JP2008164078A - Heat insulating material for reformer - Google Patents

Heat insulating material for reformer Download PDF

Info

Publication number
JP2008164078A
JP2008164078A JP2006355038A JP2006355038A JP2008164078A JP 2008164078 A JP2008164078 A JP 2008164078A JP 2006355038 A JP2006355038 A JP 2006355038A JP 2006355038 A JP2006355038 A JP 2006355038A JP 2008164078 A JP2008164078 A JP 2008164078A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
mass
reformer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006355038A
Other languages
Japanese (ja)
Inventor
Yasuo Ito
泰男 伊藤
Shigeru Nakama
茂 中間
Isami Abe
勇美 阿部
Junichi Irimura
純一 入村
Makio Naito
牧男 内藤
Hiroya Abe
浩也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2006355038A priority Critical patent/JP2008164078A/en
Publication of JP2008164078A publication Critical patent/JP2008164078A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating material for a reformer obtaining heat insulating performance equivalent to or higher than conventional one even if thinned in wall thickness. <P>SOLUTION: The heat insulating material for the reformer is provided surrounding the reformer and formed of a molding containing 58-87 mass% of fumed silica, 3-12 mass% of inorganic fiber and 10-30 mass% of inorganic powder with an average grain diameter of 1-50 μm without containing an inorganic binder and an organic binder, and orienting the inorganic fiber orthogonally to the transfer direction of heat. The molding is processed and molded by a dry process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、都市ガスやLPG等の炭化水素系燃料を水蒸気改質して水素リッチな改質ガスを製造する改質器を方位する断熱材に関し、特に固体高分子型燃料電池に用いる単管円筒式改質器用の断熱材に関する。   The present invention relates to a heat insulating material directed to a reformer for producing a hydrogen-rich reformed gas by steam reforming a hydrocarbon-based fuel such as city gas or LPG, and more particularly to a single tube used for a polymer electrolyte fuel cell The present invention relates to a heat insulating material for a cylindrical reformer.

改質器は、都市ガスやLPG等の原料ガスを水蒸気改質して水素濃度の高い改質ガスを生成する装置であり、光ファイバーや半導体の製造過程や燃料電池等で使用する水素を製造するために、広く使用されている。   The reformer is a device that generates reformed gas with high hydrogen concentration by steam reforming raw gas such as city gas and LPG, and produces hydrogen used in optical fiber and semiconductor manufacturing processes, fuel cells, etc. Because it is widely used.

改質器による水蒸気改質反応は吸熱反応であるため、反応を持続させるため加熱が必要で、通常バーナ等の燃焼装置を改質器に付設し、燃料電池からの余剰水素や改質原料ガスをバーナで燃焼させて加熱している。比較的小容量の水素を製造する改質器としては、例えば特許文献1に開示されているような単管円筒式改質器が知られている。この単管円筒式改質器は、2つの円筒間に触媒層を内蔵させた円筒容器の中心にバーナ等の加熱手段を設け、触媒層を加熱手段で加熱し触媒層に通した原料ガスを水蒸気により改質するように構成しており、その周囲を断熱材で覆われている。こういった断熱材としては、例えば、特許文献2に開示されているにグラスウールやセラミックス繊維ブランケットが使用されている。   Since the steam reforming reaction by the reformer is an endothermic reaction, heating is necessary to maintain the reaction. Usually, a combustion device such as a burner is attached to the reformer, and surplus hydrogen and reforming raw material gas from the fuel cell are attached. Is burned with a burner and heated. As a reformer for producing a relatively small volume of hydrogen, for example, a single tube cylindrical reformer as disclosed in Patent Document 1 is known. This single tube cylindrical reformer is provided with a heating means such as a burner at the center of a cylindrical container in which a catalyst layer is built in between two cylinders. The catalyst layer is heated by the heating means, and the raw material gas passed through the catalyst layer is supplied. It is configured to be reformed by water vapor, and its periphery is covered with a heat insulating material. As such a heat insulating material, for example, glass wool or a ceramic fiber blanket disclosed in Patent Document 2 is used.

特開平11−11901号公報JP 11-11901 A 特開2006−213566号公報JP 2006-213566 A

固体高分子型燃料電池を家庭や自動車等に用いる場合には、改質器を含む改質装置全体の小型軽量化が必須条件であり、改質器を覆う断熱材の小型化も望まれている。   When a polymer electrolyte fuel cell is used in homes, automobiles, etc., it is essential to reduce the size and weight of the entire reformer including the reformer, and downsizing of the heat insulating material covering the reformer is also desired. Yes.

本発明は、上記実情を鑑みてなされたものであり、薄肉化してもこれまでと同等以上の断熱性能が得られる改質器用断熱材を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the heat insulating material for reformers which can obtain the heat insulation performance equivalent to or more than before even if it thins.

上記の課題を解決するために、本発明は以下の改質器用断熱材を提供する。
(1)改質器を包囲する断熱材において、フュームドシリカと無機繊維とを含む成形体からなることを特徴とする改質器用断熱材。
(2)上記(1)において、無機繊維が熱の伝播方向と直交するように配向されることを特徴とする改質器用断熱材。
(3)上記(1)または(2)において、無機バインダーおよび有機バインダーが含まれないことを特徴とする改質器用断熱材。
(4)上記(1)〜(3)いずれかにおいて、乾式にて加圧成形されていることを特徴とする改質器用断熱材。
(5)上記(1)〜(4)いずれか1つにおいて、平均粒径1〜50μmである無機粉体をさらに含むことを特徴とする改質器用断熱材。
(6)上記(5)において、フュームドシリカが58〜87質量%、無機粉体が10〜30質量%、無機繊維が3〜12質量%含まれることを特徴とする改質器用断熱材。
In order to solve the above problems, the present invention provides the following heat insulating material for a reformer.
(1) A heat insulating material for a reformer characterized in that the heat insulating material surrounding the reformer is made of a molded body containing fumed silica and inorganic fibers.
(2) The heat insulating material for a reformer according to (1), wherein the inorganic fiber is oriented so as to be orthogonal to the heat propagation direction.
(3) A heat insulating material for a reformer characterized in that in (1) or (2), an inorganic binder and an organic binder are not contained.
(4) In any one of the above (1) to (3), the heat insulating material for a reformer, which is pressure-molded by a dry method.
(5) The reformer heat insulating material according to any one of the above (1) to (4), further comprising an inorganic powder having an average particle diameter of 1 to 50 μm.
(6) The heat insulating material for a reformer according to (5), wherein fumed silica is contained in an amount of 58 to 87% by mass, inorganic powder is contained in an amount of 10 to 30% by mass, and inorganic fibers are contained in an amount of 3 to 12% by mass.

本発明によれば、薄肉化しても十分な断熱性能が得られる改質器用断熱材が提供され、家庭用や自動車用の燃料電池の小型化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulating material for reformers which can acquire sufficient heat insulation performance even if it thins is provided, and size reduction of the fuel cell for home use or a motor vehicle can be achieved.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明に係る改質器用断熱材は、フュームドシリカと無機繊維とを含む成形体である。   The heat insulating material for reformers according to the present invention is a molded body containing fumed silica and inorganic fibers.

フュームドシリカとは、気相法により作られた平均粒径50nm以下のシリカ超微粉末をいい、図1に模式的に示すように、直径1〜50nmの微粒子1aで、常温(25℃)での熱伝導率(以下、同様)が0.01W/(m・K)程度の低熱伝導材料である。また、フュームドシリカは、非常に細かい微粒子であることから、分子間力等により会合して直径数十nm〜数μmの二次粒子10を形成するが、同図右側に拡大して示すように、リング内径が0.1μm以下の空間が多数形成される。このような空間は伝熱媒体となる空気の平均自由行程よりも小さいため、フュームドシリカを通じての伝熱を大幅になくすことができる。このようなフュームドシリカが無機繊維間の空隙に点在して、改質器用断熱材全体としての断熱性能を高める。   The fumed silica refers to a silica ultrafine powder having an average particle diameter of 50 nm or less produced by a vapor phase method. As schematically shown in FIG. 1, fine particles 1 a having a diameter of 1 to 50 nm and normal temperature (25 ° C.). Is a low thermal conductivity material having a thermal conductivity of about 0.01 W / (m · K). Further, fumed silica is a very fine fine particle, so that it associates by intermolecular force to form secondary particles 10 having a diameter of several tens of nm to several μm. In addition, a large number of spaces having an inner diameter of the ring of 0.1 μm or less are formed. Since such a space is smaller than the mean free path of air serving as a heat transfer medium, heat transfer through the fumed silica can be largely eliminated. Such fumed silica is interspersed in the gaps between the inorganic fibers to enhance the heat insulation performance of the reformer as a whole.

無機繊維としては、シリカ−アルミナ繊維、アルミナ繊維、シリカ繊維、ジルコニア繊維、アルカリケイ酸塩繊維等を用いることができる。中でも、低熱伝導性の、好ましくは熱伝導率0.1W/(m・K)以下、特に0.04W/(m・K)以下の無機繊維が好ましく、シリカ−アルミナ繊維やシリカ繊維等のシリカ系繊維を好適に使用できる。なお、これらの無機繊維は、複数種を併用してもよい。   As the inorganic fiber, silica-alumina fiber, alumina fiber, silica fiber, zirconia fiber, alkali silicate fiber, or the like can be used. Among them, inorganic fibers having low thermal conductivity, preferably thermal conductivity of 0.1 W / (m · K) or less, particularly 0.04 W / (m · K) or less are preferable, and silica such as silica-alumina fiber or silica fiber is preferable. A system fiber can be used conveniently. These inorganic fibers may be used in combination.

また、改質器用断熱材は、平均粒径1〜50μmである無機粉体をさらに含んでいてもよい。無機粉体は、波長1μm以上の光に対する比屈折率が1.25以上であることが好ましく、炭化珪素、ジルコニア、チタニア材質のいずれか、或いはこれらを適宜組み合わせて使用することができる。このような無機粉体を含ませることにより、改質器用断熱材に伝播する輻射エネルギーを低減させることができ、断熱性がさらに向上する。   Moreover, the heat insulating material for reformers may further contain an inorganic powder having an average particle diameter of 1 to 50 μm. The inorganic powder preferably has a relative refractive index with respect to light having a wavelength of 1 μm or more of 1.25 or more, and any of silicon carbide, zirconia, titania materials, or a combination thereof can be used. By including such an inorganic powder, the radiant energy propagating to the heat insulating material for the reformer can be reduced, and the heat insulating property is further improved.

上記のフュームドシリカ、無機繊維、無機粉体の配合量は、断熱性能及び成形性を考慮すると、フュームドシリカが58〜87質量%、無機粉体が0〜30質量%、無機繊維が3〜13質量%、好ましくは、フュームドシリカが58〜87質量%、無機粉体が10〜30質量%、無機繊維が3〜13質量%、さらに好ましくは、フュームドシリカが70〜80質量%、無機粉体が15〜25質量%、無機繊維が3〜7質量%である。無機繊維が3質量%未満では、強度低下が認められ、無機繊維が13質量%を超えると粉体流動性を著しく低下させ、密度ムラによる成形性の著しい悪化が認められる。   The amount of the fumed silica, inorganic fiber, and inorganic powder is 58 to 87% by mass of fumed silica, 0 to 30% by mass of inorganic powder, and 3 of inorganic fiber in consideration of heat insulation performance and moldability. ~ 13 mass%, preferably 58 to 87 mass% fumed silica, 10 to 30 mass% inorganic powder, 3 to 13 mass% inorganic fiber, more preferably 70 to 80 mass% fumed silica. The inorganic powder is 15 to 25% by mass, and the inorganic fiber is 3 to 7% by mass. When the inorganic fiber is less than 3% by mass, a decrease in strength is observed, and when the inorganic fiber exceeds 13% by mass, the powder fluidity is remarkably reduced, and the moldability is remarkably deteriorated due to density unevenness.

改質器用断熱材は、フュームドシリカ、無機繊維、無機粉体をそれぞれ上記配合量にて混合した成形材料を加圧成形することで得られる。このとき、乾式で混合し、しかも無機バインダー及び有機バインダーを用いることなく成形することが好ましい。バインダーにより形成される結着点は、固体熱伝導作用を増大させてしまい、断熱性を著しく低下させてしまうことが懸念される。また、混合に際し、ヘキサンやエタノールなどのアルコールといった揮発性の無極性溶媒を少量添加してもよい。   The heat insulator for the reformer can be obtained by pressure molding a molding material in which fumed silica, inorganic fibers, and inorganic powder are mixed in the above amounts. At this time, it is preferable to dry-mix and form without using an inorganic binder and an organic binder. There is a concern that the binding point formed by the binder increases the solid heat conduction effect and significantly reduces the heat insulation. In mixing, a small amount of a volatile nonpolar solvent such as alcohol such as hexane or ethanol may be added.

また、フュームドシリカ、無機繊維、無機粉体に、ステアリン酸亜鉛やステアリン酸マグネシウム等の潤滑剤を1〜2質量%添加することで混合がしやすくなり、成形材料の流動性が高まるため密度ムラもなくなる。尚、潤滑剤は成形後に加熱して、焼飛ばずことが好ましい。   In addition, the addition of 1-2% by mass of a lubricant such as zinc stearate or magnesium stearate to fumed silica, inorganic fibers, or inorganic powder facilitates mixing and increases the fluidity of the molding material, thereby increasing the density. Unevenness disappears. The lubricant is preferably heated after molding and not burned off.

更に、無機繊維として、表面をフュームドシリカの二次粒子からなる多孔体で被覆したものを用いることができる。多孔体で被覆した無機繊維を用いた場合には、改質器用断熱材中で無機繊維同士が直接接触せず、固体伝導が起こらないため、より一層断熱性能に優れたものとなる。このようなフュームドシリカの多孔体で被覆した無機繊維を得るには、例えば、図2に示す回転混合装置30を用いる。この回転混合装置30は、チャンバ31の内部に、チャンバ31の内壁との間に微小隙間を形成する押圧部材32を備えており、無機繊維とフュームドシリカとの混合物33を入れ、回転させることにより、フュームドシリカが無機繊維の表面に押し込まれるように堆積する。   Furthermore, what coated the surface with the porous body which consists of a secondary particle of fumed silica as an inorganic fiber can be used. When the inorganic fiber covered with the porous body is used, the inorganic fibers are not in direct contact with each other in the heat insulating material for the reformer, and solid conduction does not occur, so that the heat insulating performance is further improved. In order to obtain inorganic fibers covered with such a fumed silica porous body, for example, a rotary mixing device 30 shown in FIG. 2 is used. The rotary mixing device 30 includes a pressing member 32 that forms a minute gap with the inner wall of the chamber 31 inside the chamber 31, and puts and rotates a mixture 33 of inorganic fibers and fumed silica. Thus, the fumed silica is deposited so as to be pushed into the surface of the inorganic fiber.

ところで、図3に示すように、無機繊維集成体(ここではアルミナシリカブランケット)の熱伝導率は、繊維積層方向の熱伝導率(λy)と繊維配向方向の熱伝導率(λx)とでは異なり、繊維配向方向の熱伝導率(λx)は繊維積層方向の熱伝導率(λy)よりも大きくなる。これは、無機繊維に伝播した熱が繊維配向方向に伝えられるので、熱の伝播方向と同じ繊維積層方向には熱が伝わりにくくなり、断熱性が向上すると思われる。   By the way, as shown in FIG. 3, the thermal conductivity of the inorganic fiber assembly (here, alumina silica blanket) differs between the thermal conductivity in the fiber lamination direction (λy) and the thermal conductivity in the fiber orientation direction (λx). The thermal conductivity (λx) in the fiber orientation direction is larger than the thermal conductivity (λy) in the fiber lamination direction. This is because the heat propagated to the inorganic fibers is transmitted in the fiber orientation direction, so that it is difficult for the heat to be transmitted in the same fiber lamination direction as the heat propagation direction, and the heat insulation is considered to be improved.

そのため、図4に示すように、改質器用断熱材において、無機繊維は熱の伝播方向と直交するように配向されていることが好ましい。尚、図中の符号20はフュームドシリカ、21は無機繊維、22は無機粉体である。ここで、「直交」とは、熱の伝播方向(0°)に対して厳密に90°である必要はなく、無機繊維の長さ方向が熱の伝播方向に対して30〜150°、好ましくは45〜135°、さらに好ましくは60〜120°となるように配置されていればよい。また、全ての無機繊維が熱の伝播方向に対して直交している必要はなく、全無機繊維の50%以上、好ましくは75%以上、さらに好ましくは90%以上の無機繊維が直交していればよい。   Therefore, as shown in FIG. 4, in the heat insulating material for a reformer, the inorganic fibers are preferably oriented so as to be orthogonal to the heat propagation direction. In the figure, reference numeral 20 is fumed silica, 21 is an inorganic fiber, and 22 is an inorganic powder. Here, “orthogonal” does not need to be exactly 90 ° with respect to the heat propagation direction (0 °), and the length direction of the inorganic fibers is preferably 30 to 150 ° with respect to the heat propagation direction. May be arranged to be 45 to 135 °, more preferably 60 to 120 °. Further, it is not necessary that all the inorganic fibers are orthogonal to the heat propagation direction, and 50% or more, preferably 75% or more, more preferably 90% or more of the inorganic fibers are orthogonal to each other. That's fine.

このような配向状態を得るには、加圧方向と直交する方向に配向しやすい無機繊維を用いればよく、平均繊維長が好ましくは1〜7mm、より好ましくは2〜6mm、さらに好ましくは3〜5mmの無機繊維を用いる。平均繊維長が1mm未満であると配向し難く、平均繊維長が7mmを超えると成形時の流動性を著しく悪化させ、成形性が悪くなると共に密度ムラによる機械的強度の低下を招くおそれがある。特に、平均繊維径が15μmを超えると、繊維が折れやすくなり、強度低下が顕著になる。また、無機繊維の平均繊維径は15μm以下が好ましく、より好ましくは12μm以下、更に好ましくは10μm以下である。   In order to obtain such an orientation state, inorganic fibers that are easily oriented in a direction orthogonal to the pressing direction may be used, and the average fiber length is preferably 1 to 7 mm, more preferably 2 to 6 mm, and still more preferably 3 to 3. 5 mm of inorganic fiber is used. When the average fiber length is less than 1 mm, it is difficult to align, and when the average fiber length exceeds 7 mm, the fluidity at the time of molding is remarkably deteriorated, the moldability is deteriorated, and the mechanical strength may be reduced due to density unevenness. . In particular, when the average fiber diameter exceeds 15 μm, the fiber is easily broken and the strength is significantly reduced. The average fiber diameter of the inorganic fibers is preferably 15 μm or less, more preferably 12 μm or less, and still more preferably 10 μm or less.

また、フュームドシリカは、上記のように非常に微細な粒子であり、付着性が高いため、粉体流動性が非常に悪く、無機繊維や無機粉体と混合して成形する際に密度ムラを起こしやすい。しかし、上記のような平均繊維長の無機繊維を用いることにより、このような密度ムラを抑えることもできる。   In addition, fumed silica is very fine particles as described above and has high adhesion, so the powder flowability is very poor, and density unevenness occurs when mixed with inorganic fibers or inorganic powders. It is easy to cause. However, such density unevenness can be suppressed by using inorganic fibers having an average fiber length as described above.

改質器用断熱材の形状は、板材やブロックの他、改質器の外形にあわせて例えば図5に示すようには円弧状とすることもできる。このような円弧状の改質器用断熱材100とするには、フュームドシリカと無機繊維とを含む材料を加圧成形して得られた板材またはブロックから円弧状に切り出せばよい。このとき、無機繊維21は、改質器の外周面と同心円状に配向していることが好ましいが、図示されるように、元の板材やブロックにおける配向の通りとなるため(図の例では水平方向)、円弧長を短くするなどして、改質器の外周面と平行に配向する無機繊維21の数を増すことが好ましい。具体的には、改質器の中心から放射状に延びる線に対して0〜60°の範囲で交差する無機繊維が、全無機繊維の50%以上、好ましくは75%以上、さらに好ましくは90%以上となるように調整する。   The shape of the heat insulating material for the reformer can be an arc shape as shown in FIG. 5, for example, in accordance with the outer shape of the reformer in addition to the plate material and the block. In order to obtain such an arc-shaped reformer heat insulating material 100, an arc shape may be cut out from a plate material or block obtained by pressure molding a material containing fumed silica and inorganic fibers. At this time, the inorganic fibers 21 are preferably oriented concentrically with the outer peripheral surface of the reformer. However, as shown in the drawing, the inorganic fibers 21 follow the orientation in the original plate or block (in the example shown in the figure). It is preferable to increase the number of inorganic fibers 21 oriented parallel to the outer peripheral surface of the reformer, for example, by shortening the arc length in the horizontal direction). Specifically, the inorganic fibers crossing in a range of 0 to 60 ° with respect to a line extending radially from the center of the reformer are 50% or more, preferably 75% or more, more preferably 90% of all inorganic fibers. Adjust to the above.

また、図6に示すように、円弧状の成形型を用いて加圧成形することもできる、即ち、フュームドシリカ、無機繊維、無機粉体を混合してなる成形材料を円弧状の成形型に充填し、(A)に示すように円弧の内径面側から、あるいは(B)に示すように円弧の外径面側から加圧することにより、円弧状の改質器用断熱材が得られる。この方法によれば、無機繊維が加圧方向と直交するように配向され、改質器の外周面と平行に配向された無機繊維の割合が多くなる。また、この方法によれば、板材やブロックから切り出す場合に比べて原料の無駄が無く、製造工程も簡略化できる。   Moreover, as shown in FIG. 6, it can also press-mold using an arc-shaped shaping | molding die, ie, the molding material formed by mixing fumed silica, inorganic fiber, and inorganic powder is an arc-shaped shaping die. And the pressure is applied from the inner diameter side of the arc as shown in (A) or from the outer diameter side of the arc as shown in (B), whereby an arc-shaped heat insulating material for a reformer is obtained. According to this method, the inorganic fibers are oriented so as to be orthogonal to the pressing direction, and the proportion of the inorganic fibers oriented parallel to the outer peripheral surface of the reformer increases. Further, according to this method, there is no waste of raw materials and the manufacturing process can be simplified as compared with the case of cutting out from a plate material or a block.

これら円弧状の改質器用断熱材は、複数個を連結して円筒状とし、改質器の周囲に配置される。   A plurality of these arc-shaped heat insulators for reformers are connected to form a cylindrical shape, and are arranged around the reformer.

また、図7に示すように、円筒状に成形することもできる。その際、加圧方法は、中心に円筒状の中子を配し、外周方向から中心に向けて均一に加圧してもよく、図示されるように、円筒状の外枠の中心に、円筒状で外方に拡径するような冶具を配し、冶具を拡径して成形することもできる。   Moreover, as shown in FIG. 7, it can also shape | mold into a cylindrical shape. In this case, the pressing method may be a method in which a cylindrical core is arranged at the center and the pressure is uniformly pressed from the outer circumferential direction toward the center. As shown in the drawing, the cylinder is formed at the center of the cylindrical outer frame. It is also possible to arrange a jig that expands outward in the shape and expand the diameter of the jig.

尚、上記の加圧成形に際し、成形型には、加圧成形時に成形体内部の空気を吸引脱気できるよう脱気孔を設けてもよい。脱気孔は、成形型の上下面に直径3mm〜5mmの孔をピッチ10〜20mmで設ければよい。また、脱気孔を通じて吸引脱気するためには、例えば成形下型の下部に吸引チャンバーを設け、真空ポンプ等で強制吸引すればよい。   In the above pressure molding, the mold may be provided with deaeration holes so that air inside the molded body can be sucked and deaerated during the pressure molding. The deaeration holes may be provided with holes having a diameter of 3 mm to 5 mm at a pitch of 10 to 20 mm on the upper and lower surfaces of the mold. Further, in order to perform suction and deaeration through the deaeration holes, for example, a suction chamber may be provided in the lower part of the lower mold and forced suction may be performed by a vacuum pump or the like.

改質器用断熱材のかさ密度は、190〜310kg/mであることが好ましく、230〜280kg/mであることがより好ましい。かさ密度をこの範囲とすることにより、断熱性能及び機械的強度に優れるようになる。具体的には、600℃における熱伝導率が0.04W/(m・K)以下、好ましくは0.03W/(m・K)以下の優れた断熱性能を示す。さらに、曲げ強度は0.1MPa以上であり、切断等の加工も可能になる。 The bulk density of the reformer heat insulating material is preferably 190~310kg / m 3, more preferably 230~280kg / m 3. By setting the bulk density within this range, the heat insulation performance and the mechanical strength are improved. Specifically, the thermal conductivity at 600 ° C. is 0.04 W / (m · K) or less, preferably 0.03 W / (m · K) or less. Furthermore, the bending strength is 0.1 MPa or more, and processing such as cutting becomes possible.

また、改質器用断熱材は、ガラスクロス等の表面材や、無機質のコーティング層で覆われていてもよい。それにより、改質器用断熱材からの発塵や、改質器用断熱材の割れや欠けを防ぐことができる。   Moreover, the heat insulating material for reformers may be covered with a surface material such as a glass cloth or an inorganic coating layer. Thereby, generation of dust from the heat insulating material for reformer and cracking or chipping of the heat insulating material for reformer can be prevented.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Examples The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

(実施例1)
平均1次粒子径が約7nmで、熱伝導率(25℃)が0.01W/(m・K)のフュームドシリカ(日本アエロジル製、製品名AEROSIL300)77質量%と、平均粒子径3μmの炭化珪素(山本染料化学品(株)製、製品名G14)20質量%と、耐熱グラスファイバー(サカイ産業(株)製、製品名S2、平均繊維径10μm)の平均繊維長5mm品3質量%とを、図2に示す回転混合装置30に投入し、チャンバ31と押圧部材32との微小隙間2000μmに設定し、回転速度1000/minにて30秒間を連続回転させた。得られた成形用材料をプレス形成して一辺が150mmで、厚さ50mmの板状成形品を得た。また、同一の成形用材料を、図6(A)に示すように内径面側を加圧して成形し、内径170mm、外径210mm、高さ100mmの円筒の1/3円筒成形品を得た。プレス圧は、何れも1.0MPaとした。そして、板状成形品から、図8に示すように、加圧方向に沿って直径50mm、厚さ20mmの円盤状の試験片を切り出し、かさ密度及び曲げ強度を測定した。尚、かさ密度は、板状成形品の数箇所を切り出して測定し、そのバラツキも求めた。また、1/3円筒成形品を用いて、その厚さ方向の熱伝導率を周期加熱法にて測定した。更に、かさ密度、曲げ強度及び熱伝導率のバランスを考慮して、以下の評価基準に基づいて総合的な評価をした。結果を表1に示す。
◎:実用に好適に使用できる
○:実用上に問題なく使用できる
△:実用上多少問題があるが使用できる
×:実用上利用できない
(Example 1)
An average primary particle diameter of about 7 nm, a thermal conductivity (25 ° C.) of 0.01 W / (m · K) fumed silica (product name: AEROSIL300, manufactured by Nippon Aerosil), and an average particle diameter of 3 μm Silicon carbide (Yamamoto Dye Chemical Co., Ltd., product name G14) 20% by mass and heat-resistant glass fiber (Sakai Sangyo Co., Ltd., product name S2, average fiber diameter 10 μm) average fiber length 5 mm product 3% by mass Was set to a minute gap of 2000 μm between the chamber 31 and the pressing member 32 and continuously rotated for 30 seconds at a rotational speed of 1000 / min. The obtained molding material was press-formed to obtain a plate-like molded product having a side of 150 mm and a thickness of 50 mm. Further, the same molding material was molded by pressurizing the inner surface as shown in FIG. 6A to obtain a 1/3 cylindrical molded product of a cylinder having an inner diameter of 170 mm, an outer diameter of 210 mm, and a height of 100 mm. . The press pressure was 1.0 MPa in all cases. And as shown in FIG. 8, the disk-shaped test piece of diameter 50mm and thickness 20mm was cut out from the plate-shaped molded article along the pressurization direction, and the bulk density and bending strength were measured. The bulk density was measured by cutting out several parts of the plate-shaped molded product, and the variation was also obtained. Moreover, the heat conductivity of the thickness direction was measured with the period heating method using the 1/3 cylindrical molded product. Furthermore, considering the balance of bulk density, bending strength and thermal conductivity, a comprehensive evaluation was performed based on the following evaluation criteria. The results are shown in Table 1.
◎: Can be used suitably for practical use ○: Can be used practically without problems △: Can be used although there are some practical problems ×: Cannot be used practically

(実施例2)
成形用原料をフュームドシリカ75質量%、炭化珪素20質量%、耐熱グラスファイバー5質量%とした以外は実施例1と同様の方法、条件で成形品を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Example 2)
A molded product was produced under the same method and conditions as in Example 1 except that the molding raw material was 75 mass% fumed silica, 20 mass% silicon carbide, and 5 mass% heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例3)
成形用原料をフュームドシリカ68質量%、炭化珪素20質量%、耐熱グラスファイバー12質量%とした以外は実施例1と同様の方法、条件で成形品を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Example 3)
A molded product was produced under the same method and conditions as in Example 1 except that the molding raw material was 68 mass% fumed silica, 20 mass% silicon carbide, and 12 mass% heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例4)
成形用原料をフュームドシリカ75質量%、炭化珪素20質量%、耐熱グラスファイバーの平均繊維長0.5mm品5質量%とした以外は実施例1と同様の方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
Example 4
A heat insulating material was produced in the same manner and under the same conditions as in Example 1 except that the molding material was 75% by mass of fumed silica, 20% by mass of silicon carbide, and 5% by mass of an average fiber length of 0.5 mm of heat-resistant glass fiber. . And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例5)
成形用原料をフュームドシリカ微粒子75質量%、炭化珪素20質量%、耐熱グラスファイバーの平均繊維長1mm品5質量%とした以外は実施例1と同様の方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Example 5)
A heat insulating material was produced in the same manner and under the same conditions as in Example 1 except that the molding material was 75% by mass of fumed silica fine particles, 20% by mass of silicon carbide, and 5% by mass of an average fiber length of 1 mm of heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例6)
成形用原料をフュームドシリカ75質量%、炭化珪素20質量%、耐熱グラスファイバーの平均繊維長7mm品5質量%とした以外は実施例1と同様の方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Example 6)
A heat insulating material was produced under the same method and conditions as in Example 1 except that the molding raw material was 75% by mass of fumed silica, 20% by mass of silicon carbide, and 5% by mass of an average fiber length of 7 mm of heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例7)
成形用原料をフュームドシリカ75質量%、炭化珪素20質量%、耐熱グラスファイバーの平均繊維長9mm品5質量%とした以外は実施例1と同様の方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Example 7)
A heat insulating material was produced under the same method and conditions as in Example 1 except that the molding raw material was 75% by mass of fumed silica, 20% by mass of silicon carbide, and 5% by mass of an average fiber length of 9 mm of heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例8)
成形用原料をフュームドシリカ85質量%、炭化珪素10質量%、耐熱グラスファイバーの平均繊維長5mm品5質量%とした以外は実施例1と同様の方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Example 8)
A heat insulating material was produced in the same manner and under the same conditions as in Example 1 except that the molding raw material was 85% by mass of fumed silica, 10% by mass of silicon carbide, and 5% by mass of an average fiber length of 5 mm of heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(実施例9)
成形用原料をフュームドシリカ65質量%、炭化珪素30質量%、耐熱グラスファイバーの平均繊維長5mm品5質量%とした以外は実施例1と同様の方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
Example 9
A heat insulating material was produced in the same manner and under the same conditions as in Example 1 except that the molding material was 65% by mass of fumed silica, 30% by mass of silicon carbide, and 5% by mass of an average fiber length of 5 mm of heat-resistant glass fiber. And the same measurement and evaluation were performed. The results are shown in Table 1.

(比較例1)
けい酸カルシウム保温材「ケイカルエース・スーパーシリカ」(ニチアス株式会社製)から実施例1と同様の大きさの板状成形品および1/3円筒成形品を切り出した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Comparative Example 1)
A plate-like molded product and a 1/3 cylindrical molded product having the same size as in Example 1 were cut out from the calcium silicate heat insulating material “Keical Ace Super Silica” (manufactured by Nichias Corporation). And the same measurement and evaluation were performed. The results are shown in Table 1.

(比較例2)
耐熱グラスファイバーを配合することなく、フュームドシリカ80質量%と炭化珪素20質量%とから実施例1と同様の方法、条件で断熱材の成形を試みたが、成形ができなかった。
(Comparative Example 2)
An attempt was made to form a heat insulating material from 80% by mass of fumed silica and 20% by mass of silicon carbide in the same manner and under the same conditions as in Example 1 without blending heat-resistant glass fiber.

(参考例1)
フュームドシリカ85質量%、炭化珪素10質量%、耐熱グラスファイバーの平均繊維長5mm品5質量%を図2に示す回転混合装置30に投入し、チャンバ31と押圧部材32との微小隙間2000μmに設定し、回転速度1000/minにて30秒間を連続回転させた。得られた成形材料をプレス形成して一辺が150mmで、厚さ50mmの板状成形品を得た。そして、図9に示すように、板状成形品から、加圧方向と直交する方向に沿って直径50mm、厚さ20mmの円盤状の試験片を切り出し、かさ密度及び曲げ強度を測定した。また、円弧状の成形型を用い、その高さ方向に沿って(図6(A)または図6(B)における加圧方向とは直交する方向)加圧して内径170mm、外径210mm、高さ100mmの円筒の1/3円筒成形品を作製し、その厚さ方向の熱伝導率を周期加熱法にて測定した。結果を表1に示す。
(Reference Example 1)
2% by mass of fumed silica 85% by mass, silicon carbide 10% by mass, heat-resistant glass fiber with an average fiber length of 5 mm and 5% by mass is put into the rotary mixing device 30 shown in FIG. It was set and rotated continuously for 30 seconds at a rotation speed of 1000 / min. The obtained molding material was press-formed to obtain a plate-like molded product having a side of 150 mm and a thickness of 50 mm. And as shown in FIG. 9, the disk-shaped test piece of diameter 50mm and thickness 20mm was cut out along the direction orthogonal to a pressurization direction from a plate-shaped molded article, and the bulk density and bending strength were measured. In addition, using an arc-shaped mold, pressurizing along the height direction (direction perpendicular to the pressing direction in FIG. 6A or FIG. 6B), the inner diameter is 170 mm, the outer diameter is 210 mm, and the height is high. A 1/3 cylindrical molded product having a thickness of 100 mm was produced, and the thermal conductivity in the thickness direction was measured by a periodic heating method. The results are shown in Table 1.

(参考例2)
フュームドシリカ68質量%、炭化珪素20質量%、耐熱グラスファイバーの平均繊維長5mm品12質量%とし、参考例1と同様の成形方法、条件で断熱材を作製した。そして、同様の測定及び評価を行った。結果を表1に示す。
(Reference Example 2)
A heat insulating material was produced under the same molding method and conditions as in Reference Example 1 with fumed silica of 68% by mass, silicon carbide of 20% by mass and heat-resistant glass fiber having an average fiber length of 5 mm and 12% by mass. And the same measurement and evaluation were performed. The results are shown in Table 1.

Figure 2008164078
Figure 2008164078

実施例1〜9と、比較例1〜2及び参考例1〜2との比較から、フュームドシリカと耐熱グラスファイバーとをバインダーを用いることなく乾式で混合し、加圧成形してなる成形体を、熱源に対して耐熱グラスファイバーが直交するように配向させて配設することにより、優れた断熱性が得られることがわかる。   From comparison between Examples 1 to 9, Comparative Examples 1 and 2 and Reference Examples 1 to 2, fumed silica and heat-resistant glass fiber are mixed by a dry method without using a binder, and are molded by pressing. It can be seen that excellent heat insulation can be obtained by arranging the heat-resistant glass fibers so that the heat-resistant glass fibers are orthogonal to the heat source.

また、無機繊維の熱源との配向角度を検証するために、下記の試験を行った。   Moreover, in order to verify the orientation angle with the heat source of an inorganic fiber, the following test was done.

(実施例10)
実施例2で用いた成形用材料をプレス成形により一辺が150mm、厚さ20mm、かさ密度230kg/mまたは280kg/mの成形体を作製し、更に図8に示すように、加圧方向と同一方向に、直径60mmで厚さ10mmの試験片を切り出した。そして、試験片の厚さ方向の熱伝導率を周期加熱法にて測定した。結果を表2及び図13に示す。
(Example 10)
A molding material having a side of 150 mm, a thickness of 20 mm, and a bulk density of 230 kg / m 3 or 280 kg / m 3 was produced by press molding the molding material used in Example 2, and further, as shown in FIG. A test piece having a diameter of 60 mm and a thickness of 10 mm was cut out in the same direction. And the heat conductivity of the thickness direction of the test piece was measured by the periodic heating method. The results are shown in Table 2 and FIG.

(実施例11)
実施例10と同様にして成形体を作製し、更に図10に示すように、加圧方向に対して45°になるように実施例10と同一形状の試験片を切り出し、厚さ方向の熱伝導率を周期加熱法にて測定した。結果を表2及び図13に示す。
(Example 11)
A molded body was produced in the same manner as in Example 10. Further, as shown in FIG. 10, a test piece having the same shape as in Example 10 was cut out at 45 ° with respect to the pressing direction, and heat in the thickness direction was obtained. The conductivity was measured by a periodic heating method. The results are shown in Table 2 and FIG.

(実施例12)
実施例10と同様にして成形体を作製し、更に図11に示すように、加圧方向に対して60°になるように実施例10と同一形状の試験片を切り出し、厚さ方向の熱伝導率を周期加熱法にて測定した。結果を表2及び図13に示す。
(Example 12)
A molded body was produced in the same manner as in Example 10. Further, as shown in FIG. 11, a test piece having the same shape as in Example 10 was cut out so as to be 60 ° with respect to the pressing direction, and heat in the thickness direction was The conductivity was measured by a periodic heating method. The results are shown in Table 2 and FIG.

(参考例3)
実施例10と同様にして成形体を作製し、更に図12に示すように、加圧方向に対して75°になるように実施例10と同一形状の試験片を切り出し、厚さ方向の熱伝導率を周期加熱法にて測定した。結果を表2及び図13に示す。
(Reference Example 3)
A molded body was produced in the same manner as in Example 10. Further, as shown in FIG. 12, a test piece having the same shape as in Example 10 was cut out so as to be 75 ° with respect to the pressing direction, and heat in the thickness direction was obtained. The conductivity was measured by a periodic heating method. The results are shown in Table 2 and FIG.

(参考例4)
実施例10と同様にして成形体を作製し、更に図9に示すように、加圧方向に対して90°になるように実施例10と同一形状の試験片を切り出し、厚さ方向の熱伝導率を周期加熱法にて測定した。結果を表2及び図13に示す。
(Reference Example 4)
A molded body was produced in the same manner as in Example 10. Further, as shown in FIG. 9, a test piece having the same shape as that in Example 10 was cut out at 90 ° with respect to the pressing direction, and heat in the thickness direction was obtained. The conductivity was measured by a periodic heating method. The results are shown in Table 2 and FIG.

Figure 2008164078
Figure 2008164078

実施例10〜12及び参考例3〜4から、熱伝導率は、耐熱グラスファイバーと熱源との交差角度が平行、45°傾斜、60°傾斜、75°傾斜、垂直となるの順で大きくなることがわかる。   From Examples 10-12 and Reference Examples 3-4, the thermal conductivity increases in the order that the crossing angle between the heat-resistant glass fiber and the heat source becomes parallel, 45 ° tilt, 60 ° tilt, 75 ° tilt, and vertical. I understand that.

フュームドシリカ及びその二次粒子を示す模式図である。It is a schematic diagram which shows a fumed silica and its secondary particle. 回転混合装置を示す模式図である。It is a schematic diagram which shows a rotation mixing apparatus. 繊維配向方向における熱伝導率を示す図である。It is a figure which shows the heat conductivity in a fiber orientation direction. 本発明の改質器用断熱材を示す模式図である。It is a schematic diagram which shows the heat insulating material for reformers of this invention. 本発明の改質器用断熱材を円弧状に成形した例を示す模式図である。It is a schematic diagram which shows the example which shape | molded the heat insulating material for reformers of this invention in circular arc shape. 円弧状に成形する際の加圧方向を示す模式図である。It is a schematic diagram which shows the pressurization direction at the time of shape | molding in circular arc shape. 本発明の改質器用断熱材を円筒状に成形する例を示す模式図である。It is a schematic diagram which shows the example which shape | molds the heat insulating material for reformers of this invention in cylindrical shape. 実施例1〜10の試験片の作製方法を説明する模式図である。It is a schematic diagram explaining the preparation methods of the test piece of Examples 1-10. 参考例1、4の試験片の作製方法を説明する模式図である。It is a schematic diagram explaining the preparation methods of the test piece of the reference examples 1 and 4. FIG. 実施例11の試験片の作製方法を説明する模式図である。10 is a schematic diagram for explaining a method for producing a test piece of Example 11. FIG. 実施例12の試験片の作製方法を説明する模式図である。10 is a schematic diagram for explaining a method for producing a test piece of Example 12. FIG. 参考例3の試験片の作製方法を説明する模式図である。6 is a schematic diagram illustrating a method for producing a test piece of Reference Example 3. FIG. 実施例10〜12、参考例3〜4の測定結果を示すグラフである。It is a graph which shows the measurement result of Examples 10-12 and Reference Examples 3-4.

符号の説明Explanation of symbols

1a フュームドシリカの一次粒子
10 フュームドシリカの二次粒子
20 フュームドシリカ
21 無機繊維
22 無機粉体
30 回転混合装置
31 チャンバ
32 押圧部材
DESCRIPTION OF SYMBOLS 1a Primary particle of fumed silica 10 Secondary particle of fumed silica 20 Fumed silica 21 Inorganic fiber 22 Inorganic powder 30 Rotating mixing device 31 Chamber 32 Pressing member

Claims (6)

改質器を包囲する断熱材において、フュームドシリカと無機繊維とを含む成形体からなることを特徴とする改質器用断熱材。   A heat insulating material for a reformer, characterized in that the heat insulating material surrounding the reformer is made of a molded body containing fumed silica and inorganic fibers. 請求項1に記載の改質器用断熱材において、無機繊維が熱の伝播方向と直交するように配向されることを特徴とする改質器用断熱材。   The heat insulating material for reformers according to claim 1, wherein the inorganic fibers are oriented so as to be orthogonal to the heat propagation direction. 請求項1または2に記載の改質器用断熱材において、無機バインダーおよび有機バインダーが含まれないことを特徴とする改質器用断熱材。   The heat insulating material for reformers according to claim 1 or 2, wherein an inorganic binder and an organic binder are not contained. 請求項1〜3いずれか1つに記載の改質器用断熱材において、乾式にて加圧成形されていることを特徴とする改質器用断熱材。   The heat insulating material for reformers according to any one of claims 1 to 3, wherein the heat insulating material for reformers is pressure-molded in a dry manner. 請求項1〜4いずれか1つに記載の改質器用断熱材において、平均粒径1〜50μmである無機粉体をさらに含むことを特徴とする改質器用断熱材。   The heat insulating material for reformers according to any one of claims 1 to 4, further comprising an inorganic powder having an average particle diameter of 1 to 50 µm. 請求項5に記載の改質器用断熱材において、フュームドシリカが58〜87質量%、無機粉体が10〜30質量%、無機繊維が3〜12質量%含まれることを特徴とする改質器用断熱材。   The heat insulating material for a reformer according to claim 5, wherein fumed silica is contained in an amount of 58 to 87% by mass, inorganic powder is contained in an amount of 10 to 30% by mass, and inorganic fibers are contained in an amount of 3 to 12% by mass. Insulation for dexterity.
JP2006355038A 2006-12-28 2006-12-28 Heat insulating material for reformer Pending JP2008164078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355038A JP2008164078A (en) 2006-12-28 2006-12-28 Heat insulating material for reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355038A JP2008164078A (en) 2006-12-28 2006-12-28 Heat insulating material for reformer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012034214A Division JP5415574B2 (en) 2012-02-20 2012-02-20 Method for producing heat insulating material for reformer

Publications (1)

Publication Number Publication Date
JP2008164078A true JP2008164078A (en) 2008-07-17

Family

ID=39693816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355038A Pending JP2008164078A (en) 2006-12-28 2006-12-28 Heat insulating material for reformer

Country Status (1)

Country Link
JP (1) JP2008164078A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001204A (en) * 2009-06-16 2011-01-06 Jfe Steel Corp High performance heat insulating material and method of manufacturing the same
US20110089363A1 (en) * 2009-10-16 2011-04-21 Nichias Corporation Thermal insulation and method of producing the same
JP2011219324A (en) * 2010-04-13 2011-11-04 Asahi Kasei Chemicals Corp Heat insulating material
JP2012041956A (en) * 2010-08-16 2012-03-01 Asahi Kasei Chemicals Corp Heat insulating material
JP2012097883A (en) * 2010-11-05 2012-05-24 Asahi Kasei Chemicals Corp Heat insulating material
WO2012096110A1 (en) * 2011-01-14 2012-07-19 ニチアス株式会社 Heat insulator and process for producing same
JP2012166977A (en) * 2011-02-14 2012-09-06 Asahi Kasei Chemicals Corp Heat-insulating material, and method for preparation thereof
JP2013230979A (en) * 2013-07-12 2013-11-14 Jfe Steel Corp High-performance heat insulation material and method for producing the same
JPWO2014030651A1 (en) * 2012-08-23 2016-07-28 旭硝子株式会社 Vacuum insulation material manufacturing method and vacuum insulation material
JP2016178073A (en) * 2015-03-19 2016-10-06 Toto株式会社 Solid oxide type fuel battery module
JP2017183139A (en) * 2016-03-31 2017-10-05 Toto株式会社 Solid oxide fuel cell device
JP2020098804A (en) * 2020-03-09 2020-06-25 森村Sofcテクノロジー株式会社 Solid oxide fuel cell device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208696A (en) * 1984-04-02 1985-10-21 株式会社日立製作所 Vacuum heat-insulating material
JPH02199077A (en) * 1989-01-26 1990-08-07 Matsushita Electric Works Ltd Microporous material
JPH03247576A (en) * 1990-02-23 1991-11-05 Matsushita Electric Works Ltd Production of fine porous body
JPH05194008A (en) * 1991-06-19 1993-08-03 Nichias Corp Production of heat insulating material
JPH06137485A (en) * 1992-10-30 1994-05-17 Meisei Kogyo Kk Pipe heat-insulating material and manufacture thereof
JP2002106784A (en) * 2000-10-02 2002-04-10 Matsushita Refrig Co Ltd Vacuum heat insulating material, manufacturing method of vacuum heat insulating material, freezer and refrigerator, and refrigerating apparatus, notebook type computer, electric water boiler, and oven range
JP2002161994A (en) * 2000-11-27 2002-06-07 Matsushita Refrig Co Ltd Vacuum insulant, vacuum insulant applied refrigerator
JP2004081382A (en) * 2002-08-26 2004-03-18 Matsushita Electric Ind Co Ltd Heat insulating material and equipment using it
JP2004182528A (en) * 2002-12-03 2004-07-02 Ebara Ballard Corp Fuel treating equipment
JP2004353128A (en) * 2003-05-29 2004-12-16 Makio Naito Porous body-coated fiber and heat-insulating material
JP2005061611A (en) * 2003-07-28 2005-03-10 Asahi Fiber Glass Co Ltd Method of manufacturing vacuum insulating material core
JP2005083463A (en) * 2003-09-08 2005-03-31 Nisshinbo Ind Inc Method of manufacturing vacuum heat insulating material
JP2005081495A (en) * 2003-09-09 2005-03-31 Makio Naito Porous body coated particle, precursor for heat insulating material containing the porous body coated particle and heat insulating material
JP2005289655A (en) * 2004-03-31 2005-10-20 Makio Naito Composite porous body, molded body of and thermal insulating material of this composite porous body
JP2005329592A (en) * 2004-05-19 2005-12-02 Makio Naito Sound absorbing heat barrier material, exhaust system heat barrier cover for car engine and manufacturing method of them
JP2005335982A (en) * 2004-05-25 2005-12-08 Ebara Ballard Corp Fuel treating apparatus and fuel cell power generation system
JP2006161972A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208696A (en) * 1984-04-02 1985-10-21 株式会社日立製作所 Vacuum heat-insulating material
JPH07103955B2 (en) * 1984-04-02 1995-11-08 株式会社日立製作所 Vacuum insulation
JPH02199077A (en) * 1989-01-26 1990-08-07 Matsushita Electric Works Ltd Microporous material
JPH03247576A (en) * 1990-02-23 1991-11-05 Matsushita Electric Works Ltd Production of fine porous body
JPH05194008A (en) * 1991-06-19 1993-08-03 Nichias Corp Production of heat insulating material
JPH06137485A (en) * 1992-10-30 1994-05-17 Meisei Kogyo Kk Pipe heat-insulating material and manufacture thereof
JP2002106784A (en) * 2000-10-02 2002-04-10 Matsushita Refrig Co Ltd Vacuum heat insulating material, manufacturing method of vacuum heat insulating material, freezer and refrigerator, and refrigerating apparatus, notebook type computer, electric water boiler, and oven range
JP2002161994A (en) * 2000-11-27 2002-06-07 Matsushita Refrig Co Ltd Vacuum insulant, vacuum insulant applied refrigerator
JP2004081382A (en) * 2002-08-26 2004-03-18 Matsushita Electric Ind Co Ltd Heat insulating material and equipment using it
JP2004182528A (en) * 2002-12-03 2004-07-02 Ebara Ballard Corp Fuel treating equipment
JP2004353128A (en) * 2003-05-29 2004-12-16 Makio Naito Porous body-coated fiber and heat-insulating material
JP2005061611A (en) * 2003-07-28 2005-03-10 Asahi Fiber Glass Co Ltd Method of manufacturing vacuum insulating material core
JP2005083463A (en) * 2003-09-08 2005-03-31 Nisshinbo Ind Inc Method of manufacturing vacuum heat insulating material
JP2005081495A (en) * 2003-09-09 2005-03-31 Makio Naito Porous body coated particle, precursor for heat insulating material containing the porous body coated particle and heat insulating material
JP2005289655A (en) * 2004-03-31 2005-10-20 Makio Naito Composite porous body, molded body of and thermal insulating material of this composite porous body
JP2005329592A (en) * 2004-05-19 2005-12-02 Makio Naito Sound absorbing heat barrier material, exhaust system heat barrier cover for car engine and manufacturing method of them
JP2005335982A (en) * 2004-05-25 2005-12-08 Ebara Ballard Corp Fuel treating apparatus and fuel cell power generation system
JP2006161972A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001204A (en) * 2009-06-16 2011-01-06 Jfe Steel Corp High performance heat insulating material and method of manufacturing the same
US9982831B2 (en) 2009-10-16 2018-05-29 Nichias Corporation Thermal insulation and method of producing the same
US20110089363A1 (en) * 2009-10-16 2011-04-21 Nichias Corporation Thermal insulation and method of producing the same
KR101608497B1 (en) 2009-10-16 2016-04-11 니찌아스 카부시키카이샤 Thermal insulation and method of producing the same
JP2011219324A (en) * 2010-04-13 2011-11-04 Asahi Kasei Chemicals Corp Heat insulating material
JP2012041956A (en) * 2010-08-16 2012-03-01 Asahi Kasei Chemicals Corp Heat insulating material
JP2012097883A (en) * 2010-11-05 2012-05-24 Asahi Kasei Chemicals Corp Heat insulating material
WO2012096110A1 (en) * 2011-01-14 2012-07-19 ニチアス株式会社 Heat insulator and process for producing same
JP2012149658A (en) * 2011-01-14 2012-08-09 Nichias Corp Heat insulating material and method for manufacturing the same
JP2012166977A (en) * 2011-02-14 2012-09-06 Asahi Kasei Chemicals Corp Heat-insulating material, and method for preparation thereof
JPWO2014030651A1 (en) * 2012-08-23 2016-07-28 旭硝子株式会社 Vacuum insulation material manufacturing method and vacuum insulation material
JP2013230979A (en) * 2013-07-12 2013-11-14 Jfe Steel Corp High-performance heat insulation material and method for producing the same
JP2016178073A (en) * 2015-03-19 2016-10-06 Toto株式会社 Solid oxide type fuel battery module
JP2020004726A (en) * 2015-03-19 2020-01-09 Toto株式会社 Solid oxide fuel cell module
JP2017183139A (en) * 2016-03-31 2017-10-05 Toto株式会社 Solid oxide fuel cell device
JP2020098804A (en) * 2020-03-09 2020-06-25 森村Sofcテクノロジー株式会社 Solid oxide fuel cell device

Similar Documents

Publication Publication Date Title
JP2008164078A (en) Heat insulating material for reformer
JP5415574B2 (en) Method for producing heat insulating material for reformer
KR101608497B1 (en) Thermal insulation and method of producing the same
JP3750024B2 (en) Method for producing porous body
CN100480451C (en) Porous carbon base material, and preparation method and application thereof
US9950963B2 (en) Thermal insulator and method of manufacturing the same
JP2001325967A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
JP2011136904A (en) Apparatus suitable for contacting gases at high temperature
JPWO2010090164A1 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2016033419A (en) Manufacturing method of heat insulation plate and vacuum heat insulation material
WO2007044046A2 (en) Macroporous structures for heterogeneous catalyst support
WO2011060621A1 (en) Process and device for improving properties of carbon paper with chemical vapor infiltration coating quickly applied by pressure-gradient method
Yu et al. Ultrafine Ruthenium Clusters Shell‐Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment‐Modulated Furfural Tandem Hydrogenation
CN100557078C (en) A kind of preparation method of silicon carbide reflecting mirror material and CVI building mortion thereof
CN112374902A (en) Preparation method of high-densification SiCf/SiC clad composite pipe
WO2022083110A1 (en) Fabrication method for fabricating longitudinal high-thermal-conductivity gasket using controllable compression deformation-oriented carbon fiber
KR101954067B1 (en) A method for manufacturing of a porous silicon carbide structure with a catalytic metal
JP7069509B2 (en) Equipment and firing method for cell firing of solid oxide fuel cells
Chen et al. Catalytic graphitized silicone rubber coatings with highly graphitized ceramic layer and superior ablation resistance
WO2019176896A1 (en) Method for producing silicon-impregnated ceramic composite material, method for producing friction plate, and method for producing brake disc
JPH11283641A (en) Powder for molten carbonate fuel cell electrolyte plate and manufacture of molten carbonate fuel cell electrolyte plate
JP2009249248A (en) Method for producing ceramic
JP2023019719A (en) Heat insulating material and method for producing heat insulating material
JP5322213B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2002265286A (en) Heat insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710