Moreover, the fibers constituting the nonwoven fabric may further contain water-absorbing fibers selected from cellulose fibers, pulp, and rayon fibers in an amount of 30% or less of the total weight. Here, the reason why the content of the water-absorbing fibers is set to a predetermined value or less is to prevent a decrease in strength due to an increase in the amount of water supplied. When using natural fibers such as cellulose fibers and pulp, it is difficult to use long fibers of a predetermined length, so it is desirable to use short fibers.

さらに前記繊維の少なくとも一部が芯鞘構造を有する繊維により構成され、芯鞘構造を有する場合には鞘部が芯部より低融点の樹脂で形成されている結露水の滴下防止用不織布であってもよく、さらに芯鞘構造の芯部繊維が中空繊維であり、中空繊維の回りに鞘部が形成された中空複層構造繊維であってもよい。芯部を中空構造とすることで、不織布の柔軟性を確報することが可能になる。 Further, the nonwoven fabric for preventing dripping of condensed water comprises at least part of the fibers having a core-sheath structure, and in the case of having a core-sheath structure, the sheath is made of a resin having a lower melting point than the core. Further, it may be a hollow multi-layer structure fiber in which the core fiber of the core-sheath structure is a hollow fiber and a sheath is formed around the hollow fiber. By forming the core into a hollow structure, it is possible to ensure the flexibility of the nonwoven fabric.

前記不織布は、引張試験におけるMD方向、TD方向のそれぞれの引張伸びの値が5%におけるそれぞれの方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上であることをともに満足することを特徴とする結露水の滴下防止用不織布とすることもできる。このような特性を満足することで、両方向ともに結露水の滴下防止性に優れるあるいは設置方向に関係なく結露水の滴下防止性能を有する結露水の滴下防止用不織布を得ることができる。 The nonwoven fabric has an effective tensile stress of 25 MPa or less and 1 MPa or more, which is the value obtained by dividing the apparent stress in each direction when the value of tensile elongation in the MD direction and TD direction in a tensile test is 5%, divided by the filling rate. It is also possible to provide a nonwoven fabric for preventing dripping of condensed water that satisfies both requirements. By satisfying these characteristics, it is possible to obtain a non-woven fabric for preventing dripping of condensed water that is excellent in preventing dripping of condensed water in both directions or has the ability to prevent dripping of condensed water regardless of the installation direction.

前記不織布を構成する繊維は、PET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、又はアクリル系樹脂を少なくとも一種以上含む前記繊維が短繊維で構成され、さらに前記短繊維が通常の芯鞘構造でない繊維あるいは少なくとも一部が芯鞘構造を有する繊維により構成され、芯鞘構造を有する場合には鞘部が芯部より低融点の樹脂で形成されている繊維からなる結露水の滴下防止用不織布とすることもできる。また、前記不織布を構成する繊維が、さらにセルロース繊維、パルプ、レーヨン繊維のいずれかを繊維総重量の30%以下含むものであってもよい。ここで、吸水性繊維の含有量を所定値以下にするのは、給水量の増加による強度低下を防止するためである。 The fibers constituting the nonwoven fabric are composed of short fibers containing at least one or more of PET resin, polyethylene resin, polypropylene resin, or acrylic resin, and the short fibers are fibers that do not have a normal core-sheath structure, or at least one The non-woven fabric for preventing dripping of condensed water may be made of fibers in which the portion is composed of fibers having a core-sheath structure, and in the case of having a core-sheath structure, the sheath portion is made of a resin having a lower melting point than the core portion. . Further, the fibers constituting the nonwoven fabric may further contain any one of cellulose fibers, pulp and rayon fibers in an amount of 30% or less of the total weight of the fibers. Here, the reason why the content of the water-absorbing fibers is set to a predetermined value or less is to prevent a decrease in strength due to an increase in the amount of water supplied.

このように、鞘部が芯部より低融点の樹脂で形成されている非溶融タイプの繊維を用いることで、融点の高い芯部よりも低温度域で熱融着させることで、融着後も芯部の繊維の物性や機械的性質を保つことができる。また、芯部を中空構造とすることで、不織布の柔軟性を向上させることができる。 In this way, by using a non-melting type fiber in which the sheath is formed of a resin with a lower melting point than the core, by heat-sealing in a lower temperature range than the core with a higher melting point, Also, the physical properties and mechanical properties of the core fiber can be maintained. Further, by making the core part hollow, the flexibility of the nonwoven fabric can be improved.

前記短繊維の不織布がケミカルボンド法、サーマルボンド法、スパンレース法、エアーレイド法、ニードルパンチ法等により製造された不織布とすることができる。このような製造方法で、製造した短繊維を不織布に少なくとも一部使用することで、不織布を水平面上でなく、垂直方向に使用した場合でも結露を防止することができる。また、短繊維を用いないでも、繊維の配向の影響を少なくすることができる不織布として、経緯直交不織布や経緯斜交不織布を用いることもできる。 The nonwoven fabric of short fibers can be a nonwoven fabric manufactured by chemical bond method, thermal bond method, spunlace method, air laid method, needle punch method, or the like. By using at least a part of the staple fibers produced by such a production method in the nonwoven fabric, dew condensation can be prevented even when the nonwoven fabric is used not on a horizontal surface but in a vertical direction. As a nonwoven fabric that can reduce the influence of fiber orientation without using short fibers, a crosswise crosswise nonwoven fabric or a crosswise crosswise nonwoven fabric can also be used.

前記結露水の滴下防止保温材が冷媒用配管の外周に巻き付けられる配管構造の施工方法であって、前記配管が垂直配管あるいは斜め配管である場合には、前記結露水の滴下防止保温材の実効引張応力が25MPa以下1MPa以上を満足する方向を前記垂直配管の方向と直交する水平方向に向けて配置する配管構造の形成方法であってもよい。 A construction method for a piping structure in which the heat insulating material for preventing dripping of condensed water is wound around the outer periphery of a refrigerant pipe, and when the pipe is a vertical pipe or an oblique pipe, the heat insulating material for preventing dripping of condensed water is effective. A method for forming a pipe structure may be employed in which a direction satisfying a tensile stress of 25 MPa or less and 1 MPa or more is oriented in a horizontal direction perpendicular to the direction of the vertical pipe.

ここで、結露水の滴下防止配管が垂直配管や斜め配管である場合には、垂直方向の配管の長さが長いと重力の影響を受けて、不織布表面からの蒸散と不織布内に集積した水分の増加が競合するが、配管下部から結露水の滴下の可能性があるため、不織布の側面への移動を促進することで不織布表面からの蒸散を加速するように、TD方向の実効引張応力を改善することで、結果として不織布表面からの蒸散を促進して結露水の滴下を防止することが考えられる。 Here, when the piping for preventing dripping of condensed water is a vertical piping or an oblique piping, if the length of the piping in the vertical direction is long, transpiration from the surface of the nonwoven fabric and accumulation of moisture in the nonwoven fabric will occur under the influence of gravity. However, since there is a possibility of condensation water dripping from the bottom of the pipe, the effective tensile stress in the TD direction is increased so as to accelerate the transpiration from the surface of the nonwoven fabric by promoting the movement to the side of the nonwoven fabric. It is conceivable that the improvement will promote the transpiration from the surface of the nonwoven fabric and prevent the dripping of condensed water.

空調用ダクトの結露水の滴下防止構造の形成方法において、空調用ダクトの側面は少なくとも垂直な方向にダクトの上面と下面を挟むように対向して設けられるもので、前記側面には、前記結露水の滴下防止保温材の不織布の実効引張応力が25MPa以下1MPa以上を満足する方向を前記垂直なダクト側面に直交する水平方向に向けて不織布面を外表面として配置する空調用ダクトの結露水の滴下防止構造の形成方法であってもよい。 In the method of forming a structure for preventing dripping of condensed water in an air-conditioning duct, side surfaces of the air-conditioning duct are provided facing each other so as to sandwich an upper surface and a lower surface of the duct in at least a vertical direction. Condensed water in an air-conditioning duct in which the nonwoven fabric surface of the nonwoven fabric of the water dripping prevention heat insulating material is arranged as the outer surface in a direction that satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more in the horizontal direction perpendicular to the vertical side of the duct. It may be a method for forming a drip prevention structure.

建築用無機系建材の結露水の滴下防止構造の形成方法において、建築用無機系建材の結露構造が垂直な壁構造である場合には、前記結露水の滴下防止保温材の不織布の実効引張応力が25MPa以下1MPa以上を満足する方向を前記垂直な壁構造の方向と直交する水平方向に向けて前記建築用無機系建材の縦壁の表面に前記保温材の不織布を外表面として配置する建築用無機系建材の結露水の滴下防止構造の形成方法であることが望ましい。また、折板屋根の結露水の滴下防止構造の形成方法において、前記結露水の滴下防止保温材の不織布の実効引張応力が25MPa以下1MPa以上を満足する方向を前記折板屋根の折板の折り曲げ方向と直交する方向に向けて前記折板屋根の裏面に前記保温材の不織布を外表面として配置する折板屋根の結露水の滴下防止構造の形成方法であることが望ましい。この際、通常折板屋根の敷設時の水切り勾配が3/100程度であるため、これによる結露水の滴下への影響はほとんどない。 In the method for forming a structure for preventing dripping of condensed water from inorganic building materials for construction, when the structure for preventing condensation from dripping from inorganic building materials for construction is a vertical wall structure, the effective tensile stress of the nonwoven fabric of the heat insulating material for preventing dripping of condensed water 25 MPa or less and 1 MPa or more, and the non-woven fabric of the heat insulating material is arranged as the outer surface on the surface of the vertical wall of the inorganic building material for construction with the direction satisfying the horizontal direction perpendicular to the direction of the vertical wall structure. It is desirable to provide a method for forming a structure for preventing dripping of condensed water from an inorganic building material. In the method for forming a structure for preventing dripping of condensed water on a folded plate roof, the folded plate of the folded plate roof is bent in a direction in which the effective tensile stress of the nonwoven fabric of the heat insulating material for preventing the dripping of condensed water satisfies 25 MPa or less and 1 MPa or more. It is desirable that the method of forming a structure for preventing dripping of condensed water on a folded-plate roof arranges the non-woven fabric of the heat insulating material on the back surface of the folded-plate roof in a direction perpendicular to the direction of the folding-plate roof. At this time, since the slope of draining water when laying a folded plate roof is usually about 3/100, there is almost no effect on dripping of condensed water.

本発明の結露水の滴下防止保温材においては、ポリエチレン系樹脂発泡体の少なくとも一方の表面に不織布が融着されていて、不織布を構成する繊維の平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%であり、さらに、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値が25MPa以下1MPa以上を満足することを特徴とする結露水の滴下防止用保温材を得ることができる。 In the heat insulating material for preventing dripping of condensed water of the present invention, a nonwoven fabric is fused to at least one surface of a polyethylene resin foam, and the average fiber diameter of the fibers constituting the nonwoven fabric is in the range of 10 to 30 μm. The porosity of the fiber is 85 to 98%, and the value obtained by dividing the apparent stress in the same direction at a tensile elongation value of 5% in the MD direction in a tensile test by the filling rate satisfies 25 MPa or less and 1 MPa or more. A heat insulating material for preventing dripping of condensed water can be obtained.

ここで、上記の保温材を用いれば、JISL1913に基づいて測定した不織布の厚さが1.0mm以下で、前記不織布の見かけ厚さ1mm当たりに換算した保水量が500g/m以上を満足することができる。本発明での結露水の滴下防止性能は、繊維自体の吸水性に関係なく得ることができるため、不織布を構成する繊維としては、化学素材系繊維から天然素材系繊維の両方を使用することができる。また、本発明の不織布は、繊維の3次元構造を間接的に反映するパラメータとしての空隙率や引張モジュラスに加えて、繊維径も所定範囲とすることからを結露水の滴下防止性だけでなく、エンボス加工性にも優れるという特徴を有している。本発明の保温材における不織布の発泡体への接合は融着が望ましいが接着により接合することで配置してもよい。 Here, if the above heat insulating material is used, the thickness of the nonwoven fabric measured based on JISL1913 is 1.0 mm or less, and the water retention amount converted per 1 mm of apparent thickness of the nonwoven fabric satisfies 500 g / m 2 or more. be able to. Since the ability to prevent dripping of condensed water in the present invention can be obtained regardless of the water absorbency of the fibers themselves, both chemical fibers and natural fibers can be used as the fibers that make up the nonwoven fabric. can. In addition, in addition to the porosity and tensile modulus as parameters that indirectly reflect the three-dimensional structure of the fiber, the nonwoven fabric of the present invention also has a fiber diameter within a predetermined range, so not only does it prevent dripping of condensed water. It is also characterized by excellent embossability. It is preferable that the non-woven fabric is joined to the foam in the heat insulating material of the present invention by fusion, but it may be arranged by joining by adhesion.

ここで、本発明の保温材の結露水滴下防止メカニズムは、下記のように考えられる。まず、発泡体と不織布の界面に微小結露が発生すると、微小結露水は不織布の毛細管現象により厚み方向に拡散する。厚み方向に拡散した水分は、外気との接触面積が大きくなるため、外気により温められやすくなることで、結露現象が継続して微小結露水による水滴が大きくなることを抑制する。 Here, the dew condensation prevention mechanism of the heat insulating material of the present invention is considered as follows. First, when microscopic condensation occurs at the interface between the foam and the nonwoven fabric, the microcondensed water diffuses in the thickness direction due to the capillary action of the nonwoven fabric. Since the moisture diffused in the thickness direction has a large contact area with the outside air, it is easily warmed by the outside air, thereby suppressing the continuation of the dew condensation phenomenon and the increase in the size of water droplets due to minute dew condensation water.

また、結露水が拡散して不織布の表面から蒸発することで、結露が抑制されるものと考えられる。この際に、所定の繊維径と空隙率とすることで、5%引張伸び値における応力を充填率で割った値を所定範囲とすることで、結露水の滴下を防止して所定の保水量水分を保水する不織布とすることができる。また、ここで、繊維径や空閑率が所定値を満足しても、5%引張伸び値における応力を充填率で割った値が所定範囲を満足しない場合には、結露を防止することができないことになる。 Moreover, it is thought that dew condensation is suppressed because the dew condensation water diffuses and evaporates from the surface of the nonwoven fabric. At this time, by setting the fiber diameter and porosity to a predetermined value, the value obtained by dividing the stress at the 5% tensile elongation value by the filling rate is set to a predetermined range, thereby preventing dripping of condensed water and maintaining a predetermined water retention amount. It can be a non-woven fabric that retains moisture. Further, even if the fiber diameter and the empty rate satisfy the predetermined values, if the value obtained by dividing the stress at the 5% tensile elongation value by the filling rate does not satisfy the predetermined range, dew condensation cannot be prevented. It will be.

上記の他、不織布を配管に巻き付けた場合には、保温材の外周部に略円筒形状断面に巻かれた不織布には、保温材の不織布が平面状に使用される場合と比較して上下方向に高低差が生じるため、毛細管現象による吸い上げ移動効果と重力による水分の下方への移動により、配管の周りに保温材を被覆した配管構造の上下で不織布中に含まれる含水量に、高さに応じた勾配が生じて配管の上部に対して下部の含水量が多くなる。 In addition to the above, when a nonwoven fabric is wrapped around a pipe, the nonwoven fabric wrapped around the outer periphery of the heat insulating material with a substantially cylindrical cross section has a higher vertical direction than the case where the nonwoven fabric of the heat insulating material is used in a flat shape. Since there is a difference in height, the water content in the non-woven fabric above and below the piping structure covered with heat insulating material around the pipes changes due to the suction movement effect due to capillary action and the downward movement of moisture due to gravity. A corresponding gradient occurs and the water content in the lower part of the pipe is higher than that in the upper part.

例えば、水平配管の場合には、配管の上面には、水量が少ないため、大気との接触面積が大きく配管の上面から水が蒸発して、配管の下面側からの上面側へ毛細管現象による吸水が行なわれ、蒸発と吸水が所定の関係を保つことで配管からの結露を防止することができる。また、保温材の被覆状態に上下差がある縦配管や竪壁のような場合には、水平配管の場合より重力の効果が大きくなるため、結露発生に対する重力の効果を考慮する必要があるが、毛管現象で不織布が保水した水分を水平方向に逃がすことで空気との接触面積を大きくして結露水の蒸散を加速することができれば、この問題は解消する。 For example, in the case of horizontal piping, since the amount of water on the upper surface of the pipe is small, the contact area with the atmosphere is large, and water evaporates from the upper surface of the pipe, and water is absorbed from the lower surface of the pipe to the upper surface due to capillary action. is performed, and by maintaining a predetermined relationship between evaporation and water absorption, dew condensation from the piping can be prevented. In addition, in the case of vertical pipes or vertical walls where there is a difference in the covering state of heat insulating material, the effect of gravity is greater than in the case of horizontal pipes, so it is necessary to consider the effect of gravity on the occurrence of condensation. This problem can be solved if the moisture retained in the nonwoven fabric can be released in the horizontal direction by capillarity to increase the contact area with the air and accelerate the evaporation of the condensed water.

つまり、本発明の不織布が引張試験における所定の値である引張伸びの値が5%における同方向の見かけ応力を充填率で割った値が25MPa以下1MPa以上を満足する方向を、不織布を施工する時の水平方向と一致するように施工するか、不織布が施工時に不織布のMD方向、TD方向のいずれの方向を水平方向と一致するように施工されたとしても実効引張応力値が所定値を満足する問題のない異方性が改善された不織布を使用することができれば、保温材の結露の問題を解決することが可能になり、結露を防止することが可能な不織布を提供することができる。もちろん、この場合にも、使用する不織布の繊維径と空隙率が本発明の範囲である平均繊維径10μm~30μm、空隙率85~95%を満足する必要があることは言うまでもない。 That is, the nonwoven fabric of the present invention is constructed in a direction in which the value obtained by dividing the apparent stress in the same direction at a tensile elongation value of 5%, which is a predetermined value in the tensile test, by the filling rate satisfies 25 MPa or less and 1 MPa or more. The effective tensile stress value satisfies the specified value even if the nonwoven fabric is constructed so that it matches the horizontal direction of the time, or the nonwoven fabric is constructed so that either the MD direction or the TD direction of the nonwoven fabric coincides with the horizontal direction. If a nonwoven fabric with improved anisotropy that does not cause the problem of dew condensation can be used, it will be possible to solve the problem of dew condensation on heat insulating materials, and it will be possible to provide a nonwoven fabric that can prevent dew condensation. Needless to say, even in this case, the fiber diameter and porosity of the nonwoven fabric to be used must satisfy the ranges of the present invention, namely, an average fiber diameter of 10 μm to 30 μm and a porosity of 85 to 95%.

前記結露水の滴下防止用保温材を冷媒用配管の外周に被覆することで結露水の滴下防止配管構造を得ることができるし、結露水の滴下防止用保温材が空調用ダクトの外周面に接着または被覆された空調用ダクトとすることで結露水の滴下防止空調用ダクトを得ることができる。また、結露水の滴下防止用保温材が無機系建築用板材の表面に配置される無機系建築用板材の結露水の滴下防止構造を得ることができるし、結露水の滴下防止用保温材が無機系建築用板材の表面に配置されている無機系建築用板材が縦壁として配置された無機系建築用板材の結露水の滴下防止構造を得ることができる。折半屋根の内面に接着することで結露水の滴下防止折板屋根構造を得ることできる。当然のことながら保水性と結露水の滴下防止性能に優れる不織布自体を得ることができる。 By covering the outer periphery of the refrigerant pipe with the heat insulating material for preventing dripping of condensed water, a pipe structure for preventing dripping of condensed water can be obtained, and the heat insulating material for preventing dripping of condensed water is applied to the outer peripheral surface of the air conditioning duct. An air-conditioning duct that prevents dripping of condensed water can be obtained by using an air-conditioning duct that is adhered or covered. In addition, it is possible to obtain a structure for preventing the dripping of condensed water from an inorganic building board in which a heat insulating material for preventing the dripping of condensed water is arranged on the surface of the inorganic building board. It is possible to obtain a structure for preventing dripping of condensed water of the inorganic building board material in which the inorganic building board material arranged on the surface of the inorganic building board material is arranged as a vertical wall. A folded-plate roof structure that prevents dripping of condensed water can be obtained by adhering to the inner surface of the folded-plate roof. As a matter of course, it is possible to obtain the nonwoven fabric itself which is excellent in water retention and drip prevention performance of condensed water.

本発明によれば、ポリエチレン系樹脂発泡体の表面に不織布を配置した保温材において、不織布の材質によらず、結露水の滴下防止性を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, in the thermal insulation material which arrange|positioned the nonwoven fabric on the surface of the polyethylene-type resin foam, the drip prevention property of dew condensation water can be improved irrespective of the material of a nonwoven fabric.

(a)は恒温恒湿槽を用いた結露試験材の試験状況を示す図であり、(b)結露水の滴下防止保温材の冷媒管への巻き付け状況を示す図である。(a) is a diagram showing the test condition of the dew condensation test material using a constant temperature and humidity chamber, and (b) is a diagram showing the winding condition of the heat insulating material for preventing dripping of condensed water around the refrigerant pipe. 図2(a)は、冷媒用配管の外周に結露水の滴下防止用保温材3が巻き付けられて被覆された配管の斜視図を示し、図2(b)は、図2(a)を直線X-Xを含む所定位置で切断した断面図を示す.FIG. 2(a) shows a perspective view of a pipe covered with a heat insulating material 3 for preventing dripping of condensed water wound around the outer circumference of the refrigerant pipe, and FIG. 2(b) shows a straight line from FIG. Shown is a cross-sectional view cut at a given position including XX. 図3(a)は、本発明の結露水の滴下防止用保温材が冷媒用配管の外周に被覆された配管を相互に対向させて一体化させた配管構造を示し、図3(b)は、図3(a)を、直線A-Aを含む所定位置で切断した断面図を示す。FIG. 3(a) shows a pipe structure in which pipes coated with a heat insulating material for preventing dripping of condensed water according to the present invention are opposed to each other and integrated, and FIG. 3(b) shows 4 shows a cross-sectional view of FIG. 3(a) cut at a predetermined position including a straight line AA. 図4は、既設冷媒配管を本発明の保温材で囲んだ冷媒用筒状配管構造を示す。FIG. 4 shows a tubular refrigerant piping structure in which the existing refrigerant piping is surrounded by the heat insulating material of the present invention. 図5(a)は、給水給湯用配管の外周部に配管保護用の樹脂製さや管をかぶせた配管の外周部に、本発明の保護部材を配置した給水給湯用筒状配管構造を示す。FIG. 5(a) shows a tubular pipe structure for water and hot water supply, in which the protection member of the present invention is arranged on the outer periphery of the pipe for water and hot water supply, in which the outer periphery of the pipe is covered with a resin sheath pipe for protecting the pipe. 図5(b)の(c)は、樹脂製さや管の外周が樹脂発泡体で被覆され、さらに樹脂発泡体の外周を本発明の保護部材で覆う給水給湯用筒状配管構造を示す。図中の(d)は斜視図(c)の直線B-Bを含む所定位置で切断した断面図である。FIG. 5(b)(c) shows a tubular pipe structure for hot and cold water supply in which the outer periphery of a resin sheath is covered with a resin foam and the outer periphery of the resin foam is further covered with the protective member of the present invention. (d) in the figure is a cross-sectional view cut at a predetermined position including the straight line BB in the perspective view (c). 図6は、本発明の保護部材を縦配管に適用した配管構造を示す。FIG. 6 shows a piping structure in which the protection member of the present invention is applied to vertical piping. 図7には、本発明の保温材を使用したダクトの結露水の滴下防止構造を示す。FIG. 7 shows a structure for preventing dripping of condensed water in a duct using the heat insulating material of the present invention. 図8(a)は、結露水の滴下防止用保温材が無機系建築用板材の表面に配置される無機系建築用板材の結露水の滴下防止構造を示し、図8(b)は、結露水の滴下防止用保温材が無機系建築用板材の表面に配置されている無機系建築用板材が縦壁として配置された無機系建築用板材の結露水の滴下防止構造を示す。FIG. 8(a) shows a structure for preventing dripping of condensed water of an inorganic building board material in which a heat insulating material for preventing dripping of condensed water is arranged on the surface of the inorganic building board material, and FIG. 1 shows a structure for preventing dripping of condensed water of an inorganic building board material in which a heat insulating material for preventing dripping of water is arranged on the surface of the inorganic building board material and the inorganic building board material is arranged as a vertical wall. 図9は、折板屋根の鋼板の下面に本発明の保温材の不織布を下面にして積層した鋼板を折り曲げ加工した折板屋根構造を示す。FIG. 9 shows a folded-plate roof structure obtained by bending a steel plate in which the nonwoven fabric of the heat insulating material of the present invention is laminated on the lower surface of the steel plate of the folded-plate roof. 図10(a)は結露水の滴下防止性に優れる不織布4の100倍でのSEM写真。FIG. 10(a) is a 100-fold SEM photograph of the non-woven fabric 4 excellent in preventing dripping of condensed water. 図10(b)は結露水の滴下防止性に優れる不織布4の吸水後の100倍での光学顕微鏡写真。FIG. 10(b) is an optical microscope photograph at 100 times after water absorption of the nonwoven fabric 4 excellent in drip prevention of condensed water. 試験材19の斜交繊維からなる不織布の100倍でのSEM写真。SEM photograph of the non-woven fabric made of diagonal fibers of test material 19 at a magnification of 100. FIG. 試験材18に相当する短繊維を使用した不織布のSEM写真。SEM photograph of a nonwoven fabric using short fibers corresponding to test material 18. FIG.

以下、本発明を実施するための形態について詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below.

本発明の結露水の滴下防止用保温材は、基材が独立気泡を有するポリエチレン系樹脂発泡であって、前記ポリエチレン系樹脂発泡体の少なくとも一方の面に、不織布が前記樹脂発泡体の表面に配置されたもので、さらに前記不織布が所定の構成を満足することで、結露水の滴下防止機能を満足する保温材である。 The heat insulating material for preventing dripping of condensed water of the present invention has a base material made of polyethylene resin foam having closed cells, and a nonwoven fabric is provided on at least one surface of the polyethylene resin foam and on the surface of the resin foam. It is a heat insulating material that satisfies the function of preventing dripping of condensed water because the nonwoven fabric satisfies a predetermined configuration.

本発明の結露水の滴下防止用保温材の基材を構成するポリエチレン系発泡体の製造方法としては、架橋発泡方法が用いられる。押出により架橋させて、架橋後に発泡させる押出架橋発泡法を用いることができる。 A cross-linking foaming method is used as a method for producing a polyethylene-based foam that constitutes the base material of the heat insulating material for preventing dripping of condensed water of the present invention. An extrusion cross-linking foaming method can be used in which cross-linking is performed by extrusion and foaming is performed after cross-linking.

(ポリエチレン系樹脂発泡体)
ポリエチレン系発泡体に用いられる樹脂としては、LDPE、HDPEなどのポリエチレン樹脂を単独あるいは,LDPEとHDPEの混合樹脂を用いることができる。
(polyethylene resin foam)
A polyethylene resin such as LDPE, HDPE, or the like, or a mixed resin of LDPE and HDPE can be used as the resin used for the polyethylene-based foam.

また、これらのポリエチレン系発泡体に必要に応じて耐熱性や難燃性を付与することもできる。LDPEとHDPEの混合樹脂とする場合には、LDPEとHDPEを所定の混合割合、LDPEとHDPEを所定の割合、例えば、LDPE40質量部に対してHDPE60質量部を混合した混合樹脂とすることができる。また、本発明においては、後述するように、耐熱性向上剤や難燃剤を加えて、ポリエチレン系樹脂発泡体を、耐熱仕様や難燃仕様とすることが可能である。以上の他、発泡性を阻害したり、樹脂の劣化を起こさない限り、各種添加剤を加えたポリエチレン系樹脂発泡体を用いることができる。 Moreover, heat resistance and flame retardancy can be imparted to these polyethylene-based foams as necessary. When a mixed resin of LDPE and HDPE is used, a mixed resin can be obtained by mixing LDPE and HDPE in a predetermined mixing ratio and LDPE and HDPE in a predetermined mixing ratio, for example, 40 parts by weight of LDPE and 60 parts by weight of HDPE. . In addition, in the present invention, as will be described later, a heat resistance improver or a flame retardant can be added to make the polyethylene resin foam heat-resistant or flame-retardant. In addition to the above, polyethylene-based resin foams containing various additives can be used as long as they do not inhibit the foamability or cause deterioration of the resin.

ポリエチレン系樹脂としては、LDPEやHDPEの他、EVA(酢酸ビニル共重合ポリエチレン)などのポリエチレン系変性樹脂を用いることができる。EVAをポリエチレンに代わって用いる理由は、柔軟性と弾力性が高いため、多様な製品用途に使用することが可能なためである。例えば、LDPEには、宇部丸善ポリエチレン株式会社製:F120N、HDPEには、日本ポリエチレン株式会社製HD1300等を用いることができ、EVAには、株式会社ENEOSNUC社製 DQDJ-1868を用いることができる。 As the polyethylene-based resin, in addition to LDPE and HDPE, a modified polyethylene-based resin such as EVA (vinyl acetate copolymerized polyethylene) can be used. EVA is used in place of polyethylene because of its high flexibility and elasticity, allowing it to be used in a wide variety of product applications. For example, F120N manufactured by Ube Maruzen Polyethylene Co., Ltd. can be used for LDPE, HD1300 manufactured by Japan Polyethylene Co., Ltd. can be used for HDPE, and DQDJ-1868 manufactured by ENEOSNUC Co., Ltd. can be used for EVA.

(架橋剤、発泡剤等)
ここで、ポリエチレン系発泡体に用いる架橋剤と発泡剤の含有量は、例えば、発泡倍率20~40倍の場合では、ポリエチレン系樹脂100質量部に対して、架橋剤を0.6~1.5重量部の範囲で含有させ、発泡剤を、10~30重量部の範囲で含んでもよい。架橋剤や発泡剤は上記の範囲が望ましいが必要に応じて変更することも可能である。
(crosslinking agent, foaming agent, etc.)
Here, the contents of the cross-linking agent and the foaming agent used in the polyethylene-based foam are, for example, when the expansion ratio is 20-40 times, the cross-linking agent is 0.6-1.0 parts per 100 parts by mass of the polyethylene-based resin. It may be contained in the range of 5 parts by weight, and the foaming agent may be contained in the range of 10 to 30 parts by weight. Although the above range is desirable for the cross-linking agent and the foaming agent, it is possible to change them as necessary.

例えば、架橋剤としては、ジクミルパーオキサイドなどが使用できる。例えば、架橋剤としてのジクミルパーオキサイドとしては、日本油脂株式会社 商品名パークミルDを使用することができる。また、発泡剤としては。無機系発泡剤を用いても良いが、有機系分解型発泡剤であるアゾジカルボンアミド(ADCA)、例えば、永和化学株式会社 商品名ビニホールAC#LQなどが好適に使用できる。 For example, dicumyl peroxide or the like can be used as a cross-linking agent. For example, as dicumyl peroxide as a cross-linking agent, NOF Co., Ltd. trade name Permil D can be used. Also as a blowing agent. Although an inorganic foaming agent may be used, azodicarbonamide (ADCA), which is an organic decomposition type foaming agent, such as Vinihole AC#LQ (trade name, manufactured by Eiwa Chemical Co., Ltd.), can be preferably used.

発泡剤としては、アゾジカルボンアミド(ADCA)の他、オキシビスベンゼンスルホニルヒドラジド(OBSH)、N,N’-ジニトロソペンタメチレンテトラミン(DPT)、p-トルエンスルホニルヒドラジド、ベンゼンスルホニルヒドラジド、ジアゾアミノベンゼン、N,N’-ジメチル-N,N’-ジニトロテレフタルアミド、アゾビスイソブチロニトリルなどを用いることができ、これらは単独でまたは2種以上混合して用いることができる。これらのいずれの発泡剤を用いてもよい。通常は、発泡剤としては、アゾジカルボンアミド(ADCA)が用いられることが多い。 As blowing agents, in addition to azodicarbonamide (ADCA), oxybisbenzenesulfonylhydrazide (OBSH), N,N'-dinitrosopentamethylenetetramine (DPT), p-toluenesulfonylhydrazide, benzenesulfonylhydrazide, diazoaminobenzene , N,N'-dimethyl-N,N'-dinitroterephthalamide, azobisisobutyronitrile and the like can be used, and these can be used alone or in combination of two or more. Any of these blowing agents may be used. Usually, azodicarbonamide (ADCA) is often used as a blowing agent.

上記の他、架橋助剤、発泡助剤を必要に応じて加えることもできる。例えば、架橋助剤としては、TMPT(トリメチロールプロパントリメタクリレート)商品名:オグモントを加えてもよいが、発泡助剤としては、酸化亜鉛を用いることができる。 In addition to the above, a cross-linking aid and a foaming aid can be added as necessary. For example, TMPT (trimethylolpropane trimethacrylate) trade name: Ogmont may be added as a cross-linking aid, and zinc oxide may be used as a foaming aid.

(耐熱性向上剤、難燃剤)
耐熱性を付与する場合には、樹脂100質量部に対して少なくともカーボンまたは酸化チタン(ルチル型)の耐熱性を有する顔料のいずれかまたは両者を合計で2.0質量部以下の範囲で加えることができる。カーボンは、導電性が高いため放熱効果があり、酸化チタンは熱反射性に優れ、さらにカーボン、酸化チタンはともに耐熱性が高いため、樹脂発泡体の耐熱性を向上させることができる。
(Heat resistance improver, flame retardant)
When imparting heat resistance, at least one or both of carbon or titanium oxide (rutile type) heat-resistant pigments should be added in a total amount of 2.0 parts by mass or less to 100 parts by mass of the resin. can be done. Carbon has high conductivity and therefore has a heat dissipation effect, titanium oxide has excellent heat reflectivity, and both carbon and titanium oxide have high heat resistance, so that the heat resistance of the resin foam can be improved.

また、発泡体の難燃性を向上させるため、難燃剤を加えるが、難燃剤を樹脂100質量部に対して、三酸化アンチモン、水酸化マグネシウム、水酸化アルミニウムなどのアンチモン系難燃剤や水酸化物系難燃剤、臭素系難燃剤などを合計で、100質量部の範囲で加えることができる。その他、上記のアンチモン系難燃剤や臭素系難燃剤、水酸化物系難燃剤の他、無機充てん剤を加えても良い。 In addition, in order to improve the flame retardancy of the foam, a flame retardant is added. A total of 100 parts by mass of a physical flame retardant, a brominated flame retardant, and the like can be added. In addition to the antimony-based flame retardants, brominated flame-retardants, and hydroxide-based flame retardants described above, inorganic fillers may also be added.

例えば、難燃剤の含有量は、100質量部を超えると効果が飽和すると同時に発泡性が阻害されるため、難燃剤の添加量は、合計で100質量部以下である。難燃剤の含有量が100質量部を超えると、難燃剤により発泡性が阻害されるため、上限は、100質量部以下とする必要がある。ここで、アンチモン系難燃剤や臭素系難燃剤の好ましい含有量はそれぞれ20質量部以下であり、水酸化物系難燃剤の好ましい含有量は80質量部以下である。なお、難燃剤はいずれの難燃剤も樹脂成分に比べると比重が大きいため、混合する体積割合に直すと樹脂成分に対する混合割合いは質量割合いに比べると著しく小さくなるため、上記の範囲であれば、特に問題はない。 For example, if the content of the flame retardant exceeds 100 parts by mass, the effect saturates and foamability is inhibited, so the total amount of the flame retardant added is 100 parts by mass or less. If the content of the flame retardant exceeds 100 parts by mass, the flame retardant inhibits foamability, so the upper limit should be 100 parts by mass or less. Here, the preferred content of the antimony flame retardant and the brominated flame retardant is 20 parts by mass or less, respectively, and the preferred content of the hydroxide flame retardant is 80 parts by mass or less. In addition, since the specific gravity of any flame retardant is larger than that of the resin component, the mixing ratio to the resin component is significantly smaller than the mass ratio when converted to the mixing volume ratio. There is no particular problem.

(無機充填剤)
発泡性と耐衝撃性、耐火性(炭化層の厚みの均一性)を損害しない範囲で無機充填剤を含むことができる。無機充填剤としては、例えば、ケイ酸カルシウム、ゼオライト、タルク、マイカ、シリカ、アルミナ、珪藻土、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化スズ、炭酸バリウム、炭酸マグネシウム、モンモリロナイトを挙げることができる。無機充てん剤の含有量が多いと発泡性を阻害するため、無機充てん剤の少なくともいずれかを2質部以下含むことができるが好ましい。さらに、これらの無機充填剤の含有量は、1質量部以下が望ましい。
(Inorganic filler)
Inorganic fillers can be contained within a range that does not impair foamability, impact resistance, and fire resistance (uniformity of thickness of carbonized layer). Examples of inorganic fillers include calcium silicate, zeolite, talc, mica, silica, alumina, diatomaceous earth, calcium oxide, magnesium oxide, iron oxide, tin oxide, barium carbonate, magnesium carbonate, and montmorillonite. If the content of the inorganic filler is too large, the foamability is inhibited, so it is preferable that at least one of the inorganic fillers can be contained in an amount of 2 parts by mass or less. Furthermore, the content of these inorganic fillers is desirably 1 part by mass or less.

(酸化防止剤、安定剤)
酸化防止剤は、樹脂発泡体の発泡を阻害する面があるため、用いる場合は少量にすることが望ましい。酸化防止剤に加えて場合により光安定剤、耐候剤等を含んでもよい。酸化防止剤を配合すると、発泡体を構成する基材樹脂の酸化劣化を防止することができる。
(Antioxidants, stabilizers)
Antioxidants inhibit the foaming of the resin foam, so it is desirable to use them in small amounts. In addition to antioxidants, light stabilizers, weathering agents and the like may optionally be included. By blending an antioxidant, it is possible to prevent oxidative deterioration of the base resin constituting the foam.

酸化防止剤には、フェノール系酸化防止剤、ホスファイト系酸化防止剤、フェノール系酸化防止剤とホスファイト系酸化防止剤をブレンドしたブレ 上記の要求を満足する酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系化合物等があげられる。以上の酸化防止剤は、酸化防止剤としての効果の他、安定剤、又は耐候剤としての効果を有する。例えば、本発明では、具体的には、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンとしては、BASF社製のIrganox1010を使用する。 Antioxidants include phenolic antioxidants, phosphite antioxidants, blends of phenolic antioxidants and phosphite antioxidants. phenol-based antioxidants, hindered amine-based compounds, and the like. The above antioxidants have effects as stabilizers or weather resistance agents in addition to the effects as antioxidants. For example, in the present invention, specifically, Irganox 1010 manufactured by BASF Corporation is used as tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane.

酸化防止剤の含有量は、ポリエチレン系樹脂100質量部に対して、0.05~1.0質量部が好ましい。酸化防止剤の含有量が多いと基材樹脂の架橋が阻害され、粘度が低下するため、気泡径が大きくなり、ひいてはガス抜けが生じて発泡倍率が低下し、その結果発泡阻害を起こすことがある。そのため、酸化防止剤は1.0質量部を超えて添加しないことが望ましい。 The content of the antioxidant is preferably 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the polyethylene resin. If the content of the antioxidant is high, the cross-linking of the base resin will be inhibited and the viscosity will decrease, resulting in an increase in the size of the cells, which in turn causes gas escape and a decrease in the expansion ratio, resulting in inhibition of expansion. be. Therefore, it is desirable not to add more than 1.0 part by mass of the antioxidant.

(その他添加剤)
本発明における樹脂発泡体は、さらに、目的に応じて、滑剤、カーボンや酸化チタン含む顔料、染料、可塑剤、充てん剤、帯電防止剤等のその他の添加剤を、発泡性を阻害しない範囲で含んでもよい。例えば、これらのその他の添加剤は、2質量部以下の範囲で加えることができる。例えば、無機顔料を、所定量加えることで意匠性やデザイン性を付与することができる。これらの添加剤には、公知の市販の添加剤を使用することができる。
(Other additives)
The resin foam in the present invention may further contain other additives such as lubricants, pigments containing carbon and titanium oxide, dyes, plasticizers, fillers, antistatic agents, etc., as long as they do not impede foamability. may contain. For example, these other additives can be added in the range of 2 parts by mass or less. For example, by adding a predetermined amount of an inorganic pigment, it is possible to impart designability. Known and commercially available additives can be used for these additives.

(ポリエチレン系樹脂発泡体の製造方法)
ここで、ポリエチレン系樹脂発泡体の製造方法を、基材樹脂に低密度ポリエチレンを用いる場合で説明する。まず、基材樹脂として低密度ポリエチレンに対して、有機系分解型発泡剤、架橋剤を配合して、加圧式ニーダーにて混錬、ペレタイズして、発泡性樹脂組成物のペレットを得た。このようにして得たペレットを短軸式押出機のホッパーより投入して、所定幅のダイスにより押出して、所定厚さの発泡用母材シートを得ることができる。
(Method for producing polyethylene resin foam)
Here, a method for producing a polyethylene-based resin foam will be described in the case of using low-density polyethylene as the base resin. First, an organic decomposable foaming agent and a cross-linking agent were added to low-density polyethylene as a base resin, kneaded in a pressurized kneader, and pelletized to obtain pellets of an expandable resin composition. The pellets thus obtained are charged from the hopper of a short-screw extruder and extruded through a die of a predetermined width to obtain a base sheet for foaming of a predetermined thickness.

樹脂発泡体は、発泡用母材シートの120~150℃の押出に続いて、連続的に200~230℃の加熱炉中で所定倍率に発泡させ、さらにその後ロールを通過させることで、発泡体の寸法と表面性状を整えた後、巻き付ける配管の直径に応じた所定幅に切断される。 The resin foam is produced by extruding a base material sheet for foaming at 120 to 150° C., continuously expanding it to a predetermined magnification in a heating furnace at 200 to 230° C., and then passing it through rolls to obtain a foam. After adjusting the dimensions and surface properties of the pipe, it is cut to a predetermined width according to the diameter of the pipe to be wound.

発泡倍率は、断熱性、エンボス加工性、クッション性を考慮して制御する必要がある。発泡倍率が高すぎると、不織布貼合後のエンボス加工を安定して均一に行うことが難しくなり、発泡倍率が低すぎると、樹脂の剛性が強すぎて、所望のエンボス高さが得られないし、断熱性が低下する問題がある。そのため、樹脂発泡体の発泡倍率は、20~40倍が望ましく、この範囲であれば、特段の問題はない。クッション性は、発泡倍率は20倍~40倍の範囲であれば特に問題がない。本実施例では、30倍に発泡させた。30倍発泡させるに際しては、ポリエチレン系樹脂100質量部に対して、有機系分解型発泡剤16質量部、架橋剤0.8質量部を加えることができる。すなわち、発泡剤や架橋剤の含有量は、発泡倍率に応じて適宜調整することができる。 The foaming ratio must be controlled in consideration of heat insulating properties, embossing properties, and cushioning properties. If the expansion ratio is too high, it will be difficult to stably and uniformly perform embossing after lamination of the nonwoven fabric. , there is a problem that the heat insulation is reduced. Therefore, the expansion ratio of the resin foam is desirably 20 to 40 times, and within this range there is no particular problem. There is no particular problem with cushioning properties as long as the expansion ratio is in the range of 20 to 40 times. In this example, the foam was expanded 30 times. For 30-fold expansion, 16 parts by mass of an organic decomposable foaming agent and 0.8 parts by mass of a cross-linking agent can be added to 100 parts by mass of polyethylene resin. That is, the contents of the foaming agent and the cross-linking agent can be appropriately adjusted according to the expansion ratio.

この際、ポリエチレン系樹脂としては、LDPEとHDPEを、4:6の質量比で混合した混合樹脂をポリエチレン樹脂として用いてもよい。LDPEには、宇部丸善ポリエチレン株式会社製:F120Nを、HDPEには、日本ポリエチレン株式会社製 HD1300を用い、発泡剤には、永和化成株式会社製 商品名ビニホールAC♯LQ、架橋剤には、日本油脂株式会社製、商品名パークミルDをそれぞれ上記の割合で加えた。 At this time, as the polyethylene resin, a mixed resin obtained by mixing LDPE and HDPE at a mass ratio of 4:6 may be used as the polyethylene resin. For LDPE, use F120N manufactured by Ube Maruzen Polyethylene Co., Ltd., for HDPE, use HD1300 manufactured by Japan Polyethylene Co., Ltd., for the foaming agent, trade name Vinihole AC#LQ manufactured by Eiwa Kasei Co., Ltd., for the cross-linking agent, Japan Yushi Co., Ltd. trade name Permil D was added in the above ratio.

本発明においては、ポリエチレン系樹脂発泡体の少なくとも一方の表面に不織布を融着により接合することで、本発明の結露水の滴下防止用保温材を得ることができるが、次にポリエチレン系発泡体上に配置する不織布について説明する。ここで、樹脂発泡体への不織布の接合は融着によらず接着によって行ってもよい。 In the present invention, the heat insulating material for preventing dripping of condensed water of the present invention can be obtained by joining a non-woven fabric to at least one surface of the polyethylene resin foam by fusion bonding. The nonwoven fabric to be placed on top will be described. Here, the bonding of the nonwoven fabric to the resin foam may be performed not by fusion but by adhesion.

(不織布)
先ず、不織布の定義を明確にすると、JISでは、「不織布は、繊維を織り込まずに積層して、シート状に広げたもので、繊維シート、ウェブ又はパッドで、繊維が一方向又はランダムに配向しており、交絡、及び/又は融着、及び/又は接着によって繊維間が結合されたものをいう。ただし、紙、織物、タフト及び縮じゅうフェルトは除く。」と定義されている。
(non-woven fabric)
First, to clarify the definition of non-woven fabric, JIS states that ``non-woven fabric is a sheet-like product in which fibers are laminated without being woven, and is a fiber sheet, web, or pad in which the fibers are oriented in one direction or randomly. entangled and/or fused and/or bonded between fibers, excluding paper, textiles, tufts and crimped felts.”

(不織布に用いる繊維)
本発明の不織布は、天然素材系繊維をレーヨン系樹脂、アセテート系樹脂などの天然素材系樹脂の使用を排除しないが、主として、不織布を構成する繊維の繊維径や空隙率を所定範囲とした上で、不織布の3次元構造を制御するため、引張モジュラスによる力学的特性を所定割合とすることにより、結露を防止する。このため、繊維自体が吸水性を有している必要がないことから、不織布を構成する繊維には、化学素材系繊維を用いる。化学素材系繊維としては、ポリエステル系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維などを用いることができる。
(Fiber used for nonwoven fabric)
The nonwoven fabric of the present invention does not exclude the use of natural material-based resins such as rayon-based resins and acetate-based resins as natural material-based fibers, but mainly the fiber diameter and porosity of the fibers constituting the non-woven fabric are set within a predetermined range. In order to control the three-dimensional structure of the nonwoven fabric, dew condensation is prevented by setting the mechanical properties based on the tensile modulus to a predetermined ratio. For this reason, since the fibers themselves do not need to have water absorbability, chemical material-based fibers are used for the fibers constituting the nonwoven fabric. Polyester-based fibers, polyethylene fibers, polypropylene fibers, acrylic fibers, and the like can be used as the chemical material-based fibers.

本発明においては、不織布自体が吸水性を有しない繊維であっても、所定の構造を有していれば、結露水の滴下防止性を不織布に付与することが可能になる。これらの繊維の工業的な定義は、繊維用語(原料部門)第2部:化学繊維のJISであるJISLO204―2(2001)ではそれぞれ下記のように記載されている。なお、本発明では、不織布の3次元構造が複雑でかつ規則的な構造を有しておらず、不織布の3次元構造を直接定量的に特定することが困難なため、これを評価するための代替パラメータとして引張モジュラスを用いたものである。 In the present invention, even if the nonwoven fabric itself is a fiber having no water absorbability, it is possible to provide the nonwoven fabric with the ability to prevent dripping of condensed water as long as it has a predetermined structure. Industrial definitions of these fibers are described as follows in Textile Terminology (Raw Material Section) Part 2: JIS for Chemical Fibers, JISLO204-2 (2001). In addition, in the present invention, the three-dimensional structure of the nonwoven fabric is complicated and does not have a regular structure, and it is difficult to directly and quantitatively specify the three-dimensional structure of the nonwoven fabric. Tensile modulus is used as an alternative parameter.

ポリエステル繊維は、テレフタル酸と2価アルコールとのエステル単位を質量比で85%以上含む長鎖状合成高分子からなる繊維、ポリエチレン繊維は、置換基のない飽和脂肪族炭化水素で構成する高分子で長鎖状合成高分子からなる繊維、ポリプロピレン繊維は、2個当たり1個の炭素原子にメチル基の側鎖がある飽和脂肪族炭化水素で構成する高分子で、立体規則性があり他に置換基のない長鎖状合成高分子からなる繊維、アクリル繊維は、アクリロニトリル基の繰り返し単位が質量比で85%以上含む直鎖状合成高分子からなる繊維である。 Polyester fiber is a fiber composed of a long-chain synthetic polymer containing 85% or more by mass of an ester unit of terephthalic acid and a dihydric alcohol. Polyethylene fiber is a polymer composed of saturated aliphatic hydrocarbons without substituents. Fibers made of long-chain synthetic polymers, polypropylene fibers are polymers composed of saturated aliphatic hydrocarbons with a side chain of a methyl group on one carbon atom per two, and have stereoregularity and other Fibers made of long-chain synthetic polymers without substituents, acrylic fibers, are fibers made of straight-chain synthetic polymers containing 85% or more by mass of repeating units of acrylonitrile groups.

ここで、ポリエステル系繊維、ポリエチレン繊維、ポリプロピレン繊維は吸水性がないため、繊維表面に水蒸気が吸着しても、繊維自体に吸水性がないため、繊維強度の変化がなく、吸水による強度低下がないが、アクリル系繊維は、吸湿により僅かに強度低下するものの、乾湿強度比は0.9以上で、天然素材系繊維であるレーヨンやビニロンに比べて強度低下は僅かであるため、他の吸水性のない繊維との混合繊維としてアクリル繊維を使用するような場合には、特に大きな問題はない。なお、不織布を構成する繊維としては、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル系繊維、アクリル繊維に加えて、セルロース繊維、パルプ、レーヨン繊維などの天然素材系繊維を所定量含むことを許容するが、その含有量はこれらの繊維の吸湿による強度低下を考慮すると、繊維総重量の30%以内にする必要がある。ここで、セルロース繊維、パルプなどの繊維を使用する場合には、短繊維を用いることが望ましい。 Here, since polyester fibers, polyethylene fibers, and polypropylene fibers do not absorb water, even if the fiber surface absorbs water vapor, the fiber itself does not absorb water, so there is no change in fiber strength, and there is no decrease in strength due to water absorption. However, although the strength of acrylic fibers slightly decreases due to moisture absorption, the dry-wet strength ratio is 0.9 or more, and the decrease in strength is slight compared to rayon and vinylon, which are natural materials. There is no particular problem when acrylic fibers are used as mixed fibers with non-flexible fibers. In addition to polyethylene fibers, polypropylene fibers, polyester fibers, and acrylic fibers, fibers constituting the nonwoven fabric may contain a predetermined amount of natural fibers such as cellulose fibers, pulp, and rayon fibers. The content should be within 30% of the total weight of the fibers considering the decrease in strength due to moisture absorption of these fibers. Here, when using fibers such as cellulose fibers and pulp, it is desirable to use short fibers.

(不織布の繊維の構成及び構造)
ここで、本発明に使用する不織布には、複数の繊維を用いることができる。例えば、ポリエチレン繊維とPET繊維やポリエチレン繊維やポリプロピレン繊維を組み合わせて使用することができる。このように、ポリエチレン繊維とPET繊維やポリプロピレン繊維を組み合わせて用いる場合には、複数の繊維を所定割合で混合して用いるので、繊維同士が融着する融着点の数を制御しやすくなる。これにより、繊維に所定の3次元構造を得やすくなり、空隙率が高くても安定な不織布を得やすくなる。複数の繊維や芯鞘構造の繊維を用いることの利点は、異なる樹脂の融点の差異を利用することで、繊維同士を選択的に融着することが可能であることである。
(Composition and structure of fibers of nonwoven fabric)
Here, a plurality of fibers can be used for the nonwoven fabric used in the present invention. For example, polyethylene fibers and PET fibers, polyethylene fibers, and polypropylene fibers can be used in combination. In this way, when polyethylene fibers, PET fibers, or polypropylene fibers are used in combination, a plurality of fibers are mixed at a predetermined ratio, and the number of fusion points at which fibers are fused together can be easily controlled. This makes it easier to obtain a predetermined three-dimensional structure in the fibers, making it easier to obtain a stable nonwoven fabric even with a high porosity. The advantage of using a plurality of fibers or fibers with a core-sheath structure is that the fibers can be selectively fused together by utilizing the difference in the melting points of different resins.

不織布繊維としては、2種の繊維を混合して用いる他、芯鞘構造の繊維を用いた不織布を使用することができる。このような芯鞘構造の繊維を不織布に使用するメリットは、繊維同士を相互に融着する場合に、たとえば、芯部にPET繊維やポリプロピレン繊維を使用し、さや部にポリエチレン繊維を使用することで、120~140℃の比較的低温での繊維同士の相互融着を可能にすることができ、不織布の製造を容易にすることが可能になると同時に、芯部に鞘部より高強度繊維を使用することで、不織布に使用する繊維の剛性を高めることができ、これにより不織布を構成する繊維の繊維径をその分小さくすることが可能になり、不織布の空隙率などの制御がよりし易くなる。 As the non-woven fabric fibers, in addition to using a mixture of two kinds of fibers, a non-woven fabric using fibers having a core-sheath structure can be used. The advantage of using fibers with such a core-sheath structure in a nonwoven fabric is that when the fibers are fused to each other, for example, PET fibers or polypropylene fibers are used for the core and polyethylene fibers are used for the sheath. , it is possible to fuse the fibers together at a relatively low temperature of 120 to 140 ° C., making it possible to facilitate the production of nonwoven fabrics, and at the same time, the core is made of higher strength fibers than the sheath. By using it, the rigidity of the fibers used in the nonwoven fabric can be increased, which makes it possible to reduce the fiber diameter of the fibers constituting the nonwoven fabric by that amount, making it easier to control the porosity of the nonwoven fabric. Become.

不織布繊維としては、融点の異なる複数の繊維を用いて、融点の低い繊維を溶融させて、バインダーとして用いることで、不織布を構成する。ここで、PET繊維とポリエチレン繊維を混合して、所定割合で用いると、ポリエチレン繊維がバインダーとして作用する。例えば、PET樹脂を主構成繊維に用いて、バインダーとしての低融点繊維には、共重合ポリエステル(Co-PET)樹脂、ポリプロピレン樹脂、ポリエチレン樹脂などを使用することができる。上記の構造とすることにより、不織布の空隙率や不織布の強度などの制御がしやすくなるため、例えば、空隙率が高くても所定の強度を有する不織布が得られる。 As the non-woven fabric fibers, a plurality of fibers having different melting points are used, and the fibers having a low melting point are melted and used as a binder to form a non-woven fabric. Here, when PET fiber and polyethylene fiber are mixed and used in a predetermined ratio, the polyethylene fiber acts as a binder. For example, PET resin can be used as the main component fiber, and copolymer polyester (Co-PET) resin, polypropylene resin, polyethylene resin, or the like can be used as the low-melting-point fiber as the binder. With the above structure, the porosity of the nonwoven fabric, the strength of the nonwoven fabric, and the like can be easily controlled, so that, for example, a nonwoven fabric having a predetermined strength can be obtained even if the porosity is high.

ここで、本発明の不織布繊維として、融点の異なる芯鞘構造の繊維と、他の繊維を組み合わせた繊維を用いた不織布とすることもできる。例えば、芯部に鞘部より高強度繊維を使用することで、不織布に使用する繊維の剛性を高めると、同時に他の繊維に高強度繊維やや中空繊維などを用い両者の混合割合を制御することで、不織布の力学特性を向上させたり、不織布に柔軟性を付与したりすることが可能になる。 Here, as the nonwoven fabric fiber of the present invention, a nonwoven fabric using a combination of fibers having a core-sheath structure having different melting points and other fibers can also be used. For example, by using higher-strength fibers in the core than in the sheath to increase the rigidity of the fibers used in the non-woven fabric, at the same time high-strength fibers or hollow fibers are used in other fibers to control the mixing ratio of both. With this, it becomes possible to improve the mechanical properties of the nonwoven fabric and to impart softness to the nonwoven fabric.

また、本発明の不織布繊維として、長繊維を用いた場合に、不織布の製造時の主方向であるMD方向に繊維が配向しやすく、その影響で方向の力学特性がTD方向の力学特性に比べて高剛性になりやすいが、短繊維を用いることで、繊維の配向のMD方向への配向の影響を緩和し、TD方向の配向を改善することが可能になり、異方性の改善効果が期待できる。また、経緯直交不織布, 経緯斜交不織布を使用することでも、短繊維と同様の効果が得られるものと推定される。 In addition, when long fibers are used as the nonwoven fabric fibers of the present invention, the fibers are easily oriented in the MD direction, which is the main direction in the production of the nonwoven fabric, and due to this, the mechanical properties in the direction are compared to the mechanical properties in the TD direction. However, by using short fibers, the effect of the orientation of the fibers in the MD direction can be alleviated, and the orientation in the TD direction can be improved. I can expect it. In addition, it is presumed that the same effect as that of short fibers can be obtained by using crosswise crosswise nonwoven fabrics and crosswise crosswise nonwoven fabrics.

また、短繊維を用いないでも、繊維のMD方向とTD方向の配向の影響を少なくすることができる不織布として、経緯直交不織布がある。経緯直交不織布は、経ウェブと緯ウェブが直交して積層、接着されている不織布である。経緯直交不織布は、経ウェブと緯ウェブが積層機にかけて直交積層させ、さらにこれらの経ウェブを縦延伸したものであり、緯ウェブは横延伸したものである。上記の他、経緯直交不織布に斜交する不織布を加えた経緯斜交不織布がある。このように、経緯直交不織布や経緯斜交不織布を用いることで、短繊維を用いずに長繊維を用いた不織布であったとしても繊維の配向の影響を少なくすることで、短繊維を用いた不織布の場合と同様の効果を得ることができる。 As a nonwoven fabric that can reduce the influence of the orientation of fibers in the MD direction and the TD direction without using staple fibers, there is a crosswise nonwoven fabric. The warp-and-warp nonwoven fabric is a nonwoven fabric in which a warp web and a weft web are perpendicularly laminated and bonded. The warp and weft webs are cross-laminated in a laminating machine, and the warp webs are longitudinally stretched, and the weft webs are transversely stretched. In addition to the above, there is a weft and weft oblique nonwoven fabric in which a weft and weft nonwoven fabric is added to the weft and weft nonwoven fabric. In this way, by using a weft crossed nonwoven fabric or a weft and weft oblique nonwoven fabric, even if it is a nonwoven fabric using long fibers instead of short fibers, the influence of the orientation of the fibers can be reduced, so that the short fibers can be used. The same effect as in the case of nonwoven fabric can be obtained.

本発明の結露水の滴下防止用保温材の、繊維径、空隙率(充填率)、繊維の屈曲部の有無などの構造上の特徴を満足する不織布を用いることで結露水の滴下防止特性には影響がなく、吸水性を有する樹脂を用いる必要はなく、不織布の厚さは、1.0mm以上とすることもできるが、不織布の厚さは、1.0mm以下の厚さでも結露水の滴下防止性や後述するエンボス加工性を満足することができる。 By using a nonwoven fabric that satisfies the structural characteristics of the heat insulating material for preventing dripping of condensed water of the present invention, such as fiber diameter, porosity (filling rate), and presence or absence of bent portions of fibers, the dripping prevention property of condensed water is improved. There is no need to use a resin with water absorption, and the thickness of the nonwoven fabric can be 1.0 mm or more, but the thickness of the nonwoven fabric is 1.0 mm or less, Anti-dripping properties and embossability, which will be described later, can be satisfied.

(不織布の製造方法)
次に、不織布の製造方法について確認する。通常不織布は、繊維だけで構成された薄い膜状のウェブと呼ばれる膜状のシートを形成し、形成されたウェブを形成する各繊維を必要に応じて相互に必要な部分だけ結合することで形成される。
(Method for manufacturing nonwoven fabric)
Next, the manufacturing method of the nonwoven fabric will be confirmed. Generally, non-woven fabrics are formed by forming a film-like sheet called a thin film-like web composed only of fibers, and by bonding only the necessary portions of each fiber forming the formed web as necessary. be done.

不織布の形成方法は、種々の方法があるが、例えば、ウェブの形成方法としては、湿式法、乾式法の両方があり、湿式法は、繊維を製紙工程と同様の方法で、不織布にする方法であり、乾式法におけるウェブの形成方法は、後述するように種々の方法があり、いずれの方法でウェブを形成してもよいが、本発明の結露水の滴下防止の用途には、長繊維を使用する場合には、繊維を屈曲させて不織布の立体構造を形成する必要があるため、不織布の繊維が屈曲する捲縮性を有していることが望ましい。 There are various methods for forming a nonwoven fabric. For example, there are both a wet method and a dry method as methods for forming a web. In the wet method, fibers are made into a nonwoven fabric in the same manner as in the papermaking process. There are various methods for forming a web in the dry method, as will be described later, and any method may be used to form the web. When using, it is necessary to bend the fibers to form a three-dimensional structure of the nonwoven fabric.

また、ウェブから不織布を得るには、ウェブを形成する繊維を所定位置で結合する必要がある。ここで、ウェブの繊維結合方法としては、浸漬法、スプレー法などのケミカルボンド法、サーマルボンド法、スパンボンド法、メルトブロー法、メルトプレーン法、エアーレィ法、スパンレース法(水交流法)、ニードルパンチ法などの種々の方法がある。ここで、長繊維を用いた不織布を形成する方法としては、下記のケミカルボンド法、サーマルボンド法、スパンボンド法、メルトブロー法、メルトプレーン法などの方法が用いられ、短繊維を用いた不織布を形成する方法としては、ケミカルボンド法、サーマルボンド法、エアーレィ法、スパンレース法、ニードルパンチ法を用いることができる。なお、ケミカルボンド法、サーマルボンド法、エアーレィ法、スパンレース法などは長繊維、短繊維いずれの方法にも用いることができる。 Also, to obtain a nonwoven fabric from a web, it is necessary to bond the fibers forming the web in place. Here, the fiber bonding method of the web includes a chemical bond method such as an immersion method and a spray method, a thermal bond method, a spunbond method, a meltblown method, a meltplane method, an air lay method, a spunlace method (water exchange method), and a needle. There are various methods such as the punch method. Here, as a method for forming a nonwoven fabric using long fibers, the following chemical bond method, thermal bond method, spunbond method, melt blow method, melt plane method, etc. are used, and nonwoven fabrics using short fibers are used. As a forming method, a chemical bond method, a thermal bond method, an air lay method, a spunlace method, and a needle punch method can be used. A chemical bond method, a thermal bond method, an air lay method, a spunlace method, and the like can be used for both long fibers and short fibers.

具体的に各方法について説明すると、ケミカルボンド法はウェブを接着剤で部分接着する方法であり、サーマルボンド法は、低融点の熱融着繊維を混合して熱ロールの間を、通過させて熱圧着するか、熱風を当てて、溶融する繊維で繊維の加熱部分を接着して、繊維同士を接着させる方法である。スパンボンド法は、紡糸と直結して繊維を並べ、自己融着熱で布にする方法である。メルトブロー法は、紡糸と直結して繊維を並べ、極細繊維を絡ませる方法である。メルトブレーン法は、樹脂を溶融して紡糸ノズルの周囲から噴射する高温エアにより、繊維を細くしてシート状に集積する方法である。 To explain each method specifically, the chemical bond method is a method of partially bonding a web with an adhesive, and the thermal bond method mixes low-melting heat-fusible fibers and passes them through hot rolls. In this method, the fibers are bonded to each other by thermocompression bonding or by applying hot air to bond the heated portions of the fibers with the fibers that melt. The spunbond method is a method in which fibers are arranged directly with spinning and made into cloth by self-fusion heat. The meltblown method is a method in which fibers are arranged directly with spinning and ultrafine fibers are entangled. The melt-brain method is a method in which a resin is melted and high-temperature air is jetted from the periphery of a spinning nozzle to make fibers thinner and accumulate them in a sheet form.

エアーレィ法は、空気とバインダーでパルプを接着して不織布にする方法である。また、スパンレース法は高圧水流で繊維を絡みあわせる方法である。ニードルパンチ法は、ウェブを高速で上下する特殊な針(ニードル)で繰り返し突き刺して、ニードルに形成した突起により繊維を絡ませることで、不織布を製造する方法である。 The air lay method is a method of bonding pulp together with air and a binder to form a nonwoven fabric. Also, the spunlace method is a method of entangling fibers with a high-pressure water stream. The needle punch method is a method of manufacturing a nonwoven fabric by repeatedly piercing a web with a special needle that moves up and down at high speed and entangling fibers with projections formed on the needle.

特に、本発明では、不織布が所定の繊維径と所定の空隙率などの構造的特徴を有していればよいから、これらの構造的特徴を満足する不織布が得られる限りにおいては、不織布の製造方法は制約を設けない。本願に使用する所定の繊維径の範囲で、所定の空隙率を有し、引張試験における5%伸びにおける実効応力値が所定の値を満足するような不織布の繊維が屈曲する捲縮性を有しており、本発明の目的に使用できる不織布であれば、いずれの方法で製造したものであっても良い。 In particular, in the present invention, the nonwoven fabric only needs to have structural characteristics such as a predetermined fiber diameter and a predetermined porosity. The method is open-ended. In the range of the predetermined fiber diameter used in the present application, it has a predetermined porosity, and the nonwoven fabric has a crimp property such that the effective stress value at 5% elongation in the tensile test satisfies a predetermined value. Any method may be used as long as the nonwoven fabric can be used for the purpose of the present invention.

ここで、本発明に用いる不織布が短繊維で製造される場合には、ケミカルボンド法、サーマルボンド法、エアーレィ法、スパンレース法、ニードルパンチ法が用いられることが多い。このような短繊維を用いた不織布を使用する場合には、長繊維を用いた不織布を使用する場合に比べて、繊維のMD方向とTD方向の配向の差異を少なくすることができることが期待できる。従って、不織布の力学的性質も差異も少なくすることができる可能性を有する。 Here, when the nonwoven fabric used in the present invention is produced from short fibers, the chemical bond method, thermal bond method, air lay method, spunlace method, and needle punch method are often used. When using such a nonwoven fabric using short fibers, it can be expected that the difference in orientation between the MD direction and the TD direction of the fibers can be reduced compared to the case of using a nonwoven fabric using long fibers. . Therefore, there is a possibility that both the mechanical properties and differences in nonwoven fabrics can be reduced.

また、短繊維を用いないでも、繊維のMD方向とTD方向の配向の影響を少なくすることができる不織布として、経緯直交不織布がある。経緯直交不織布は、経ウェブと緯ウェブが直交して積層、接着されている不織布である。経緯直交不織布は、経ウェブと緯ウェブが積層機にかけて直交積層させ、さらにこれらの経ウェブを縦延伸したものであり、緯ウェブは横延伸したものである。上記の他、経緯直交不織布に斜交する不織布を加えた経緯斜交不織布がある。このように、経緯直交不織布や経緯斜交不織布を用いることで、短繊維を用いずに長繊維を用いた不織布であったとしても繊維の配向の影響を少なくすることで、短繊維を用いた不織布の場合と同様の効果を得ることができる。 As a nonwoven fabric that can reduce the influence of the orientation of fibers in the MD direction and the TD direction without using staple fibers, there is a crosswise nonwoven fabric. The warp-and-warp nonwoven fabric is a nonwoven fabric in which a warp web and a weft web are perpendicularly laminated and bonded. The warp and weft webs are cross-laminated in a laminating machine, and the warp webs are longitudinally stretched, and the weft webs are transversely stretched. In addition to the above, there is a weft and weft oblique nonwoven fabric in which a weft and weft nonwoven fabric is added to the weft and weft nonwoven fabric. In this way, by using a weft crossed nonwoven fabric or a weft and weft oblique nonwoven fabric, even if it is a nonwoven fabric using long fibers instead of short fibers, the influence of the orientation of the fibers can be reduced, so that the short fibers can be used. The same effect as in the case of nonwoven fabric can be obtained.

(不織布のポリエチレン系樹脂発泡体への貼合方法)
ポリエチレン系樹脂発泡体の一方の表面に不織布を配置し、熱ロール成形を行うことで、不織布とポリエチレン系樹脂発泡体を融着することができる。あるいは、ポリエチレン系樹脂発泡体の一方の表面に、接着剤を塗付して、さらにこの状態で、不織布をポリエチレン系樹脂発泡体の表面に配置した状態で熱ロール成形を行うことで、不織布をポリエチレン系樹脂発泡体の表面に固定することができる。
(Method of laminating nonwoven fabric to polyethylene resin foam)
By placing a nonwoven fabric on one surface of the polyethylene resin foam and performing hot roll molding, the nonwoven fabric and the polyethylene resin foam can be fused. Alternatively, an adhesive is applied to one surface of the polyethylene-based resin foam, and in this state, the non-woven fabric is placed on the surface of the polyethylene-based resin foam and subjected to hot roll molding to form a non-woven fabric. It can be fixed to the surface of a polyethylene-based resin foam.

(エンボス加工方法)
例えば、発泡体の一方の表面に不織布が融着された材料を赤外線ヒータで、これを所定温度に加熱した状態で、上下1対のエンボスロール通過させることで通過させることでエンボス加工を行なうことができる。
(Embossing method)
For example, a material in which a nonwoven fabric is fused to one surface of a foam is embossed by passing it through a pair of upper and lower embossing rolls while being heated to a predetermined temperature by an infrared heater. can be done.

エンボス加工を行なう際には、エンボスロールを通過させる材料の表面を赤外線ヒータで、所定温度、例えば120~150℃に加熱され、エンボスロールそのものは、ロール表面への不織布等のロール通過材の凝着を考慮して、冷却してロール表面温度を所定温度、例えば、20℃に保つようにする。このように材料を加熱して、ロールを冷却することで、表面に貼合した不織布の焼き付けを防止することができる。 When embossing, the surface of the material to be passed through the embossing roll is heated with an infrared heater to a predetermined temperature, for example, 120 to 150° C., and the embossing roll itself heats the roll-passing material such as nonwoven fabric to the roll surface. In consideration of wear, the roll surface temperature is kept at a predetermined temperature, for example, 20° C. by cooling. By heating the material and cooling the roll in this way, it is possible to prevent the nonwoven fabric bonded to the surface from being seized.

また、エンボス加工に用いる凹凸模様は、賦形が可能であれば、特に制約はなくいかなる形状でもよいが、本発明の場合には、底面約4.0mm×上面2.5mm×高さ約1.2mmの正四角錘台形状の模様を、正四角錘台形状の各辺がMD方向、TD方向のそれぞれと一致するように製品幅全領域に渡って賦形するエンボス加工を行なう。 In addition, the uneven pattern used for embossing is not particularly limited as long as it can be shaped, and may be of any shape. Embossing is performed by forming a pattern of about 1.2 mm in the shape of a truncated square pyramid over the entire width of the product so that each side of the truncated square pyramid coincides with the MD direction and the TD direction.

この際のエンボス加工時に、不織布自体は加熱成形されるため、変形ひずみの3次元構造への影響は認められるものの、その影響はそれほど大きくはなく、試験材間の構造的な特徴の差異などは維持される。しかし、エンボス加工を行なわないものと比べると、エンボス加工の影響により、結露水の滴下防止性の点では不利になることから、エンボス加工後の結露性評価試験は未加工の場合に比べると相対的に過酷試験となる。エンボス加工品が結露性評価試験において結露水の滴下が生じなければ、未加工品は結露による結露水の滴下が生じないことになる。 At the time of embossing, the nonwoven fabric itself is heat-molded, so although the effect of deformation strain on the three-dimensional structure is recognized, the effect is not so large, and there are no differences in structural characteristics between test materials. maintained. However, compared to non-embossed products, the effect of embossing is disadvantageous in terms of preventing dripping of condensed water. It will be a severe test. If the embossed product does not cause dripping of condensed water in the dew condensation evaluation test, it means that the unprocessed product does not cause dripping of condensed water due to condensation.

(測定方法)
以下に、実施例において、本発明の保温材は樹脂発泡体と不織布により構成されているため、組成や構造を変えた不織布や発泡体の組成を変えた各種保温材を用いて、エンボス加工前後のこれらの保温材の、結露性評価試験による結露水の滴下の有無、保温材のエンボス加工性の評価を行った。ここで、結露性やエンボス加工性に対しては、不織布の構造の影響が大きいと考えられるため、不織布の構造を決定するパラメータとして、繊維径、充填率、空隙率、引張試験の5%伸びにおける実効応力値の決定と保水性の評価、これに加えて必要に応じてSEMによる不織布繊維の構造観察、吸水後の不織布の光学顕微鏡観察などを行なった。
(Measuring method)
In the examples below, since the heat insulating material of the present invention is composed of a resin foam and a non-woven fabric, various heat insulating materials with different compositions and structures of non-woven fabrics and foams are used before and after embossing. The presence or absence of dripping of condensed water and the embossability of the heat insulating material were evaluated by the dew condensation evaluation test of these heat insulating materials. Here, since the structure of the nonwoven fabric is considered to have a large effect on the dew condensation property and embossability, the parameters that determine the structure of the nonwoven fabric are fiber diameter, filling rate, porosity, and 5% elongation in a tensile test. In addition to determination of effective stress value and evaluation of water retentivity, structural observation of nonwoven fabric fibers by SEM and optical microscope observation of nonwoven fabric after water absorption were performed as necessary.

(不織布の測定評価方法)
不織布の構造評価のための測定評価方法として、繊維径、不織布の厚さ、空隙率、充填率の測定方法、引張試験による実効引張応力値の測定方法、不織布のSEM観察及び光学顕微鏡観察の方法について説明を行い、不織布の結露性に関係する性能評価方法として、保水性の評価として保水量の測定を行ったがこれらについて説明する。また、不織布の性能評価試験に加えて、保温材の結露性及びエンボス加工性評価試験を行ったがこれらの方法について順次具体的に説明する。
(Measurement evaluation method for nonwoven fabric)
As measurement evaluation methods for evaluating the structure of nonwoven fabrics, methods for measuring fiber diameter, thickness, porosity, and filling rate of nonwoven fabrics, methods for measuring effective tensile stress values by tensile tests, and methods for SEM observation and optical microscope observation of nonwoven fabrics. As a performance evaluation method related to the dew condensation property of the nonwoven fabric, the water retention amount was measured as an evaluation of the water retention. In addition to the performance evaluation test of the nonwoven fabric, the dew condensation property and embossing property evaluation test of the heat insulating material were also conducted. These methods will be described in detail one by one.

(不織布厚さ)
試験に用いた不織布、0.22mmから0.95mmの厚さのものを用いた。試験に用いた不織布厚さは、JIS一般不織布測定方法(JISL1913:2010)に記載された測定方法のA法と同じ測定が可能な不織布厚み測定器(φ56.4mmの円盤平面測定子)によりJIS法に基づいて測定したものである。
(Nonwoven fabric thickness)
The nonwoven fabrics used in the tests, thicknesses of 0.22 mm to 0.95 mm were used. The thickness of the nonwoven fabric used in the test was measured using a nonwoven fabric thickness measuring instrument (φ56.4 mm disc flat measuring tip) capable of measuring the same as the A method of the measuring method described in JIS general nonwoven fabric measuring method (JISL1913: 2010). It is measured based on the law.

(繊維径)
不織布の繊維径は、SEMの繊維の画像から任意に20カ所を選び、画像処理ソフトを用いて平均繊維径(数平均)を算出した。ここで、本発明に使用した不織布の平均繊維径は、10μmから30μmの範囲であり、通常不織布の繊維はこの範囲のものが使用されることが多い。この理由は、繊維径10μm以下でも、不織布を製造することは可能であるが、繊維径が10μm以下では、不織布の強度が不足するため、保護部材表面の使用時の耐久性が低下する。また、繊維径が30μmを超えると、不織布の直径増加により、不織布の充填率が相対的に増加して、空隙率を85~98%の範囲に保つことが難しくなる。従って、平均繊維径は、10~30μmの範囲とすることが望ましい。尚、実施形態の各実施例の各試験材において、各試験材の繊維径の測定値は簡略化のため、繊維径として記載しているが、これらの繊維径の測定値は平均繊維径を意味する。
(fiber diameter)
For the fiber diameter of the nonwoven fabric, 20 locations were arbitrarily selected from the SEM fiber image, and the average fiber diameter (number average) was calculated using image processing software. Here, the average fiber diameter of the nonwoven fabric used in the present invention is in the range of 10 μm to 30 μm, and the fibers of this range are usually used in many cases. The reason for this is that although it is possible to produce a nonwoven fabric with a fiber diameter of 10 μm or less, if the fiber diameter is 10 μm or less, the strength of the nonwoven fabric is insufficient, and the durability of the surface of the protective member during use is reduced. On the other hand, if the fiber diameter exceeds 30 μm, the increase in the diameter of the nonwoven fabric relatively increases the filling rate of the nonwoven fabric, making it difficult to maintain the porosity within the range of 85 to 98%. Therefore, it is desirable that the average fiber diameter be in the range of 10 to 30 μm. In addition, in each test material of each example of the embodiment, the measured value of the fiber diameter of each test material is described as a fiber diameter for simplification, but the measured value of these fiber diameters is the average fiber diameter. means.

(空隙率、充填率)
不織布の空隙率は、不織布の厚みと目付量により見かけ比重を算出して、見かけ比重を用いて、下記式より、算出した。空隙率などの計算に使用する真比重は、水中置換法により求める。ここで、空隙率の単位は、体積%である。
空隙率(%)={1-(見掛け比重/真比重)}×100
充填率(%)=100-空隙率(%)
(Porosity, filling rate)
The porosity of the nonwoven fabric was calculated from the following formula using the apparent specific gravity calculated from the thickness and basis weight of the nonwoven fabric. The true specific gravity used to calculate the porosity is determined by the water substitution method. Here, the unit of porosity is volume %.
Porosity (%) = {1 - (apparent specific gravity / true specific gravity)} x 100
Filling rate (%) = 100 - porosity (%)

(引張試験における実効引張応力値の測定)
不織布の繊維の絡み合いあるいは屈曲の度合いを示す捲縮性、繊維の接合部の影響などを個々の繊維について評価して、それを不織布全体構造のマクロパラメータに置き換えることは難しい。そのため、各不織布について引張試験における伸び値や応力に絡むパラメータを、不織布繊維の3次元構造評価の代替パラメータとして評価することで、保水量を担保するための、空隙率と関連付けた評価パラメータとして、引張試験における5%伸びにおける応力値を充填率で割って求めた値、すなわち充填率で規格化した値を5%伸びにおける実効引張応力値の測定評価を行った。
(Measurement of effective tensile stress value in tensile test)
It is difficult to evaluate the crimpability, which indicates the degree of entanglement or bending of fibers in a nonwoven fabric, the influence of the joints of fibers, etc. on individual fibers and convert them into macro parameters of the overall structure of the nonwoven fabric. Therefore, by evaluating the parameters related to the elongation value and stress in the tensile test for each nonwoven fabric as an alternative parameter for evaluating the three-dimensional structure of the nonwoven fabric fiber, as an evaluation parameter associated with the porosity to ensure the water retention amount, The value obtained by dividing the stress value at 5% elongation in the tensile test by the filling rate, that is, the value normalized by the filling rate was measured and evaluated for the effective tensile stress value at 5% elongation.

本試験による、引張試験における伸び値と応力変化の挙動は、保水性のみでなく、エンボス加工性にも影響があり、両者ともに引張試験における伸び値が大きく、低ひずみ領域における応力の増加が小さい方が望ましいと考えられるため、引張試験により、これらの挙動の確認を行った。さらに、冷媒管への巻き付け歪みを考慮すると、TD方向の場合には、エンボス加工の歪に加えて、冷媒管への巻き付け歪みが加わるため、MD方向の伸び値よりTD方向の伸び値が大きく、引張試験の応力増加が少ない方が望ましいと考えられた。 According to this test, the behavior of elongation value and stress change in the tensile test has an effect not only on water retention but also on embossability. These behaviors were confirmed by a tensile test because it is considered that the better is desirable. Furthermore, considering the winding strain on the refrigerant pipe, in the case of the TD direction, in addition to the embossing distortion, the winding strain on the refrigerant pipe is added, so the elongation value in the TD direction is larger than the elongation value in the MD direction. , it was considered desirable that the stress increase in the tensile test is small.

ここで、実効応力値をMD方向のみについて測定したのは、TD方向は不織布のWEBの方向と直交する方向であるため、繊維同士の所定長さあたりの結合点や絡み合いが少なく、ひずみゲージで安定的に歪みを測定することが困難な上、いずれの不織布もMD方向に比べて応力の立ち上がりが低いことが分かった。そのため、TD方向には、5%伸びにおける実効応力値を求めることが困難であり、MD方向の引張挙動における評価パラメータにより、不織布の保水性や結露水の滴下防止性が影響を受けると判断して、MD方向の5%伸びにおける実効応力値を優先的に求めることにした。なお、後述するように、第1の実施形態の実施例3において、TD方向の実効引張応力を改善した短繊維不織布や経緯斜交不織布を作成したので、一部の材料については、MD方向の実効引張応力値に加えて、TD方向の実効引張応力も求めた。 Here, the effective stress value was measured only in the MD direction because the TD direction is a direction perpendicular to the WEB direction of the nonwoven fabric. It was found that it was difficult to measure the strain stably, and that the rise of stress in all nonwoven fabrics was lower than that in the MD direction. Therefore, it is difficult to obtain the effective stress value at 5% elongation in the TD direction, and it was determined that the evaluation parameters for the tensile behavior in the MD direction affect the water retention and drip prevention properties of the nonwoven fabric. Therefore, we decided to preferentially obtain the effective stress value at 5% elongation in the MD direction. As will be described later, in Example 3 of the first embodiment, a short fiber nonwoven fabric and a weft and weft oblique nonwoven fabric with improved effective tensile stress in the TD direction were produced. In addition to the effective tensile stress value, the effective tensile stress in the TD direction was also determined.

また、不織布の実効応力値を5%伸びにおける実効応力値と決めたのは、予備試験の結果から、2%伸びにおける応力値では、微小な変形領域の測定となるため、不織布材料の均一性に加えて、測定上ひずみ量の精度にバラつきが見られ精確性が担保できない上、実効引張応力レベルが小さく各材料間の差異も見極めにくい。一方、10%伸びでは、不織布内の繊維の3次元構造の差異の他、各不織布の繊維同士の係合・摩擦・融着などの状態変化によるマクロ構造変化や引張変形の進行に伴う2次的な不織布の状態変化に起因して生じる影響が表れる応力レベル領域まで変形を付与する可能性があり、不織布の初期状態としての3次元構造を正しくを評価できない可能性があるためであり、5%における実効応力値が不織布の構造を間接的に表すパラメータとして適切なものと考えた。 In addition, the reason why the effective stress value of the nonwoven fabric was determined as the effective stress value at 5% elongation is that from the results of the preliminary test, the stress value at 2% elongation is a measurement of a minute deformation area, so the uniformity of the nonwoven fabric material In addition, the accuracy of the measured strain amount varies, and the accuracy cannot be guaranteed, and the effective tensile stress level is small, making it difficult to determine the difference between each material. On the other hand, at 10% elongation, in addition to the difference in the three-dimensional structure of the fibers in the nonwoven fabric, there are also macrostructural changes due to state changes such as engagement, friction, and fusion between the fibers of each nonwoven fabric, and secondary changes due to the progress of tensile deformation. This is because there is a possibility that deformation will be applied to the stress level area where the effect caused by the change in the state of the nonwoven fabric appears, and it may not be possible to correctly evaluate the three-dimensional structure as the initial state of the nonwoven fabric. % is considered to be an appropriate parameter to indirectly express the structure of the nonwoven fabric.

各不織布から JIS K6251(2017) 1号ダンベル形状の試験片をMD方向に打ち抜き、チャック間距離80mmでサンプルを保持し、標線間距離40mmとし、10mm/minで引張試験を実施し、標線間の歪み量が5%になった時点の実効引張応力を測定し、不織布の繊維充填率でこの値を割り、規格化した5%伸びにける実効応力値を5%伸びにおける実効引張応力値として表現した。なお、この実効引張応力値のばらつきを考慮して、各3回行いその平均値を各材料の実効引張応力値と定義した。 A JIS K6251 (2017) No. 1 dumbbell-shaped test piece was punched out from each nonwoven fabric in the MD direction, the sample was held at a distance between chucks of 80 mm, a distance between gauge lines was 40 mm, and a tensile test was performed at 10 mm / min. The effective tensile stress at the time when the strain amount between is 5% is measured, this value is divided by the fiber filling rate of the nonwoven fabric, and the normalized effective stress value at 5% elongation is the effective tensile stress value at 5% elongation. expressed as In consideration of variations in the effective tensile stress value, each test was performed three times, and the average value was defined as the effective tensile stress value of each material.

(不織布のSEM観察及び光学顕微鏡観察)
不織布を構成する繊維の屈曲の程度や絡み合い構造などを、確認するために、走査型電子顕微鏡(SEM)にて、加速電圧20KVで、100倍で、結露水の滴下防止効果が得られた不織布と、結露水の滴下防止効果が得られない不織布の代表例について観察した。また、結露水の滴下防止効果が得られた不織布の保水状態を確認するため、光学顕微鏡で、SEM観察に用いた材料と同様の材料についてSEM観察の場合と同様の倍率100倍での不織布が保水した状態での光学顕微鏡観察を行った。
(SEM observation and optical microscope observation of nonwoven fabric)
In order to confirm the degree of bending and the entanglement structure of the fibers that make up the nonwoven fabric, a scanning electron microscope (SEM) was used at an acceleration voltage of 20 KV and at a magnification of 100 times. In addition, representative examples of nonwoven fabrics that do not have the effect of preventing dripping of condensed water were observed. In addition, in order to confirm the water retention state of the nonwoven fabric that has the effect of preventing dripping of condensed water, the same material as that used for SEM observation was examined with an optical microscope at a magnification of 100 times, which is the same as in the case of SEM observation. Optical microscope observation was performed in a water-retained state.

ここで、光学顕微鏡で不織布の保水状態を確認した試験片の吸水操作は、下記の手順で行った。先ず、30mm×30mmの大きさで不織布を切り出し、これを、水を入れたビーカーに2分間以上浸漬し、十分に保水させた。その後、ピンセットで試料を持ち上げ、水滴が落ちきるまで待ち、さらにビーカーの縁にサンプルを接触させて30秒間保持した。これを顕微鏡のサンプルステージに乗せ、光学顕微鏡での測定を実施した。 Here, the water absorption operation of the test piece for which the water retention state of the nonwoven fabric was confirmed with an optical microscope was performed according to the following procedure. First, a nonwoven fabric having a size of 30 mm×30 mm was cut out, and this was immersed in a beaker containing water for 2 minutes or longer to sufficiently retain water. After that, the sample was lifted with tweezers, waited until the water droplets were completely dropped, and furthermore, the sample was brought into contact with the edge of the beaker and held for 30 seconds. This was placed on the sample stage of the microscope and measured with an optical microscope.

(保水量)
試験に用いた各不織布から一定面積の不織布を切り出し、秤量する。その後、この不織布を水道水に浸漬し、十分水を吸水させた後、30秒以上持ち上げ、水滴が落ちてこない状態にしてから、再度秤量する。保水重量を面積で割り、単位面積(m)あたりの保水量を算出するものを、保水量(g/m)とする。なお、試験に用いた不織布は、不織布厚さが異なるため、各不織布間の保水量の比較は、所定の不織布厚さ1mmにおける保水量に換算して各不織布の保水量の比較を行なった。表1~3の左側の保水量が測定値としての保水量であり、右側の保水量が不織布厚さ1mmにおける換算された保水量g/(m.mm)を示している。
(water retention capacity)
A nonwoven fabric having a certain area is cut out from each nonwoven fabric used in the test and weighed. After that, the non-woven fabric is immersed in tap water to absorb enough water, and then lifted for 30 seconds or more to prevent water droplets from falling, and then weighed again. The water retention weight (g/m 2 ) is obtained by dividing the water retention weight by the area to calculate the water retention capacity per unit area (m 2 ). Since the nonwoven fabrics used in the test have different nonwoven fabric thicknesses, the water retention capacity of each nonwoven fabric was compared in terms of the water retention capacity at a predetermined nonwoven fabric thickness of 1 mm. The water retention amount on the left side of Tables 1 to 3 is the water retention amount as a measured value, and the water retention amount on the right side indicates the converted water retention amount g/(m.mm) at a nonwoven fabric thickness of 1 mm.

(結露水の滴下防止性評価試験)
図1には、恒温恒湿槽を用いた結露性確認試験の状況を示す図である。結露性試験は、図1(a)に示すように、冷媒管としてのステンレス管に、樹脂発泡体の表面に不織布を融着した各結露水の滴下防止保温材の表面を外側に向けて、各4個巻き付け恒温恒湿槽1内に配置したものである。ここで、試験には、冷媒管として寸法(外径49φ×内径45φ×肉厚2mm)の冷媒巻(ステンレス管)2を用い、いずれも発泡倍率30倍で厚さ10mmの発泡体の一方の表面に不織布を融着した各種の保温材3を用意し、長さ150mmに切断してそれぞれ冷媒管2の全周に巻き付けたものである。ここで、保温材3は、各試験材ともに、不織布表面にエンボス加工を行なったエンボス加工材とエンボス加工を行なわないエンボス非加工材の両者について行った。以下本発明においては恒温恒湿槽を簡略化して恒温槽と記載することもある。
(Drip prevention evaluation test for condensed water)
FIG. 1 is a diagram showing the state of a dew condensation confirmation test using a constant temperature and humidity chamber. As shown in FIG. 1(a), the dew condensation test was carried out by placing the non-woven fabric fused to the surface of the resin foam on a stainless steel pipe as a refrigerant pipe, with the surface of each heat insulating material for preventing dripping of condensed water facing outward. It is arranged in a constant temperature and humidity chamber 1 by winding four pieces each. Here, in the test, a refrigerant winding (stainless steel pipe) 2 having dimensions (outer diameter 49φ x inner diameter 45φ x wall thickness 2 mm) was used as a refrigerant pipe, and one side of the foam with a foaming ratio of 30 times and a thickness of 10 mm was used. Various heat insulating materials 3 having non-woven fabrics fused to their surfaces were prepared, cut into lengths of 150 mm, and wrapped around the entire circumference of the refrigerant pipe 2 . Here, for the heat insulating material 3, both the embossed material in which the surface of the nonwoven fabric was embossed and the non-embossed material in which no embossing was performed were used for each test material. Hereinafter, in the present invention, the constant temperature and humidity bath may be simply referred to as a constant temperature bath.

試験に際しては、前記の準備完了後に、恒温槽を23℃×湿度50%RHに3時間保持し、その後ステンレス管2に5℃の冷媒を流して、試験温度35℃×湿度90%RHの雰囲気に30分で昇温し、その後結露水の滴下防止用保温材を12時間保持して、水滴が結露して滴下するかどうかを各試験片の直下にそれぞれ滴下センサ5を配置して結露の有無を評価した。試験時には、A点は冷媒管外側温度、B点で不織布表面温度、C点では恒温槽内の雰囲気温度などを確認した。A、B、C各点での測定温度は、設定温度に対して±0.5℃に制御した。 During the test, after the above preparations were completed, the constant temperature bath was held at 23° C. and humidity of 50% RH for 3 hours, and then a 5° C. coolant was flowed through the stainless steel tube 2 to create an atmosphere with a test temperature of 35° C. and humidity of 90% RH. After that, the temperature was raised in 30 minutes, and then the heat insulating material for preventing dripping of dew condensation water was held for 12 hours. The presence or absence was evaluated. During the test, the outside temperature of the refrigerant pipe was checked at point A, the non-woven fabric surface temperature at point B, and the ambient temperature in the constant temperature bath at point C. The measurement temperature at points A, B, and C was controlled to ±0.5° C. with respect to the set temperature.

また、恒温槽内の温度は、図示のような位置に熱電対を配置して、温度測定により確認を行った。熱電対は、恒温槽内の雰囲気温度、エンボス加工された不織布の表面温度及びステンレス管とポリエチレン系樹脂発泡体の界面温度の3つについて、複数個所の測定行い、それぞれ同様の測定位置における測定温度の誤差が±0.5℃以内になるように設定した。また、試験には、試験を行う試験材の数が恒温槽内に4個配置されるようにして、後述する実施例1~実施例3の各試験材について、結露水の滴下の有無を確認する試験を試験材個数に応じて繰り返して試験を行なった。そのため、結露水の滴下の有無を測定するトレイは、各試験材毎にそれぞれの試験材の位置に対応するように配置した。また、試験片が4個に満たない場合には、測定対象でない試験片を恒温槽内に配置して試験条件が常に同一になる条件にて測定を行った。試験の結果、結露水の滴下のないものを「〇」、結露水が滴下するものを「×」とした。 Further, the temperature in the constant temperature bath was confirmed by measuring the temperature by placing a thermocouple at the position shown in the figure. Thermocouples are used to measure the ambient temperature in the constant temperature bath, the surface temperature of the embossed nonwoven fabric, and the interfacial temperature of the stainless steel pipe and polyethylene resin foam at multiple points, and the measured temperature at each of the same measurement positions. was set so that the error was within ±0.5°C. In addition, in the test, the number of test materials to be tested is arranged in a constant temperature chamber of 4, and the presence or absence of dripping of condensed water is confirmed for each test material of Examples 1 to 3, which will be described later. The test was repeated according to the number of test materials. Therefore, the tray for measuring the presence or absence of dripping of condensed water was arranged for each test material so as to correspond to the position of each test material. When the number of test pieces was less than 4, the test pieces not to be measured were placed in the constant temperature bath and the test conditions were always the same. As a result of the test, the sample with no dripping of condensed water was evaluated as "◯", and the sample with dripping of condensed water was evaluated as "x".

また、図1(b)には、エンボス加工を行なった場合の結露性評価試験での冷媒管2を囲む保温材3の断面図である。冷媒管2の外周に巻き付けられた保温材3は、樹脂発泡体7と不織布8からなり、樹脂発泡体7の最表面には不織布8が配置され、不織布6は、エンボス加工されてエンボス加工部9により、凹凸が形成されている。なお、試験に用いた不織布は、表1に示すように各不織布により、不織布の厚さが異なる。
また、図1(b)には、試験時の冷媒管としてのステンレス管の外周に樹脂発泡体、が配置され、最外周に不織布が配置された積層構造を示す断面図である。不織布の表面は、エンボス加工により、凹凸が形成されている。
FIG. 1(b) is a cross-sectional view of the heat insulating material 3 surrounding the refrigerant pipe 2 in the dew condensation evaluation test when embossing is performed. The heat insulating material 3 wrapped around the outer periphery of the refrigerant pipe 2 is composed of a resin foam 7 and a nonwoven fabric 8. The nonwoven fabric 8 is arranged on the outermost surface of the resin foam 7, and the nonwoven fabric 6 is embossed to form an embossed portion. Asperities are formed by 9 . As shown in Table 1, the nonwoven fabric used in the test has a different thickness depending on the nonwoven fabric.
Further, FIG. 1(b) is a cross-sectional view showing a laminated structure in which a resin foam is arranged around the outer periphery of a stainless steel pipe serving as a refrigerant pipe during testing, and a non-woven fabric is arranged on the outermost periphery. Concavities and convexities are formed on the surface of the nonwoven fabric by embossing.

(エンボス加工性)
ポリエチレン系樹脂発泡体の一方の表面に不織布が融着された材料を赤外線ヒータで、これを所定温度に加熱した状態で、上下1対のエンボスロール通過させることで通過させることで底面約4.0mm×上面2.5mm×高さ約1.2mmの正四角錘台形状の模様を、模様の各辺をMD方向、TD方向のそれぞれと一致するように製品幅全領域に渡って賦形するエンボス加工を行なうことでエンボス加工性の評価を行った。
(Embossability)
A material in which a non-woven fabric is fused to one surface of a polyethylene-based resin foam is heated to a predetermined temperature by an infrared heater, and is passed through a pair of upper and lower embossing rolls to form a bottom surface of about 4.5 mm. A square frustum pattern of 0 mm 2 × top surface 2.5 mm 2 × height of about 1.2 mm is applied over the entire product width so that each side of the pattern coincides with each of the MD and TD directions. Embossability was evaluated by performing embossing to shape.

具体的には、エンボス加工性の評価は、MD方向、TD方向にそれぞれ10個ずつ評価を行った。目標とする上記形状が安定して確保できているかどうかを基準に判断し、評価したエンボス加工部において目標として形状が得られている場合を〇、少なくとも1個でも表面につぶれ等が存在し目標の形状が得られない場合や不織布を形成する繊維に損傷がある場合を×として評価することにした。 Specifically, the embossability was evaluated by 10 pieces each in the MD direction and the TD direction. Judgment is based on whether the above target shape can be stably secured, and if the target shape is obtained in the evaluated embossed part, ◯, and if at least one surface is crushed, etc., it is the target. When the shape of the nonwoven fabric could not be obtained or when the fibers forming the nonwoven fabric were damaged, it was evaluated as x.

本発明の実施形態としては、第1の実施形態として、各種保温材の保温材の結露水の滴下防止性評価試験結果とエンボス加工性の評価結果を表1~表3にそれぞれ示す。第2の実施形態として、本発明の保温材を各種配管構造へ適用した結果を示し、第3の実施形態として、本発明の保温材を建材への適用結果を示す。建築構造体への適用事例としては、無機系建材の結露水の滴下防止構造、ダクトの結露水の滴下防止構造、折板屋根の結露水の滴下防止構造について順次記載する。ここで、ダクトは空調用ダクトに関するものであるが、ダクトは比較的大型の部材で建築構造物に形成されるものであるため、本発明では、ダクトの結露水の滴下防止構造は、建築構造体への適用事例の実施形態に含めることにした。また、第1の実施形態の実施例1から実施例3(表1から表3)の試験材の不織布を構成する各繊維において、芯鞘構造の繊維は括弧で記載し、括弧内の左側が芯部で、右側が鞘部を表すものとなる。通常芯部より鞘部を構成する繊維が芯部を構成する繊維より低融点になる。 As a first embodiment of the present invention, Tables 1 to 3 show the results of an evaluation test for preventing dripping of condensed water and the evaluation results of embossing properties of various heat insulating materials. As the second embodiment, the results of applying the heat insulating material of the present invention to various piping structures are shown, and as the third embodiment, the results of applying the heat insulating material of the present invention to building materials are shown. As examples of application to building structures, a structure for preventing dripping of condensed water on inorganic building materials, a structure for preventing dripping of condensed water on ducts, and a structure for preventing dripping of condensed water on folded plate roofs will be described in sequence. Here, the duct relates to an air-conditioning duct, but since the duct is a relatively large member formed in a building structure, in the present invention, the structure for preventing dripping of condensed water from the duct is a building structure. It was decided to include it in the embodiment of the case of application to the body. In addition, in each fiber constituting the nonwoven fabric of the test material of Examples 1 to 3 (Tables 1 to 3) of the first embodiment, the fiber of the core-sheath structure is described in parentheses, and the left side in the parentheses is The core part and the right side represents the sheath part. Generally, the fibers forming the sheath have a lower melting point than the fibers forming the core.

(第1の実施形態:実施例1)
ここでは、全ての試験材については、樹脂発泡体としてLDPEを発泡倍率30倍、厚さ10mmに発泡させた発泡体を用い、不織布を構成する繊維と構造の異なる不織布1から5の不織布をLDPE発泡体上に融着することで、試験材1から試験材5の保温材を得た。ここで、また、不織布の発泡体表面に対する融着は、前記の条件により、熱ロール成形により行った。不織布構造を決定するための各種試験と保温材の結露性評価試験、エンボス加工性試験を行い、不織布構造の結露に対する影響やエンボス加工性に対する影響を評価した。また、表1には、参考のため、試験に用いた不織布の入手先を記載した。
(First Embodiment: Example 1)
Here, for all test materials, a foam obtained by foaming LDPE with an expansion ratio of 30 times and a thickness of 10 mm was used as a resin foam. Heat insulating materials of test materials 1 to 5 were obtained by fusing onto the foam. Here, the nonwoven fabric was fused to the surface of the foam by hot roll molding under the above conditions. Various tests to determine the structure of the nonwoven fabric, an evaluation test of the dew condensation property of the heat insulating material, and an embossing property test were conducted to evaluate the influence of the nonwoven fabric structure on dew condensation and embossability. For reference, Table 1 also shows where the nonwoven fabrics used in the test were obtained.

ここで、試験材1から試験材5に加えてポリエチレン樹脂発泡体の表面にポリエチレンフィルムを融着させた結露が発生する従来材としての保温材も試験に加えた。ここで、従来材は、フィルム厚さ80μmであるため、空隙がないことから、充填率100%、空隙率が0%の材料と言えるが、これを従来材1とした。 Here, in addition to test materials 1 to 5, a heat insulating material as a conventional material in which dew condensation occurs by fusing a polyethylene film on the surface of a polyethylene resin foam was also added to the test. Here, since the conventional material has a film thickness of 80 μm and has no voids, it can be said that the material has a filling rate of 100% and a porosity of 0%.

ここで、試験材1は、PET繊維で繊維径17.3μm、充填率16.2%、空隙率83.8%で、繊維の屈曲が少ないものであり、試験材2は、PET繊維で繊維径17.1μm、空隙率97.8%で繊維の屈曲が多く、試験材3は、(PP/PE)/PET繊維で、繊維径19.4μm、空隙率95.4%で繊維の屈曲が多くて、試験材4は、アクリル/(PET/PE)繊維で、繊維径11.7μm、空隙率91.2%、繊維の屈曲が多い繊維で、試験材5は、PET/PE繊維で、繊維径18.9μm、空隙率97.6%で、繊維の屈曲が多い繊維である。ここで、試験材1の不織布1は、空隙率が85%を超えずに屈曲も少ないが、試験材2~5の不縮布2~5は、繊維径が10~30μmの範囲にあり、空隙率が85~98%の範囲を満たして、繊維の屈曲部が比較的多く認められた。 Here, the test material 1 is a PET fiber with a fiber diameter of 17.3 μm, a filling rate of 16.2%, and a porosity of 83.8%, and has little fiber bending. The diameter of the fiber is 17.1 μm, the porosity is 97.8%, and the fiber has a lot of bending. At most, test material 4 is an acrylic/(PET/PE) fiber with a fiber diameter of 11.7 μm, a porosity of 91.2%, and a fiber with many bends, and test material 5 is a PET/PE fiber, The fiber has a fiber diameter of 18.9 µm, a porosity of 97.6%, and a large amount of bending. Here, the nonwoven fabric 1 of the test material 1 has a porosity that does not exceed 85% and has little bending, but the non-shrinkable fabrics 2 to 5 of the test materials 2 to 5 have a fiber diameter in the range of 10 to 30 μm. A relatively large number of bending portions of the fibers were observed, satisfying the porosity range of 85 to 98%.

ここで、試験材1,2は通常のPET繊維単独の材料からなる不織布であり、試験材3は、具体的には、芯鞘構造のPP/PE繊維(PPが芯材、外側をPEで被覆した芯鞘構造の繊維)とPET繊維の複合繊維からなる不織布であり、試験材4は、試験材3と同様にPET繊維の外周をPE繊維で被覆した芯鞘構造の繊維とアクリル繊維からなる不織布である。試験材5は、PE繊維とPET繊維の混合繊維を使用した不織布である。 Here, test materials 1 and 2 are nonwoven fabrics made of ordinary PET fiber alone, and test material 3 is, specifically, a PP/PE fiber with a core-sheath structure (PP is the core material and the outside is PE). It is a nonwoven fabric made of a composite fiber of PET fiber and a core-sheath structure fiber), and test material 4 is a nonwoven fabric made of a core-sheath structure fiber in which the outer circumference of the PET fiber is coated with PE fiber and acrylic fiber. It is a nonwoven fabric. The test material 5 is a nonwoven fabric using mixed fibers of PE fibers and PET fibers.

(試験結果)
表1に、第1の実施形態における実施例1の試験結果を示す。表1の試験結果によると、エンボス加工後の結露水の滴下防止性評価試験の結果は、試験材2~5の保温材は、結露水が滴下せずに良好な結果を示したが、これに対して、試験材1及び従来材は、結露水が滴下した。ここで、試験材の結露水の滴下の有無と不織布の構造の関係についてみると、平均繊維径10~30μmの範囲で、空隙率85~98%(充填率2~15%)を満足し、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけの引張応力を充填率で割った値である実効引張応力が25MPa以下である不織布において結露水の滴下が発生しないことが確認された。具体的には、試験材2~試験材5の実効引張応力値は、7.2―17.2MPaの範囲にある。これらの結露水の滴下が発生しない不織布は後述するSEM観察の結果繊維の屈曲部が多く繊維の捲縮性が高いことが確認された。また、結露が発生しないための不織布の保水量は、不織布の見かけ厚さ1mm当たりに換算した保水量が500g/m以上を満足した。エンボス加工前の結露水の滴下試験結果もエンボス加工前と同様であり、結露水の滴下への影響はエンボスによる影響はなかった。
(Test results)
Table 1 shows the test results of Example 1 in the first embodiment. According to the test results in Table 1, the results of the anti-dripping property evaluation test for condensed water after embossing showed that the heat insulating materials of test materials 2 to 5 showed good results with no dripping of condensed water. Condensed water dripped on the test material 1 and the conventional material. Here, when looking at the relationship between the presence or absence of dripping of condensed water on the test material and the structure of the nonwoven fabric, the average fiber diameter is in the range of 10 to 30 μm, and the porosity is 85 to 98% (filling rate is 2 to 15%). It was confirmed that dripping of condensed water does not occur in a nonwoven fabric with an effective tensile stress of 25 MPa or less, which is the value obtained by dividing the apparent tensile stress in the same direction by the filling ratio when the value of tensile elongation in the MD direction in the tensile test is 5%. was done. Specifically, the effective tensile stress values of test materials 2 to 5 are in the range of 7.2-17.2 MPa. As a result of SEM observation, which will be described later, it was confirmed that these non-woven fabrics free from dripping of condensed water had many bends in the fibers and high crimpability of the fibers. In addition, the nonwoven fabric satisfies the water retention capacity of 500 g/m 2 or more converted per 1 mm of apparent thickness of the nonwoven fabric to prevent dew condensation. The results of the dripping test of condensed water before embossing were the same as those before embossing, and embossing did not affect the dripping of condensed water.

これに対して、結露が発生した不織布である試験材1は、繊維径は上記10~30μmの範囲を満足するものの、空隙率が85%未満で、充填率が15%を超えるもので、空隙率が低く、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が38.5MPaと25MPaをはるかに超えるものであった。さらに不織布を構成する繊維の屈曲部が少なく、不織布の捲縮性の低いものであった。不織布の滴下を防止することができない保水量は、不織布の見かけ厚さ1mm当たりに換算した保水量が500g/mを満足しなかった。以上、結露の発生に関しては、空隙率が高く、所定歪量5%伸びにおける実効引張応力値が小さい不織布が優れることが確認された。また、ここで、試験に用いた繊維は、吸水性のない化学繊維系の材料であるが、本発明の不織布の結露水の滴下防止性は、基本的には繊維の種類によらずに構造のみにより成立するものと考えられた。 On the other hand, Test Material 1, which is a nonwoven fabric with dew condensation, has a fiber diameter that satisfies the above range of 10 to 30 μm, but has a porosity of less than 85% and a filling rate of more than 15%. The effective tensile stress, which is the apparent stress in the same direction at 5% divided by the filling fraction, was well above 38.5 MPa and 25 MPa. Furthermore, the number of bent portions of the fibers constituting the nonwoven fabric was small, and the crimpability of the nonwoven fabric was low. The amount of retained water that could not prevent dripping of the nonwoven fabric did not satisfy 500 g/m 2 of retained water per 1 mm of apparent thickness of the nonwoven fabric. As described above, it was confirmed that a nonwoven fabric having a high porosity and a small effective tensile stress value at a predetermined strain amount of 5% elongation is superior in terms of the occurrence of dew condensation. In addition, although the fibers used in the test were chemical fiber-based materials that do not absorb water, the ability of the nonwoven fabric of the present invention to prevent dripping of condensed water basically does not depend on the type of fiber. It was thought that it would be established only by

試験材1~試験材5の結果からすると、芯鞘構造の繊維を用いた保温材である試験材4,5の場合も、不織布を形成する繊維が単独の繊維からなる不織布を用いたか、芯鞘構造の繊維を用いたか、あるいは2種の異なる材質の複合繊維を用いたかに関係なく、保水性や結露水の滴下防止性は、繊維の空隙率や5%伸びにおける引張応力を充填率で割ることで求めた実効引張応力と相関があることが分った。 According to the results of test materials 1 to 5, even in the case of test materials 4 and 5, which are heat insulating materials using fibers with a core-sheath structure, the fibers forming the nonwoven fabric are either a nonwoven fabric made of a single fiber or a core. Regardless of whether a fiber with a sheath structure or two types of composite fibers of different materials are used, water retention and prevention of dripping of condensed water are determined by the void ratio of the fiber and the tensile stress at 5% elongation as the filling ratio. It was found that there is a correlation with the effective tensile stress obtained by dividing.

ここで、このような結果が得られた理由としては、不織布が露点以下に冷却された時に、空隙率が高い不織布の場合には、繊維の屈曲が多く捲縮性を有することにより、空隙率が高い不織布の繊維が作る3次元空間のネットワークに、露点以下の温度に冷却された場合には、繊維間を繋ぐように、多数の独立した水膜が形成され、不織布中に水分が多量に保水されるが、逆に不織布の空隙率が小さい充填率が大きい場合には、充填率が高いことにより、水膜が形成される空間が少なくなる。なお、水膜の生成状況は、光学顕微鏡で確認した事実に基づくものである。 Here, the reason why such a result was obtained is that when the nonwoven fabric is cooled below the dew point, in the case of a nonwoven fabric with a high porosity, the fibers are often bent and crimped, so that the porosity When the three-dimensional spatial network made up of the fibers of the non-woven fabric with high moisture content is cooled to a temperature below the dew point, a large number of independent water films are formed to connect the fibers, resulting in a large amount of moisture in the non-woven fabric. Although water is retained, conversely, if the nonwoven fabric has a low porosity and a high filling rate, the high filling rate reduces the space where the water film is formed. The state of formation of the water film is based on the fact confirmed with an optical microscope.

エンボス加工性は、充填率が高い試験材1は、繊維の重なり合いが多く、不織布繊維が破断したり、繊維の弾性回復によりエンボス加工部の形状が不安定になる場合があり、エンボス加工性が低下した。また、試験材2~試験材5は、平均繊維径が10~30μmで、空隙率が85~98%と高いことから、繊維同士の重なり合いによる繊維の相互作用による繊維破断や形状不安定等のエンボス加工性の低下がなかった。 Regarding embossability, test material 1, which has a high filling rate, has many overlapping fibers, and the nonwoven fabric fibers may break, and the shape of the embossed part may become unstable due to the elastic recovery of the fibers. Decreased. In addition, test materials 2 to 5 have an average fiber diameter of 10 to 30 μm and a high porosity of 85 to 98%. There was no deterioration in embossability.

これにより、平均繊維径が10~30μmで、空隙率が85~98%と高い不織布構造として、不織布厚さ1.0mm以下で、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ引張応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上であれば、エンボス加工の有無に関係なく、結露水の滴下防止用保温材の保水性が確保できる。 As a result, a nonwoven fabric structure with an average fiber diameter of 10 to 30 μm and a high porosity of 85 to 98% has a nonwoven fabric thickness of 1.0 mm or less and a tensile elongation value in the MD direction in a tensile test of 5% in the same direction. If the effective tensile stress, which is the value obtained by dividing the apparent tensile stress by the filling rate, is 25 MPa or less and 1 MPa or more, regardless of the presence or absence of embossing, the water retentivity of the heat insulating material for preventing dripping of condensed water can be ensured.

Figure 2022177784000002
Figure 2022177784000002

(第1の実施形態:実施例2)
結露水の滴下防止性に対する発泡樹脂の組成の影響はほとんどないものと考えられたが、実施例2において、ポリエチレン系樹脂発泡体の組成の結露性に対する影響とエンボス加工性の確認のための実験を表2に示すような樹脂組成と不織布の組み合わせにて行った。実施例2では、ポリエチレン系樹脂発泡体の組成をLDPEに変えて、HDPE,LDPEとHDPEの混合樹脂、あるいはEVA樹脂などのポリエチレン系各種発泡体に種々変更し、必要に応じて、耐熱性向上のために、カーボンや酸化チタンあるいは難燃性向上のため難燃剤などを加えた樹脂発泡体を用意し、これらの樹脂発泡体に不織布として、結露水の滴下防止性に優れる不織布2または不織布4を融着した試験材6から試験材13までの保温材を試験材として用意した。また、実施例1と同様に、これらの保温材に用いる発泡体の発泡倍率は、いずれも30倍で発泡体厚さ10mmの発泡体とした。この際の発泡剤と架橋剤の配合量は前記の範囲内で適宜調整した。
(First Embodiment: Example 2)
It was thought that the composition of the foamed resin had almost no effect on the ability to prevent dripping of condensed water, but in Example 2, an experiment was conducted to confirm the influence of the composition of the polyethylene-based resin foam on the condensation and embossability. was carried out using combinations of resin compositions and nonwoven fabrics as shown in Table 2. In Example 2, the composition of the polyethylene-based resin foam was changed to LDPE, and various changes were made to HDPE, a mixed resin of LDPE and HDPE, or various polyethylene-based foams such as EVA resin, and heat resistance was improved as necessary. For this reason, resin foams containing carbon, titanium oxide, or a flame retardant to improve flame resistance are prepared, and these resin foams are used as nonwoven fabrics 2 or 4 that are excellent in preventing dripping of condensed water. were prepared as test materials. As in Example 1, the foams used for these heat insulating materials had an expansion ratio of 30 and a foam thickness of 10 mm. The blending amounts of the foaming agent and the cross-linking agent at this time were appropriately adjusted within the above ranges.

試験材6の保温材は、樹脂発泡体をHDPEとし、試験材7は、LDPEとHDPE6:4で混合した混合樹脂、試験材8から試験材11の保温材は、前記LDPEとHDPE混合樹脂に種々の添加剤を添加した発泡体を用いたものである。具体的には、試験材8の保温材は、前記混合樹脂にカーボンを0.5質量部、試験材9は、酸化チタンを2.0質量部加えたものであり、試験材10は、それぞれ三酸化アンチモンを1.0質量部に臭素系難燃剤を4.0質量部加え、さらに試験材11は、水酸化マグネシウム20質量部加えた樹脂発泡体を用いたものである。また、試験材12の保温材はEVAに水酸化マグネシウム80質量部、試験材13の保温材はEVAに水酸化アルミニウム50部加えた樹脂発泡体を用いたものである。ここで、試験材6~試験材11の保温材には、PET繊維を用いた不織布2を用い、試験材12、試験材13には、アクリル/(PET/PE)繊維を用いた不織布4を用いた。 The heat insulating material of the test material 6 is a resin foam of HDPE, the test material 7 is a mixed resin mixed with LDPE and HDPE at 6:4, and the heat insulating material of the test materials 8 to 11 is the LDPE and HDPE mixed resin. It uses foam to which various additives are added. Specifically, the heat insulating material of the test material 8 is obtained by adding 0.5 parts by mass of carbon to the mixed resin, and the test material 9 is obtained by adding 2.0 parts by mass of titanium oxide. 1.0 parts by mass of antimony trioxide, 4.0 parts by mass of a brominated flame retardant, and 20 parts by mass of magnesium hydroxide were added to the test material 11 to use a resin foam. The heat insulating material of test material 12 is EVA with 80 parts by mass of magnesium hydroxide, and the heat insulating material of test material 13 is a resin foam obtained by adding 50 parts of aluminum hydroxide to EVA. Here, nonwoven fabric 2 using PET fiber is used as the heat insulating material for test materials 6 to 11, and nonwoven fabric 4 using acrylic/(PET/PE) fiber is used for test materials 12 and 13. Using.

(試験結果)
表2には、実施例2の試験結果を示す。表2の試験結果からは、試験材6~試験材13までの保温材は、恒温槽における結露水の滴下防止性試験の結果、いずれの試験材も発泡体の組成の影響はなく、結露水の滴下が発生しなかった。また、エンボス加工性も良好であった。従って、実施例2の保温材はいずれの保温材も、ポリエチレン系樹脂発砲体の表面に融着された不織布が実施例1で確認された所定の繊維径10~30μm、所定の空隙率85~98%を満足し、5%伸びにおける充填率で規格化した応力が25MPa以下を満足する不織布を用いれば、発泡体の樹脂組成に関係なく結露水の滴下防止性を満足するものと考えられる。また、この時、保温材に使用する不織布の厚さが1mm以下であり、不織布厚さ1mm当たりの保水量が500g/(m.mm)を満足し、これらの保温材はエンボス加工性も実施例1と同様に問題なかった。
(Test results)
Table 2 shows the test results of Example 2. From the test results in Table 2, the thermal insulation materials from test materials 6 to 13 were not affected by the composition of the foam, and the condensation water dripping did not occur. Also, the embossability was good. Therefore, in any of the heat insulating materials of Example 2, the non-woven fabric fused to the surface of the polyethylene resin foam has the predetermined fiber diameter of 10 to 30 μm and the porosity of 85 to 85, which were confirmed in Example 1. If a nonwoven fabric is used that satisfies 98% and the stress normalized by the filling rate at 5% elongation satisfies 25 MPa or less, the ability to prevent dripping of condensed water will be satisfied regardless of the resin composition of the foam. In addition, at this time, the thickness of the non-woven fabric used for the heat insulating material is 1 mm or less, and the water retention amount per 1 mm of the non-woven fabric thickness is 500 g/(m.mm). As in Example 1, there were no problems.

Figure 2022177784000003
Figure 2022177784000003

(第1の実施形態:実施例3)
表3には、MD方向の引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足することだけでなく、引張試験におけるTD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足することが可能な材料を確認探索する試験を行った結果を示す。この試験の目的は、引張試験の方向に関係なく、見かけ応力を充填率で割った値である実効引張応力が所定値である25MPa以下1MPa以上を満足することで、結露水の滴下防止保温材の結露水の滴下防止特性の差異を確認することである。また、表3には、参考のため、試験に用いた不織布の入手先を記載した。
(First Embodiment: Example 3)
Table 3 shows that the effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction in the tensile test in the MD direction is 5% by the filling rate, satisfies 25 MPa or less and 1 MPa or more. The effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the TD direction in a tensile test is 5% by the filling rate, is 25 MPa or less and 1 MPa or more. A test result is shown. The purpose of this test is to ensure that the effective tensile stress, which is the value obtained by dividing the apparent stress by the filling rate, satisfies a predetermined value of 25 MPa or less and 1 MPa or more, regardless of the direction of the tensile test. It is to confirm the difference in the drip prevention properties of condensed water. For reference, Table 3 also lists the suppliers of the nonwoven fabrics used in the tests.

表3には、試験材14~19の試験結果を示す。試験材14~16は、MD方向に配向した長繊維からなる不織布であり、試験材17、18は、短繊維からなる不織布であり、試験材19は経緯斜交長繊維からなる不織布である。試験材14は、アクリル/(PET/PE)繊維からなる不織布で、繊維径11.7μm、空隙率91.2%、繊維の屈曲が多い不織布である。試験材15は、PET/PE繊維で、繊維径18.9μm、空隙率97.6%で、繊維の屈曲が多い不織布である。 Table 3 shows the test results of test materials 14-19. Test materials 14 to 16 are nonwoven fabrics made of long fibers oriented in the MD direction, test materials 17 and 18 are nonwoven fabrics made of short fibers, and test material 19 is a nonwoven fabric made of weft and diagonal oblique long fibers. The test material 14 is a nonwoven fabric made of acrylic/(PET/PE) fibers, having a fiber diameter of 11.7 μm, a porosity of 91.2%, and a large amount of fiber bending. The test material 15 is a non-woven fabric made of PET/PE fibers with a fiber diameter of 18.9 μm and a porosity of 97.6%, and with many fiber bends.

(試験結果)
試験材14は、中空のPET繊維の外周をPE繊維で被覆した芯鞘構造の繊維とアクリル繊維からなる不織布である。試験材15は、PE繊維とPET繊維の混合繊維を使用した不織布である。ここで、試験材14,15の不縮布は、繊維径が10~30μmの範囲にある空隙率が85~98%の範囲を満たして、繊維の屈曲部が比較的多く認められるものである。
(Test results)
The test material 14 is a non-woven fabric made of acrylic fibers and core-sheath structured hollow PET fibers coated with PE fibers. The test material 15 is a nonwoven fabric using mixed fibers of PE fibers and PET fibers. Here, the non-shrinkable fabrics of the test materials 14 and 15 have a fiber diameter in the range of 10 to 30 μm and a porosity in the range of 85 to 98%, and relatively many bent portions of the fiber are observed. .

試験材14は、PET/PE繊維とアクリル繊維の長繊維からなる不織布で、PET/PE繊維はPETが芯部を構成し、PEが鞘部を構成する芯鞘構造の不織布である表1の試験材4と同一の材料である。試験材14では、試験材4の場合に加えて、TD方向の実効引張応力の試験値を加えた点が異なる。試験材14の引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力がそれぞれ11.5, 0.91MPaであり、繊維径が11.7μm、繊維の空隙率が91.2%であることから、繊維径、空隙率とMD方向の実効引張応力とがともに、引張伸び値が5%における同方向の実効引張応力が25MPa以下1MPa以上を満足するが、TD方向の引張伸び値5%における同方向の実効引張応力が上記範囲を満足しない。この場合の不織布1mm当たりの保水量は、700g/mで、エンボス加工前後の結露水の滴下もなく、エンボス加工性も良好であった。 The test material 14 is a nonwoven fabric composed of long fibers of PET/PE fibers and acrylic fibers. It is the same material as test material 4. In the test material 14, in addition to the case of the test material 4, the test value of the effective tensile stress in the TD direction is added. The effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction and TD direction in the tensile test of the test material 14 is 5% by the filling rate, is 11.5 and 0.91 MPa, respectively. Since the fiber diameter is 11.7 μm and the fiber porosity is 91.2%, both the fiber diameter, the porosity and the effective tensile stress in the MD direction are the effective tensile stress in the same direction at a tensile elongation value of 5%. satisfies 25 MPa or less and 1 MPa or more, but the effective tensile stress in the TD direction at a tensile elongation value of 5% does not satisfy the above range. In this case, the water retention amount per 1 mm of the nonwoven fabric was 700 g/m 2 , no dripping of condensed water was observed before and after embossing, and the embossability was good.

試験材15は、PET/PE繊維の芯鞘構造の長繊維からなる不織布で、表1の試験材5と同一の材料ある。試験材15では、試験材5の場合に加えて、TD方向の実効引張応力の試験値を加えた点が異なる。試験材15の引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力がそれぞれ17.2, 0.97MPaであり、繊維径が18.9μm、繊維の空隙率が97.6%であることから、繊維径、空隙率が本発明の範囲を満足し、実効引張応力がともに、本発明の範囲であるMD方向の引張伸び値が5%における同方向の実効引張応力が25MPa以下1MPa以上を満足するが、TD方向の引張伸び値5%における同方向の実効引張応力が上記範囲を満足しない。この場合の不織布1mm当たりの保水量は、1383g/mで、エンボス加工前後の結露水の滴下もなく、エンボス加工性も良好であった。 The test material 15 is a non-woven fabric composed of long fibers having a core-sheath structure of PET/PE fibers, and is the same material as the test material 5 in Table 1. In the test material 15, in addition to the case of the test material 5, the test value of the effective tensile stress in the TD direction is added. The effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction and TD direction in the tensile test of the test material 15 is 5% by the filling rate, is 17.2 and 0.97 MPa, respectively. Since the fiber diameter is 18.9 μm and the fiber porosity is 97.6%, the fiber diameter and porosity satisfy the ranges of the present invention, and both the effective tensile stress in the MD direction are within the ranges of the present invention. The effective tensile stress in the same direction at a tensile elongation value of 5% satisfies 25 MPa or less and 1 MPa or more, but the effective tensile stress in the same direction at a tensile elongation value of 5% in the TD direction does not satisfy the above range. In this case, the water retention amount per 1 mm of the nonwoven fabric was 1,383 g/m 2 , no dripping of condensed water before and after embossing, and embossability was good.

試験材16は、PET/PE繊維の長繊維からなる不織布である。この試験材16の引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力がそれぞれ15.30, 2.10MPaであり、繊維径が17.0μm、繊維の空隙率が95.6%であることから、繊維径、空隙率、実効引張応力ともに、本発明の範囲である平均繊維径が10~30μm、繊維の空隙率が85~98%,引張伸び値5%における同方向の実効引張応力がMD方向、TD方向ともに25MPa以下1MPa以上を満足する。この場合の不織布1m当たりの保水量は、1303g/mで、エンボス加工前後の結露水の滴下もなく、エンボス加工性も良好であった。 The test material 16 is a nonwoven fabric made of long fibers of PET/PE fibers. In the tensile test of this test material 16, the effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction and TD direction is 5% by the filling ratio, is 15.30 and 2.10 MPa, respectively. , the fiber diameter is 17.0 μm and the fiber porosity is 95.6%. The effective tensile stress in the same direction at a modulus of 85 to 98% and a tensile elongation value of 5% satisfies 25 MPa or less and 1 MPa or more in both MD and TD directions. In this case, the water retention amount per 1 m of the nonwoven fabric was 1,303 g/m 2 , no dripping of condensed water was observed before and after embossing, and the embossability was good.

試験材17は、PET/PE繊維の芯鞘構造の短繊維からなる不織布である。この試験材17の引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力がそれぞれ16.6, 12.9MPaであり、繊維径が20μm、繊維の空隙率が97.2%であることから、繊維径、空隙率、実効引張応力ともに、本発明の範囲である平均繊維径が10~30μm、繊維の空隙率が85~98%,引張伸び値5%における同方向の実効引張応力がMD方向、TD方向ともに25MPa以下1MPa以上を満足する。この場合の不織布1m当たりの保水量は、937g/mで、エンボス加工前後の結露水の滴下もなく、エンボス加工性も良好であった。 The test material 17 is a non-woven fabric made of short fibers having a core-sheath structure of PET/PE fibers. In the tensile test of this test material 17, the effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction and TD direction is 5% by the filling rate, is 16.6 and 12.9 MPa, respectively. , the fiber diameter is 20 μm and the fiber porosity is 97.2%. The effective tensile stress in the same direction at 85 to 98% and the tensile elongation value of 5% satisfies 25 MPa or less and 1 MPa or more in both MD and TD directions. In this case, the water retention amount per 1 m of the nonwoven fabric was 937 g/m 2 , no dripping of condensed water was observed before and after embossing, and the embossability was good.

試験材18は、PET/PE繊維とパルプの複合繊維の短繊維からなる不織布である。この試験材18の引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力がそれぞれ3.50, 3.30MPaであり、繊維径が18.3μm、繊維の空隙率が91.1%であることから、繊維径、空隙率、実効引張応力ともに、本発明の範囲である平均繊維径が10~30μm、繊維の空隙率が85~98%,引張伸び値5%における同方向の実効引張応力がMD方向、TD方向ともに25MPa以下1MPa以上を満足する。この場合の不織布1m当たりの保水量は、1247g/mで、エンボス加工前後の結露水の滴下もなく、エンボス加工性も良好であった。 The test material 18 is a nonwoven fabric made of short fibers of composite fibers of PET/PE fibers and pulp. The effective tensile stress, which is the value obtained by dividing the apparent stress in the MD direction and the TD direction tensile elongation value of 5% in the tensile test of this test material 18 by the filling ratio, was 3.50 and 3.30 MPa, respectively. , the fiber diameter is 18.3 μm and the fiber porosity is 91.1%. The effective tensile stress in the same direction at a modulus of 85 to 98% and a tensile elongation value of 5% satisfies 25 MPa or less and 1 MPa or more in both MD and TD directions. In this case, the water retention amount per 1 m of the nonwoven fabric was 1247 g/m 2 , no dripping of condensed water was observed before and after embossing, and the embossability was good.

試験材19は、PET/PE繊維の斜交構造を有する長繊維からなる不織布である。この試験材19の引張試験におけるMD方向、TD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力がそれぞれ8.89, 4.41MPaであり、繊維径が18.0μm、繊維の空隙率が94.4%であることから、繊維径、空隙率、実効引張応力ともに、本発明の範囲である平均繊維径が10~30μm、繊維の空隙率が85~98%,引張伸び値5%における同方向の実効引張応力がMD方向、TD方向ともに25MPa以下1MPa以上を満足する。この場合の不織布1m当たりの保水量は、925g/mで、エンボス加工前後の結露水の滴下もなく、エンボス加工性も良好であった。 The test material 19 is a nonwoven fabric made of long fibers having a diagonal structure of PET/PE fibers. In the tensile test of this test material 19, the effective tensile stress, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction and TD direction is 5% by the filling ratio, is 8.89 and 4.41 MPa, respectively. , the fiber diameter is 18.0 μm and the fiber porosity is 94.4%. The effective tensile stress in the same direction at a modulus of 85 to 98% and a tensile elongation value of 5% satisfies 25 MPa or less and 1 MPa or more in both MD and TD directions. In this case, the water retention amount per 1 m of the nonwoven fabric was 925 g/m 2 , no dripping of condensed water occurred before and after embossing, and embossability was good.

ここで、試験材14,試験材15の5%引張伸びの値における見かけ応力を充填率で割った値であるTD方向の実効引張応力のMD方向の実効引張応力に対する比率が0.08、0.06で異方性が大きく、これらの材料のTD方向の実効引張応力が1MPa未満であるのに対して、試験材16~試験材19のTD方向の実効引張応力のMD方向の実効引張応力に対する比率が0.14~0.94であり、TD方向、MD方向の実効引張応力の差が少なく、いずれのTD方向の実効引張応力が2MPaを超えている。 Here, the ratio of the effective tensile stress in the TD direction, which is the value obtained by dividing the apparent stress at the value of 5% tensile elongation of the test materials 14 and 15 by the filling ratio, to the effective tensile stress in the MD direction is 0.08,0 The anisotropy is large at .06, and the effective tensile stress in the TD direction of these materials is less than 1 MPa, whereas the effective tensile stress in the TD direction of test materials 16 to 19 is 0.14 to 0.94, the difference between the effective tensile stress in the TD direction and the MD direction is small, and the effective tensile stress in any TD direction exceeds 2 MPa.

表3の垂直構造・斜め構造とは、垂直構造・斜め構造の配管や構造体に本発明の保温材を適用した場合に結露水の滴下が起こるかどうかの結果を示すが、試験材14および試験材15を使用した場合には、TD方向の実効引張応力が1MPaに満たず、通常のMD方向を上下方向と一致させた施工方法の場合には、結露水の滴下が起こり、そのため垂直構造・斜め構造の結露水の評価結果が「×」となる。一方、試験材16-19を使用した場合には、MD方向とTD方向の実効引張応力がともに1MPaを超えるため、垂直構造や斜め構造の配管や構造体に本発明の保温材を使用しても、結露水の滴下が起こらず、垂直構造・斜め構造の結露防止性の評価結果が「〇」となる。また、試験材14,15の保温材であっても、MD方向を垂直方向でなく、水平方向と一致させて施工した場合には、MD方向とTD方向の実効引張応力が1MPaを超える材料と同様の効果が得られるため、結露水の滴下が起こらない。 The vertical structure and oblique structure in Table 3 show the result of whether or not dripping of condensed water occurs when the heat insulating material of the present invention is applied to pipes and structures of vertical structure and oblique structure. When the test material 15 was used, the effective tensile stress in the TD direction was less than 1 MPa, and in the case of a normal construction method in which the MD direction was aligned with the vertical direction, dripping of condensed water occurred.・The evaluation result of the condensed water in the oblique structure is "x". On the other hand, when test materials 16-19 were used, the effective tensile stress in both the MD and TD directions exceeded 1 MPa. Also, dripping of condensed water does not occur, and the evaluation result of dew condensation prevention of vertical structure and oblique structure is "○". Also, even if the test materials 14 and 15 are heat insulating materials, if the MD direction is not the vertical direction but is the horizontal direction, the effective tensile stress in the MD and TD directions exceeds 1 MPa. Since the same effect is obtained, dripping of condensed water does not occur.

以上のように、平均繊維径が10~30μmで、空隙率が85~98%と高い不織布構造として、不織布厚さ1.0mm以下で、引張試験におけるMD方向の実効引張応力が25MPa以下1MPa以上を満足すると同時にTD方向においても同様の引張特性を満足する不織布が、短繊維を不織布に用いる場合だけでなく、長繊維を不織布に用いても斜交構造を有する長繊維を用いれば得られることができ、このような不織布を使用した結露水の滴下防止用保温材が得られることが確認された。 As described above, as a nonwoven fabric structure with an average fiber diameter of 10 to 30 μm and a high porosity of 85 to 98%, the thickness of the nonwoven fabric is 1.0 mm or less, and the effective tensile stress in the MD direction in the tensile test is 25 MPa or less and 1 MPa or more. can be obtained not only when short fibers are used in the nonwoven fabric, but also when long fibers are used in the nonwoven fabric and long fibers having an oblique structure are used. It was confirmed that a heat insulating material for preventing dripping of condensed water using such a nonwoven fabric can be obtained.

Figure 2022177784000004
Figure 2022177784000004

(第2の実施形態:本発明の保温材の冷媒配管及び給水給湯用配管構造への適用)
次に、第2の実施形態として、本発明の保温材を適用した各種配管構造について説明する。配管構造としては、以下の5種類の配管構造について記載する。配管の外周部に本発明の保温材を巻き付けた配管構造、配管の外周部に保温材を巻き付けた2本の配管を対向させ対向部を熱融着させた眼鏡型配管構造、既設冷媒配管を本発明の保温材で囲んだ筒状配管構造、既設給水給湯用配管とその保護管を本発明の保温材で囲んだ筒状配管構造、本発明の保護部材を縦配管に適用した配管構造である。
(Second Embodiment: Application of Heat Insulating Material of the Present Invention to Refrigerant Piping and Hot Water Supply Piping Structure)
Next, various piping structures to which the heat insulating material of the present invention is applied will be described as a second embodiment. As the piping structure, the following five types of piping structures are described. A piping structure in which the heat insulating material of the present invention is wrapped around the outer periphery of the pipe, a glasses-type piping structure in which two pipes with the heat insulating material wrapped around the outer periphery of the pipe are opposed to each other and the opposing portions are heat-sealed, and the existing refrigerant pipe A cylindrical piping structure surrounded by the heat insulating material of the present invention, a cylindrical piping structure surrounding an existing hot water supply pipe and its protective pipe with the heat insulating material of the present invention, and a piping structure in which the protective member of the present invention is applied to a vertical pipe. be.

(第2の実施形態:実施例1)
(冷媒配管の外周部に本発明の保温材を巻き付けた配管構造)
図2(a)には、冷媒用配管2の外周に結露水の滴下防止用保温材3が巻き付けられて被覆された配管構造の斜視図を示し、ここで、図2(a)の配管は、エンボス加工後の不織布8とポリエチレン系樹脂発泡体7を融着した保温材3を、不織布のエンボス加工部9を外周側に向け、樹脂発泡体面を配管に接するように、熱交換器の冷媒配管の外周に巻き付けた配管である。冷媒管2の外周に巻き付けた保温材3は、熱融着部11で相互に対向し、その対向面を熱融着または接着により固定される。図2(b)は、図2(a)に示す配管を直角に横切る直線X-Xを含む所定位置で切断した断面図を示すが、冷媒管2の内部は、所定温度の冷媒が流れる。保温材3の外周にエンボス加工部9が向くようにエンボス加工部9を配置するのは、冷媒管2に被覆した不織布の内周と外周の周長差に対応して外周部の変形をしやすくするためである。
(Second embodiment: Example 1)
(Piping structure in which the heat insulating material of the present invention is wrapped around the outer periphery of the refrigerant pipe)
FIG. 2(a) shows a perspective view of a piping structure in which a heat insulating material 3 for preventing dripping of condensed water is wrapped around the outer periphery of the refrigerant pipe 2 to cover the pipe. , The heat insulating material 3 in which the nonwoven fabric 8 after embossing and the polyethylene resin foam 7 are fused is placed so that the embossed part 9 of the nonwoven fabric faces the outer peripheral side and the resin foam surface is in contact with the pipe. It is a pipe wrapped around the outer circumference of the pipe. The heat insulating materials 3 wound around the outer periphery of the refrigerant pipe 2 face each other at the heat-sealed portion 11, and the opposing surfaces are fixed by heat-sealing or adhesion. FIG. 2(b) shows a cross-sectional view cut at a predetermined position including a straight line XX that crosses the pipe shown in FIG. 2(a) at right angles. The reason why the embossed part 9 is arranged so that the embossed part 9 faces the outer circumference of the heat insulating material 3 is that the outer circumference part is deformed according to the difference in circumference between the inner circumference and the outer circumference of the nonwoven fabric covering the refrigerant pipe 2. This is to make it easier.

(第2の実施形態:実施例2)
(本発明の保温材を被覆した冷媒用配管を相互に対向一体化させた眼鏡型配管構造)
図3(a)には、結露水の滴下防止用保温材3が冷媒用配管2の外周に被覆された配管を相互に対向させて一体化させた眼鏡型配管構造10を示す。配管構造10a、10bにおいて冷媒用配管2の外周に巻き付けた保温材3は、熱融着部11で相互に対向し、その対向面を熱融着または接着により固定される。図3(b)は、図3(a)に示す2本の配管を直角に横切る直線A-Aを含む所定位置で切断した配管構造の断面図を示すが、冷媒管2の内部は、所定温度の冷媒が流れる。保温材3の外周にエンボス加工部9が向くようにエンボス加工部9を配置するのは冷媒管2に被覆した不織布の外周部の変形をしやすくするためである。
(Second embodiment: Example 2)
(Spectacles-type piping structure in which refrigerant pipes coated with the heat insulating material of the present invention are opposed to each other and integrated)
FIG. 3(a) shows a spectacles-type piping structure 10 in which pipes coated with a heat insulating material 3 for preventing dripping of condensed water are opposed to each other and integrated with each other. In the piping structures 10a and 10b, the heat insulators 3 wound around the outer periphery of the refrigerant pipe 2 face each other at the heat-sealed portion 11, and the facing surfaces are fixed by heat-sealing or adhesion. FIG. 3(b) shows a cross-sectional view of the piping structure cut at a predetermined position including a straight line AA that crosses the two pipes shown in FIG. 3(a) at right angles. Temperature coolant flows. The reason why the embossed portion 9 is arranged so that the embossed portion 9 faces the outer periphery of the heat insulating material 3 is to facilitate deformation of the outer peripheral portion of the nonwoven fabric covering the refrigerant pipe 2 .

本発明の保温材が熱交換器の冷媒用配管の外周に巻き付け筒状に成形された2本の配管の少なくとも一方の、保温材の表皮部分である不織布の表面近傍を、熱風、加熱板、超音波、レーザー等によって、部分的に不織布の融点以上の所定温度に加熱溶融し、直後に当該部分を熱融着または熱圧着することにより1組の眼鏡型断面を有する筒状の配管構造を得ることができる。 The heat insulating material of the present invention is wrapped around the outer periphery of the refrigerant pipe of the heat exchanger and formed into a cylindrical shape. Partially heated and melted to a predetermined temperature above the melting point of the non-woven fabric using ultrasonic waves, lasers, etc., and immediately after that, the parts are heat-sealed or thermo-compressed to form a pair of tubular pipe structures having a spectacle-shaped cross section. Obtainable.

また、図3(a)の配管は、図2(a)に示す保温材を巻き付けた配管の保温材の両端部を相互に対向させ、対向面を押圧して所定温度で熱融着することで、不織布を樹脂発泡体の表面に熱融着により貼り付けた保温材を配管の外周部に巻き付けた眼鏡型の配管構造を得ることができる。この際、配管に巻き付けた保温材の両端部は、前記のように熱融着の他、両面テープなどで接着する等して固定することができる。 In addition, the pipe shown in FIG. 3(a) is formed by placing both ends of the heat insulating material of the pipe wound with the heat insulating material shown in FIG. Thus, a spectacles-shaped piping structure can be obtained in which a heat insulating material, which is a non-woven fabric adhered to the surface of the resin foam by heat-sealing, is wrapped around the outer peripheral portion of the piping. At this time, both ends of the heat insulating material wound around the pipe can be fixed by bonding with double-faced tape or the like, in addition to heat sealing as described above.

ここで、眼鏡型配管の管径の小さい配管が液体用冷媒配管であり、管径の大きい冷媒配管が気体用配管である。このようにして、本発明の保温材を、不織布のエンボス加工面を外表面に配置するように熱交換器の冷媒配管の外周に巻き付ける配管構造を得ることができる。このような配管構造を得ることで、ポリエチレン系樹脂発泡体の表面にポリエチレン等の樹脂フィルムを貼り付けた保温材を配管に巻き付けた従来の眼鏡型の配管構造では発生する結露を、本発明の眼鏡型の配管構造を使用することで結露水の滴下防止を行うことができる。 Here, the spectacles-shaped pipe with a small pipe diameter is the refrigerant pipe for liquid, and the refrigerant pipe with a large pipe diameter is the gas pipe. In this way, a piping structure can be obtained in which the heat insulating material of the present invention is wrapped around the outer periphery of the refrigerant piping of the heat exchanger so that the embossed surface of the nonwoven fabric is arranged on the outer surface. By obtaining such a piping structure, the dew condensation that occurs in the conventional spectacle-shaped piping structure in which a heat insulating material in which a resin film such as polyethylene is attached to the surface of the polyethylene resin foam is wrapped around the piping, can be eliminated by the present invention. By using a glasses-type piping structure, it is possible to prevent dripping of condensed water.

(第2の実施形態:実施例3)
(既設冷媒配管を本発明の保温材で囲んだ筒状配管構造)
図4には、複数の冷媒配管、ドレン管と配線を、本発明の保温材で囲んだ冷媒用筒状配管構造16を示すが、この配管構造について説明する。この配管の典型例としては、一般的な熱交換器の配管としては、エアコンの冷媒配管2(2本)、ドレン管12、配線13などがセットになって、熱交換器の冷媒配管2、ドレン管12と配線13が組み合わせて、不織布25形成面を外周面に向けた筒状保温材14でこれらの配管や配線全体を囲んで、熱交換器の室内器と室外器を結ぶように使用することができる。この際、組み合わされた配管と配線を囲う保温材3の両端部は、熱融着の他、両面テープなどで接着する等して固定することができる。
(Second embodiment: Example 3)
(Cylindrical piping structure in which the existing refrigerant piping is surrounded by the heat insulating material of the present invention)
FIG. 4 shows a tubular refrigerant pipe structure 16 in which a plurality of refrigerant pipes, drain pipes and wiring are surrounded by the heat insulating material of the present invention. This pipe structure will be described. As a typical example of this piping, as a general heat exchanger piping, an air conditioner refrigerant piping 2 (two pieces), a drain pipe 12, a wiring 13, etc. are set, and the heat exchanger refrigerant piping 2, The drain pipe 12 and the wiring 13 are combined, and the whole of these pipes and wiring is surrounded by a cylindrical heat insulating material 14 with the nonwoven fabric 25 forming surface facing the outer peripheral surface, and used to connect the indoor unit and the outdoor unit of the heat exchanger. can do. At this time, both ends of the heat insulating material 3 surrounding the combined piping and wiring can be fixed by heat sealing, bonding with double-sided tape, or the like.

ここで、従来の配管の場合には、個々の配管に保温材として樹脂フィルムを表面に貼合した樹脂発泡体シートが配管の外周部を覆う配管構造となっているが、本発明のように、所定の繊維径、充填率や力学特性としての引張モジュラスを満足する不織布を樹脂発泡体の表面に融着させることで結露水の滴下防止効果を有する保温材でないため、発泡体による保温効果は存在するものの、既設複数の熱交換器の配管、ドレン管と配線の1組の配管の外周部に被覆したとしても保温材からの結露水が滴下することを防止できなかった。 Here, in the case of conventional pipes, a resin foam sheet in which a resin film is bonded to the surface of each pipe as a heat insulating material covers the outer peripheral portion of each pipe. It is not a heat insulating material that has the effect of preventing dripping of condensed water by fusing a nonwoven fabric that satisfies the predetermined fiber diameter, filling rate, and tensile modulus as mechanical properties on the surface of the resin foam, so the heat insulating effect of the foam is Although it exists, even if the outer periphery of a set of pipes of a plurality of existing heat exchangers and a set of drain pipes and wiring is covered, dripping of condensed water from the heat insulating material could not be prevented.

これらの1組の配管、配線の断面全体を本発明のシート状の保温材の不織布表面を外側に向けて囲んだ筒状配管構造とすることができる。この際、これらの一組のドレン管を含む配管と配線の外周部に不織布を外側に向けて本発明の保温材で筒状に囲むことで、配管の外周部に発生する結露の発生を防止することができる。 The entire cross section of a set of these pipes and wires can be made into a cylindrical pipe structure surrounding the nonwoven fabric surface of the sheet-like heat insulating material of the present invention facing outward. At this time, by surrounding the outer periphery of the piping and wiring including the set of drain pipes with the heat insulating material of the present invention with the nonwoven fabric facing outward, the occurrence of dew condensation on the outer periphery of the piping is prevented. can do.

(第2の実施形態:実施例4)
(既設給水給湯用配管とその保護管を本発明の保温材で囲んだ筒状配管構造)
また、本発明の保温材で筒状に囲んだ配管構造としては、上記のような熱交換器用冷媒配管に限らない。図5(a)に示すように、給水給湯用配管としての架橋ポリエチレン管15の外周部の保護管である樹脂製鞘管17の外周部に、本発明の保護部材を配置した給水給湯用筒状配管構造19aとすることができる。前記の熱交換機の冷媒用の筒状の配管構造と同様に、配管に巻き付けた筒状保温材14の両端部は、熱融着の他、両面テープなどで接着する等して固定する。
(Second embodiment: Example 4)
(Cylindrical piping structure in which the existing hot water supply piping and its protective pipe are surrounded by the heat insulating material of the present invention)
Further, the pipe structure cylindrically surrounded by the heat insulating material of the present invention is not limited to the refrigerant pipe for a heat exchanger as described above. As shown in FIG. 5(a), a water/hot water supply cylinder in which a protective member of the present invention is arranged on the outer circumference of a resin sheath pipe 17 as a protective pipe for the outer circumference of a crosslinked polyethylene pipe 15 as a water/hot water supply pipe. 19a. As in the tubular piping structure for the refrigerant of the heat exchanger, both ends of the tubular heat insulating material 14 wound around the piping are fixed by heat sealing, double-sided tape, or the like.

ここで、従来の既設給水給湯用配管の場合には、給水給湯用配管である架橋ポリエチレン管15の外周に保護管である波形形状を有する樹脂製鞘管17を被覆する配管構造にはなっているが、給水給湯用配管の外周部は、発泡体シート18が外周部を覆う配管構造にはなっていない。また、そのため、保護管として樹脂製鞘管17のみが被覆される場合には、使用環境により最外層に露出した鞘管17の外表面に結露が発生する場合がある。本発明の保温材で樹脂製鞘管の外周部を筒状に囲うことで、各配管の外周部や配線の外周における結露の発生を防止する効果を得ることができ、筒状配管構造の外周部からの結露水の滴下を防止することができる。 Here, in the case of a conventional existing water and hot water supply pipe, the piping structure is such that the outer circumference of the crosslinked polyethylene pipe 15, which is the water and hot water supply pipe, is covered with the corrugated resin sheath pipe 17, which is the protection pipe. However, the outer peripheral portion of the hot water supply pipe does not have a piping structure in which the foam sheet 18 covers the outer peripheral portion. Therefore, when only the resin sheath tube 17 is covered as a protective tube, dew condensation may occur on the outer surface of the sheath tube 17 exposed to the outermost layer depending on the usage environment. By enclosing the outer periphery of the resin sheath pipe in a cylindrical shape with the heat insulating material of the present invention, it is possible to obtain the effect of preventing the occurrence of dew condensation on the outer periphery of each pipe and the outer periphery of the wiring. It is possible to prevent dripping of condensed water from the part.

本発明の保温材で給水給湯用配管の保護管としての樹脂製鞘管の外周部を本発明の保護部材で筒状に取り囲んだ筒状配管構造とすることで、給水給湯用配管を鞘管のみを被覆した状態で過酷な環境で使用した場合に想定される結露水の滴下を防止することができる。 By using the heat insulating material of the present invention to form a cylindrical pipe structure in which the outer peripheral portion of a resin sheath pipe as a protective pipe for the water and hot water supply pipe is surrounded by the protective member of the present invention, the water and hot water supply pipe is a sheath pipe. It is possible to prevent dripping of condensed water, which is expected when used in a severe environment with the only one covered.

さらに、図5(b)に、図5(a)の架橋ポリエチレン管を保護する樹脂製鞘管の外周部が樹脂発泡体で被覆された筒状保温材14で覆った筒状配管構造19bとしてもよい。図5(b)が示す、給水給湯用配管としての架橋ポリエチレン管を保護する樹脂製鞘管の外周部が樹脂発泡体7で被覆されていてもよく、この樹脂発泡体7の外周部をさらに本発明の筒状の保護部材14で覆う筒状配管構造としてもよい。このような構造とすることで、給水給湯用配管の外周部に発生する結露をより確実に防止することができる。 Furthermore, FIG. 5(b) shows a cylindrical pipe structure 19b in which the outer peripheral portion of the resin sheath pipe protecting the crosslinked polyethylene pipe of FIG. 5(a) is covered with a cylindrical heat insulating material 14 covered with resin foam good too. As shown in FIG. 5(b), the outer peripheral portion of the resin sheath pipe that protects the crosslinked polyethylene pipe serving as the hot water supply pipe may be covered with a resin foam 7, and the outer peripheral portion of the resin foam 7 may be further A tubular pipe structure covered with the tubular protective member 14 of the present invention may be employed. By adopting such a structure, it is possible to more reliably prevent dew condensation from occurring on the outer peripheral portion of the hot and cold water supply pipe.

(第2の実施形態:実施例5)
(本発明の保護部材を縦配管に適用した配管構造及びその形成方法)
本発明の保温材のMD方向が水平方向と一致するように被覆した配管の場合には、結露水の滴下は認められないが、MD方向を垂直方向と一致するように保温材を被覆する縦配管の場合には、表面張力による吸い上げ効果と重力による結露水の沈降滴下の両者が競合する状況が考えられる。本発明の配管を縦配管とした場合の結露の有無などの問題点を確認する実験を行った。
(Second embodiment: Example 5)
(Pipe structure applying the protection member of the present invention to a vertical pipe and method for forming the same)
In the case of the piping covered so that the MD direction of the heat insulating material of the present invention coincides with the horizontal direction, dripping of condensed water is not observed. In the case of piping, it is conceivable that both the suction effect due to surface tension and the sedimentation and dripping of condensed water due to gravity compete with each other. An experiment was conducted to confirm problems such as the presence or absence of dew condensation when the piping of the present invention is used as a vertical piping.

図6は、本発明の保護部材を縦配管に適用した配管構造を示す。図6は、恒温恒湿槽内に水平配管の両側に略対称に垂直配管を設けた略コの字型の形状の配管である。この配管は、水平配管の中央部の左側に垂直に降下する25cmの左側縦配管20を設けて、約30cmの水平配管22を経由し、前記、水平配管の右側に垂直に上昇する25cmの右側縦配管21を設けたものである。 FIG. 6 shows a piping structure in which the protection member of the present invention is applied to vertical piping. FIG. 6 shows a substantially U-shaped pipe in which vertical pipes are provided substantially symmetrically on both sides of a horizontal pipe in a constant temperature and humidity chamber. This pipe is provided with a 25 cm left vertical pipe 20 that descends vertically to the left of the center of the horizontal pipe, passes through a horizontal pipe 22 of about 30 cm, and rises vertically to the right of the horizontal pipe 25 cm to the right. A vertical pipe 21 is provided.

図6は、左側右側の縦配管20,21に保温材を巻き付けた配管を使用し、この配管全体を温度35℃×湿度90%の恒温槽内に配置し、配管内に冷媒温度5℃の冷媒を循環させて、結露水の発生の有無を確認する確認実験を行なったが、この場合の縦配管を含む配管構造を示す。ここで、それぞれの配管の結露水は、垂直配管の底部に、トレイ23を配置して、トレイ23に結露水24を収集する試験前後のトレイの重量変化により、結露水の重量を測定した。 In FIG. 6, the vertical pipes 20 and 21 on the left and right sides are wrapped with a heat insulating material, and the entire pipe is placed in a constant temperature bath with a temperature of 35 ° C. and a humidity of 90%. A confirmation experiment was conducted to confirm the presence or absence of condensed water by circulating the refrigerant. The piping structure including vertical piping in this case is shown. Here, the weight of the condensed water in each pipe was measured by measuring the weight change of the tray 23 before and after the test in which the tray 23 was arranged at the bottom of the vertical pipe and the condensed water 24 was collected in the tray 23 .

保温材Xは、引張試験におけるMD方向の実効引張応力のみが25MPa以下1MPa以上を満足する不織布を使用した保温材である。また、保温材Yは、MD方向、TD方向の実効引張応力が25MPa以下1MPa以上をともに満足する結露水の滴下防止用保温材である。 The heat insulating material X is a heat insulating material using a nonwoven fabric that satisfies only the effective tensile stress in the MD direction in a tensile test of 25 MPa or less and 1 MPa or more. The heat insulating material Y is a heat insulating material for preventing dripping of condensed water that satisfies effective tensile stresses of 25 MPa or less and 1 MPa or more in both the MD direction and the TD direction.

この結果、保温材XのMD方向を垂直方向と一致するように巻き付けた垂直配管は、恒温槽内に配置後、1時間で滴下開始し、15時間で40.9gの滴下水が滴下したのに対して、保温材YのMD方向を垂直方向と一致するように巻き付けた垂直配管は、保温材を恒温槽内に配置後、15時間後にも結露水の滴下がなかった。ここで、保温材Xは、表3の試験材14に相当する保温材であり、保温材Yは、表3の試験材17を満足する保温材である。 As a result, the vertical pipe wound so that the MD direction of the heat insulating material X coincided with the vertical direction started dripping in 1 hour after being placed in the constant temperature bath, and 40.9 g of dripping water dripped in 15 hours. On the other hand, in the vertical pipe in which the heat insulating material Y was wound so that the MD direction coincided with the vertical direction, no condensation water dripped even 15 hours after placing the heat insulating material in the constant temperature bath. Here, the heat insulating material X is a heat insulating material corresponding to the test material 14 in Table 3, and the heat insulating material Y is a heat insulating material satisfying the test material 17 in Table 3.

また、表3の試験材17,18,19の保温材を同様に垂直配管に巻き付けた場合にも、結露水の滴下がなかった。この理由は、試験材16~19の保温材の場合には、MD方向、TD方向の両方向の実効引張応力が25MPa以下1MPa以上を満足するため、不織布が保水した水分をTD方向である水平方向に移動して蒸散することで結露水が発生しなかったものと考えられた。このため、垂直配管に被覆する保温材としては、MD方向、TD方向の両方向の実効引張応力が25MPa以下1MPa以上を満足する保温材を被覆した結露水の滴下を防止する垂直配管構造が得られる。 Also, when the heat insulating materials of test materials 17, 18, and 19 in Table 3 were similarly wound around vertical pipes, no dripping of condensed water occurred. The reason for this is that, in the case of the heat insulating materials of test materials 16 to 19, the effective tensile stress in both the MD direction and the TD direction satisfies 25 MPa or less and 1 MPa or more, so that the water retained by the nonwoven fabric is transferred in the horizontal direction, which is the TD direction. It is considered that the condensed water did not occur because the water moved and transpiration occurred. For this reason, as a heat insulating material covering the vertical pipe, a vertical pipe structure that prevents dripping of condensed water can be obtained by covering the heat insulating material that satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more in both the MD and TD directions. .

また、結露水の滴下防止保温材が冷媒用配管の外周に巻き付けられる配管であって、前記配管が垂直配管である場合には、前記結露水の滴下防止保温材の実効引張応力が25MPa以下1MPa以上を満足する少なくともいずれかの方向を前記垂直配管の方向と直交する水平方向に向けて配置することを特徴とする垂直配管の形成方法を得ることができる。このように、実効引張応力が25MPa以下1MPa以上を満足する保温材を水平方向に向けて配管に被覆することで、TD方向の実効引張応力が25MPa以下1MPa以上を満足する保温材を使用しなくとも、実質的にTD方向の実効引張応力が25MPa以下1MPa以上を満足する保温材を使用した場合と同様の効果が得られ、結露水の滴下を防止することが可能となる。これは、不織布に吸着あるいは保水された結露水を不織布表面から蒸散しやすくする効果によるものと考えられる。 Further, when the heat insulating material for preventing dripping of condensed water is wrapped around the outer periphery of the refrigerant pipe and the pipe is a vertical pipe, the effective tensile stress of the heat insulating material for preventing dripping of condensed water is 25 MPa or less and 1 MPa. It is possible to obtain a method of forming a vertical pipe characterized by arranging at least one of the directions satisfying the above in a horizontal direction perpendicular to the direction of the vertical pipe. In this way, by covering the piping with a heat insulating material that satisfies an effective tensile stress of 25 MPa or less and 1 MPa or more in the horizontal direction, it is possible to avoid using a heat insulating material that satisfies an effective tensile stress of 25 MPa or less and 1 MPa or more in the TD direction. In both cases, substantially the same effect as in the case of using a heat insulating material that satisfies the effective tensile stress in the TD direction of 25 MPa or less and 1 MPa or more can be obtained, and dripping of dew condensation water can be prevented. This is considered to be due to the effect of facilitating evaporation of dew condensation water adsorbed or retained on the nonwoven fabric surface from the nonwoven fabric surface.

(第3の実施形態:本発明の保温材の建築部材の結露水の滴下防止構造への適用)
第3の実施形態の本発明の保温材の建築部材への適用事例として、実施例1から実施例3として、ダクトの結露水の滴下防止構造、無機系建材の結露水の滴下防止構造、折板屋根の結露水の滴下防止構造を示す。
(Third embodiment: Application of the heat insulating material of the present invention to a structure for preventing dripping of condensed water of building members)
As examples of application of the heat insulating material of the third embodiment of the present invention to building members, examples 1 to 3 include a structure for preventing dripping of condensed water in a duct, a structure for preventing dripping of condensed water in inorganic building materials, and a structure for preventing dripping of condensed water in inorganic building materials. 1 shows a drip prevention structure for condensed water on a shingle roof.

(第3の実施形態:実施例1)
(ダクトの結露水の滴下防止構造及びその形成方法)
図7には、本発明の保温材3を使用したダクト本体29の結露水の滴下防止構造30を示す。厚さ25cm×長さ30cm×高さ30cmの直方体形状のダクトを作成して、保温材の不織布形成面がダクト本体29の表面に配置されるように保温材の裏面の発泡体7の表面を接着剤でダクト本体29に接着することで、保温材3の外表面の不織布形成面8がダクト本体29の全表面が保温材の不織布8で被覆された構造体を作製した。この構造体を恒温恒湿槽内に配置して、第2の実施形態の実施例5の縦配管の結露水の滴下防止配管構造の場合と同様の条件の冷媒ガスをダクト内に流して、結露水の滴下防止性確認試験を行った。その結果、冷媒用縦配管の場合と同様の結果が得られた。
(Third Embodiment: Example 1)
(Structure for preventing dripping of condensed water from duct and method for forming the same)
FIG. 7 shows a structure 30 for preventing dripping of condensed water of the duct body 29 using the heat insulating material 3 of the present invention. A rectangular parallelepiped duct having a thickness of 25 cm, a length of 30 cm, and a height of 30 cm was prepared, and the surface of the foam 7 on the back side of the heat insulating material was placed on the surface of the duct main body 29 so that the nonwoven fabric forming surface of the heat insulating material was placed on the surface of the duct body 29. By bonding to the duct main body 29 with an adhesive, a structure in which the nonwoven fabric forming surface 8 of the outer surface of the heat insulating material 3 is covered with the nonwoven fabric 8 of the heat insulating material over the entire surface of the duct main body 29 was produced. This structure is placed in a constant temperature and humidity chamber, and a refrigerant gas is flowed into the duct under the same conditions as in the case of the pipe structure for preventing dripping of condensed water in the vertical pipe of Example 5 of the second embodiment, A confirmation test was conducted to prevent dripping of condensed water. As a result, the same results as in the case of vertical pipes for refrigerant were obtained.

この試験の結果、ダクト表面における結露水の滴下挙動は、ダクト外表面を覆う保温材の種類によりことなる挙動を示した。例えば、試験材16~19のMD方向、TD方向の両方向の実効引張応力が25MPa以下1MPa以上を満足する保温材を用いた場合には、ダクト外周部からの結露水の滴下がないことが確認された。また、試験材14,15のようにMD方向のみの実効引張応力が25MPa以下1MPa以上を満足し、TD方向のみの実効引張応力が1MPa以下である保温材を、ダクト側面にMD方向を上方に向けて配置した場合には、結露水の滴下が認められた。試験材14,15の保温材をダクト側面にTD方向を水平方向に向けて形成した場合には、結露水の滴下が認めらない。このようなダクトからの結露水の滴下を防止するためには、前記結露水の滴下防止保温材の実効引張応力が25MPa以下1MPa以上を満足する少なくともいずれかの方向を前記ダクト側壁の垂直方向に平行な方向と直交する水平方向に向けて配置するダクトの構造の形成方法とすることもできる。 As a result of this test, the dripping behavior of condensed water on the surface of the duct showed different behavior depending on the type of heat insulating material covering the outer surface of the duct. For example, when using a heat insulating material that satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more in both the MD direction and TD direction of test materials 16 to 19, it was confirmed that there was no condensation water dripping from the outer circumference of the duct. was done. In addition, a heat insulating material that satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more only in the MD direction like the test materials 14 and 15 and has an effective tensile stress of 1 MPa or less only in the TD direction was placed on the side of the duct with the MD direction upward. Condensed water dripping was observed when it was placed in the opposite direction. When the heat insulating materials of the test materials 14 and 15 were formed on the side of the duct with the TD direction oriented horizontally, dripping of condensed water was not observed. In order to prevent dripping of condensed water from such a duct, the effective tensile stress of the heat insulating material for preventing dripping of condensed water is set to the vertical direction of the side wall of the duct in at least one direction that satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more. A method of forming a structure of ducts arranged in a horizontal direction perpendicular to the parallel direction can also be used.

(第3の実施形態:実施例2)
(無機系建築用板材の結露水の滴下防止構造及びその形成方法)
図8(a)は、結露水の滴下防止用保温材が無機系建築用板材26の表面に配置される無機系建築用板材の水平方向の結露水の滴下防止構造27を示す。このとき、さらに結露水の滴下防止用保温材3と無機系建築用板材26の対向面同士が相互に接着された無機系建築用板材の結露水の滴下防止構造であってもよい。本発明においては、無機系建築用板材26としては、石膏ボード、ケイ酸カルシウム板の少なくともいずれかを使用することができる。この場合の使用状態は、第3の実施形態の実施例1のダクト上面の保温材部に対応する。このため、無機系建築用板材26の表面に配置される無機系建築用板材の水平方向の結露水の滴下防止構造27に使用する不織布は重力による結露水の下方への移動を考慮する必要がないため、引張試験における5%の伸びにおけるMD方向の実効引張応力が25MPa以下1MPa以上を満足する不織布であればよい。このような構造とすることで、石膏ボード、ケイ酸カルシウム板の水平方向配置の場合の表面における結露を防止することが可能になる。
(Third Embodiment: Example 2)
(Structure for preventing dripping of condensed water from inorganic building board material and method for forming the same)
FIG. 8A shows a structure 27 for preventing dripping of condensed water in the horizontal direction of the inorganic building board 26 in which a heat insulating material for preventing dripping of condensed water is arranged on the surface of the inorganic building board 26 . At this time, a condensed water drip prevention structure of an inorganic building board material may be used in which the opposite surfaces of the heat insulating material 3 for preventing the dripping of condensed water and the inorganic building board material 26 are adhered to each other. In the present invention, at least one of a gypsum board and a calcium silicate board can be used as the inorganic building board material 26 . The state of use in this case corresponds to the heat insulating material portion on the upper surface of the duct in Example 1 of the third embodiment. For this reason, it is necessary to consider the downward movement of condensed water due to gravity for the non-woven fabric used for the structure 27 for preventing dripping of condensed water in the horizontal direction of the inorganic building board placed on the surface of the inorganic building board 26 . Therefore, a nonwoven fabric that satisfies an effective tensile stress of 25 MPa or less and 1 MPa or more in the MD direction at 5% elongation in a tensile test may be used. By adopting such a structure, it becomes possible to prevent dew condensation on the surface of the gypsum board and calcium silicate board when they are horizontally arranged.

図8(b)は、結露水の滴下防止用保温材3が表面に接着されている無機系建築用板材26が縦壁として垂直方向に配置された無機系建築用板材の垂直方向の結露水の滴下防止構造28を示す。この場合には、図7のダクトの場合の実験結果から判るように、垂直な壁構造に使用できる保温材の不織布は、水平方向の壁構造におけるMD方向の5%の伸びにおける実効引張応力が25MPa以下1MPa以上を満足するものではなく、保温材に使用する不織布のMD方向、TD方向の5%の伸びにおける実効引張応力が25MPa以下1MPa以上を満足する保温材が表面に配置された縦壁構造にする必要がある。 FIG. 8(b) shows the vertical direction of condensed water on an inorganic building board material 26 with a heat insulating material 3 for preventing dripping of condensed water being adhered to the surface and arranged vertically as a vertical wall. 2 shows the anti-drip structure 28 of FIG. In this case, as can be seen from the experimental results for the duct in FIG. A vertical wall on which a heat insulating material is placed on the surface that satisfies the effective tensile stress of 25 MPa or less and 1 MPa or more at 5% elongation in the MD direction and TD direction of the nonwoven fabric used for the heat insulating material, but not 25 MPa or less and 1 MPa or more. need to be structured.

この場合には、縦壁用建材として使用する保温材の不織布の両方向の力学特性としての引張実効応力値は上記の制約を満たす必要がある。この理由は、無機系建築用板材の表面に垂直方向に配置された保温材の下部から結露水が滴下するため、不織布の側面への移動を促進することで不織布表面からの蒸散を加速するように、TD方向の実効引張応力を所定範囲として、結露水の滴下を防止する不織布構造とする必要があるからである。以上の他、このような無機系建築用板材26が縦壁として垂直方向に配置される無機系建築用板材の垂直方向の結露水の滴下防止構造28を形成するには、ダクトの場合と同様に、前記結露水の滴下防止保温材の実効引張応力が25MPa以下1MPa以上を満足する少なくともいずれかの方向を前記無機系建築用板材の垂直方向に平行な方向と直交する水平方向に向けて配置する形成方法とすることも可能である。 In this case, the tensile effective stress value as the mechanical properties in both directions of the nonwoven fabric used as the building material for vertical walls must satisfy the above constraints. The reason for this is that the condensed water drips from the lower part of the heat insulating material placed vertically on the surface of the inorganic building board material, so it seems to accelerate the transpiration from the nonwoven fabric surface by promoting the movement to the side of the nonwoven fabric. Secondly, it is necessary to set the effective tensile stress in the TD direction within a predetermined range to provide a nonwoven fabric structure that prevents dripping of condensed water. In addition to the above, in order to form the structure 28 for preventing dripping of condensed water in the vertical direction of the inorganic building board material 26 arranged vertically as a vertical wall, the same procedure as in the case of the duct is performed. In addition, at least one of the directions that satisfies the effective tensile stress of the heat insulating material for preventing dripping of dew condensation water of 25 MPa or less and 1 MPa or more is oriented in a horizontal direction orthogonal to the direction parallel to the vertical direction of the inorganic building board. It is also possible to adopt a forming method that

(第3の実施形態:実施例3―折板屋根の結露水の滴下防止構造及びその形成方法)
図9には、折板屋根31の鋼板の下面に本発明の保温材3の不織布8を下面にして積層した鋼板を折り曲げ加工した折板屋根の結露水の滴下防止構造32を示す。折板屋根31は、通常上辺と下辺は所定幅で、上辺と下辺を挟み込むような斜辺とによって略V字の繰り返し形状に成形される。例えば、1周期で屋根高さ160~180mm×幅500mm前後に成形される。
(Third Embodiment: Example 3 - Condensed Water Drop Prevention Structure for Folded Plate Roof and Method for Forming the Same)
FIG. 9 shows a structure 32 for preventing dripping of condensed water on a folded-plate roof 31, which is formed by bending a steel plate in which the non-woven fabric 8 of the heat insulating material 3 of the present invention is laminated on the lower surface of the steel plate of the folded-plate roof 31. As shown in FIG. The folded-plate roof 31 is generally formed into a substantially V-shaped repeated shape with upper and lower sides having a predetermined width and oblique sides sandwiching the upper and lower sides. For example, in one cycle, the roof is molded to a height of 160 to 180 mm and a width of about 500 mm.

例えば、折板屋根での使用を模擬した結露試験として、厚さ0.8mmのガルバリウム鋼板(登録商標)を用い、それにポリエチレン樹脂発泡体の表面に所定の力学特性を満足する不織布を貼合した保温材を接着した構造体を用いることで、折板屋根の結露水の滴下防止構造を実現できる。 For example, as a condensation test simulating the use of a folded plate roof, a 0.8 mm thick Galvalume steel plate (registered trademark) was used, and a nonwoven fabric satisfying predetermined mechanical properties was laminated to the surface of the polyethylene resin foam. By using a structure to which a heat insulating material is adhered, a drip prevention structure for condensed water on a folded plate roof can be realized.

図9の折板屋根の結露水の滴下防止構造を用いた場合にも、同様に、折板屋根の折り曲げ構造の垂直方向の高さの差異を考慮した場合には、MD方向、TD方向の両方向の実効引張応力が25MPa以下1MPa以上を満足する保温材を用いる必要がある。実際の屋根材に表3の試験材16~19の試験材を使用した場合には、折板屋根の下部の保温材表面の不織布からの結露水の滴下がないことが確認された。 Similarly, in the case of using the structure for preventing dripping of condensed water for the folded-plate roof of FIG. It is necessary to use a heat insulating material that satisfies effective tensile stress of 25 MPa or less and 1 MPa or more in both directions. When test materials 16 to 19 in Table 3 were used as actual roof materials, it was confirmed that there was no dripping of dew condensation water from the nonwoven fabric on the surface of the heat insulating material under the folded plate roof.

また、試験材14,15のようにMD方向のみの実効引張応力が25MPa以下1MPa以上を満足するが、TD方向の実効引張応力が1MPa未満である保温材を適用した場合には、折板屋根の下部の斜面部の保温材表面から、結露水の滴下が認められた。これらの保温材であっても、折板屋根の裏面にMD方向を折板屋根の折板の折り曲げ方向と直交する方向に貼り付けた構造とすることで、保温材表面の不織布からの結露水の滴下を防止することができる。従って、折板屋根の結露水の滴下防止構造を得るには、前記結露水の滴下防止保温材の実効引張応力が25MPa以下1MPa以上を満足する少なくともいずれかの方向を前記折板屋根の折り曲げ方向と直交する方向に向けて配置する必要があり、これを満足する形成方法とする必要がある。 In addition, as in test materials 14 and 15, the effective tensile stress in the MD direction only satisfies 25 MPa or less and 1 MPa or more. Condensed water was dripping from the surface of the heat insulating material on the slope of the lower part. Even with these heat insulating materials, by attaching the MD direction to the back surface of the folded plate roof in the direction perpendicular to the bending direction of the folded plate roof, condensation water from the nonwoven fabric on the surface of the heat insulating material can be prevented from dripping. Therefore, in order to obtain a structure for preventing dripping of condensed water from a folded-plate roof, it is necessary to bend the folded-plate roof in at least one direction in which the effective tensile stress of the heat insulating material for preventing dripping of condensed water satisfies 25 MPa or less and 1 MPa or more. , and a forming method that satisfies this requirement.

ここで、図10(a)には結露性確認試験で結露水の滴下が発生しなかった材料の代表例として、結露水の滴下防止性に優れる不織布の代表例として試験材4の不織布4を100倍でSEM観察を行った結果を示す。不織布4は、屈曲部が多く、捲縮性が高い構造を有していることが分る。特に写真を示さないが、これに対して、結露水の滴下が生じた試験材1に使用した不織布1は、比較的屈曲部が少なく捲縮性が低いことが分った。また、図10(b)には、結露水の滴下防止性に優れる不織布4の吸水させた吸水後の100倍での不織布の状況を観察光学顕微鏡観察した結果を示すが、この写真によると、不織布の繊維の屈曲部の3次元構造を繋ぐように水膜が形成され、結果として不織布が結露水を保持していることが分る。図10(c)には、試験材19の斜交繊維からなる不織布の100倍でのSEM写真を示すが、この写真からは、図10(a)と比べると視野中の写真の水平方向(TD方向に相当する)繊維の流れが強くなっているように見える。図10(d)には、試験材18に相当する短繊維を使用した不織布の場合を示すが、この場合にも同様に視野中の写真の水平方向の繊維流れが図10(a)に比べて改善されていることが分る。これにより、保温材のMD方向を垂直方向と一致させて通常の使用方法で垂直成分が多い構造体に使用しても、繊維表面や繊維の交絡部に保水された水分のTD方向への移動が促進させることで、不織布内の均一化が図られることで、保水された水分の蒸散が促進され、下部の繊維への結露水の凝集が抑制される結果、結露水の滴下が防止されるものと考えられる。ここで、視野中のパルプ繊維は繊維径が40μm程度に見えるが、パルプ繊維は、パルプをたたき潰して叩解されているため、繊維厚さは10μm以下であり、縦横比を考慮したパルプの平均繊維径(パルプの幅方向と厚さ方向の寸法の平均)は30μm以下であり、本願における繊維径の範囲を概ね満足した。 Here, FIG. 10(a) shows the nonwoven fabric 4 of the test material 4 as a representative example of the nonwoven fabric excellent in preventing the dripping of condensed water as a typical example of the material that did not cause the dripping of condensed water in the condensation confirmation test. The results of SEM observation at a magnification of 100 are shown. It can be seen that the nonwoven fabric 4 has many bends and a highly crimpable structure. Although no particular photograph is shown, on the other hand, the nonwoven fabric 1 used as the test material 1 in which the condensation water dripped was found to have relatively few bends and low crimpability. In addition, FIG. 10(b) shows the result of observing the condition of the nonwoven fabric 4 excellent in preventing the dripping of condensed water by observing the state of the nonwoven fabric at a magnification of 100 after water absorption. It can be seen that a water film is formed so as to connect the three-dimensional structure of the bent portions of the fibers of the nonwoven fabric, and as a result, the nonwoven fabric retains the condensed water. FIG. 10(c) shows an SEM photograph of the nonwoven fabric made of diagonal fibers of the test material 19 at a magnification of 100. From this photograph, the horizontal direction ( (corresponding to the TD direction) fiber flow appears to be stronger. FIG. 10(d) shows the case of a nonwoven fabric using short fibers corresponding to the test material 18. In this case also, the horizontal fiber flow in the photograph in the field of view is similar to that in FIG. 10(a). It can be seen that the As a result, even if the MD direction of the heat insulating material is aligned with the vertical direction and it is used in a structure with many vertical components in a normal usage method, the moisture retained on the fiber surface and the entangled part of the fiber moves in the TD direction. By promoting the uniformity in the nonwoven fabric, the evaporation of the retained water is promoted, and as a result of suppressing the condensation of the condensed water on the lower fibers, the dripping of the condensed water is prevented. It is considered to be a thing. Here, the fiber diameter of the pulp fibers in the field of view appears to be about 40 μm, but since the pulp fibers are beaten by crushing the pulp, the fiber thickness is 10 μm or less. The fiber diameter (average of dimensions in the width direction and thickness direction of the pulp) was 30 μm or less, which generally satisfied the range of the fiber diameter in the present application.

以上、本発明において、保温材の表面に融着させる不織布を所定の構造とすることにより、結露水の滴下防止用保温材とこれを用いた結露水の滴下防止配管構造、結露水の滴下防止空調用ダクトの構造、結露水の滴下防止折板屋根構造及び結露水の滴下防止保温材に用いる不織布が得られることが確認された。また、結露水の滴下防止性に優れる実施例4のSEM写真観察の結果をみると、不織布の繊維の3次元構造を繋ぐように水膜が形成され、結果として不織布が結露水を保持していることが分る。 As described above, in the present invention, by making the non-woven fabric fused to the surface of the heat insulating material into a predetermined structure, the heat insulating material for preventing dripping of condensed water, the pipe structure for preventing dripping of condensed water using the heat insulating material, and the dripping prevention of condensed water. It was confirmed that a nonwoven fabric used for air conditioning duct structures, folded-plate roof structures for preventing dripping of condensed water, and heat insulating materials for preventing dripping of condensed water can be obtained. In addition, when observing the results of SEM photograph observation of Example 4, which is excellent in preventing dripping of condensed water, a water film is formed so as to connect the three-dimensional structure of the fibers of the nonwoven fabric, and as a result, the nonwoven fabric retains the condensed water. I know there is.

さらに、本発明では保温材の縦配管や建築部材の結露水の滴下防止構造への適用として、これらの構造が垂直方向に形成されている場合のこれらの構造の形成方法の発明について記載したが、これらの縦配管や建築部材の結露水の滴下防止構造への保温材の使用方法の発明とすることも可能である。 Furthermore, in the present invention, as an application to a structure for preventing dripping of condensed water from a vertical pipe of a heat insulating material or a building member, the invention of a method for forming these structures when these structures are formed in the vertical direction was described. It is also possible to make an invention of a method of using a heat insulating material for these vertical pipes or construction members to prevent dripping of condensed water.

以上の他、2.5μml(1滴分)の水道水を不織布上に滴下し、水が染み込むまでの時間を測定する吸水速度の測定試験、所定サイズの不織布を切り出し、先端の2mmを水に30秒間浸漬し不織布を駆け上がってきた長さを測定して、吸い上げ長さを測定する水吸い上げ長の測定試験、所定サイズの短冊状に不織布を用いた、23.5°の傾斜プラスチック(アクリル板)面上における、60秒の間の水伝搬速度(cm/min/0.3mL)を求める試験などを行ったが、いずれの試験においても結露性との相関はなかった。 In addition to the above, 2.5 μml (one drop) of tap water was dropped on the nonwoven fabric, and the water absorption speed measurement test was performed to measure the time until the water permeated. 30 seconds of immersion and measuring the length that ran up the nonwoven fabric, measuring the length of water absorption length measurement test, using nonwoven fabric in strips of a predetermined size, 23.5 ° inclined plastic (acrylic A test was conducted to determine the water propagation speed (cm/min/0.3 mL) for 60 seconds on the plate surface, but there was no correlation with dew condensation in any of the tests.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the technical scope of the present invention is not influenced by the above-described embodiments. It is obvious that a person skilled in the art can conceive various modifications or modifications within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. be understood to belong to

1. 恒温恒温槽
2. 冷媒管(ステンレス管、銅管)
3. 保温材
4. 温度測定点
5. 滴下センサ
6. 冷媒
7. 樹脂発泡体
8. 不織布
9. エンボス加工部
10.眼鏡型配管構造
10a、10b 配管構造
11.熱融着部
12.ドレン管
13.配線
14.筒状の保温材
15.架橋ポリエチレン管
16.冷媒用筒状配管構造
17.樹脂製鞘管
18.発泡体
19a, 19b : 給水給湯用筒状配管構造
20.左側縦配管
21.右側縦配管
22.水平配管
23.トレイ
24.結露水
25.保温材表面(不織布)
26.無機系建築用板材
27.無機系建築用板材の水平方向の結露水の滴下防止構造
28.無機系建築用板材の垂直方向の結露水の滴下防止構造
29.金属製ダクト
30.ダクトの結露水の滴下防止構造
31.金属折板
32.金属折板の結露水の滴下防止構造

1. Constant temperature constant temperature bath 2 . Refrigerant pipe (stainless steel pipe, copper pipe)
3. Insulation material4. temperature measurement points5. drip sensor6. refrigerant7. resin foam8. Non-woven fabric9. Embossed portion 10. Glasses-type piping structure 10a, 10b Piping structure 11. heat-sealed part 12 . drain pipe 13 . Wiring 14 . cylindrical heat insulating material 15 . cross-linked polyethylene tube 16 . Refrigerant cylindrical piping structure 17 . Resin sheath tube 18 . Foam 19a, 19b: Tubular piping structure for hot water supply 20. Left vertical pipe 21 . Right vertical pipe 22 . horizontal piping 23 . tray 24 . Condensed water25. Thermal insulation surface (non-woven fabric)
26. Inorganic building board materials 27 . Structure for preventing dripping of condensed water in the horizontal direction of the inorganic building board material28. Structure for preventing dripping of condensed water in the vertical direction of the inorganic building board 29. metal duct 30 . Structure for preventing dripping of condensed water in duct 31. Metal folded plate 32 . Structure to prevent dripping of condensed water from metal folded plates

Claims (29)

ポリエチレン系樹脂発泡体の表面に不織布を配置した結露水の滴下防止用保温材であって、基材がシート状の独立気泡を有するポリエチレン系樹脂発泡体であり、当該基材の一方の表面に不織布が融着または接着されており、前記不織布を構成する繊維の平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%で、さらに、前記不織布は引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足することを特徴とする結露水の滴下防止用保温材。 A heat insulating material for preventing dripping of condensed water in which a nonwoven fabric is arranged on the surface of a polyethylene resin foam, the base material is a polyethylene resin foam having sheet-like closed cells, and one surface of the base material has The nonwoven fabric is fused or bonded, the average fiber diameter of the fibers constituting the nonwoven fabric is in the range of 10 to 30 μm, the porosity of the fibers is 85 to 98%, and the nonwoven fabric is measured in the MD direction in a tensile test. A heat insulating material for preventing dripping of dew condensation water, wherein an effective tensile stress, which is a value obtained by dividing an apparent stress in the same direction at a tensile elongation value of 5% by a filling ratio, satisfies 25 MPa or less and 1 MPa or more. 前記保温材の不織布のJISL1913に基づいて測定した厚さが1.0mm以下であり、前記不織布の見かけ厚さ1mm当たりに換算した保水量が500g/m以上であることを特徴とする請求項1に記載の結露水の滴下防止用保温材。 The nonwoven fabric of the heat insulating material has a thickness of 1.0 mm or less as measured according to JISL1913, and a water retention capacity of 500 g/m 2 or more per 1 mm of apparent thickness of the nonwoven fabric. 2. The heat insulating material for preventing dripping of condensed water according to 1. 前記保温材の不織布を構成する繊維がPET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル系樹脂を少なくとも一種以上含む繊維により構成されていることを特徴とする請求項1または請求項2に記載の結露水の滴下防止用保温材。 3. The condensed water according to claim 1 or 2, wherein the fibers constituting the nonwoven fabric of the heat insulating material are made of fibers containing at least one of PET resin, polyethylene resin, polypropylene resin, and acrylic resin. Insulation material for drip prevention. 前記保温材の不織布を構成する繊維が、さらにセルロース繊維、パルプ、レーヨン繊維のいずれかを繊維総重量の30%以下含むことを特徴とする請求項3記載の結露水の滴下防止用保温材。 4. The heat insulating material for preventing dripping of condensed water according to claim 3, wherein the fibers constituting the nonwoven fabric of the heat insulating material further contain any one of cellulose fiber, pulp, and rayon fiber in an amount of 30% or less of the total weight of the fibers. 前記保温材の不織布を構成する前記繊維の少なくとも一部が芯鞘構造を有する繊維で構成されるか、あるいは、さらに芯鞘構造の芯部繊維が中空芯部を有する繊維であり、前記中空繊維の回りに鞘部が形成された複層構造繊維であり、前記芯部あるいは前記中空芯部を形成する繊維の鞘部が芯部より低融点の樹脂で形成されていることを特徴とする請求項3または請求項4に記載の結露水の滴下防止用保温材。 At least part of the fibers constituting the nonwoven fabric of the heat insulating material is composed of fibers having a core-sheath structure, or the core fibers of the core-sheath structure are fibers having a hollow core, and the hollow fibers It is a multi-layer structure fiber in which a sheath is formed around the core, and the sheath of the fiber forming the core or the hollow core is formed of a resin having a lower melting point than the core. The heat insulating material for preventing dripping of dew condensation water according to claim 3 or 4. さらに、前記樹脂発泡体の表面に形成された前記不織布がエンボス加工されたものであることを特徴とする請求項1から請求項5のいずれかに記載の結露水の滴下防止用保温材。 6. The heat insulating material for preventing dripping of dew condensation water according to any one of claims 1 to 5, wherein the nonwoven fabric formed on the surface of the resin foam is embossed. 請求項1から請求項6に記載の結露水の滴下防止保温材であって、さらに引張試験におけるTD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上を満足することを特徴とする結露水の滴下防止用保温材。 A heat insulating material for preventing dripping of condensed water according to any one of claims 1 to 6, wherein the value of tensile elongation in the TD direction in a tensile test is a value obtained by dividing the apparent stress in the same direction at 5% by the filling rate. A heat insulating material for preventing dripping of condensed water, characterized by satisfying an effective tensile stress of 25 MPa or less and 1 MPa or more. 請求項1から請求項7のいずれかに記載の結露水の滴下防止用保温材が冷媒用配管の外周に不織布が外周面に向けて被覆されていることを特徴とする配管。 8. A pipe characterized in that the heat insulating material for preventing dripping of condensed water according to any one of claims 1 to 7 is coated with a non-woven fabric on the outer periphery of the refrigerant pipe toward the outer peripheral surface. 請求項8に記載の冷媒用配管の外周部に被覆された結露水の滴下防止用保温材を相互に対向させて熱融着または熱接着させることで、2本の配管を一体化させたものであることを特徴とする眼鏡型配管構造。 The two pipes are integrated by heat-sealing or heat-bonding the heat insulating material for preventing dripping of condensed water coated on the outer periphery of the refrigerant pipe according to claim 8 to each other. A spectacles-type piping structure characterized by: 複数本の冷媒用配管、ドレン管と配線の配管に内装される部品が用意され、前記請求項1から請求項7のいずれかに記載の結露水の滴下防止保温材が不織布形成面を外周面として、前記結露水の滴下防止保温材の外周面形状が断面略円筒形状となるように前記複数本の冷媒用配管、ドレン管と配線を囲うことで、前記配管に内装される部品を前記結露水の滴下防止保温材の内部に収納することを特徴とする冷媒用配管の筒状配管構造。 A plurality of refrigerant pipes, drain pipes, and parts to be installed in the wiring pipes are prepared, and the heat insulating material for preventing dripping of condensed water according to any one of claims 1 to 7 is provided on the outer peripheral surface of the nonwoven fabric forming surface. As a result, the plurality of refrigerant pipes, drain pipes and wiring are surrounded so that the outer peripheral surface shape of the heat insulating material for preventing dripping of condensed water has a substantially cylindrical cross section, so that the parts inside the pipes are prevented from condensation. 1. A cylindrical piping structure for refrigerant piping, characterized in that it is housed inside a heat insulating material that prevents dripping of water. 給水給湯用配管として架橋ポリエチレン管と架橋ポリエチレン管の外周を覆う樹脂製鞘管が用意され、前記架橋ポリエチレン管と前記架橋ポリエチレン管の外周を覆う樹脂製鞘管を囲んで、前記請求項1から請求項7のいずれかに記載の結露水の滴下防止保温材が不織布形成面を外周面として、前記結露水の滴下防止保温材の外周面形状が断面略円筒形状となるように、前記結露水の滴下防止保温材の内部に前記架橋ポリエチレン管と前記鞘管とを収納することを特徴とする給水給湯用配管の筒状配管構造。 A crosslinked polyethylene pipe and a resin sheath pipe covering the outer periphery of the crosslinked polyethylene pipe are prepared as a water supply and hot water supply pipe, and the crosslinked polyethylene pipe and the resin sheath pipe covering the outer periphery of the crosslinked polyethylene pipe are surrounded. 8. The condensed water dripping preventing heat insulating material according to claim 7 has a non-woven fabric forming surface as an outer peripheral surface, and the condensed water dripping preventing heat insulating material has an outer peripheral surface shape of a substantially cylindrical cross section. A cylindrical piping structure for water supply and hot water supply, characterized in that said crosslinked polyethylene pipe and said sheath pipe are housed inside said dripping prevention heat insulating material. 前記樹脂製鞘管は、前記鞘管の外周を囲うように樹脂発泡体で被覆されていることを特徴とする請求項11に記載の給水給湯用配管の筒状配管構造。 12. The tubular pipe structure for water supply and hot water supply according to claim 11, wherein the resin sheath pipe is covered with a resin foam so as to surround the outer circumference of the sheath pipe. 前記結露水の滴下防止保温材が冷媒用配管の外周に被覆される配管構造であって、前記配管の少なくとも一部に垂直配管を含み、前記垂直配管に請求項7に記載の結露水の滴下防止保温材の不織布形成面が外周面となるように前記垂直配管に被覆されることを特徴する垂直配管の配管構造。 A piping structure in which the outer periphery of the refrigerant pipe is covered with the heat insulating material for preventing the dripping of the condensed water, wherein at least a part of the pipe includes a vertical pipe, and the dripping of the condensed water according to claim 7 is included in the vertical pipe. A pipe structure of a vertical pipe, wherein the non-woven fabric forming surface of the heat insulating material is covered with the vertical pipe so as to be the outer peripheral surface. 請求項7に記載の前記結露水の滴下防止用保温材が空調用ダクトの外表面に不織布形成面を外表面に向けて接着されていることを特徴とする空調用ダクトの構造。 8. The structure of an air-conditioning duct, wherein the heat insulating material for preventing dripping of condensed water according to claim 7 is adhered to the outer surface of the air-conditioning duct with the non-woven fabric forming surface facing the outer surface. 請求項1から請求項7のいずれかに記載の結露水の滴下防止用保温材が無機系建築用板材の表面に不織布形成面を外表面として載置されているか、さらに前記無機系建築用板材の表面に不織布形成面を外表面として載置された前記結露水の滴下防止用保温材の樹脂発泡体面と前記無機系建築用板材の表面の対向面同士が相互に接着されて水平面方向に配置されているかのいずれかであり、前記無機系建築用板材が石膏ボード、ケイ酸カルシウム板の少なくともいずれかであることを特徴とする無機系建築用板材の結露水の滴下防止構造。 The heat insulating material for preventing dripping of condensed water according to any one of claims 1 to 7 is placed on the surface of the inorganic building board material with the nonwoven fabric forming surface as the outer surface, and furthermore, the inorganic building board material The resin foam surface of the heat insulating material for preventing dripping of condensed water placed on the surface of the nonwoven fabric forming surface as the outer surface and the surface of the inorganic building board facing each other are adhered to each other and arranged in the horizontal direction. and wherein the inorganic building board material is at least one of a gypsum board and a calcium silicate board. 請求項7に記載の結露水の滴下防止用保温材が無機系建築用板材の表面に不織布形成面を外表面として載置された前記結露水の滴下防止用保温材の樹脂発泡体面と前記無機系建築用板材の表面の対向面同士が相互に接着されている前記無機系建築用板材が垂直面方向に配置されていて、前記無機系建築用板材は、石膏ボード、ケイ酸カルシウム板の少なくともいずれかであることを特徴とする無機系建築用板材の結露水の滴下防止構造。 8. The heat insulating material for preventing dripping of condensed water according to claim 7 is placed on the surface of an inorganic building board with the non-woven fabric forming surface as the outer surface, and the resin foam surface of the heat insulating material for preventing dripping of condensed water and the inorganic The inorganic building board materials are arranged in the direction of a vertical plane, and the inorganic building board material is at least one of a gypsum board and a calcium silicate board. A structure for preventing dripping of condensed water of an inorganic building board material, characterized in that it is any one of the above. 請求項7に記載の前記結露水の滴下防止用保温材が折板屋根の内面に接着されることを特徴とする折板屋根の結露水の滴下防止構造。 8. A structure for preventing dripping of condensed water on a folded plate roof, wherein the heat insulating material for preventing dripping of condensed water according to claim 7 is adhered to an inner surface of the folded plate roof. 不織布を構成する繊維の平均繊維径が10~30μmの範囲で、前記繊維の空隙率が85~98%であり、さらに、JISL1913に基づいて測定した前記不織布の厚さが1.0mm以下であり、さらに、引張試験におけるMD方向の引張伸びの値が5%における同方向の見かけ応力を充填率で割った値が25MPa以下を満足することを特徴とする結露水の滴下防止用不織布。 The average fiber diameter of the fibers constituting the nonwoven fabric is in the range of 10 to 30 μm, the porosity of the fibers is 85 to 98%, and the thickness of the nonwoven fabric measured according to JISL1913 is 1.0 mm or less. Further, a nonwoven fabric for preventing dripping of condensed water, characterized in that the value obtained by dividing the apparent stress in the MD direction when the value of tensile elongation in the MD direction in a tensile test is 5% by the filling ratio satisfies 25 MPa or less. 請求項18に記載の前記不織布の見かけ厚さ1mm当たりに換算した保水量が500g/m以上であって、ポリエチレン系樹脂発泡体の表面に融着して使用することを特徴とする結露水の滴下防止用不織布。 Condensed water characterized in that the nonwoven fabric according to claim 18 has a water retention amount converted to 1 mm of apparent thickness of 500 g/m 2 or more, and is used by being fused to the surface of a polyethylene resin foam. Non-woven fabric for drip prevention. 前記不織布を構成する前記繊維は、PET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、又はアクリル系樹脂を少なくとも一種以上含む繊維により構成され、さらに前記繊維が芯鞘構造でない繊維で構成されていることを特徴とする請求項18または請求項19に記載の結露水の滴下防止用不織布。 The fibers constituting the nonwoven fabric are composed of fibers containing at least one of PET resin, polyethylene resin, polypropylene resin, or acrylic resin, and the fibers are composed of fibers that do not have a core-sheath structure. The nonwoven fabric for preventing dripping of condensed water according to claim 18 or 19. 前記不織布を構成する繊維が、さらにセルロース繊維、パルプ、レーヨン繊維のいずれかを繊維総重量の30%以下含むことを特徴とする請求項20記載の結露水の滴下防止用不織布。 21. The nonwoven fabric for preventing dripping of condensed water according to claim 20, wherein the fibers constituting said nonwoven fabric further contain any one of cellulose fibers, pulp and rayon fibers in an amount of 30% or less of the total weight of the fibers. 前記不織布を構成する前記繊維の少なくとも一部が芯鞘構造を有する繊維を含み、前記芯鞘構造を有する繊維の鞘部が芯部より低融点の樹脂で形成されているか、あるいは芯鞘構造の繊維の芯部繊維が中空繊維であり、前記中空繊維の回りに鞘部が形成された中空複層構造繊維であり、前記芯部あるいは前記中空芯部を形成する繊維の鞘部が芯部より低融点の樹脂で形成されていることを特徴とする請求項18から請求項21のいずれかに記載の結露水の滴下防止用不織布。 At least part of the fibers constituting the nonwoven fabric includes fibers having a core-sheath structure, and the sheath of the fibers having the core-sheath structure is formed of a resin having a lower melting point than the core, or the fibers have a core-sheath structure. The core fiber of the fiber is a hollow fiber, and the hollow multi-layer structure fiber has a sheath formed around the hollow fiber, and the core or the sheath of the fiber forming the hollow core is located closer to the core. 22. The nonwoven fabric for preventing dripping of condensed water according to any one of claims 18 to 21, wherein the nonwoven fabric is made of a resin having a low melting point. 前記不織布を構成する繊維の少なくとも一部が短繊維により形成されるか、経緯直交長繊維や経緯斜交長繊維により形成されるかのいずれかであることを特徴とする請求項20から請求項22のいずれかに記載の結露水の滴下防止用不織布。 (20) to (20), wherein at least a part of the fibers constituting the nonwoven fabric is formed of staple fibers, or formed of weft or weft orthogonal filaments or weft or weft oblique filaments. 23. The nonwoven fabric for preventing dripping of condensed water according to any one of 22. 前記不織布は、引張試験におけるMD方向、TD方向のそれぞれの引張伸びの値が5%におけるそれぞれ同方向の見かけ応力を充填率で割った値である実効引張応力が25MPa以下1MPa以上であることをともに満足することを特徴とする請求項23に記載の結露水の滴下防止用不織布。 The nonwoven fabric has an effective tensile stress of 25 MPa or less and 1 MPa or more, which is the value obtained by dividing the apparent stress in the same direction when the value of tensile elongation in the MD direction and TD direction in a tensile test is 5%, respectively, by the filling rate. 24. The nonwoven fabric for preventing dripping of condensed water according to claim 23, wherein both are satisfied. 請求項23または請求項24に記載の短繊維の不織布がケミカルボンド法、サーマルボンド法、スパンレース法、エアーレイド法、ニードルパンチ法等により製造されたものであることを特徴とする結露水の滴下防止用不織布。 Claim 23 or Claim 24, wherein the staple fiber nonwoven fabric is manufactured by a chemical bond method, a thermal bond method, a spunlace method, an air laid method, a needle punch method, or the like. Non-woven fabric for drip prevention. 請求項1から請求項7のいずれかに記載の結露水の滴下防止保温材が冷媒用配管の外周に巻き付けられる配管構造の施工方法であって、前記配管が垂直配管あるいは斜め配管である場合には、前記結露水の滴下防止保温材の実効引張応力が25MPa以下1MPa以上を満足する方向を前記垂直配管の方向と直交する水平方向に向けて配置することを特徴とする配管構造の形成方法。 A construction method for a piping structure in which the heat insulating material for preventing dripping of condensed water according to any one of claims 1 to 7 is wound around the outer periphery of a refrigerant pipe, wherein the pipe is a vertical pipe or an oblique pipe. A method of forming a piping structure, wherein the direction in which the effective tensile stress of the heat insulating material for preventing dripping of condensed water satisfies 25 MPa or less and 1 MPa or more is oriented in a horizontal direction orthogonal to the direction of the vertical piping. 空調用ダクトの結露水の滴下防止構造の形成方法において、空調用ダクトの側面は少なくとも垂直な方向にダクトの上面と下面を挟むように対向して設けられるもので、前記側面には、請求項1から請求項7のいずれかに記載の結露水の滴下防止保温材の不織布の実効引張応力が25MPa以下1MPa以上を満足する方向を前記垂直なダクト側面に直交する水平方向に向けて配置することを特徴とする空調用ダクトの結露水の滴下防止構造の形成方法。 In the method for forming a structure for preventing dripping of condensed water in an air-conditioning duct, the side surfaces of the air-conditioning duct are provided facing each other so as to sandwich the upper and lower surfaces of the duct in at least a vertical direction, and the side surfaces include: The direction in which the effective tensile stress of the nonwoven fabric of the heat insulating material for preventing dripping of condensed water according to any one of claims 1 to 7 satisfies 25 MPa or less and 1 MPa or more is oriented in the horizontal direction orthogonal to the vertical duct side surface. A method for forming a drip prevention structure for condensed water in an air conditioning duct, characterized by: 建築用無機系建材の結露水の滴下防止構造の形成方法において、前記建築用無機系建材の結露構造が垂直な壁構造である場合には、請求項1から請求項7のいずれかに記載の結露水の滴下防止保温材の不織布の実効引張応力が25MPa以下1MPa以上を満足する方向を前記垂直な壁構造の方向と直交する水平方向に向けて前記建築用無機系建材の縦壁の表面に前記保温材の不織布を外表面として配置することを特徴とする建築用無機系建材の結露水の滴下防止構造の形成方法。 8. The method for forming a structure for preventing dripping of condensed water from an inorganic building material for construction, wherein the structure for preventing condensation from dripping from the inorganic building material for construction is a vertical wall structure, according to any one of claims 1 to 7. On the surface of the vertical wall of the inorganic building material for construction, the direction in which the effective tensile stress of the nonwoven fabric of the heat insulating material for preventing dripping of condensed water satisfies 25 MPa or less and 1 MPa or more is oriented in the horizontal direction perpendicular to the direction of the vertical wall structure. A method for forming a structure for preventing dripping of condensed water of an inorganic building material for construction, characterized in that the nonwoven fabric of the heat insulating material is arranged as an outer surface. 折板屋根の結露水の滴下防止構造の形成方法において、請求項1から請求項7のいずれかに記載の結露水の滴下防止保温材の不織布の前記結露水の滴下防止保温材の不織布の実効引張応力が25MPa以下1MPa以上を満足する方向を前記折板屋根の折板の折り曲げ方向と直交する方向に向けて前記折板屋根の裏面に前記保温材の不織布を外表面として配置することを特徴とする折板屋根の結露水の滴下防止構造の形成方法。

In a method for forming a structure for preventing dripping of condensed water on a folded plate roof, the effectiveness of the nonwoven fabric of the thermal insulation material for preventing dripping of condensed water according to any one of claims 1 to 7 The nonwoven fabric of the heat insulating material is arranged as the outer surface on the back surface of the folded plate roof so that the direction that satisfies a tensile stress of 25 MPa or less and 1 MPa or more is perpendicular to the bending direction of the folded plates of the folded plate roof. A method for forming a drip prevention structure for condensed water on a folded plate roof.

JP2021211443A 2021-05-18 2021-12-24 Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member Pending JP2022177784A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083783 2021-05-18
JP2021083783 2021-05-18

Publications (1)

Publication Number Publication Date
JP2022177784A true JP2022177784A (en) 2022-12-01

Family

ID=84237684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021211443A Pending JP2022177784A (en) 2021-05-18 2021-12-24 Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member

Country Status (1)

Country Link
JP (1) JP2022177784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292775B1 (en) * 2023-02-22 2023-06-19 株式会社昭和冷凍プラント Installation method of insulation structure for refrigerant and multi-layer pipe for refrigerant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292775B1 (en) * 2023-02-22 2023-06-19 株式会社昭和冷凍プラント Installation method of insulation structure for refrigerant and multi-layer pipe for refrigerant

Similar Documents

Publication Publication Date Title
US10800130B2 (en) Flexible PCM sheet materials
US10882970B2 (en) Resin foam particles, resin foam shaped product, and laminate
KR102601130B1 (en) Laminated sound absorbing material
US20210095405A1 (en) Ceramic-coated fibers including a flame-retarding polymer, and methods of making nonwoven structures
Maity et al. Structure-property relationships of needle-punched nonwoven fabric
JP2015048543A (en) Fiber substrate and heat insulation mat including fiber substrate
KR102242725B1 (en) Spunbond nonwoven fabric and its manufacturing method
JP2022177784A (en) Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member
EP3730285A1 (en) Multilayer sound absorbing material
JP6349019B1 (en) Melt blown non-woven fabric, its use and production method thereof
JP2024078195A (en) Heat-insulating material for preventing dripping of condensation water, refrigerant pipe for preventing dripping of condensation water using the same, its piping structure, water supply/hot water supply piping structure, and building structure for preventing dripping of condensation water, nonwoven fabric for preventing dripping of condensation water, and method for forming a structure for preventing dripping of condensation water for refrigerant pipes using the heat-insulating material, and method for forming a structure for preventing dripping of condensation water for building components
JP6646267B1 (en) Laminated sound absorbing material
JP3166607U (en) Coating material
JP6774042B2 (en) Laminated sound absorbing material
EP3990274B1 (en) Nonwoven fibrous web
JP4200571B2 (en) Non-woven laminate sheet
WO2022071425A1 (en) Battery cover
JP5622462B2 (en) Flame retardant fiber sheet
JP2018146942A (en) Laminated sound absorption material including ultrafine fiber
JP2019031633A (en) Fiber structure and method for producing the same
JP6751278B1 (en) Laminated sound absorbing material
EP3990278B1 (en) Nonwoven fibrous web
JP2024073404A (en) Thermal insulation cover member for preventing or suppressing dripping of condensation water, other heat exchange piping cover members and duct cover members, piping structures and duct cover structures using these, nonwoven fabric used for the thermal insulation cover member and method of using the nonwoven fabric for the thermal insulation cover member, and method of using the thermal insulation cover member for the heat exchange piping cover member
JP2021195645A (en) Sheet material, composite material using the same, multilayer molded article using the same, and sheet material manufacturing method
JP2024073404A5 (en)