JPS58138844A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material

Info

Publication number
JPS58138844A
JPS58138844A JP57018755A JP1875582A JPS58138844A JP S58138844 A JPS58138844 A JP S58138844A JP 57018755 A JP57018755 A JP 57018755A JP 1875582 A JP1875582 A JP 1875582A JP S58138844 A JPS58138844 A JP S58138844A
Authority
JP
Japan
Prior art keywords
vacuum
plate
glass wool
outer plate
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57018755A
Other languages
Japanese (ja)
Inventor
延行 小林
幸雄 渡辺
敏夫 三瓶
昌幸 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57018755A priority Critical patent/JPS58138844A/en
Publication of JPS58138844A publication Critical patent/JPS58138844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、平板状のパネル形の真空断熱材に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flat panel-shaped vacuum insulation material.

現在多くの断熱材種かあるが、大部分は充填する物体の
低熱伝導率の特性を利j11シたもので、この方式は自
ずと限界がある。
Currently, there are many types of insulation materials, but most of them take advantage of the low thermal conductivity of the material they are filled with, and this method naturally has its limitations.

これに代るものとして、断熱層内を約10’Torr前
後の高真空とし、分子間の相互の衝突による伝熱を防止
した真空断熱法があるが、真空容器の耐11力的構造か
ら、円筒状の構造体か、球状の構造体、又は円筒と欠球
状体の組合せ構造となる魔法瓶、デユア−瓶等の曲面形
構造体の容器に限定されて応用されている。
As an alternative to this, there is a vacuum insulation method that creates a high vacuum of about 10 Torr inside the insulation layer to prevent heat transfer due to mutual collisions between molecules, but due to the 11 force-resistant structure of the vacuum container, Application is limited to containers with curved structures such as thermos flasks and dual-bottles, which have a cylindrical structure, a spherical structure, or a combination structure of a cylinder and a spherical structure.

しかし、゛冷蔵庫、暖蔵庫、炉、風呂桶、家屋等断熱を
必要とする構造体は、平板状、及び平板を組合せる箱体
構造が多く、薄板平板の組合せで、真空空隙を有する平
板状耐[[容器を構成することが困難であり、これを板
厚やリブ材によって強化すれば、コーナ部を介しての熱
伝導損失が増大し、断熱機能を損う−1−1製品原価、
製品重量的に不利となり、このため平板状の真空断熱材
は全く使用されていない。
However, most structures that require insulation, such as refrigerators, heating cabinets, furnaces, bathtubs, and houses, have a flat plate shape or a box structure that combines flat plates. It is difficult to construct a container, and if it is strengthened by plate thickness or rib material, heat conduction loss through the corners will increase and the insulation function will be impaired.-1-1 Product cost ,
This is disadvantageous in terms of product weight, so flat vacuum insulation materials are not used at all.

従来に於ける公知例を第1図、及び第2図により説明す
ると、1+’z円筒形の円筒、■−1は内筒1の内底部
で負圧側を凸とする半球状とする3、この各々のタト面
側、即ち真空空隙側は、輻口・1伝熱防止のため輻射率
の少い鏡面仕」〕げとなっている。2は円筒形の外筒、
2−1は外筒2の外底部で内側即ち負圧側に凸となる欠
球状に構成し、この各々の内面側、即ち真空間隙側は、
内筒lと同様に輻射伝熱防Iにのため鏡面仕上げとなっ
ている。3は内筒、■と外筒2を接続する頚部、4は蓋
、5は1O−2〜10”l’ Or rの真空とする断
熱空間で、分子の平均自由行程を延長し、分子間の相互
の衝突を防止し、熱伝達伝熱損失を減少させ、輻射伝熱
は容器の相対する而の鏡面仕−にげによって減少さぜ、
頚部3に生じる内筒11及びり[筒2との温度差による
熱伝導伝熱は頚部3を細く絞り、板厚を薄、くできるこ
とによって減少できるので、容器全体の断熱に効果があ
る。又構造力学的にも円筒、半球及び欠球の組合せであ
り、容器全体は板厚を薄く構成し真空胴圧が保持できる
ので、断熱的効果の他にも工作面、原価、重量面にも有
利となる。
Conventional known examples are explained with reference to FIGS. 1 and 2. 1+'z cylindrical cylinder, 2-1 is the inner bottom of the inner cylinder 1 and is hemispherical with a convex negative pressure side 3, The vertical side of each of these, that is, the vacuum gap side, has a mirror finish with low emissivity to prevent radiation heat transfer. 2 is a cylindrical outer cylinder,
2-1 is the outer bottom of the outer cylinder 2 and is formed into a truncated sphere convex to the inside, that is, to the negative pressure side, and the inner surface of each of these, that is, the vacuum gap side, is as follows.
Like the inner cylinder I, it has a mirror finish to provide radiation heat transfer protection. 3 is the inner cylinder, the neck connecting ■ and the outer cylinder 2, 4 is the lid, and 5 is an adiabatic space with a vacuum of 1O-2 to 10"l' Or r, which extends the mean free path of molecules and to prevent mutual collision of the containers, reduce heat transfer loss, and radiant heat transfer is reduced by the mirror finish of the opposing containers.
Heat conduction due to the temperature difference between the inner cylinder 11 and the cylinder 2 occurring in the neck 3 can be reduced by narrowing the neck 3 and making the plate thinner, which is effective in insulating the entire container. Also, in terms of structural mechanics, it is a combination of a cylinder, a hemisphere, and a broken ball, and the entire container has a thin board structure that can maintain the vacuum cylinder pressure, so it is not only effective for insulation but also for workability, cost, and weight. It will be advantageous.

しかし、これを屯に薄板で平板状のパネル形の真空断熱
材として構成する場合には、小寸のパネルであ、っても
、この而−1−にはl Kg/ca の割合の大きな荷
重を受け、変形・潰れを生じ、薄板構造体のみで平板状
の真空空間を保持することはできない。これを防止する
ため厚い金属材、リブ材補強   ゛で構成すると従来
例の頚部3に相当する4辺コーナ一部を介しての熱伝導
損失が増大し、又原価面、重量面でも欠陥を生じ、この
方式の断熱材を応用できないのが実状である。
However, when this is constructed as a vacuum insulation material in the form of a flat panel made of thin plates, even if the panel is small, the The thin plate structure alone cannot maintain a flat vacuum space because it deforms and collapses under load. In order to prevent this, if the construction is made of thick metal material and reinforced rib material, the heat conduction loss through part of the four side corners corresponding to the neck 3 of the conventional example will increase, and it will also cause defects in terms of cost and weight. The reality is that this type of insulation cannot be applied.

本発明は、上記欠陥を改良するために成されたものであ
る。
The present invention has been made to improve the above defects.

即ち、りを板には鉄、ニッケル、クロームの合金の薄板
金属材を使用し、空間保持の耐圧構造材としては、一定
割合の圧縮変形をする繊維状、又は粉末状スペーサを封
入し、内部空隙を真空としてステンレスの一部を変形さ
せた平板状の真空断熱材に関するものである。
In other words, a thin sheet metal material made of an alloy of iron, nickel, and chromium is used for the rib plate, and a fibrous or powder spacer that undergoes compression deformation at a certain rate is enclosed as a pressure-resistant structural material to maintain space. This relates to a flat plate-shaped vacuum heat insulating material in which a part of stainless steel is deformed by creating a vacuum in the void.

本発明の一実施例を、第3図〜第11図番こより説明す
ると、6は、絞り外板で、コーナアールを小とし浅くプ
レス成形するもので、材質は、鉄にニッケル、及びクロ
ームか、又は鉄にニッケルが、クロームかのどちらか一
方を有する合金とする。
An embodiment of the present invention will be explained with reference to figures 3 to 11. 6 is a drawn outer plate, which is shallowly press-formed with a small corner radius, and is made of iron, nickel, and chrome. , or an alloy containing either iron, nickel, or chromium.

6−1は、絞り外板1のフランジ、6−2Lt、パイプ
を接続溶接するための絞り穴、7は、平板状の極薄板外
板で、厚さ方向以外の外法寸法は同一寸法とし、板厚は
、絞り外板6よりさらに薄くし、真空加圧時の可撓性と
、外板の外周部の金属材をを介しての熱伝導損失を防ぐ
機能を同時に持たせる。又材質は、絞り外板6と同一合
金材を使用する。絞りりを板6と、極薄板外板7とに前
記合金材を使用する理由は、熱伝導率が鉄の数分の1と
なり、これにより、7ランジ6−1及び、極薄板外板7
の外周部を介しての熱伝導損失が薄板化と同時に防止さ
れる。又この合金材は、洗浄、ベーキング等の処理後の
材料の表面、及び内部からのガス発生が微量となり、真
空度の劣化が少なく、又、耐食、強度に優れ、薄板化し
ても穴明き等の欠陥がなく、そのJjこ絞りプレス、溶
接等の加工性も良く全ての条件に効果を持たせることが
できるためである。8はグラスウールマットで、硬化剤
、接着剤等の添加物を一切使用しない純ガラスウール繊
維で、繊維方向は平板状に構成するグラスウールマット
の厚さ方向、即ち熱伝導の生じる方向に対し、直角方向
となるようランダムに積層する。
6-1 is a flange of the drawn outer plate 1, 6-2Lt is a drawn hole for connecting and welding a pipe, and 7 is a flat plate-like ultra-thin outer plate, and the outer dimensions other than the thickness direction are the same. The plate thickness is made thinner than the drawn outer plate 6 to simultaneously provide flexibility during vacuum pressurization and the function of preventing heat conduction loss through the metal material on the outer periphery of the outer plate. Further, the same alloy material as that of the aperture outer plate 6 is used as the material. The reason why the alloy material is used for the aperture plate 6 and the ultra-thin outer plate 7 is that the thermal conductivity is a fraction of that of iron.
Heat conduction loss through the outer periphery of the plate is simultaneously prevented by thinning the plate. In addition, this alloy material generates only a small amount of gas on the surface and inside of the material after processing such as cleaning and baking, so there is little deterioration in the degree of vacuum, and it also has excellent corrosion resistance and strength, and does not have holes even when made into a thin plate. This is because it has no defects such as, and has good workability in JJ drawing press, welding, etc., and can be effective under all conditions. 8 is a glass wool mat, which is made of pure glass wool fibers that do not use any additives such as curing agents or adhesives, and the fiber direction is perpendicular to the thickness direction of the glass wool mat, which is configured in a flat plate shape, that is, the direction in which heat conduction occurs. Stack them randomly in the same direction.

この様に構成するには、グラスウール繊維8〜1を成る
長さに切断後、バギュームを掛けたダクト内に吸引させ
れば、グラスウール繊維8−1は、吸引面に平行でかつ
ランダムに積層され、)if l!’、に点接触となり
、接触熱抵抗を増大させ断熱的に有利にならしめる。8
−2は積層されたグラスウール繊維8−1の外側の一部
を直角方向に縫込むペネトレーション繊維で、これによ
って綿の如く低密度で、真空加圧時に90%以上と圧縮
変形−はの多いものから、高密度で圧縮変形量の50%
以下と少いグラスウールの硬化マット状にする。このペ
ネトレーション繊維8−2は、数十木/ a!程度縫込
めば密度は最高となり、このペネI・レーション繊維8
−2の方向は、伝熱方向と一致するが、一般市販の繊維
径は10ミクロン前後であって、伝熱方向面積の内、ペ
ネトレーション繊維8−2の断面積比率は、この場合3
 X l O’%と少く、伝熱的には無視できるものと
なる。この様にグラスウールマット8は、樹脂等のバイ
ンダーレスの純ガラス繊維で、圧縮変形率の少いものと
することができ、ガス発生を防止することができる。9
は真空ポンプ(図示せず)への接続用の真空引き用パイ
プで、絞りりを板6、又は平板状タト板7に溶接接続す
る。10はペネトレーシヨン繊維s−2ヲ縫込むための
針で、1.0−1はグラスウール繊維8−1を引掛ける
ための鉤である。これを複数本配列し、グラスウール繊
維8−1群に打込むことによって…前記グラスウールマ
ット8を構成する。
To construct this structure, the glass wool fibers 8-1 are cut into lengths and then sucked into a vacuum-covered duct, so that the glass wool fibers 8-1 are randomly laminated parallel to the suction surface. ,)if l! ', it becomes a point contact, increasing the contact thermal resistance and making it advantageous in terms of insulation. 8
-2 is a penetration fiber in which a part of the outside of the laminated glass wool fibers 8-1 is sewn in the right angle direction, and as a result, it has a low density like cotton and has a high compression deformation of more than 90% when vacuum pressure is applied. 50% of the compressive deformation amount at high density
Harden the glass wool into a mat with less and less. This penetration fiber 8-2 is several dozen trees/a! If you sew it to a certain degree, the density will be the highest, and this pene I ration fiber 8
The direction -2 coincides with the heat transfer direction, but the diameter of commonly commercially available fibers is around 10 microns, and the cross-sectional area ratio of penetration fiber 8-2 in the heat transfer direction area is 3 in this case.
It is as small as X l O'% and can be ignored in terms of heat transfer. In this way, the glass wool mat 8 is made of pure glass fiber without binder such as resin, and can have a low compression deformation rate, and can prevent gas generation. 9
is a vacuum pipe for connection to a vacuum pump (not shown), and the aperture is connected to the plate 6 or the flat plate 7 by welding. 10 is a needle for sewing in the penetration fiber s-2, and 1.0-1 is a hook for hooking the glass wool fiber 8-1. By arranging a plurality of these fibers and driving them into a group of glass wool fibers 8-1, the glass wool mat 8 is constructed.

11は、真空排気し、真空引きパイプ9の一部を封止切
った後の平板形の真空断熱材である。
11 is a flat plate-shaped vacuum insulation material after evacuation and sealing off a part of the vacuum pipe 9.

掛る部祠にて平板状の真空断熱材を構成するには、絞り
外板6の絞り穴6−2に真空引き用パイプ9を気密溶接
する。これを極薄板りを板7とともに洗浄、及び数百℃
のベーキング処理をし、特に真空容器内面側の脱ガスを
行い真空封止切り後のガス発生を防止する。これと同時
にグラスウールマツ!・8も別工程にて500℃前後の
ベーキング処理をする。この後、りを板6の絞り凹部に
グラスウールマット8を内設し、極薄板外板7で蓋をし
、フランジ6−1部と極薄板外板7の外周を気密溶接す
る。この溶接方法は、高温炉に耐え、薄板材に適した抵
抗溶接、電r−ビート溶接等により行う。
To construct a flat vacuum insulation material in the hanging part shrine, a vacuum pipe 9 is hermetically welded to the throttle hole 6-2 of the throttle outer plate 6. The ultra-thin board was washed together with board 7, and several hundred degrees Celsius
Baking treatment is performed to degas the inner surface of the vacuum container, in particular, to prevent gas generation after the vacuum seal is cut. At the same time, glass wool pine!・8 also undergoes baking treatment at around 500℃ in a separate process. Thereafter, a glass wool mat 8 is placed inside the concave portion of the plate 6, covered with an extremely thin outer plate 7, and the flange 6-1 and the outer periphery of the extremely thin outer plate 7 are hermetically welded. This welding method is performed by resistance welding, electric r-beat welding, etc., which can withstand high-temperature furnaces and is suitable for thin plate materials.

この組立完了した部材は、さらに炉中に入れ真空引き用
パイプ9に真空ポンプを接続し、真空ベーキングを行い
、組1γ工程中に耐着、混入した不純物を気化排出し、
脱ガスが完了し目標真空度に到達した時点で真空引き用
パイプ9の一1ll(を加圧切断する。この場合真空引
き用パイプ9の明断は、り本部より高圧を掛けて切断す
るため、クリーンな金属面の圧接シールが同時に行われ
気密が保持される。又真空ポンプ作動時にパネル内外に
は、IKti/ crAの高圧が掛り、絞り外板6、及
び極薄板外板7間に内設するグラスウールマット8を圧
縮する。
This assembled member is further placed in a furnace, a vacuum pump is connected to the evacuation pipe 9, vacuum baking is performed, and impurities that have been mixed in during the assembly 1γ process are vaporized and discharged.
When the degassing is completed and the target degree of vacuum is reached, the vacuum pipe 9 is cut under pressure. In this case, the vacuum pipe 9 is cut by applying high pressure from the main part. Pressure sealing of clean metal surfaces is performed at the same time to maintain airtightness.Also, when the vacuum pump is activated, high pressure of IKti/crA is applied to the inside and outside of the panel, and the internal pressure between the aperture outer plate 6 and the ultra-thin outer plate 7 is applied. The glass wool mat 8 is compressed.

このグラスウールマット8は高密度であるが若干厚さが
変形するため、これを吸収する心安があり極薄板外板7
は、絞りりに板6に比較し平板状でさらに薄く、断面二
次モーメントが小さく可撓性を有するように構成し、こ
れのみが凹状に変形し、絞りりを板6、フランジ671
の変形を防止し、真空断熱材11全体のソリ、たわみ、
うねりを生じせしめず断熱材としての組込応用を安易な
らしめる。
Although this glass wool mat 8 has a high density, its thickness is slightly deformed, so you can rest assured that it will absorb this and the ultra-thin outer plate 7
The aperture has a flat plate shape and is thinner than the plate 6, and has a small moment of inertia of area and is flexible, and only this is deformed into a concave shape.
to prevent warpage, deflection, and warping of the entire vacuum insulation material 11.
It does not cause waviness and can be easily incorporated as a heat insulating material.

以」二の如く構成した平板状パネルの断熱機能で、グラ
スウールマット8の熱伝導に関しては、lOミクロン前
後の熱伝導方向と直角方向の細径繊維が点接触で積層さ
れ、絞り外板6と極薄板りを板7との間隙を1mと仮定
すれば、伝熱方向の接触回数は1,000回となり、こ
の回数と点接触の条件で接触熱抵抗は非常に大きくなる
。又ペネトレーション繊維8−2は、繊維方向が伝熱方
向に構成されるが、01f述の如く面積構成比が少く無
視でき、従ってグラスウールマット8全体の熱伝導損失
は微小で断熱効果は大きい。
With regard to the heat conduction of the glass wool mat 8, due to the heat insulation function of the flat panel configured as described above, thin fibers of around 10 microns in the direction perpendicular to the heat conduction direction are laminated in point contact, and the apertured outer panel 6 and Assuming that the gap between the extremely thin plate and the plate 7 is 1 m, the number of times of contact in the heat transfer direction will be 1,000 times, and the contact thermal resistance will be extremely large between this number of times and the condition of point contact. Further, the penetration fibers 8-2 are configured such that the fiber direction is in the heat transfer direction, but as described in 01f, the area composition ratio is small and can be ignored, so the heat conduction loss of the entire glass wool mat 8 is small and the heat insulation effect is large.

さらに、輻射伝熱はグラスウール繊維8−1群が多層断
熱の如き作用をなし、これを防止する。
Furthermore, the glass wool fibers 8-1 function as multilayer heat insulation to prevent radiation heat transfer.

又、コーナ一部の絞り外板6と極薄板外板7とのりを板
を介しての熱の1回り込み熱伝導損失は、絞り外板6と
極薄板外板7が耐圧容器としての強度が不用で、単に真
空遮断面であるため、工作限界にまで薄くし目的を達成
できる構造であるためと、鉄、クローム、ニッケル合金
材料の鉄の数分の1となる低熱伝導率とにより大幅に低
減される。
In addition, the heat conduction loss due to one round of heat passing through the glue between the aperture outer plate 6 and the ultra-thin outer plate 7 at the corners is due to the strength of the aperture outer plate 6 and the ultra-thin outer plate 7 as a pressure-resistant container. Because it is unnecessary and is simply a vacuum-blocking surface, it has a structure that can be made as thin as the manufacturing limit to achieve the purpose, and it has a low thermal conductivity that is a fraction of that of iron made of iron, chromium, and nickel alloy materials. reduced.

この様に真空にする平板パネルは、熱伝達、熱伝導及び
輻射損失が大幅に低減し断熱能力を大幅に向」二できる
A flat panel that is evacuated in this way can greatly reduce heat transfer, heat conduction, and radiation losses, and can greatly improve its insulation capacity.

又これと同時にパネル内真空空間が細径繊組のグラスウ
ールマット8で構成されているため、空隙代表寸法が1
1い1゛となり、分子[目η行程は短・l゛化し、真空
度は従来の非スペーサ充填形の魔法瓶の如く高くする必
要がなく1〜2掛悪い真空度にて分子相互の衝空がなく
断熱効果あり、真空度の保持が安易にすることができる
効果もある。
At the same time, since the vacuum space inside the panel is composed of a glass wool mat 8 made of fine fibers, the typical dimension of the void is 1.
1 1 ゛, the molecular [η stroke is shortened and 1 It also has the effect of making it easier to maintain the degree of vacuum.

他の実施例として図11に示す如くグラスウールマツl
−8の代りにパーライト等の粉末スペーサ12を組込ん
でも絞り外板6及び平板状りを板7はまったく同機能で
構成でき、真空加圧時の圧縮変形を吸収し効果を一ヒげ
ることかできる。
As another example, as shown in FIG.
- Even if a powder spacer 12 made of pearlite or the like is incorporated in place of 8, the drawn outer plate 6 and flat plate 7 can be constructed with exactly the same function, absorbing the compressive deformation during vacuum pressurization and increasing the effect. I can do it.

以−にの如く簡易構造にて軽隈となり、製造原価面に於
いても優れ断熱能ツバ耐久力に甚大な効果を有する平板
状の真空断熱材を得ることができる。
As described above, it is possible to obtain a flat plate-shaped vacuum heat insulating material which has a simple structure, has a light area, is excellent in terms of manufacturing cost, and has a tremendous effect on heat insulation ability and flange durability.

【図面の簡単な説明】 第1図は、従来例の魔法瓶の斜視図、第2図は、第1図
の縦断面図、第3図は、本発明真空断熱材1 の斜視図、第4図は、第3図の絞りりを板の内面構造視
図、第5図は、グラスウールマットのタト観図、第6図
は、第5図のへ方向拡大視図、第7図は、第5図のB方
向拡大視図、第8図は、組立後の真空断熱材の縦断面構
造説明図、第9図は、真空封止切り後の真空断熱材の縦
断面構造説明図、第10図は、ペネト−ション用鉤付針
、第11図は、粉末断熱材を封入した真空封止切り後の
真空断熱材の縦断面構造説明図である。 6・・・絞り外板、7・・・極薄板外板、8・・・グラ
スウールマット、9・・・真空引き用パイプ、IO・・
・針、11・・・真空断熱材、12・・・粉末断熱材。 2 −1 茎31iEl 茎40 Y50 11;6  図 ′i!;′7 図□ 茎 8 図 1 某to 品 第1頁の続き 0発 明 者 柴山昌幸 栃木県下部賀郡大平町大字富田 800株式会社日立製作所栃木工 場内
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a perspective view of a conventional thermos flask, FIG. 2 is a vertical sectional view of FIG. 1, and FIG. 3 is a perspective view of the vacuum insulation material 1 of the present invention. The figure shows the aperture shown in Fig. 3 as a perspective view of the inner surface structure of the plate, Fig. 5 shows a vertical view of the glass wool mat, Fig. 6 shows an enlarged view in the direction of Fig. 5, and Fig. 7 shows the inner structure of the plate. 5 is an enlarged view in the B direction, FIG. 8 is an explanatory diagram of the longitudinal cross-sectional structure of the vacuum insulation material after assembly, FIG. 9 is an explanatory diagram of the longitudinal cross-sectional structure of the vacuum insulation material after vacuum sealing, and FIG. The figure shows a hooked needle for penetration, and FIG. 11 is an explanatory view of the vertical cross-sectional structure of the vacuum heat insulating material after vacuum sealing and cutting, in which the powder heat insulating material is sealed. 6... Diaphragm outer plate, 7... Ultra-thin plate outer plate, 8... Glass wool mat, 9... Vacuuming pipe, IO...
- Needle, 11... Vacuum insulation material, 12... Powder insulation material. 2 -1 Stem 31iEl Stem 40 Y50 11;6 Figure'i! ;'7 Figure □ Stem 8 Figure 1 Continuation of page 1 of a certain to product 0 Inventor Masayuki Shibayama Inside the Tochigi Plant of Hitachi, Ltd., 800 Oaza Tomita, Ohira-cho, Shimoga-gun, Tochigi Prefecture

Claims (1)

【特許請求の範囲】 1、鉄、ニッケル、及びクロームの合金か、鉄とニッケ
ル、又はクロームの少なくとも一方を含有する合金材料
により構成する薄板の絞り外板(6)の凸側に真空引き
用のパイプ(9)を溶接し、凹側に細径ガラス繊維によ
り構成する高密度のグラスウールマツ)(8)eスペー
サとして内設し、これを絞り外板(6)と同一合金材で
、絞り外板(6)よりさらに薄い極薄板外板(7)で蓋
をし、絞りりを板(6)のタト周フランジ(6−1)と
、極薄板外板(7)のりを周)りI5を気密溶接し、パ
ネル内部を真空とし、グラスウールマット(8)の真空
加圧時の圧縮変形量に合せて、極薄板りを板(7)を変
形させ、真空度達成後、真空引き用のパイプ(9)の一
部を加圧切断して真空を封止切ることを特徴とする真空
断熱材。 2、真空パネルの内部に、細径繊維により構成するグラ
スウールマツl−(8)の代りに、粉末状断熱IA’ 
(12)をスペーサとして封入したことを特徴とする特
許請求の範囲1記載の平板状の真空断熱材。 3、 パイプ(9)の溶接、及びフランジ(6−1)と
極薄板外板(7)の溶接は、ベーキング処理温度に耐え
るようにしたことを特徴とする特許請求の範囲第1項、
及び第2項記載の真空断熱JjA。
[Claims] 1. A vacuum drawer on the convex side of the drawn thin plate (6) made of an alloy of iron, nickel, and chromium, or an alloy material containing at least one of iron, nickel, or chromium. The pipe (9) is welded, and the concave side is made of high-density glass wool pine (8) made of fine glass fiber. Cover with an ultra-thin outer plate (7) that is even thinner than the outer plate (6), and connect the aperture to the vertical flange (6-1) of the plate (6) and around the ultra-thin outer plate (7). I5 is hermetically welded, the inside of the panel is evacuated, and the ultra-thin plate (7) is deformed according to the amount of compression deformation of the glass wool mat (8) when vacuum is applied. After achieving the degree of vacuum, the A vacuum insulation material characterized by cutting a part of the pipe (9) under pressure to seal the vacuum. 2. Inside the vacuum panel, powdered insulation IA' is used instead of glass wool pine l-(8) made of fine fibers.
The flat vacuum insulation material according to claim 1, characterized in that (12) is enclosed as a spacer. 3. Claim 1, characterized in that the welding of the pipe (9) and the welding of the flange (6-1) and the ultra-thin outer plate (7) are made to withstand baking treatment temperatures;
and vacuum insulation JjA according to item 2.
JP57018755A 1982-02-10 1982-02-10 Vacuum heat insulating material Pending JPS58138844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57018755A JPS58138844A (en) 1982-02-10 1982-02-10 Vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57018755A JPS58138844A (en) 1982-02-10 1982-02-10 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JPS58138844A true JPS58138844A (en) 1983-08-17

Family

ID=11980457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57018755A Pending JPS58138844A (en) 1982-02-10 1982-02-10 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JPS58138844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187084A (en) * 1986-10-08 1988-08-02 ユニオン・カーバイド・コーポレーション Vacuum heat-insulating panel
JPH0221731U (en) * 1988-07-29 1990-02-14
KR100747477B1 (en) * 2005-11-28 2007-08-09 엘지전자 주식회사 Vacuum insulation panel and insulation structure applying the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187084A (en) * 1986-10-08 1988-08-02 ユニオン・カーバイド・コーポレーション Vacuum heat-insulating panel
JPH0221731U (en) * 1988-07-29 1990-02-14
KR100747477B1 (en) * 2005-11-28 2007-08-09 엘지전자 주식회사 Vacuum insulation panel and insulation structure applying the same

Similar Documents

Publication Publication Date Title
US5157893A (en) Compact vacuum insulation
US3179549A (en) Thermal insulating panel and method of making the same
US8765247B2 (en) Vacuum insulation panel
JPS58106292A (en) Vacuum heat insulating material
US5609934A (en) Method of manufacturing heat bonded glass fiber insulation boards
JPS60208696A (en) Vacuum heat-insulating material
JPH04319428A (en) Foamed phenol resin composite molded material
JPS58138844A (en) Vacuum heat insulating material
CN107387944B (en) Environment-friendly vacuum insulation board
JPH07139691A (en) Vacuum heat insulation material and manufacture thereof
JPS59146993A (en) Manufacture of heat insulative structure
EP0128235B1 (en) Vacuum heat insulator
JPS58167486A (en) Vacuum heat insulative material
JPS6014695A (en) Vacuum heat-insulating material
JPS597876A (en) Manufacture of vacuum heat-insulating material
JPS598681A (en) Vacuum heat insulating material
JPH0563297B2 (en)
JPH0128310B2 (en)
JPS60114680A (en) Vacuum heat-insulating box body
JPH0563298B2 (en)
JPS60208695A (en) Vacuum heat-insulating material
JPS60112440A (en) Vacuum heat-insulating material
JPS6119298A (en) Diaphragm for speaker
JPS6237671A (en) Vacuum heat-insulating material
JPS6166068A (en) Vacuum heat-insulating material