JP4200571B2 - Non-woven laminate sheet - Google Patents

Non-woven laminate sheet Download PDF

Info

Publication number
JP4200571B2
JP4200571B2 JP00068299A JP68299A JP4200571B2 JP 4200571 B2 JP4200571 B2 JP 4200571B2 JP 00068299 A JP00068299 A JP 00068299A JP 68299 A JP68299 A JP 68299A JP 4200571 B2 JP4200571 B2 JP 4200571B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
sheet
fiber
laminated
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00068299A
Other languages
Japanese (ja)
Other versions
JPH11320736A (en
Inventor
真吾 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP00068299A priority Critical patent/JP4200571B2/en
Publication of JPH11320736A publication Critical patent/JPH11320736A/en
Application granted granted Critical
Publication of JP4200571B2 publication Critical patent/JP4200571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は不織布と発泡樹脂シ−トが多層構造に積層された軽量性や可とう性等に富むシ−トに関する。更に詳しくは熱融着された不織布と発泡樹脂シ−トが多層構造に積層され且つその積層面で融着一体化された、引裂強度や引張強度等が優れた多層構造のシ−トに関する。
【0002】
【従来の技術】
発泡ポリエチレンシ−トや発泡ポリプロピレンシ−ト等は軽量性、嵩高性、断熱性等が優れ、各種包装材料や建築用断熱材等に使用されている。しかしこの発泡樹脂シ−トは微小発泡セルがランダム且つ多量に存在するので、引裂強度や引張強度等が小さいという問題がある。特に該発泡樹脂シ−トは熱可塑性樹脂を溶融製膜化の工程で機械方向に延伸されるので、縦方向に裂け易く、横方向の強力が低いという問題がある。引裂強度や引っ張り強力等を改良する手段として、シ−トの厚みを大にしたり、発泡倍率を低くする事も行われているが、軽量性、嵩高性等が劣り、しかも可とう性が悪化し、ロ−ル巻き不可能になるという問題がある。
【0003】
特開平7−68689号公報には、発泡樹脂シ−トの両面にガラス繊維とポリプロピレン繊維からなるニ−ドルパンチ不織布を積層したシ−トが開示されている。又特開平7−178859号公報には、発泡樹脂シ−トに、熱可塑性樹脂がコ−テイングされたガラス繊維、または炭素繊維等が積層され、その両層を熱融着したシ−トが開示されている。前記に開示されたいずれの技術にあつても、ガラス繊維が使用されているので、積層シ−トの曲げ強度や曲げ弾性率等が高くなるが、反面軽量性や可とう性等が劣るという問題がある。従ってこのような不織布積層シ−トはロ−ル巻等をし長尺状で保存し、建設現場や、各種機材の包装現場等でそれぞれの屈曲部に適合すように施工したり、又はロ−ル巻きのシ−トを所望の大きさに切断等をし使用出来ないという課題がある。
【0004】
【発明が解決しようとする課題】
本発明は上記課題を解決するためになされたものであり、軽量性、可とう性、嵩高性等に優れた不織布と、発泡樹脂シ−トの積層シ−トを提供する事にある。又縦横何れの方向も、引裂強度や引張り強度等が改善された不織布積層シ−トを提供する事にある。
【0005】
【課題を解決するための手段】
本発明は上記のもとに研究し、その課題を解決したものであり、下記の構成からなる。
(1)熱可塑性複合スパンボンド法長繊維または熱可塑性混繊スパンボンド法長繊維が融着された目付け10〜1000g/m2長繊維不織布と、ポリオレフィン系樹脂(但し、長鎖分枝を有すると共にドローダウン性が60m/分以下である無架橋プロピレン系樹脂を除く。)、ポリエステル系樹脂またはポリアミド系樹脂で構成された空隙率85〜99%の発泡樹脂シ−トが多層構造に積層され、長繊維不織布と発泡樹脂シートの積層面での融着が、少なくともその片方の樹脂の熱融着であり、引裂強度が縦横何れも0.2kgf以上であり、引張り強度が縦横何れも0.7kgf/5cm以上であり、且つ可とう性を有する不織布積層シ−ト。
(2)熱可塑性複合スパンボンド法長繊維または熱可塑性混繊スパンボンド法長繊維が融着された目付け10〜1000g/m 2 の長繊維不織布と、ポリエチレン樹脂、ポリエステル系樹脂またはポリアミド系樹脂で構成された空隙率85〜99%の発泡樹脂シ−トが多層構造に積層され、長繊維不織布と発泡樹脂シートの積層面での融着が、少なくともその片方の樹脂の熱融着であり、引裂強度が縦横何れも0.2kgf以上であり、引張り強度が縦横何れも0.7kgf/5cm以上であり、且つ可とう性を有する不織布積層シ−ト。
(3)長繊維不織布を構成する長繊維が、融点差が10℃以上ある低融点樹脂と高融点樹脂からなり且つ該低融点樹脂が繊維表面の少なくとも一部を形成する熱可塑性複合スパンボンド法長繊維である(1)項または2(項)に記載の不織布積層シ−ト。
長繊維不織布を構成する長繊維が、融点差が10℃以上である低融点長繊維10〜90重量%と高融点長繊維90〜10重量%が混繊された熱可塑性混繊スパンボンド法長繊維混繊長繊維である(1)項または(2)項に記載の不織布積層シ−ト。
(5)発泡樹脂シートの発泡セルの形状が、その両端部が丸みのある円柱形または楕円形である、(1)〜(4)項のいずれかに記載の不織布積層シ−ト。
)発泡樹脂シ−トが、ポリオレフィン系樹脂からなるシートである(1)〜(5)項何れに記載の不織布積層シ−ト。
【0006】
【発明の実施の形態】
本発明の不織布積層シ−トは、ト−タル厚みやト−タル目付け等は特に限定されない。しかし、不織布積層シ−トの引裂強度、可とう性、軽量性、経済性等の点で、ト−タル厚みが後記発泡樹脂シ−ト単体の厚みに積層した不織布単体の厚みだけ大きい物が使用される。不織布単体の厚みを考慮するとト−タル厚みが0.03〜90mmであれば良い。
又ト−タル目付けは、軽量性、経済性、可とう性等の点で、可能な限り少ない方が好ましいが20〜3000g/m2であれば良い。
【0007】
又本発明の不織布積層シ−トは引裂強度が縦横何れも0.2kgf以上で、引張り強度が縦横何れも0.7kgf/5cm以上ある物である。なおこの物性は目付けが20g/m2に換算した時の値である。
引裂強度は好ましくは0.2kgf以上、更に好ましくは0.25kgf以上である。引裂強度が0.2kgf未満の場合、建築用断熱材として施工する際、或いは凸部等が複雑にある物品等の包装材料等として用いた場合該凸部近傍で裂け易い。又引張強度は好ましくは0.7kg/5cm以上、更に好ましくは0.8kgf/5cm以上である。引張強度が0.7kgf/5cm未満の場合、建築用断熱材等として壁や屋根裏等に施工する際、わずかのテンションでシ−トが破断しやすい。物品等をテンションをかけて物品に密着した状態で包装する事が困難である。
【0008】
本発明で用いられる不織布は、熱可塑性繊維が融着された目付け10〜1000g/m2の不織布である。この熱可塑性繊維として、熱可塑性樹脂を繊維化したレギュラ−繊維や複合繊維等が使用できる。また熱可塑性繊維同士の混繊繊維や熱可塑性繊維と他の繊維の混合繊維等何れも使用できる。又この繊維は繊維長3〜130mmの短繊維や実質的にエンドレスの長繊維等何れも使用できる。しかし本発明の場合、引裂強度等の物性の向上を図るため、長繊維が好ましく用いられる。該長繊維はトウやスパンボンド法長繊維等が例示出来る。とりわけ複合スパンボンド法長繊維不織布や、混繊スパンボンド法長繊維不織布等が、縦方向、横方向の引裂強度等の物性をバランスよく改善出来るので好ましく使用出来る。
【0009】
又、繊度に特別な制限はないが、不織布と後記発泡樹脂シ−トとの積層化後の不織布積層シ−トが、引裂強度、引張強度、可とう性、等を改良するという目的で、繊度が0.1〜100d/fの繊維が使用出来る。とりわけ繊度が0.2〜10d/fの繊維を用いた不織布が不織布積層シ−トの可とう性等が良い物が得られる。
【0010】
熱可塑性繊維に使用される熱可塑性樹脂は溶融紡糸可能な熱可塑性樹脂であれば特別な制限はない。例えば、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、プロピレンと他のαオレフインとの二〜三元共重合体、ナイロン−6、ナイロン−66、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリ(エチレンテレフタレ−ト−co−イソフタレ−ト)、ポリエステルエラストマ−、フッソ系樹脂、ポリフエニレンサルフアイド等、及び前記樹脂の混合樹脂等が使用出来る。
【0011】
不織布がレギュラ−繊維からなる場合、上記熱可塑性樹脂をスパンボンド法等で長繊維を紡糸し、ウエブを熱融着処理等をし不織布化した物が使用できる。とりわけポリプロピレンスパンボンド法長繊維不織布やポリエチレンスパンボンド法長繊維不織布、ポリエチレンテレフタレ−トスパンボンド長繊維不織布不織布等が、繊維同士の熱融着性、不織布の軽量性、不織布の可とう性等の点で好ましく使用できる。
【0012】
不織布が複合長繊維からなる場合、前記熱可塑性樹脂の各種組み合わせによる複合長繊維不織布が使用できる。特に繊維同士の熱融着性及び、不織布と後記発泡樹脂シ−トとの熱融着性等の点で、融点差が10℃以上あるような二種以上の熱可塑性樹脂の組み合わせで、且つ低融点樹脂が繊維表面の少なくとも一部を形成する複合長繊維からなる不織布が好ましい。このような不織布は後記複合スパンボンド法で製造できる。該複合長繊維は鞘芯形、並列形、偏心鞘芯形、海島形、多分割形等の繊維が何れも使用出来る。複合長繊維の熱可塑性樹脂の組み合わせは、少なくとも二種あれば良い。例えば、高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、線状低密度ポリエチレン/ポリプロピレン、プロピレン・エチレン共重合体/ポリプロピレン、プロピレン・エチレン・ブテン−1共重合体/ポリプロピレン、線状低密度ポリエチレン/ポリエチレンテレフタレ−ト、プロピレン・エチレン共重合体/ポリエチレンテレフタレ−ト、ポリ(エチレンテレフタレ−ト−co−イソフタレ−ト)/ポリエチレンテレフタレ−ト等の組み合わせの繊維が例示できる。
【0013】
該複合長繊維の低融点樹脂と高融点樹脂の複合比は低融点樹脂が10〜90重量%高融点樹脂が90〜10重量%、好ましくは低融点樹脂が20〜80重量%高融点樹脂が80〜20重量%、更に好ましくは低融点樹脂が30〜70重量%高融点樹脂が70〜30重量%である。該複合繊維の低融点樹脂が10重量%未満の場合繊維同士の融着が不足し、後記積層不織布が引裂強度等が優れた物が得られない。
【0014】
不織布が混繊スパンボンド法長繊維不織布の場合、繊維同士の熱融着性及び、不織布と後記発泡樹脂シ−トとの熱融着性等の点で、融点差が10℃以上であるような樹脂を含む二種以上の熱可塑性繊維の組み合わせからなる混繊長繊維からなる不織布が好ましく使用できる。このような不織布は後記混繊スパンボンド法で製造できる。混繊長繊維の熱可塑性繊維の組み合わせは、少なくとも二種あれば良い。例えば、前記複合スパンボンド法長繊維不織布に例示したような各種熱可塑性樹脂の組み合わせが何れも可能である。とりわけ高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、線状低密度ポリエチレン/ポリエチレンテレフタレ−ト、プロピレン・エチレン・ブテン−1共重合体/ポリプロピレン等の組み合わせの混繊繊維が例示出来る。
混繊比は、低融点熱可塑性繊維が10〜90重量%、高融点熱可塑性繊維が90〜10重量%で、好ましくは低融点熱可塑性繊維が20〜80重量%高融点熱可塑性繊維が80〜20重量%、更に好ましくは低融点熱可塑性繊維が30〜70重量%高融点熱可塑性繊維が70〜30重量%である。該混繊繊維において、低融点熱可塑性繊維が10重量%未満の場合繊維同士の融着が不足し、後記積層不織布シ−トが引裂強度等の優れた物が得られない。又低融点熱可塑性繊維が90重量%を超えると熱風循環法等で熱融着不織布を製造する際、繊維が溶融膜状化或いは液滴化し、硬い不織布になり易い。又、不織布に皺等が出来易い。又不織布と後記発泡シ−トを積層後、両層を融着する熱処理で、繊維が溶融膜状化し不織布積層シ−トが硬くなつたり、不織布積層シ−トに皺が発生する等の問題がある。
【0015】
本発明の積層不織布に使用される不織布は目付けが10〜1000g/m2の物である。目付けが10g/m2未満の場合、引裂強度や引張強度等が優れた積層シ−トが得られない。又1000g/m2を超えると、積層シ−トが柔軟性が劣り、ロ−ル巻き不可能になる、軽量性に劣る等の問題がある。又同様の理由及び、軽量性、経済性等の点で目付けが15〜200g/m2の物が好ましく用いられる。不織布目付けが200〜1000g/m2の物は建築用断熱材等に使用される。又不織布目付け20g/m2換算時の引裂強度が縦横共に0.2kg以上あり、且つ引張強度が縦横共に0.7kg/5cm以上ある不織布が好ましい。
又不織布は、繊維同士が融着された物であれば良い。融着処理は熱風循環型加熱機、スル−エア−加熱機、エンボスロ−ル熱圧着機、フラツトロ−ル熱圧着機、超音波熱処理機、及びそれを組み合わせた装置等が使用できる。又この不織布は単層構造の不織布のみならず、多層構造の不織布も使用出来る。例えば第一層と第二層で繊度が異なる不織布や目付け等が異なる不織布等の積層不織布等が例示出来る。又第一層が複合スパンボンド不織布で、第二層がカ−ド法短繊維不織布等のようにその層で不織布の種類が異なるもの等が例示出来る。
【0016】
本発明の積層不織布に使用される発泡樹脂シ−トは、熱可塑性樹脂が発泡処理された空隙率85〜99%のシ−トである。又熱可塑性樹脂に特別な制限はない。例えば前記不織布に例示したようなポリオレフイン系樹脂、ポリエステル系熱可塑性樹脂、ポリアミド系熱可塑性樹脂等の熱可塑性樹脂が使用出来る。とりわけポリオレフイン系樹脂が軽量であるため好ましく使用できる。
なお本発明では発泡樹脂シ−トの空隙率は後記不織布との積層化後の空隙率を言う。この空隙率は使用する最終用途により異なり、包装材の場合85〜98%、断熱材の場合85〜99%である。とりわけ空隙率86〜99%のシ−トが各種用途に好ましく使用される。
【0017】
該発泡樹脂シ−トは厚みが特に限定されない。しかし、不織布積層シ−トの引裂強度、可とう性、軽量性、経済性等の点で厚みが0.02〜70mmであれば良い。該厚みは好ましくは0.10〜35mm、更に好ましくは1.0〜30mmである。厚みが0.02mm未満の場合、前記引裂強度が低いという問題以外更に、発泡によりシ−トがフイブリル化したり、高空隙率のシ−トが得られにくいという問題がある。又厚みが70mmを超えると、可とう性、経済性等の点で問題がある。
【0018】
又発泡樹脂シ−トは発泡処理が、如何なる製法で製造された物であつても良い。例えば溶融製膜時に発泡剤を添加する方法、ガス圧入法、吸水性樹脂等を添加する方法等がある。該発泡剤として、アゾジカルボンアミド、トリヒドラジノトリアジン、アゾビスイソブチロニトリル、p−トルエンスルホニルセミカルバジド、炭酸水素ナトリウム、炭酸水素アンモニウム、Ba−アゾジカルボキシレ−ト、N,N’−ジニトロソペンタメチレンテトラミン等が例示できる。又水等を添加する事も可能である。又ポリビニルアルコ−ル、澱粉等を添加する方法、水等を含浸させた多孔質無機物等を添加する方法等がある。ガス圧入法では、ブタン、ペンタン、炭酸ガス、空気、窒素等のガスが使用できる。
又発泡セルの直径や形状等は特に限定されない。発泡セルの形状は、略球形、その両端部が丸みのある円柱形、その断面が略楕円形等を有する物、何れであつても良い。又この発泡セルが一個ずつ独立した物と他の発泡セルが複雑な形状に連通した物等何れであつてもよく、又発泡セルの一部がシ−トの表面に開裂した物等であつても良い。この発泡セルは通常直径0.5μm〜5mm程度である。又この発泡樹脂シ−トは、顔料、難燃剤、耐光剤、酸化防止剤等の改質剤が混合及び又は処理されていても良い。
【0019】
本発明の不織布積層シ−トは、前記不織布と発泡樹脂シ−トを積層し、熱処理し、少なくともその一方を熱融着する事により得られる。又本発明の不織布積層シ−トは、積層状態でかつ目付け20g/m2換算の引裂強度や、引張強度等の物性が前述したような数値のものであれば良い。
【0020】
該積層構造は少なくとも二層構造であれば良く、二〜六層であればよい。
しかし大抵の用途には二〜四層で十分である。例えば不織布/発泡樹脂シ−ト、不織布/発泡樹脂シ−ト/不織布、発泡樹脂シ−ト/不織布/発泡樹脂シ−ト等が例示出来る。又不織布や発泡樹脂シ−トがそれぞれ複数枚使用された場合、その一方の不織布や発泡樹脂シ−ト等が異なる種類の物を用いる事が出来る。勿論、両方ともを複数種のものを用いてもよい。不織布が二層以上ある物や、発泡樹脂シ−トが比較的空隙率が低い物等を積層した場合、引裂強度や引張強度等が高くなる。又、積層時の熱処理条件を高温とする事により、引裂強度や引張強度等が高くなる。
又熱処理機は前記不織布の融着処理に用いられるいずれの装置も使用できる。不織布の低融点繊維が融着する温度以上の温度で加熱するか、又は発泡樹脂シ−トが融着する温度以上で加熱し、その両層を融着するのである。
【0021】
本発明の不織布積層シ−トは、その不織布に用いられた熱可塑性繊維と発泡樹脂シ−トに用いられた熱可塑性樹脂で融点差が50℃以下の組み合わせからなるシ−トの場合、両層が強く融着するので剥離しにくい物が得られる。ここで融点差は、熱可塑性繊維と発泡樹脂シ−トが実質的に融着に寄与する繊維や該繊維中の低融点樹脂等の融点差をいう。長繊維がレギュラ−長繊維の場合その繊維の融点で、融点差がある鞘芯形、並列形等の複合長繊維の場合低融点樹脂の融点を言う。又融点に差がある二種の熱可塑性樹脂からなる混繊長繊維の場合、その低融点長繊維の融点を言う。このような具体例として、不織布がポリエチレン/ポリプロピレン鞘芯形複合スパンボンド法長繊維不織布を用いた場合、組み合わせる発泡樹脂シ−トが、低密度ポリエチレン発泡樹脂シ−トや、線状低密度ポリエチレン発泡樹脂シ−トや、高密度ポリエチレン発泡シ−トや、ポリプロピレン発泡シ−ト、プロピレン・エチレン共重合体発泡シ−ト、ポリスチレン発泡シ−ト等が例示出来る。
【0022】
本発明の不織布積層シ−トは、スパンボンド法ウエブと発泡樹脂シ−トを積層し、熱処理し繊維同士の熱融着及び不織布と発泡シ−トの融着が同時にされた物であっても良い。又一旦熱処理し繊維同士が融着され不織布状になつた物を、発泡樹脂シ−トの製造工程に組み込んで、その両層を発泡樹脂の発砲の際の発熱で融着しても良い。又スパンボンド法ウエブを、発泡樹脂シ−トの製造工程に組み込んで、繊維同士の融着による不織布化と両層の融着を同時にしても良い。要するに、積層化後に、繊維同士が融着し不織布層を形成しているものであれば良い。
【0023】
本発明のシートは引張強度、引裂強度が大であるとともに断熱性、クッション性、軽量性等に優れたものである。従って、包装用材料、建設用材料、各種断熱材、遮音材、農業用材料等として用いることができる。ロ−ル巻きされた物は、容易に持ち運び等が可能であり、使用すべき場所で巻き戻して使用可能である。この積層シ−トはそのまま或いは所定の立体形状に成型し包装材料として使用される。軽量であるので建設用断熱材等として施工現場で所定のサイズに切断等をし、又は、切断せずに、床、壁、他の部位等に施工し断熱材や、遮音材、結露防止材等として使用できる。更にバツグ等の資材、農業用カバ−材等の資材等に使用される。
【0024】
【実施例】
以下実施例で本発明を説明する。なお各例で不織布等の物性の評価は以下の通りである。
引裂強度:5×25cmの試料を3枚採取し、短辺の中央に片端から10cmの切れ目を入れ、引張強度試験機を用い、試験片の各舌片をつかみ間隔10cmのクランプにつかみ、引っ張り速度10cm/分の条件で引き裂き、その最大荷重を測定する。3個の平均値を算出する。それぞれ縦方向、及び横方向の引裂強度を測定した(単位kgf)。
【0025】
引張強度:5×20cmの試験片を5枚採取し、引張強度試験機を用い、つかみ間隔10cm、引っ張り速度10cmの条件で引っ張り、切断時の強さを測定する。5個の平均値を算出する。それぞれ縦方向、及び横方向の引張強度を測定した(単位kgf/5cm)。
【0026】
厚み:厚み測定機を用い、2g/cm2の荷重を加えた時の試験片の厚みを測定した(単位mm)。
【0027】
発泡樹脂シ−トの空隙率:厚み、目付け等を測定し、下記の式で算出した。
空隙率(%)={(V−W/ρ)/V}×100
V:発泡樹脂シ−ト1m2 の体積(ml)
W:発泡樹脂シ−トの目付け(シート面積1m2当たりの重量(g))
ρ:樹脂の密度(g/ml)
【0028】
可とう性:不織布積層シ−トを、幅10cm、長さ30cmに切りとる。この試験片を外径94mmの紙製の円筒状の芯に人間が手で巻き付ける。この時の巻易さを以下の基準で判定した。
人間が片手で容易に巻き付ける事が可能である場合、可とう性が「良」と判定し、それ以外であつた場合「不良」と判定した。
【0029】
実施例1
複合スパンボンド法長繊維不織布と発泡ポリエチレンシ−トを積層した二層構造の積層シ−トを製造した。
使用した不織布は、鞘成分が線状低密度ポリエチレンで芯成分がポリプロピレンからなる複合スパンボンド法長繊維不織布であつた。長繊維は単糸繊度が3.5d/fであつた。この不織布は凸部面積16%のエンボスロ−ルで熱圧着された目付け22g/m2の不織布であつた。この不織布は熱圧着部以外も所々に繊維同士の融着がある不織布であつた。
【0030】
使用した発泡樹脂シ−トは、低密度ポリエチレンに発泡剤(アゾジカルボンアミド)が混合され、溶融製膜化された発泡樹脂シ−トであつた。このシ−トは目付け25g/m2、厚み1.40mm、空隙率98.1%であつた。このシ−トは無数の発泡セルがあり、該発泡によりシ−トが白色状であつた。顕微鏡観察によると、発泡セルは略楕円状で長径が0.1〜2.1mmのセルが多数観察された。
【0031】
前記不織布を熱風循環型加熱機を用い、温度140℃で加熱し、直ちに前記発泡樹脂シ−トに積層し、更に2個の金属フラツトロ−ル(温度120℃/26℃)の間でその不織布層を高温ロ−ル側とし圧着し、その両層が融着し一体化した積層シ−トを得た。なおテフロン製剥離シ−トを不織布に積層し、熱圧着処理した。そのあと該テフロンシ−トは剥離除去した。
該不織布積層シ−トは、目付けが47g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.72kgf、横方向0.68kgf、引張強度が縦方向3.21kgf/5cm、横方向3.01kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が若干下がり98.0%であつた。又この不織布積層シ−トは可とう性が良であつた。又発泡樹脂シ−ト単独の物に比べ引裂強度や引張強度等が格段に向上した。
この積層シ−トを手で揉んだところ剥離しにくい物であつた。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0032】
表1.不織布の物性等

Figure 0004200571
上記表の記号等の説明
LLDPE:線状低密度ポリエチレン
HDPE:高密度ポリエチレン
PET:ポリエチレンテレフタレ-ト
PP:ポリプロピレン
【0033】
表2.発泡樹脂シ−トの物性
Figure 0004200571
上記表の記号等の説明
LDPE:低密度ポリエチレン、密度0.940g/cm3
HDPE:高密度ポリエチレン、密度0.957g/cm3
引裂強度:単位kgf (目付け換算なし)
引張強度:単位kgf/5cm(目付け換算なし)
【0034】
表3.積層シ−トの物性等
Figure 0004200571
上記表の記号等の説明
空隙率は積層後の発泡樹脂シ−トの空隙率を示す。
引裂強度:単位kgf(目付け20g/m2換算値)
引張強度:単位kgf/5cm(目付け20g/m2換算値)
【0035】
実施例2
複合スパンボンド法長繊維不織布と発泡ポリエチレンシ−トを積層した二層構造の積層シ−トを製造した。
使用した不織布は、鞘成分が高密度ポリエチレン93重量%とポリプロピレン7重量%の混合物で、芯成分がポリプロピレンからなる複合スパンボンド法長繊維不織布であつた。長繊維は単糸繊度が3.0d/fであつた。この不織布は凸部面積14%のエンボスロ−ルで熱圧着された目付け28g/m2、の不織布であつた。この不織布は熱圧着部以外も所々に繊維同士の融着がある不織布であつた。
【0036】
使用した発泡樹脂シ−トは、低密度ポリエチレンに発泡剤が混合され、溶融製膜化された発泡樹脂シ−トであつた。このシ−トは目付け144g/m2、厚み2.35mm、空隙率93.6%であつた。このシ−トは無数の発泡セルがあり、該発泡によりシ−トが白色状であつた。顕微鏡観察によると、発泡セルは略楕円状で長径が0.1〜3.4mmのセルが多数観察された。
【0037】
前記不織布を前記実施例1同様熱風循環型乾燥機を用い、温度146℃で加熱し、直ちに前記発泡樹脂シ−トに積層し、更に金属フラツトロ−ルで圧着し、その両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は120℃/26℃であつた。なおテフロンシ−トは除去した。
該不織布積層シ−トは、目付けが172g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.66kgf、横方向0.54kgf、引張強度が縦方向3.05kgf/5cm、横方向2.86kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が若干下がり93.2%であつた。又この不織布積層シ−トは可とう性が良であつた。又発泡樹脂シ−ト単独の物に比べ引裂強度や引張強度等が格段に向上した。
この積層シ−トを手で揉んだところ剥離しにくい物であつた。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0038】
実施例3
混繊スパンボンド法長繊維不織布と発泡ポリエチレンシ−トを積層した二層構造の積層シ−トを製造した。
使用した不織布は、同一の紡糸口金に異なる成分の紡糸孔が孔数比50/50で分散して穿孔された混繊紡糸口金から異なる繊維が吐出し、紡糸直後に均一に繊維が混合するタイプの混繊型紡糸口金から得られた物であつた。この不織布は線状低密度ポリエチレンが50重量%、ポリエチレンテレフタレ−トが50重量%均一に混繊された不織布であつた。長繊維は単糸繊度が2.1d/f(2種の平均値)であつた。この不織布は凸部面積14%のエンボスロ−ルで熱圧着された目付け35g/m2の不織布であつた。この不織布は熱圧着部以外も所々に融着のある不織布であつた。
【0039】
前記混繊スパンボンド法長繊維不織布を前記実施例1同様熱風循環型加熱機を用い、温度135℃で加熱し、直ちに前記実施例1に同じ発泡樹脂シ−トに積層し、更に金属フラツトロ−ルで圧着処理し、その両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は110℃/26℃であつた。なおテフロンシ−トは除去した。
該不織布積層シ−トは、目付けが47g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.39kgf、横方向0.29kgf、引張強度が縦方向2.25kgf/5cm、横方向2.04kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が若干下がり97.9%であつた。又この不織布積層シ−トは可とう性が良であつた。又発泡樹脂シ−ト単独の物に比べ引裂強度や引張強度等が格段に向上した。
この積層シ−トを手で揉んだところ剥離しにくい物であつた。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0040】
実施例4
複合スパンボンド法長繊維不織布と発泡ポリエチレンシ−トを積層した二層構造の積層シ−トを製造した。但し本実施例では熱融着処理前の長繊維ウエブを使用した。このウエブは、前記実施例1に同じ熱処理前の長繊維ウエブであつた。ウエブは単糸繊度が2.2d/fで、目付け24g/m2、であつた。
使用した発泡樹脂シ−トは、前記実施例1に同じ低密度ポリエチレン発泡シ−トであつた。
【0041】
前記紡糸後の複合長繊維ウエブを熱風循環型加熱機を用い温度138℃で加熱し、直ちに前記実施例1に同じ発泡樹脂シ−トに積層し、更に金属フラツトロ−ルで圧着処理し、その両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は105℃/26℃であつた。なお複合長繊維ウエブ側を金属フラツトロ−ルの高温側とした。熱圧着処理後テフロンシ−トは除去した。この熱処理で繊維同士の融着、及び不織布と発泡シ−トが融着により一体化した積層シ−トを得た。
該不織布積層シ−トは、目付けが49g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.48kgf、横方向0.41kgf、引張強度が縦方向2.46kgf/5cm、横方向2.01kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が同じで98.0%であつた。又この不織布積層シ−トは可とう性が良であつた。又発泡樹脂シ−ト単独の物に比べ引裂強度や引張強度等が格段に向上した。
この積層シ−トを手で揉んだところ剥離しにくい物であつた。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0042】
実施例5
複合スパンボンド法長繊維不織布を中間層とし、発泡ポリエチレンシ−トをその外層とする三層構造の積層シ−トを製造した。
前記実施例2に同じ不織布を熱風循環型加熱機を用い、温度140℃で加熱し、直ちにその両側に前記実施例2に同じ発泡シ−トを積層し、その後金属フラツトロ−ルで圧着処理しその両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は80℃/80℃であつた。なおテフロンシ−トは使用しなかつた。
該不織布積層シ−トは、目付けが316g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.29kgf、横方向0.25kgf、引張強度が縦方向2.16kgf/5cm、横方向1.87kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が若干小となり92.5%であつた。又この不織布積層シ−トは可とう性が良であつた。又発泡樹脂シ−ト単独の物に比べ引裂強度や引張強度等が格段に向上した。この積層シ−トを手で揉んだところ剥離しにくい物であつた。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0043】
比較例1
繊維同士が融着していないニ−ドルパンチ不織布と発泡樹脂シ−トを積層した二層構造の積層シ−トを製造した。
使用した不織布は目付け38g/m2のレ−ヨンニ−ドルパンチ不織布であつた。レ−ヨンは単糸繊度1.5d/f、繊維長38mm、ジグザグ状の捲縮が19山/25mmの繊維であつた。
【0044】
レ−ヨン不織布と前記実施例1に記載した物と同じ発泡樹脂シ−トを積層し、前記実施例1同様の方法で熱圧着処理した。レ−ヨン不織布を熱風循環型加熱機を用い温度135℃で加熱し、直ちに前記実施例1に同じ発泡樹脂シ−トに積層し、更に金属フラツトロ−ルで圧着処理し、その両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は120℃/26℃であつた。その両層が融着され一体化した積層シ−トを得た。なおテフロンシ−トは除去した。
該不織布積層シ−トは、目付けが63g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.09kgf、横方向0.08kgf、引張強度が縦方向2.16kgf/5cm、横方向1.87kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が若干小となり96.1%であつた。又この不織布積層シ−トは可とう性が良であつた。この不織布積層シ−トは引裂強度、引張強度等が何れも低い物であつた。又積層シ−トの不織布層が毛羽の多い物であつた。
この積層シ−トを手で揉んだところ容易に剥離した。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0045】
比較例2
繊維同士が融着していないニ−ドルパンチ不織布と発泡樹脂シ−トを積層した二層構造の積層シ−トを製造した。
使用した不織布は前記比較例1に記載した物と同じレ−ヨンを用いたニ−ドルパンチ不織布であつた。
レ−ヨン不織布と前記実施例2に記載した物と同じ発泡樹脂シ−トを積層し、前記実施例1同様の方法で熱圧着処理した。レ−ヨン不織布を熱風循環型加熱機を用い温度150℃で加熱し、直ちに前記実施例2に同じ発泡樹脂シ−トに積層し、更に金属フラツトロ−ルで圧着処理し、その両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は125℃/26℃であつた。その両層が融着され一体化した積層シ−トを得た。テフロンシ−トは除去した。
該不織布積層シ−トは、目付けが182g/m2であつた。又目付け20g/m2換算時の物性が、引裂強度が縦方向0.08kgf、横方向0.07kgf、引張強度が縦方向0.61kgf/5cm、横方向0.54kgf/5cmであつた。又積層後の発泡樹脂シ−トは積層前の物に比べ、空隙率が若干下がり92.2%であつた。又この不織布積層シ−トは可とう性が良であつた。この不織布積層シ−トは引裂強度、引張強度等が何れも低い物であつた。又積層シ−トの不織布層が毛羽立ちの多い物であつた。この積層シ−トを手で揉んだところ容易に剥離した。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0046】
比較例3
発泡していない高密度ポリエチレンシ−トと発泡樹脂シ−トを積層した二層構造の積層シ−トを製造した。
使用した発泡なしの高密度ポリエチレンシ−トは厚み2.0mm、目付け2089g/m2のシ−トで、発泡樹脂シ−トは前記実施例2に記載した物と同じシ−トであつた。前記実施例1同様の方法で熱圧着処理した。但し熱風循環型加熱機は使用しなかつた。
前記発泡なしの高密度ポリエチレンシ−トと発泡樹脂シ−トを積層し、前記実施例1に同じ金属フラツトロ−ル熱圧着装置を用い、その両層が融着し一体化した積層シ−トを得た。金属フラツトロ−ルの温度は135℃/26℃であつた。又高温ロ−ル側を高密度ポリエチレンシ−ト側とし、テフロン剥離シ−トを積層し、熱圧着処理した。その後テフロンシートは除去した。
該不織布積層シ−トは、目付けが2233g/m2であつた。又引裂強度や引張強度等の測定は中止した。又この不織布積層シ−トは軽量性に劣りしかも可とう性が不良であつた。
不織布、発泡樹脂シ−ト、不織布積層シ−ト等の物性等を表1〜3に示す。
【0047】
【発明の効果】
前述したように本発明の不織布積層シ−トは、繊維同士の交点が融着された不織布と、発泡樹脂シ−トを積層して得られたものであるため、引裂強度や引張強度等が大であるとともに、可とう性のある積層シ−トである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sheet that is rich in lightness, flexibility, etc., in which a nonwoven fabric and a foamed resin sheet are laminated in a multilayer structure. More specifically, the present invention relates to a sheet having a multilayer structure excellent in tear strength, tensile strength, etc., in which a heat-bonded nonwoven fabric and a foamed resin sheet are laminated in a multilayer structure and fused and integrated on the laminated surface.
[0002]
[Prior art]
Foamed polyethylene sheets, foamed polypropylene sheets, and the like are excellent in lightness, bulkiness, heat insulation, and the like, and are used in various packaging materials and heat insulating materials for buildings. However, this foamed resin sheet has a problem that the tear strength, the tensile strength, etc. are small because micro foam cells exist randomly and in large quantities. In particular, the foamed resin sheet has a problem that since the thermoplastic resin is stretched in the machine direction in the process of forming a melt into a film, it tends to tear in the longitudinal direction and has low lateral strength. As a means of improving tear strength, tensile strength, etc., the thickness of the sheet is increased or the expansion ratio is lowered, but the lightness and bulkiness are inferior, and the flexibility is deteriorated. However, there is a problem that the roll cannot be wound.
[0003]
Japanese Patent Application Laid-Open No. 7-68689 discloses a sheet in which a needle punched nonwoven fabric made of glass fiber and polypropylene fiber is laminated on both surfaces of a foamed resin sheet. JP-A-7-178859 discloses a sheet in which glass fiber or carbon fiber coated with a thermoplastic resin is laminated on a foamed resin sheet, and both layers are heat-sealed. It is disclosed. In any of the techniques disclosed above, since glass fiber is used, the bending strength and the flexural modulus of the laminated sheet are increased, but on the other hand, the lightness and flexibility are inferior. There's a problem. Therefore, such a nonwoven fabric laminated sheet is rolled up and stored in a long shape, and it is constructed to fit each bent portion at a construction site, a packaging site for various equipment, or the like. -There is a problem that a sheet wound around a reel cannot be used after being cut to a desired size.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and provides a laminated sheet of a nonwoven fabric excellent in lightness, flexibility, bulkiness and the like and a foamed resin sheet. Another object of the present invention is to provide a nonwoven fabric laminated sheet with improved tear strength and tensile strength in both the longitudinal and lateral directions.
[0005]
[Means for Solving the Problems]
The present invention has been studied based on the above and has solved the problems and has the following configuration.
(1)Thermoplastic composite spunbond long fiber or thermoplastic mixed spunbond long fiber10 to 1000 g / m in weight per unit2ofLong fiberWith non-woven fabricPolyolefin resin (excluding non-crosslinked propylene resin having long chain branching and drawdown property of 60 m / min or less), polyester resin or polyamide resinA foamed resin sheet having a porosity of 85 to 99% is laminated in a multilayer structure,The fusion of the long-fiber nonwoven fabric and the foamed resin sheet on the laminated surface is a thermal fusion of at least one of the resins.A nonwoven fabric laminated sheet having a tear strength of 0.2 kgf or more in both length and width, a tensile strength of 0.7 kgf / 5 cm or more in both length and width and having flexibility.
(2) A basis weight of 10 to 1000 g / m in which a thermoplastic composite spunbond method long fiber or a thermoplastic mixed fiber spunbond method long fiber is fused. 2 And a foamed resin sheet having a porosity of 85 to 99% made of polyethylene resin, polyester resin or polyamide resin are laminated in a multilayer structure, and on the laminated surface of the long fiber nonwoven fabric and the foamed resin sheet, Is a thermal fusion of at least one of the resins, the tear strength is 0.2 kgf or more in both length and width, the tensile strength is 0.7 kgf / 5 cm or more in both length and width, and has flexibility. A nonwoven fabric laminated sheet.
(3)The long fibers that make up the long fiber nonwoven fabricAnd a low melting point resin having a melting point difference of 10 ° C. or more and a high melting point resin, and the low melting point resin forms at least a part of the fiber surface.Thermoplastic composite spunbond fiber(1)Or 2 (term)The nonwoven fabric laminated sheet described in 1.
(4)The long fibers that make up the long fiber nonwoven fabric10 to 90% by weight of low melting long fibers having a melting point difference of 10 ° C. or more and 90 to 10% by weight of high melting long fibers were mixed.Thermoplastic mixed fiber spunbonded long fiberItem (1), which is a mixed fiberOr (2)The nonwoven fabric laminated sheet described in 1.
(5) The nonwoven fabric laminate sheet according to any one of (1) to (4), wherein the foamed cell of the foamed resin sheet has a round columnar shape or an elliptical shape at both ends.
(6) The foamed resin sheet is a sheet made of polyolefin resin (1) toItem (5)AnywayOrThe nonwoven fabric laminated sheet described in 1.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the nonwoven fabric laminated sheet of the present invention, the total thickness, total weight, etc. are not particularly limited. However, in terms of the tear strength, flexibility, lightness, economy, etc. of the nonwoven fabric laminated sheet, the total thickness is larger by the thickness of the nonwoven fabric alone laminated to the thickness of the foamed resin sheet alone. used. Considering the thickness of the nonwoven fabric alone, the total thickness may be 0.03 to 90 mm.
In addition, the total weight is preferably as small as possible in terms of lightness, economy, flexibility, etc., but 20 to 3000 g / m.2If it is good.
[0007]
The nonwoven fabric laminated sheet of the present invention has a tear strength of 0.2 kgf or more in both length and width and a tensile strength of 0.7 kgf / 5 cm in both length and width. This physical property is 20 g / m2This is the value when converted to.
The tear strength is preferably 0.2 kgf or more, more preferably 0.25 kgf or more. When the tear strength is less than 0.2 kgf, when it is used as a heat insulating material for building, or when used as a packaging material or the like for an article or the like having a complicated convex portion, it is easy to tear near the convex portion. The tensile strength is preferably 0.7 kg / 5 cm or more, more preferably 0.8 kgf / 5 cm or more. When the tensile strength is less than 0.7 kgf / 5 cm, the sheet easily breaks with a slight tension when it is applied to a wall or attic as a heat insulating material for construction. It is difficult to wrap an article or the like in a state of being in close contact with the article under tension.
[0008]
The nonwoven fabric used in the present invention has a basis weight of 10 to 1000 g / m in which thermoplastic fibers are fused.2This is a non-woven fabric. As this thermoplastic fiber, a regular fiber or a composite fiber obtained by fiberizing a thermoplastic resin can be used. Also, any of mixed fibers of thermoplastic fibers, mixed fibers of thermoplastic fibers and other fibers, etc. can be used. Further, as this fiber, any of a short fiber having a fiber length of 3 to 130 mm and a substantially endless long fiber can be used. However, in the case of the present invention, long fibers are preferably used in order to improve physical properties such as tear strength. Examples of the long fibers include tow and spunbond long fibers. In particular, composite spunbonded long fiber nonwoven fabrics, mixed fiber spunbonded long fiber nonwoven fabrics, and the like can be preferably used because they can improve the physical properties such as the tear strength in the machine direction and the transverse direction in a well-balanced manner.
[0009]
Further, there is no special restriction on the fineness, but the nonwoven fabric laminated sheet after lamination of the nonwoven fabric and the foamed resin sheet described later is intended to improve tear strength, tensile strength, flexibility, etc. A fiber having a fineness of 0.1 to 100 d / f can be used. In particular, a non-woven fabric using fibers having a fineness of 0.2 to 10 d / f can provide a non-woven fabric laminate sheet having good flexibility.
[0010]
The thermoplastic resin used for the thermoplastic fiber is not particularly limited as long as it is a melt-spinnable thermoplastic resin. For example, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, binary to ternary copolymer of propylene and other α-olefin, nylon-6, nylon-66, polyethylene terephthalate, polybutylene For example, terephthalate, poly (ethylene terephthalate-co-isophthalate), polyester elastomer, fluorine resin, polyphenylene sulfide, and mixed resins of the above resins can be used.
[0011]
When the nonwoven fabric is composed of regular fibers, a product obtained by spinning the above-mentioned thermoplastic resin with a spunbond method or the like and subjecting the web to a heat fusion treatment or the like to form a nonwoven fabric can be used. Polypropylene spunbonded long-fiber nonwoven fabric, polyethylene spunbonded long-fiber nonwoven fabric, polyethylene terephthalate spunbonded long-fiber nonwoven fabric, etc. in particular are points such as heat-fusability between fibers, lightweight of nonwoven fabric, and flexibility of nonwoven fabric. Can be preferably used.
[0012]
When the nonwoven fabric is composed of composite long fibers, composite long fiber nonwoven fabrics using various combinations of the thermoplastic resins can be used. In particular, a combination of two or more thermoplastic resins having a melting point difference of 10 ° C. or more in terms of heat-fusibility between fibers and heat-fusibility between a nonwoven fabric and a foamed resin sheet described later, and Nonwoven fabrics composed of composite long fibers in which the low melting point resin forms at least part of the fiber surface are preferred. Such a nonwoven fabric can be produced by the composite spunbond method described later. As the composite long fiber, any of sheath-core, parallel, eccentric sheath-core, sea-island, and multi-segment fibers can be used. There may be at least two types of combinations of the composite long fiber thermoplastic resins. For example, high density polyethylene / polypropylene, low density polyethylene / polypropylene, linear low density polyethylene / polypropylene, propylene / ethylene copolymer / polypropylene, propylene / ethylene / butene-1 copolymer / polypropylene, linear low density polyethylene / Examples of the fibers include combinations of polyethylene terephthalate, propylene / ethylene copolymer / polyethylene terephthalate, poly (ethylene terephthalate-co-isophthalate) / polyethylene terephthalate, and the like.
[0013]
The composite ratio of the low melting point resin and the high melting point resin of the composite long fiber is 10 to 90% by weight of the low melting point resin and 90 to 10% by weight of the high melting point resin, preferably 20 to 80% by weight of the low melting point resin. 80 to 20% by weight, more preferably 30 to 70% by weight of the low melting point resin and 70 to 30% by weight of the high melting point resin. When the low melting point resin of the composite fiber is less than 10% by weight, the fusion between the fibers is insufficient, and a laminated nonwoven fabric having excellent tear strength cannot be obtained.
[0014]
When the non-woven fabric is a mixed fiber spunbonded long-fiber non-woven fabric, the difference in melting point is 10 ° C. or more in terms of heat-fusibility between fibers and heat-fusibility between the non-woven fabric and the foamed resin sheet described later. A non-woven fabric made of a mixed filament long fiber comprising a combination of two or more kinds of thermoplastic fibers containing a suitable resin can be preferably used. Such a nonwoven fabric can be manufactured by the mixed fiber spunbond method described later. There may be at least two types of combinations of the thermoplastic fibers of the mixed fiber. For example, any combination of various thermoplastic resins as exemplified in the composite spunbonded long fiber nonwoven fabric is possible. In particular, mixed fibers of combinations of high density polyethylene / polypropylene, low density polyethylene / polypropylene, linear low density polyethylene / polyethylene terephthalate, propylene / ethylene / butene-1 copolymer / polypropylene and the like can be exemplified.
The blend ratio is 10 to 90% by weight for low-melting thermoplastic fibers, 90 to 10% by weight for high-melting thermoplastic fibers, preferably 20 to 80% by weight for low-melting thermoplastic fibers and 80 for high-melting thermoplastic fibers. -20% by weight, more preferably 30-70% by weight of low-melting point thermoplastic fibers and 70-30% by weight of high-melting point thermoplastic fibers. In the mixed fiber, when the low-melting point thermoplastic fiber is less than 10% by weight, the fusion between the fibers is insufficient, and the laminated nonwoven fabric sheet described later cannot obtain an excellent product such as tear strength. On the other hand, if the low melting point thermoplastic fiber exceeds 90% by weight, when the heat-bonded nonwoven fabric is produced by a hot air circulation method or the like, the fiber is likely to be melted into a film or droplets to become a hard nonwoven fabric. In addition, wrinkles and the like are easily formed on the nonwoven fabric. In addition, after laminating the nonwoven fabric and the foam sheet described later, the heat treatment of fusing both layers causes the fibers to melt into a film and the nonwoven fabric laminated sheet becomes hard, or the nonwoven fabric laminated sheet is wrinkled. There is.
[0015]
The nonwoven fabric used for the laminated nonwoven fabric of the present invention has a basis weight of 10 to 1000 g / m.2It is a thing. The basis weight is 10g / m2If it is less than 1, a laminate sheet having excellent tear strength, tensile strength, etc. cannot be obtained. 1000g / m2If it exceeds 1, the laminated sheet is inferior in flexibility, and roll winding becomes impossible, and there are problems such as inferior in lightness. In addition, the basis weight is 15 to 200 g / m in terms of the same reason, lightness and economy.2Are preferably used. Non-woven fabric weight is 200 to 1000 g / m2These are used for building insulation. Nonwoven fabric weight 20g / m2A non-woven fabric having a tear strength of 0.2 kg or more in both length and width and a tensile strength of 0.7 kg / 5 cm or more in both length and width is preferable.
Moreover, the nonwoven fabric should just be a thing by which the fiber was fuse | melted. For the fusing treatment, a hot air circulation type heater, a through-air heater, an embossing roll thermocompression bonding machine, a flat roll thermocompression bonding machine, an ultrasonic heat treatment machine, and a device combining them can be used. Moreover, this nonwoven fabric can use not only the nonwoven fabric of a single layer structure but the nonwoven fabric of a multilayer structure. For example, a laminated nonwoven fabric such as a nonwoven fabric having a different fineness between the first layer and the second layer or a nonwoven fabric having a different basis weight can be exemplified. Examples of the first layer are composite spunbonded nonwoven fabrics, and the second layer is a different type of nonwoven fabric, such as card-type short fiber nonwoven fabrics.
[0016]
The foamed resin sheet used for the laminated nonwoven fabric of the present invention is a sheet having a porosity of 85 to 99%, which is obtained by foaming a thermoplastic resin. There are no particular restrictions on the thermoplastic resin. For example, a thermoplastic resin such as a polyolefin resin, a polyester thermoplastic resin, or a polyamide thermoplastic resin exemplified for the nonwoven fabric can be used. In particular, the polyolefin resin can be preferably used because it is lightweight.
In the present invention, the porosity of the foamed resin sheet refers to the porosity after lamination with the nonwoven fabric described later. This porosity varies depending on the end use to be used, and is 85 to 98% for a packaging material and 85 to 99% for a heat insulating material. In particular, a sheet having a porosity of 86 to 99% is preferably used for various applications.
[0017]
The thickness of the foamed resin sheet is not particularly limited. However, the thickness of the nonwoven fabric laminated sheet may be 0.02 to 70 mm in terms of tear strength, flexibility, light weight, economy, and the like. The thickness is preferably 0.10 to 35 mm, more preferably 1.0 to 30 mm. When the thickness is less than 0.02 mm, in addition to the problem that the tear strength is low, there is a problem that the sheet is fibrillated by foaming or a sheet having a high porosity is difficult to obtain. On the other hand, if the thickness exceeds 70 mm, there is a problem in terms of flexibility, economy and the like.
[0018]
The foamed resin sheet may be a foamed material produced by any method. For example, there are a method of adding a foaming agent during melt film formation, a gas injection method, a method of adding a water-absorbing resin, and the like. Examples of the blowing agent include azodicarbonamide, trihydrazinotriazine, azobisisobutyronitrile, p-toluenesulfonyl semicarbazide, sodium hydrogen carbonate, ammonium hydrogen carbonate, Ba-azodicarboxylate, N, N′-di Examples thereof include nitrosopentamethylenetetramine. It is also possible to add water or the like. Further, there are a method of adding polyvinyl alcohol, starch and the like, a method of adding a porous inorganic material impregnated with water and the like. In the gas injection method, gases such as butane, pentane, carbon dioxide, air, and nitrogen can be used.
The diameter and shape of the foam cell are not particularly limited. The shape of the foam cell may be any of a substantially spherical shape, a cylindrical shape having rounded ends, and a shape having a substantially elliptical cross section. The foam cells may be independent one by one or the other foam cells may be connected in a complicated shape, or the foam cell may be partly cleaved on the surface of the sheet. May be. This foam cell is usually about 0.5 μm to 5 mm in diameter. The foamed resin sheet may be mixed and / or treated with a modifying agent such as a pigment, a flame retardant, a light proofing agent, and an antioxidant.
[0019]
The nonwoven fabric laminate sheet of the present invention is obtained by laminating the nonwoven fabric and the foamed resin sheet, heat-treating, and heat-sealing at least one of them. The nonwoven fabric laminated sheet of the present invention is in a laminated state and has a basis weight of 20 g / m.2The physical properties such as the converted tear strength and tensile strength may be those described above.
[0020]
The laminated structure may be at least a two-layer structure and may be two to six layers.
However, two to four layers are sufficient for most applications. For example, non-woven fabric / foamed resin sheet, non-woven fabric / foamed resin sheet / non-woven fabric, and foamed resin sheet / non-woven fabric / foamed resin sheet can be exemplified. When a plurality of non-woven fabrics and foamed resin sheets are used, it is possible to use a different type of non-woven fabric or foamed resin sheet. Of course, a plurality of types of both may be used. When a laminate having two or more layers of nonwoven fabric or a foamed resin sheet having a relatively low porosity is laminated, the tear strength, tensile strength and the like are increased. In addition, by setting the heat treatment conditions at the time of lamination to a high temperature, the tear strength, tensile strength, and the like are increased.
As the heat treatment machine, any apparatus used for fusion bonding of the nonwoven fabric can be used. Either heating is performed at a temperature equal to or higher than the temperature at which the low melting point fiber of the nonwoven fabric is fused, or heating is performed at a temperature equal to or higher than the temperature at which the foamed resin sheet is fused, and both layers are fused.
[0021]
The nonwoven fabric laminated sheet of the present invention is a sheet comprising a combination of the thermoplastic fiber used in the nonwoven fabric and the thermoplastic resin used in the foamed resin sheet and having a melting point difference of 50 ° C. or less. Since the layers are strongly fused, an object that is difficult to peel is obtained. Here, the melting point difference refers to a difference in melting point between a fiber in which a thermoplastic fiber and a foamed resin sheet substantially contribute to fusion, a low melting point resin in the fiber, and the like. When the long fiber is a regular long fiber, the melting point of the fiber is the melting point of the low melting point resin when the long fiber is a composite long fiber such as a sheath core type or a parallel type having a different melting point. Moreover, in the case of the mixed filament long fiber which consists of two types of thermoplastic resins with a difference in melting point, it says melting | fusing point of the low melting point long fiber. As a specific example, when the nonwoven fabric is a polyethylene / polypropylene sheath / core composite spunbonded long-fiber nonwoven fabric, the foamed resin sheet to be combined is a low-density polyethylene foamed resin sheet or a linear low-density polyethylene. Examples thereof include a foamed resin sheet, a high-density polyethylene foam sheet, a polypropylene foam sheet, a propylene / ethylene copolymer foam sheet, and a polystyrene foam sheet.
[0022]
The nonwoven fabric laminated sheet of the present invention is a product obtained by laminating a spunbonded web and a foamed resin sheet, heat-treating the fibers, and fusing the nonwoven fabric and the foamed sheet simultaneously. Also good. Alternatively, a product that is once heat-treated and the fibers are fused together to form a nonwoven fabric may be incorporated into the manufacturing process of the foamed resin sheet, and the two layers may be fused by heat generated during foaming of the foamed resin. Alternatively, a spunbonded web may be incorporated into the manufacturing process of the foamed resin sheet so that the nonwoven fabric is formed by fusing fibers and the two layers are fused simultaneously. In short, any fiber may be used as long as the fibers are fused to form a nonwoven fabric layer after lamination.
[0023]
The sheet of the present invention has high tensile strength and tear strength and is excellent in heat insulating properties, cushioning properties, lightweight properties, and the like. Therefore, it can be used as packaging materials, construction materials, various heat insulating materials, sound insulation materials, agricultural materials, and the like. The roll-wound object can be easily carried and can be used after being rewound at a place to be used. This laminated sheet is used as a packaging material as it is or after being molded into a predetermined three-dimensional shape. Because it is lightweight, it is cut to a predetermined size at the construction site as a heat insulating material for construction, etc., or it is applied to floors, walls, other parts without cutting, and heat insulating materials, sound insulation materials, anti-condensation materials Can be used as etc. Furthermore, it is used for materials such as bags and materials such as agricultural covers.
[0024]
【Example】
The following examples illustrate the invention. In each example, the physical properties of the nonwoven fabric and the like are evaluated as follows.
Tear strength: Take 3 samples of 5 x 25 cm, make a 10 cm cut from one end in the center of the short side, use a tensile strength tester, hold each tongue piece on the clamp with 10 cm gap, and pull Tear at a speed of 10 cm / min and measure the maximum load. The average value of 3 is calculated. The tear strength in the machine direction and the transverse direction was measured (unit kgf).
[0025]
Tensile strength: Five test pieces having a size of 5 × 20 cm are collected, and using a tensile strength tester, the sample is pulled under the conditions of a grip interval of 10 cm and a pulling speed of 10 cm, and the strength at the time of cutting is measured. The average value of 5 is calculated. The tensile strength in the machine direction and the transverse direction was measured (unit kgf / 5 cm).
[0026]
Thickness: 2 g / cm using a thickness measuring machine2The thickness of the test piece when a load of 1 mm was applied was measured (unit: mm).
[0027]
The porosity of the foamed resin sheet: thickness, basis weight, etc. were measured and calculated by the following formula.
Porosity (%) = {(V−W / ρ) / V} × 100
V: Foamed resin sheet 1 m2 Volume (ml)
W: basis weight of foamed resin sheet (sheet area 1 m2Per weight (g))
ρ: Resin density (g / ml)
[0028]
Flexibility: A non-woven laminate sheet is cut into a width of 10 cm and a length of 30 cm. This test piece is manually wound around a paper-made cylindrical core having an outer diameter of 94 mm. The ease of winding at this time was determined according to the following criteria.
When a human can easily wrap with one hand, the flexibility is determined as “good”, and when it is other than that, it is determined as “bad”.
[0029]
Example 1
A laminated sheet having a two-layer structure in which a composite spunbonded long-fiber nonwoven fabric and a foamed polyethylene sheet were laminated was produced.
The nonwoven fabric used was a composite spunbond long fiber nonwoven fabric in which the sheath component was linear low density polyethylene and the core component was polypropylene. The long fiber had a single yarn fineness of 3.5 d / f. This nonwoven fabric was thermo-compressed with an embossing roll with a convex area of 16%.2The non-woven fabric. This non-woven fabric was a non-woven fabric in which fibers were fused in some places other than the thermocompression bonding portion.
[0030]
The foamed resin sheet used was a foamed resin sheet obtained by mixing low-density polyethylene with a foaming agent (azodicarbonamide) and forming a melt into a film. This sheet has a basis weight of 25 g / m2The thickness was 1.40 mm and the porosity was 98.1%. This sheet had innumerable foamed cells, and the sheet was white due to the foaming. According to microscopic observation, the foamed cells were almost elliptical, and many cells having a major axis of 0.1 to 2.1 mm were observed.
[0031]
The non-woven fabric is heated at a temperature of 140 ° C. using a hot air circulation type heating machine, immediately laminated on the foamed resin sheet, and the non-woven fabric between two metal flat rolls (temperature 120 ° C./26° C.). The layers were pressure-bonded with the high-temperature roll side, and a laminated sheet in which both layers were fused and integrated was obtained. A Teflon release sheet was laminated on the nonwoven fabric and subjected to thermocompression treatment. Thereafter, the Teflon sheet was peeled off.
The nonwoven fabric laminated sheet has a basis weight of 47 g / m.2It was hot. 20g / m2Physical properties at the time of conversion were tear strength of 0.72 kgf in the longitudinal direction, 0.68 kgf in the transverse direction, tensile strength of 3.21 kgf / 5 cm in the longitudinal direction, and 3.01 kgf / 5 cm in the transverse direction. Also, the foamed resin sheet after lamination had a slightly lower porosity than that before lamination, and was 98.0%. This nonwoven fabric laminated sheet had good flexibility. In addition, the tear strength, tensile strength, and the like were remarkably improved as compared with the foam resin sheet alone.
When this laminated sheet was squeezed by hand, it was difficult to peel off.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0032]
Table 1. Nonwoven fabric properties, etc.
Figure 0004200571
Explanation of symbols in the above table
LLDPE: Linear low density polyethylene
HDPE: High density polyethylene
PET: Polyethylene terephthalate
PP: Polypropylene
[0033]
Table 2. Physical properties of foamed resin sheet
Figure 0004200571
Explanation of symbols in the above table
LDPE: Low density polyethylene, density 0.940 g / cmThree
HDPE: high density polyethylene, density 0.957 g / cmThree
Tear strength: kgf (no basis weight conversion)
Tensile strength: Unit kgf / 5cm (no basis weight conversion)
[0034]
Table 3. Physical properties of laminated sheets
Figure 0004200571
Explanation of symbols in the above table
The porosity indicates the porosity of the foamed resin sheet after lamination.
Tear strength: unit kgf (weight per unit area 20 g / m2Conversion value)
Tensile strength: Unit kgf / 5cm (weight per unit 20g / m2Conversion value)
[0035]
Example 2
A laminated sheet having a two-layer structure in which a composite spunbonded long-fiber nonwoven fabric and a foamed polyethylene sheet were laminated was produced.
The nonwoven fabric used was a composite spunbonded long-fiber nonwoven fabric in which the sheath component was a mixture of 93% by weight high-density polyethylene and 7% by weight polypropylene, and the core component was polypropylene. The long fiber had a single yarn fineness of 3.0 d / f. This non-woven fabric was thermocompression bonded with an embossing roll having a convex area of 14%, and the basis weight was 28 g / m.2It was a non-woven fabric. This non-woven fabric was a non-woven fabric in which fibers were fused in some places other than the thermocompression bonding portion.
[0036]
The foamed resin sheet used was a foamed resin sheet in which a foaming agent was mixed with low density polyethylene to form a melt film. This sheet has a basis weight of 144 g / m.2The thickness was 2.35 mm and the porosity was 93.6%. This sheet had innumerable foamed cells, and the sheet was white due to the foaming. According to microscopic observation, the foamed cells were almost elliptical, and many cells having a major axis of 0.1 to 3.4 mm were observed.
[0037]
The non-woven fabric was heated at a temperature of 146 ° C. using a hot air circulating dryer as in Example 1 and immediately laminated on the foamed resin sheet, and further crimped with a metal flat roll, and both layers were fused. An integrated laminated sheet was obtained. The temperature of the metal flat roll was 120 ° C / 26 ° C. The Teflon sheet was removed.
The nonwoven fabric laminated sheet has a basis weight of 172 g / m.2It was hot. 20g / m2The physical properties at the time of conversion were tear strength of 0.66 kgf in the longitudinal direction, 0.54 kgf in the transverse direction, tensile strength of 3.05 kgf / 5 cm in the longitudinal direction, and 2.86 kgf / 5 cm in the transverse direction. Also, the foamed resin sheet after lamination had a slightly lower porosity than that before lamination, which was 93.2%. This nonwoven fabric laminated sheet had good flexibility. In addition, the tear strength, tensile strength, and the like were remarkably improved as compared with the foam resin sheet alone.
When this laminated sheet was squeezed by hand, it was difficult to peel off.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0038]
Example 3
A laminated sheet having a two-layer structure in which a mixed fiber spunbonded long-fiber nonwoven fabric and a foamed polyethylene sheet were laminated was produced.
The nonwoven fabric used is a type in which different fibers are discharged from a mixed fiber spinneret in which spin holes of different components are dispersed and perforated in the same spinneret at a hole ratio of 50/50, and the fibers are uniformly mixed immediately after spinning. It was obtained from a mixed fiber type spinneret. This nonwoven fabric was a nonwoven fabric in which 50% by weight of linear low density polyethylene and 50% by weight of polyethylene terephthalate were uniformly mixed. The long fiber had a single yarn fineness of 2.1 d / f (average value of two types). This nonwoven fabric was thermo-compressed with an embossing roll with a convex area of 14%, and the basis weight was 35 g / m.2The non-woven fabric. This non-woven fabric was a non-woven fabric that was fused in places other than the thermocompression bonding portion.
[0039]
The mixed fiber spunbonded long-fiber nonwoven fabric was heated at a temperature of 135 ° C. using a hot-air circulating heater as in Example 1 and immediately laminated on the same foamed resin sheet as in Example 1, and further a metal flat plate. A laminated sheet in which both layers were fused and integrated was obtained. The temperature of the metal flat roll was 110 ° C / 26 ° C. The Teflon sheet was removed.
The nonwoven fabric laminated sheet has a basis weight of 47 g / m.2It was hot. 20g / m2The physical properties at the time of conversion were tear strength of 0.39 kgf in the machine direction, 0.29 kgf in the transverse direction, tensile strength of 2.25 kgf / 5 cm in the machine direction, and 2.04 kgf / 5 cm in the transverse direction. In addition, the foamed resin sheet after lamination had a porosity of 97.9% which was slightly lower than that before lamination. This nonwoven fabric laminated sheet had good flexibility. In addition, the tear strength, tensile strength, and the like were remarkably improved as compared with the foam resin sheet alone.
When this laminated sheet was squeezed by hand, it was difficult to peel off.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0040]
Example 4
A laminated sheet having a two-layer structure in which a composite spunbonded long-fiber nonwoven fabric and a foamed polyethylene sheet were laminated was produced. However, in this example, a long fiber web before the heat fusion treatment was used. This web was the same long fiber web as in Example 1 before heat treatment. The web has a single yarn fineness of 2.2 d / f and a basis weight of 24 g / m.2That ’s it.
The foamed resin sheet used was the same low density polyethylene foamed sheet as in Example 1.
[0041]
The spun composite long fiber web was heated at a temperature of 138 ° C. using a hot air circulating heater, immediately laminated on the same foamed resin sheet as in Example 1, and further subjected to pressure bonding with a metal flat roll, A laminated sheet in which both layers were fused and integrated was obtained. The temperature of the metal flat roll was 105 ° C / 26 ° C. The composite long fiber web side was the high temperature side of the metal flat roll. The Teflon sheet was removed after the thermocompression treatment. By this heat treatment, a laminated sheet in which the fibers were fused and the nonwoven fabric and the foamed sheet were integrated by fusion was obtained.
The nonwoven fabric laminated sheet has a basis weight of 49 g / m.2It was hot. 20g / m2The physical properties at the time of conversion were tear strength of 0.48 kgf in the longitudinal direction, 0.41 kgf in the transverse direction, tensile strength of 2.46 kgf / 5 cm in the longitudinal direction, and 2.01 kgf / 5 cm in the transverse direction. The foamed resin sheet after lamination had a porosity of 98.0% as compared with that before lamination. This nonwoven fabric laminated sheet had good flexibility. In addition, the tear strength, tensile strength, and the like were remarkably improved as compared with the foam resin sheet alone.
When this laminated sheet was squeezed by hand, it was difficult to peel off.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0042]
Example 5
A laminated sheet having a three-layer structure in which a composite spunbonded long-fiber nonwoven fabric was used as an intermediate layer and a foamed polyethylene sheet was used as an outer layer was produced.
The same nonwoven fabric as in Example 2 was heated at a temperature of 140 ° C. using a hot air circulation type heating machine, and immediately the same foamed sheet as in Example 2 was laminated on both sides thereof, followed by pressure-bonding treatment with a metal flat roll. A laminated sheet in which both layers were fused and integrated was obtained. The temperature of the metal flat roll was 80 ° C / 80 ° C. The Teflon sheet was not used.
The nonwoven fabric laminated sheet has a basis weight of 316 g / m.2It was hot. 20g / m2Physical properties at the time of conversion were tear strength of 0.29 kgf in the longitudinal direction, 0.25 kgf in the transverse direction, tensile strength of 2.16 kgf / 5 cm in the longitudinal direction, and 1.87 kgf / 5 cm in the transverse direction. The foamed resin sheet after lamination had a porosity of 92.5%, which was slightly smaller than that before lamination. This nonwoven fabric laminated sheet had good flexibility. In addition, the tear strength, tensile strength, and the like were remarkably improved as compared with the foam resin sheet alone. When this laminated sheet was squeezed by hand, it was difficult to peel off.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0043]
Comparative Example 1
A laminated sheet having a two-layer structure in which a needle punched nonwoven fabric and a foamed resin sheet in which the fibers are not fused to each other was laminated was manufactured.
The used nonwoven fabric is 38g / m2This was a rayon needle punch nonwoven fabric. The rayon was a fiber having a single yarn fineness of 1.5 d / f, a fiber length of 38 mm, and a zigzag crimp of 19 peaks / 25 mm.
[0044]
A rayon nonwoven fabric and the same foamed resin sheet as those described in Example 1 were laminated and subjected to thermocompression bonding in the same manner as in Example 1. The rayon nonwoven fabric was heated at a temperature of 135 ° C. using a hot air circulation type heating machine, immediately laminated on the same foamed resin sheet as in Example 1, and further crimped with a metal flat roll, and both layers were melted. A laminated sheet that was attached and integrated was obtained. The temperature of the metal flat roll was 120 ° C / 26 ° C. A laminated sheet in which both layers were fused and integrated was obtained. The Teflon sheet was removed.
The nonwoven fabric laminated sheet has a basis weight of 63 g / m.2It was hot. 20g / m2The physical properties at the time of conversion were tear strength of 0.09 kgf in the longitudinal direction, 0.08 kgf in the transverse direction, tensile strength of 2.16 kgf / 5 cm in the longitudinal direction, and 1.87 kgf / 5 cm in the transverse direction. The foamed resin sheet after lamination had a porosity of 96.1%, which was slightly smaller than that before lamination. This nonwoven fabric laminated sheet had good flexibility. This nonwoven fabric laminated sheet was low in both tear strength and tensile strength. Also, the non-woven fabric layer of the laminated sheet had a lot of fluff.
The laminated sheet was easily peeled off by hand.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0045]
Comparative Example 2
A laminated sheet having a two-layer structure in which a needle punched nonwoven fabric and a foamed resin sheet in which the fibers are not fused to each other was laminated was manufactured.
The nonwoven fabric used was a needle punched nonwoven fabric using the same rayon as that described in Comparative Example 1.
A rayon nonwoven fabric and the same foamed resin sheet as those described in Example 2 were laminated and subjected to thermocompression bonding in the same manner as in Example 1. The rayon nonwoven fabric was heated at a temperature of 150 ° C. using a hot air circulation type heating machine, immediately laminated on the same foamed resin sheet as in Example 2, and further pressure-bonded with a metal flat roll, and both layers were melted. A laminated sheet that was attached and integrated was obtained. The temperature of the metal flat roll was 125 ° C / 26 ° C. A laminated sheet in which both layers were fused and integrated was obtained. The Teflon sheet was removed.
The nonwoven fabric laminated sheet has a basis weight of 182 g / m.2It was hot. 20g / m2The physical properties at the time of conversion were tear strength of 0.08 kgf in the longitudinal direction, 0.07 kgf in the transverse direction, tensile strength of 0.61 kgf / 5 cm in the longitudinal direction, and 0.54 kgf / 5 cm in the transverse direction. The foamed resin sheet after lamination had a porosity of 92.2%, which was slightly lower than that before lamination. This nonwoven fabric laminated sheet had good flexibility. This nonwoven fabric laminated sheet was low in both tear strength and tensile strength. Also, the non-woven fabric layer of the laminated sheet had a lot of fuzz. The laminated sheet was easily peeled off by hand.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0046]
Comparative Example 3
A laminated sheet having a two-layer structure in which a non-foamed high-density polyethylene sheet and a foamed resin sheet were laminated was produced.
The non-foamed high density polyethylene sheet used has a thickness of 2.0 mm and a basis weight of 2089 g / m.2The foamed resin sheet was the same sheet as described in Example 2 above. Thermocompression bonding was performed in the same manner as in Example 1. However, the hot air circulation type heater was not used.
A laminated sheet in which the high-density polyethylene sheet without foaming and the foamed resin sheet are laminated and the same metal flat thermocompression bonding apparatus as in Example 1 is used, and both layers are fused and integrated. Got. The temperature of the metal flat roll was 135 ° C / 26 ° C. The high temperature roll side was the high density polyethylene sheet side, a Teflon release sheet was laminated, and thermocompression-bonded. Thereafter, the Teflon sheet was removed.
The nonwoven fabric laminated sheet has a basis weight of 2233 g / m.2It was hot. Measurements such as tear strength and tensile strength were discontinued. Moreover, this nonwoven fabric laminated sheet was inferior in lightness and poor in flexibility.
Tables 1 to 3 show physical properties and the like of the nonwoven fabric, the foamed resin sheet, and the nonwoven fabric laminated sheet.
[0047]
【The invention's effect】
As described above, the nonwoven fabric laminated sheet of the present invention is obtained by laminating a nonwoven fabric in which intersections of fibers are fused and a foamed resin sheet, and therefore has a tear strength, a tensile strength, and the like. It is a large and flexible laminated sheet.

Claims (6)

熱可塑性複合スパンボンド法長繊維または熱可塑性混繊スパンボンド法長繊維が融着された目付け10〜1000g/m2長繊維不織布と、ポリオレフィン系樹脂(但し、長鎖分枝を有すると共にドローダウン性が60m/分以下である無架橋プロピレン系樹脂を除く。)、ポリエステル系樹脂またはポリアミド系樹脂で構成された空隙率85〜99%の発泡樹脂シ−トが多層構造に積層され、長繊維不織布と発泡樹脂シートの積層面での融着が、少なくともその片方の樹脂の熱融着であり、引裂強度が縦横何れも0.2kgf以上であり、引張り強度が縦横何れも0.7kgf/5cm以上であり、且つ可とう性を有する不織布積層シ−ト。A long-fiber nonwoven fabric having a basis weight of 10 to 1000 g / m 2 in which a thermoplastic composite spunbonded long fiber or a thermoplastic mixed spunbonded long fiber is fused, and a polyolefin-based resin (however, having a long chain branch and drawing . the down property except uncrosslinked propylene resin which is 60 m / min or less), a polyester resin or a polyamide-based porosity from 85 to 99% composed of a resin foamed resin sheet -: it is laminated to the multilayer structure, the length The fusion of the nonwoven fabric and the foamed resin sheet on the laminated surface is thermal fusion of at least one of the resins , the tear strength is 0.2 kgf or more in both length and width, and the tensile strength is 0.7 kgf / width in both length and width. A nonwoven fabric laminated sheet having a flexibility of 5 cm or more. 熱可塑性複合スパンボンド法長繊維または熱可塑性混繊スパンボンド法長繊維が融着された目付け10〜1000g/mThermoplastic composite spunbonded long fiber or thermoplastic mixed fiber spunbonded long fiber was bonded to a basis weight of 10 to 1000 g / m 22 の長繊維不織布と、ポリエチレン樹脂、ポリエステル系樹脂またはポリアミド系樹脂で構成された空隙率85〜99%の発泡樹脂シ−トが多層構造に積層され、長繊維不織布と発泡樹脂シートの積層面での融着が、少なくともその片方の樹脂の熱融着であり、引裂強度が縦横何れも0.2kgf以上であり、引張り強度が縦横何れも0.7kgf/5cm以上であり、且つ可とう性を有する不織布積層シ−ト。And a foamed resin sheet having a porosity of 85 to 99% composed of a polyethylene resin, a polyester resin or a polyamide resin are laminated in a multilayer structure. Is a thermal fusion of at least one of the resins, the tear strength is 0.2 kgf or more in both length and width, the tensile strength is 0.7 kgf / 5 cm or more in both length and width, and is flexible. A non-woven fabric laminate sheet. 長繊維不織布を構成する長繊維が、融点差が10℃以上ある低融点樹脂と高融点樹脂からなり且つ該低融点樹脂が繊維表面の少なくとも一部を形成する熱可塑性複合スパンボンド法長繊維である請求項1または2に記載の不織布積層シ−ト。 The long fiber constituting the long fiber nonwoven fabric is a thermoplastic composite spunbonded long fiber comprising a low melting point resin and a high melting point resin having a melting point difference of 10 ° C. or more, and the low melting point resin forms at least a part of the fiber surface. The nonwoven fabric laminated sheet according to claim 1 or 2 . 長繊維不織布を構成する長繊維が、融点差が10℃以上である低融点長繊維10〜90重量%と高融点長繊維90〜10重量%が混繊された熱可塑性混繊スパンボンド法長繊維混繊長繊維である請求項1または2に記載の不織布積層シ−ト。 The long fiber composing the long fiber nonwoven fabric is a thermoplastic mixed fiber spunbond length in which 10 to 90% by weight of a low melting point long fiber having a melting point difference of 10 ° C. or more and 90 to 10% by weight of a high melting point long fiber are mixed. nonwoven laminate sheet according to claim 1 or 2 is a fiber commingled filaments - and. 発泡樹脂シートの発泡セルの形状が、その両端部が丸みのある円柱形または楕円形である、請求項1〜4のいずれかに記載の不織布積層シ−ト。The nonwoven fabric laminated sheet according to any one of claims 1 to 4, wherein the foamed cell of the foamed resin sheet has a round columnar shape or an elliptical shape at both ends. 発泡樹脂シ−トが、ポリオレフィン系樹脂からなるシートである請求項1〜何れに記載の不織布積層シ−ト。The nonwoven fabric laminated sheet according to any one of claims 1 to 5 , wherein the foamed resin sheet is a sheet comprising a polyolefin resin.
JP00068299A 1998-03-10 1999-01-05 Non-woven laminate sheet Expired - Fee Related JP4200571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00068299A JP4200571B2 (en) 1998-03-10 1999-01-05 Non-woven laminate sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7653598 1998-03-10
JP10-76535 1998-03-10
JP00068299A JP4200571B2 (en) 1998-03-10 1999-01-05 Non-woven laminate sheet

Publications (2)

Publication Number Publication Date
JPH11320736A JPH11320736A (en) 1999-11-24
JP4200571B2 true JP4200571B2 (en) 2008-12-24

Family

ID=26333701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00068299A Expired - Fee Related JP4200571B2 (en) 1998-03-10 1999-01-05 Non-woven laminate sheet

Country Status (1)

Country Link
JP (1) JP4200571B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002330452B2 (en) * 2001-08-27 2007-11-22 Hagihara Industries Inc. Light shielding sheet
US8906275B2 (en) 2012-05-29 2014-12-09 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
US9682512B2 (en) 2009-02-06 2017-06-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US20100199406A1 (en) 2009-02-06 2010-08-12 Nike, Inc. Thermoplastic Non-Woven Textile Elements
US20130255103A1 (en) 2012-04-03 2013-10-03 Nike, Inc. Apparel And Other Products Incorporating A Thermoplastic Polymer Material
JP5360280B1 (en) * 2012-09-27 2013-12-04 大日本印刷株式会社 Foam laminated sheet
JP6048348B2 (en) * 2013-09-03 2016-12-21 大日本印刷株式会社 Method for producing foamed laminated sheet
JP6215250B2 (en) * 2015-04-03 2017-10-18 旭化成建材株式会社 Thermosetting resin foam board

Also Published As

Publication number Publication date
JPH11320736A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
EP1866472B2 (en) Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
US6468651B2 (en) Nonwoven fabric containing fine fiber, and a filter material
US5366792A (en) Laminated three layer non-woven fabric with improved interface and process for producing the same
WO2005021850A1 (en) Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric
JP2002534616A (en) Three-dimensionally structured planar fiber product and method for producing the same
MXPA02008965A (en) Multicomponent apertured nonwoven.
WO2007059132A1 (en) Gypsum board liner providing improved combination of wet adhesion and strength
KR930010351B1 (en) Multilayer nonwoven fabric
JP4200571B2 (en) Non-woven laminate sheet
KR20200102448A (en) Laminated sound absorbing material
JP2000229369A (en) Nonwoven fabric laminate and interior finish material for automobile
JP5337599B2 (en) Battery separator, battery and split type composite fiber
JPH0921055A (en) Composite nonwoven fabric and its production
JPH11291377A (en) Composite nonwoven fabric
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3181295U (en) Grip tape
JPWO2019026798A1 (en) Laminated sound absorbing material
JP4377773B2 (en) Battery separator and battery
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP4377774B2 (en) Battery separator, manufacturing method thereof, and battery
JP2018146942A (en) Laminated sound absorption material including ultrafine fiber
JP3471255B2 (en) Nonwoven fabric for battery separator and battery using the same
JPH09223492A (en) Battery separator and manufacture thereof
JPH08267636A (en) Heat-resistant reinforced laminated body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19990910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 19990910

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20030306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees