JPH07103955B2 - Vacuum insulation - Google Patents

Vacuum insulation

Info

Publication number
JPH07103955B2
JPH07103955B2 JP59063389A JP6338984A JPH07103955B2 JP H07103955 B2 JPH07103955 B2 JP H07103955B2 JP 59063389 A JP59063389 A JP 59063389A JP 6338984 A JP6338984 A JP 6338984A JP H07103955 B2 JPH07103955 B2 JP H07103955B2
Authority
JP
Japan
Prior art keywords
inorganic fine
fine fiber
fiber mat
heat
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59063389A
Other languages
Japanese (ja)
Other versions
JPS60208696A (en
Inventor
延行 小林
勉 光藤
俊 竹原
康己 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59063389A priority Critical patent/JPH07103955B2/en
Publication of JPS60208696A publication Critical patent/JPS60208696A/en
Publication of JPH07103955B2 publication Critical patent/JPH07103955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、平板状の真空断熱材に関するものである。TECHNICAL FIELD The present invention relates to a flat vacuum heat insulating material.

〔発明の背景〕[Background of the Invention]

断熱機能の高い真空断熱材は、耐圧構造上、円筒、又は
球状構造体のみであったが、最近スペーサーを内蔵する
平板状、又は箱状構造体が考えられてきた。
The vacuum heat insulating material having a high heat insulating function is only a cylindrical or spherical structure because of its pressure resistant structure, but recently, a flat plate-like or box-like structure incorporating a spacer has been considered.

このスペーサーは、ガラス繊維等の無機質繊維の細径フ
ィラメントを伝熱方向と直角方向に積層し、多段の接触
熱抵抗により断熱機能をもたせるものであるが、このま
までは低密度であり、真空圧による圧縮変形が大きく、
パネル全体が大きく変形し組込が困難となるため、フッ
ク付針(以下ニードルと云う。)により、繊維の一部を
積層方向と直角方向、即ち伝熱方向にペネトレーション
を行ない、密度を増大させ、圧縮変形を少なくする手段
が取られてきたが、この手段は、繊維の一部が伝熱方向
に一致するペネトレーションを行なうため、このペネト
レーション繊維の熱伝導により、真空容器外板の一方の
面から他方の面に直接熱が伝わり断熱機能を低下せしめ
る欠点を有していた。
This spacer is made by stacking thin filaments of inorganic fibers such as glass fibers in the direction perpendicular to the heat transfer direction, and has a heat insulating function by multi-step contact heat resistance, but it is low density as it is and Large compression deformation,
Since the whole panel is greatly deformed and it becomes difficult to incorporate it, a needle with a hook (hereinafter referred to as a needle) is used to penetrate a part of the fiber in the direction perpendicular to the stacking direction, that is, in the heat transfer direction to increase the density. , A means to reduce the compressive deformation has been taken, but this means performs a penetration in which a part of the fiber coincides with the heat transfer direction. Therefore, there is a drawback that heat is directly transmitted to the other surface and the heat insulating function is deteriorated.

〔発明の目的〕[Object of the Invention]

本発明は、上記欠陥を改良するために成されたものであ
る。
The present invention has been made to remedy the above defects.

〔発明の概要〕[Outline of Invention]

上記目的は、無機質細径繊維(4a)がその長さ方向を伝
熱方向と直角になるように且つこの直角な細径繊維(4
a)の長さ方向が相互に交差するようにランダムに積層
されて相互に点接触とされ、この点接触が伝熱方向に多
段にされた無機質細径繊維マット(4)と、この無機質
細径繊維マット(4)を内設するステンレス材製の平板
状パネルとからなり、この平板状パネル内への無機質細
径繊維マット(4)の内設が、無機質細径繊維マット
(4)の細径繊維(4a)の長さ方向を伝熱方向に対して
直角方向にされ、この平板状パネル内部を高真空にされ
た真空断熱材において、 上記積層された細径繊維(4a)に伝熱方向と平行に打込
まれて高密度の無機質細径繊維マット(4)を構成する
ペネトレーション繊維(4b)を備え、上記無機質細径繊
維マット(4)が複数枚重ね合わされて上記平板状パネ
ル内に内設された真空断熱材とすることにより、達成さ
れる。
The above purpose is such that the length direction of the inorganic fine fiber (4a) is at right angles to the heat transfer direction and the fine fiber (4a)
a) The inorganic fine fiber mat (4), which is randomly laminated so that the length directions thereof intersect with each other and makes point contact with each other, and these point contacts are multi-tiered in the heat transfer direction, and this inorganic fine fiber mat It is composed of a flat plate panel made of a stainless material in which the small diameter fiber mat (4) is installed, and the inner thin inorganic fiber mat (4) is installed inside the flat panel. In the vacuum heat insulating material in which the length direction of the small diameter fiber (4a) is perpendicular to the heat transfer direction and the inside of this flat panel is made into a high vacuum, the heat is transferred to the laminated small diameter fiber (4a). The flat panel is provided with penetration fibers (4b) that are driven in parallel to the heat direction to form a high-density inorganic fine fiber mat (4), and a plurality of the inorganic fine fiber mats (4) are stacked. Achieved by using a vacuum insulation material installed inside It is.

〔発明の実施例〕Example of Invention

本発明に於ける一実施例を、第1図〜第5図により説明
すると、1はステンレス材で構成し、浅くプレスした絞
り外板、1aはそのフランジ、1bは、絞り外板1のプレス
した底部に設ける円筒状のカラー、2は、絞り外板1の
蓋となる外板で、上記絞り外板1と組み合わされて平板
状のパネルを構成する。3は、真空引きパイプで、その
一端はカラー1bに溶接する。4は、高密度にされた無機
質細径繊維マットで、上記平板状パネル内に複数枚重ね
合わせて内設されている。上記無機質細径繊維の耐熱性
は数百度を有し、ガス発生を防止できるものであれば良
く、材質については特に規定しない。4aは、上記無機質
細径繊維マット4の細径繊維で、この細径繊維4aは、平
板状パネル内へ無機質細径繊維マット4を内設した場合
に、細径繊維4aの主方向、すなわち細径繊維4aの長さ方
向が伝熱方向に対して直角方向になるように且つこの直
角な細径繊維(4a)の長さ方向が相互に交差するように
ランダムに積層されて相互に点接触となり、この点接触
が伝熱方向に多段になるようにされている。4bは、この
細径繊維と、直交するようなペネトレーション繊維で、
打込みは両面より行っても、片面のみでも良い。
An embodiment of the present invention will be described with reference to FIGS. 1 to 5. Reference numeral 1 is a stainless steel material, and a shallowly pressed diaphragm outer plate, 1a is a flange thereof, and 1b is a diaphragm outer plate 1. A cylindrical collar 2 provided on the bottom portion is an outer plate that serves as a lid for the diaphragm outer plate 1, and is combined with the diaphragm outer plate 1 to form a flat panel. Reference numeral 3 is a vacuum drawing pipe, one end of which is welded to the collar 1b. Reference numeral 4 denotes a high density inorganic fine fiber mat, which is provided in the flat panel by stacking a plurality of sheets. The heat resistance of the above-mentioned fine inorganic fibers is several hundreds as long as it can prevent gas generation, and the material is not particularly limited. 4a is a fine fiber of the above-mentioned inorganic fine fiber mat 4, and this fine fiber 4a is the main direction of the fine fiber 4a when the fine inorganic fiber mat 4 is installed in the flat panel, that is, The thin fibers 4a are randomly laminated so that the lengthwise direction of the thin fibers 4a is perpendicular to the heat transfer direction and the lengthwise directions of the perpendicular thin fibers (4a) intersect with each other. Contact is made, and this point contact is made to have multiple stages in the heat transfer direction. 4b is a penetration fiber that is orthogonal to this thin fiber,
The driving may be performed from both sides or only one side.

かかる部品で真空断熱材を構成するには、まず絞り外板
1の凹板に多数枚重ねた無機質細径繊維マット4を内設
し、外板2で、蓋をし、フランジ1aと、外板2の外周部
を気密溶接し、真空引きパイプ3に真空ポンプ(図示せ
ず)を接続し、排気をしながら高温に加熱し、脱ガスを
促進させ、加熱、脱ガス終了後に真空引きパイプ3の一
部を封止切って真空断熱材を完成する。
In order to construct a vacuum heat insulating material with such parts, first, a large number of inorganic fine fiber mats 4 are placed inside the concave plate of the diaphragm outer plate 1, the outer plate 2 is covered, and the flange 1a and the outer plate are attached. The outer peripheral portion of the plate 2 is airtightly welded, a vacuum pump (not shown) is connected to the evacuation pipe 3, and it is heated to a high temperature while being evacuated to accelerate degassing, and after heating and degassing, the evacuation pipe is drawn. A part of 3 is completely cut off to complete the vacuum heat insulating material.

〔発明の効果〕〔The invention's effect〕

以上の如く構成された真空断熱材は、平板状のパネル内
に収納されてスペーサーとなる複数枚積重ねた無機質細
径繊維マット4の細径繊維4aが、伝熱方向に直角に、か
つランダムに積層されているので、熱伝導が多段の点接
触の接触熱抵抗を有し断熱機能が高く、しかもこの無機
質細径繊維マット4を高密度とするため伝熱方向に打込
んだペネトレーション繊維4bは、積重ねた2枚の無機質
細径繊維マット4の層間で断絶されていることから、絞
り外板1と、絞り外板2との間に直接熱伝導がなく、ペ
ネトレーション繊維4bによる熱損失を微小にできる効果
がある。このペネトレーション繊維4bを介して絞り外板
1と、外板2との間の直接熱伝導がないことによる熱損
失の減少に加えて、対流損失は、真空により、輻射損失
は熱伝導率の少いステンレス材によって防ぐことができ
るので、全体的に高い断熱機能を発揮する真空断熱材を
提供できる。
The vacuum heat insulating material configured as described above is such that the thin fibers 4a of the stacked inorganic thin fiber mats 4 which are housed in the flat plate-like panel and serve as spacers are perpendicular to the heat transfer direction and randomly. Since they are laminated, the heat conduction has the contact heat resistance of multi-stage point contact and has a high heat insulation function. Moreover, the penetration fiber 4b driven in the heat transfer direction in order to make this inorganic fine fiber mat 4 high density Since there is no break between the layers of the two stacked inorganic fine fiber mats 4, there is no direct heat conduction between the diaphragm outer plate 1 and the diaphragm outer plate 2, and the heat loss due to the penetration fiber 4b is small. There is an effect that can be. In addition to the reduction in heat loss due to the absence of direct heat conduction between the diaphragm outer plate 1 and the outer plate 2 via the penetration fiber 4b, convection loss is due to vacuum and radiation loss is due to low thermal conductivity. Since it can be prevented by a stainless steel material, it is possible to provide a vacuum heat insulating material that exhibits a high heat insulating function as a whole.

【図面の簡単な説明】[Brief description of drawings]

第1図は、真空断熱材の斜視図、第2図は、第1図の縦
断面図、第3図は重ね合された無機質細径繊維マットの
斜視図、第4図は細径繊維のランダム積層図、第5図
は、重ね合された無機質細径繊維マットの側視拡大図で
ある。 1……絞り外板、1a……フランジ、1b……カラー、2…
…外板、3……真空引きパイプ、4……無機質細径繊維
マット、4a……細径繊維、4b……ペネトレーション繊
維。
FIG. 1 is a perspective view of a vacuum heat insulating material, FIG. 2 is a vertical sectional view of FIG. 1, FIG. 3 is a perspective view of superposed inorganic fine fiber mats, and FIG. FIG. 5 is a side view enlarged view of the superposed inorganic fine fiber mats. 1 ... diaphragm outer plate, 1a ... flange, 1b ... collar, 2 ...
... Outer plate, 3 ... Vacuum pipe, 4 ... Inorganic fine fiber mat, 4a ... Fine fiber, 4b ... Penetration fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹原 俊 栃木県真岡市鬼怒ケ岡6番地 富士フアイ バーグラス株式会社内 (72)発明者 宮下 康己 栃木県真岡市鬼怒ケ岡6番地 富士フアイ バーグラス株式会社内 (56)参考文献 特開 昭54−21655(JP,A) 特開 昭57−47124(JP,A) 特開 昭58−106292(JP,A) 特開 昭60−14695(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shun Takehara, 6 Kinuoka, Moka, Tochigi Prefecture, Fuji-Fai Bargrass Co., Ltd. (72) Inventor, Yasumi Miyashita, 6 Kinuoka, Moka, Tochigi Prefecture Incorporated (56) Reference JP 54-21655 (JP, A) JP 57-47124 (JP, A) JP 58-106292 (JP, A) JP 60-14695 (JP, A) A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無機質細径繊維(4a)がその長さ方向を伝
熱方向と直角になるように且つこの直角な細径繊維(4
a)の長さ方向が相互に交差するようにランダムに積層
されて相互に点接触とされ、この点接触が伝熱方向に多
段にされた無機質細径繊維マット(4)と、この無機質
細径繊維マット(4)を内設するステンレス材製の平板
状パネルとからなり、この平板状パネル内への無機質細
径繊維マット(4)の内設が、無機質細径繊維マット
(4)の細径繊維(4a)の長さ方向を伝熱方向に対して
直角方向にされ、この平板状パネル内部を高真空にされ
た真空断熱材において、 上記積層された細径繊維(4a)に伝熱方向と平行に打込
まれて高密度の無機質細径繊維マット(4)を構成する
ペネトレーション繊維(4b)を備え、 上記無機質細径繊維マット(4)が複数枚重ね合わされ
て上記平板状パネル内に内設されたことを特徴とする真
空断熱材。
1. An inorganic fine fiber (4a) having its length direction at right angles to the heat transfer direction and at the right angle.
a) The inorganic fine fiber mat (4), which is randomly laminated so that the length directions thereof intersect with each other and makes point contact with each other, and these point contacts are multi-tiered in the heat transfer direction, and this inorganic fine fiber mat It is composed of a flat plate panel made of a stainless material in which the small diameter fiber mat (4) is installed, and the inner thin inorganic fiber mat (4) is installed inside the flat panel. In the vacuum heat insulating material in which the length direction of the small diameter fiber (4a) is perpendicular to the heat transfer direction and the inside of this flat panel is made into a high vacuum, the heat is transferred to the laminated small diameter fiber (4a). The flat panel is provided with penetration fibers (4b) that are driven in parallel to the heat direction to form a high-density inorganic fine fiber mat (4), and a plurality of the inorganic fine fiber mats (4) are stacked. A vacuum heat insulating material characterized by being installed inside.
JP59063389A 1984-04-02 1984-04-02 Vacuum insulation Expired - Lifetime JPH07103955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063389A JPH07103955B2 (en) 1984-04-02 1984-04-02 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063389A JPH07103955B2 (en) 1984-04-02 1984-04-02 Vacuum insulation

Publications (2)

Publication Number Publication Date
JPS60208696A JPS60208696A (en) 1985-10-21
JPH07103955B2 true JPH07103955B2 (en) 1995-11-08

Family

ID=13227892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063389A Expired - Lifetime JPH07103955B2 (en) 1984-04-02 1984-04-02 Vacuum insulation

Country Status (1)

Country Link
JP (1) JPH07103955B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
EP2105648A1 (en) 2008-03-25 2009-09-30 Mitsubishi Electric Corporation Vacuum heat insulating material and heat insulating box using the same
WO2010073762A1 (en) 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
WO2010087039A1 (en) 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
EP2306128A2 (en) 2009-09-29 2011-04-06 Mitsubishi Electric Corporation Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
WO2011045946A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
WO2011045947A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
WO2011048824A1 (en) 2009-10-19 2011-04-28 三菱電機株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
WO2022092932A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body
WO2022092927A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body
WO2022092931A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976047B2 (en) * 2006-04-25 2012-07-18 国立大学法人東北大学 Heating device
CN105605863B (en) 2014-11-13 2018-01-02 松下知识产权经营株式会社 Vacuum heat insulation material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819468A (en) * 1971-06-28 1974-06-25 Sander Ind Inc High temperature insulation module
JPS5421655A (en) * 1977-07-19 1979-02-19 Toshiba Corp Structure material of supporting heat insulating load
JPS58106292A (en) * 1981-12-16 1983-06-24 株式会社日立製作所 Vacuum heat insulating material

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
EP2105648A1 (en) 2008-03-25 2009-09-30 Mitsubishi Electric Corporation Vacuum heat insulating material and heat insulating box using the same
EP2538124A2 (en) 2008-12-26 2012-12-26 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
WO2010073762A1 (en) 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
EP2538125A2 (en) 2008-12-26 2012-12-26 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
EP2500617A1 (en) 2008-12-26 2012-09-19 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating /air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
WO2010087039A1 (en) 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same
EP2306128A2 (en) 2009-09-29 2011-04-06 Mitsubishi Electric Corporation Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
WO2011045947A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
WO2011045946A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
JP5362024B2 (en) * 2009-10-19 2013-12-11 三菱電機株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material
WO2011048824A1 (en) 2009-10-19 2011-04-28 三菱電機株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
WO2022092932A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body
WO2022092927A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body
WO2022092931A1 (en) * 2020-11-02 2022-05-05 Lg Electronics Inc. Vacuum adiabatic body

Also Published As

Publication number Publication date
JPS60208696A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
JPH07103955B2 (en) Vacuum insulation
US3995615A (en) Solar heat collector panel
JPH07280170A (en) Packing structure of packing material for vacuum heat insulating body
JPH07139691A (en) Vacuum heat insulation material and manufacture thereof
JPS6350599B2 (en)
ES8308037A1 (en) Method of making a tube in sheet heat exchanger
JPS5865795U (en) Heating device in hot isostatic pressure treatment equipment
JP5969359B2 (en) Manufacturing method of vacuum insulation panel
EP0128235B1 (en) Vacuum heat insulator
JPH07103954B2 (en) Vacuum insulation
JPH0563297B2 (en)
JPH08121684A (en) Filler for vacuum insulator
JPS60208695A (en) Vacuum heat-insulating material
JP2935254B2 (en) Vacuum insulation filler
JPS60208227A (en) Vacuum heat-insulating material
JPH0559347B2 (en)
JPH0563299B2 (en)
JPS6014695A (en) Vacuum heat-insulating material
JP2020143892A (en) Assembly type protective cylinder used for high-temperature process under inert atmosphere protection
JP2578650B2 (en) Metal hydride containers
JPS60112440A (en) Vacuum heat-insulating material
JPS597876A (en) Manufacture of vacuum heat-insulating material
JPS58138844A (en) Vacuum heat insulating material
JPS6319983B2 (en)
CN209762562U (en) Combined protective barrel for high-temperature process protected by inert atmosphere