WO2019176896A1 - Method for producing silicon-impregnated ceramic composite material, method for producing friction plate, and method for producing brake disc - Google Patents
Method for producing silicon-impregnated ceramic composite material, method for producing friction plate, and method for producing brake disc Download PDFInfo
- Publication number
- WO2019176896A1 WO2019176896A1 PCT/JP2019/009860 JP2019009860W WO2019176896A1 WO 2019176896 A1 WO2019176896 A1 WO 2019176896A1 JP 2019009860 W JP2019009860 W JP 2019009860W WO 2019176896 A1 WO2019176896 A1 WO 2019176896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- silicon
- ceramic
- ceramic composite
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
Definitions
- the present invention relates to a method for producing a silicon-impregnated ceramic composite, a method for producing a friction plate, and a method for producing a brake disk.
- an impermeable heat-resistant structural composite material disclosed in Patent Document 1 is known.
- the impermeable heat-resistant structural composite material of Patent Document 1 is composed of a porous base material including a matrix made of carbon and silicon carbide and refractory fibers, and silicon impregnated in the porous base material.
- Such a silicon-impregnated ceramic composite has mechanical properties suitable for constituting a structural element, and can retain the mechanical properties even at high temperatures.
- the silicon-impregnated ceramic composite material disclosed in Patent Document 1 is manufactured as follows. First, a porous substrate (ceramic composite material) is obtained by forming a matrix for a fiber reinforcement formed by combining refractory fibers. The matrix is heated by impregnating the fiber reinforcement with a liquid composition containing a precursor to a gas process that deposits pyrolytic carbon and silicon carbide on the fiber of the fiber reinforcement by chemical vapor infiltration. Formed by a liquid process that converts precursors to carbon or silicon carbide. Next, the porous base material is impregnated with molten metal silicon using a capillary phenomenon.
- Patent Document 1 In the manufacturing method disclosed in Patent Document 1, it is necessary to form a ceramic composite material in advance before impregnation with metallic silicon. For this reason, two heat treatments are required when forming the ceramic composite (forming a matrix) and impregnating the metal silicon, and the manufacturing work is complicated.
- the present invention has been made in view of such circumstances, and an object thereof is to simplify the manufacturing process of a silicon-impregnated ceramic composite material such as a friction plate and a brake disk.
- a method for producing a silicon-impregnated ceramic composite material for achieving the above object comprises heating a molded body containing ceramic fibers and a ceramic precursor, and ceramicizing the ceramic precursor to obtain a ceramic composite material.
- a method for producing a silicon-impregnated ceramic composite material comprising: a step of impregnating the ceramic composite material with metal silicon, wherein the molded body is inserted into a container containing solid metal silicon via a support. The temperature in the container is set to a second temperature equal to or higher than the melting point of the metal silicon after the firing step is performed with the temperature at which the ceramic precursor is ceramicized and a first temperature lower than the melting point of the metal silicon.
- the ceramic composite material is impregnated with molten metal silicon through the support made of a porous material by raising the temperature. Carry out the serial impregnation step.
- the ceramic precursor contained in the molded body is converted to ceramic and a ceramic composite having voids is obtained. Since the 1st temperature at this time is a temperature below melting
- the first temperature is preferably a temperature of 500 ° C. or higher and 1400 ° C. or lower
- the second temperature is preferably a temperature of 1410 ° C. or higher and 2000 or lower.
- the ceramic precursor can be ceramic while suppressing the metal silicon from melting and impregnating into the molded body more preferably during the heat treatment at the first temperature corresponding to the firing step. At the same time, voids can be formed.
- the metal silicon can be preferably impregnated into the voids of the ceramic composite material at the time of the heat treatment at the second temperature corresponding to the impregnation step, and excessive heating is performed. It is possible to suppress deterioration due to being performed.
- the ceramic fiber is preferably at least one selected from carbon fibers and silicon carbide fibers. According to the said structure, based on the property of carbon and silicon carbide with high affinity with respect to metallic silicon, it becomes easy to impregnate a metallic composite with a metallic silicon in an impregnation process. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
- the ceramic precursor is at least one selected from a carbon-based precursor that becomes carbon by heating and a silicon carbide-based precursor that becomes silicon carbide by heating. preferable.
- a ceramic composite material having a matrix (porous matrix) made of at least one of carbon and silicon carbide while forming voids in the firing step can be obtained. Therefore, based on the properties of carbon and silicon carbide having high affinity for metallic silicon, metallic silicon is easily impregnated in the voids of the ceramic composite material in the impregnation step. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
- the temperature in the container is changed from the first temperature to the second temperature based on a change in decomposition gas derived from the ceramic precursor contained in the molded body. It is preferable to raise the temperature.
- the heating time at the first temperature is insufficient or excessive. That is, when the molded body is heated at the first temperature, the ceramic precursor contained in the molded body is converted into ceramic. Along with this ceramization, decomposition gas derived from the ceramic precursor is generated. Therefore, by raising the temperature from the first temperature to the second temperature based on the generation state of the decomposition gas derived from the ceramic precursor, the heating time at the first temperature can be set to any state in which the progress of ceramization of the ceramic precursor is arbitrary ( For example, it can be easily adjusted to the time when it becomes a completely ceramicized state.
- a friction plate manufacturing method for achieving the above object includes the above silicon impregnated ceramic composite manufacturing method. According to the said structure, the manufacturing process of a friction board can be simplified.
- a brake disk manufacturing method for achieving the above object includes the above silicon impregnated ceramic composite manufacturing method. According to the said structure, the manufacturing process of a brake disc can be simplified.
- the manufacturing process of the silicon-impregnated ceramic composite can be simplified.
- (A) is a schematic diagram of a fiber structure
- (b) is a schematic diagram of a molded body
- (c) is a schematic diagram of a ceramic composite material
- (d) is a schematic diagram of a silicon-impregnated ceramic composite material.
- Explanatory drawing which shows the state which has arrange
- the graph which shows the temperature change in a container.
- the silicon-impregnated ceramic composite material is manufactured by sequentially performing a molding process, a firing process, and an impregnation process described below.
- the forming step is a step of forming a formed body containing ceramic fibers and a ceramic precursor.
- a fiber structure 12 constituting an aggregate part of a formed body is formed by combining a plurality of ceramic fibers 11.
- the formation method of the fiber structure 12 is not specifically limited, The well-known method used when manufacturing a silicon impregnation ceramic composite material can be used. Examples of the known method include a method in which sheet-like two-dimensional fiber layers such as a woven fabric and a nonwoven fabric are stacked, and a method using three-dimensional weaving.
- FIG. 1A a fiber structure 12 formed by stacking a plurality of ceramic fibers 11 is illustrated.
- the ceramic fiber 11 examples include carbon fiber, silicon carbide fiber, alumina fiber, and mullite fiber. Among these, carbon fiber and silicon carbide fiber are particularly preferable from the viewpoint of improving the impregnation efficiency of metal silicon in the impregnation step described later.
- the fiber structure 12 may be composed of a kind of ceramic fibers 11 or may be composed of a plurality of kinds of ceramic fibers 11.
- the diameter of the ceramic fiber 11 is, for example, 5 to 30 ⁇ m.
- the gap between the fibers of the fiber structure 12 and the surface of the fiber structure 12 are filled with a filler containing a ceramic precursor as a main component.
- Form body 13a The molded body 13a includes a skeleton portion 14 constituted by the fiber structure 12 and a matrix portion 15a constituted by a ceramic precursor (filler).
- the ceramic precursor is a precursor used in a polymer impregnation firing method (PIP method).
- the ceramic precursor include a carbon-based precursor that becomes carbon by heating, a silicon carbide-based precursor that becomes silicon carbide by heating, and a metal alkoxide precursor that becomes an oxide-based ceramic by heating.
- the carbon precursor include pitch, phenol resin, furan resin, polyvinyl alcohol, and copna resin.
- the silicon carbide precursor include polycarbosilane and derivatives thereof, and a mixture of a siloxane resin and a carbon precursor.
- the metal alkoxide precursor include sodium methoxide, sodium ethoxide, potassium t-butoxide and the like.
- a carbon-based precursor, a silicon carbide-based precursor, and a combined use of a carbon-based precursor and a silicon carbide-based precursor are particularly preferable.
- the filler may be composed of a kind of ceramic precursor or may be composed of a plurality of kinds of ceramic precursors.
- the ceramic precursor contained in the molded body 13a is thermosetting, it is preferably cured in advance before the firing step. By pre-curing, deformation due to softening can be prevented in the firing step.
- the curing method is not particularly limited, and a method using a reaction catalyst, a thermal curing method, and the like can be used.
- thermosetting refers to a resin in which a monomer is bonded in a network and does not flow even when heated, and is said to be thermosetting even if it can be cured by a method other than heating.
- the filler may contain other components other than the ceramic precursor such as a solvent and ceramic powder.
- the firing step is a step of obtaining the ceramic composite material 13b by converting the ceramic precursor contained in the molded body 13a into a ceramic by heating.
- the ceramic composite material 13b has the frame
- the matrix portion 15b has voids formed as the ceramic precursor is converted into ceramics, and the ceramic composite material 13b is a porous body having the voids.
- the impregnation step is a step of obtaining the silicon-impregnated ceramic composite material 13c by impregnating the voids of the ceramic composite material 13b with metal silicon melted by heating.
- the silicon-impregnated ceramic composite material 13c has a skeleton portion 14 composed of a fiber structure 12, and a matrix portion 15c composed of ceramic derived from a ceramic precursor and metallic silicon. It is a dense body.
- a baking process and an impregnation process are continuously performed by the multistep heat processing by a different temperature range.
- the molded body 13a is placed in a bottomed box-like heat-resistant container 20 made of ceramic or the like.
- the molded body 13 a is placed in the container 20 via the support tool 21 by being placed on the support tool 21 placed on the bottom surface of the container 20.
- the support tool 21 is formed in such a size and shape as to contact only a part of the lower surface of the molded body 13a, and supports the molded body 13a at one or several points on the lower surface of the molded body 13a.
- the support tool 21 may be singular or plural.
- Examples of the shape of the support 21 include a prismatic shape, a cylindrical shape, a truncated pyramid shape, and a truncated cone shape.
- a truncated pyramid shape and a truncated cone shape are particularly preferable because the number of contacts with the lower surface of the molded body 13a can be reduced.
- the support 21 is made of a porous material having continuous pores with a size that causes a capillary phenomenon.
- the porous material constituting the support 21 include a porous material made of silicon carbide and a porous material made of carbon such as graphite.
- the porosity of the porous material constituting the support 21 is, for example, 20 to 60%.
- a solid metal silicon 22 such as powder, granule or lump is disposed in the gap S between the bottom surface of the container 20 and the molded body 13a placed on the support 21.
- the purity of metallic silicon is, for example, 95% or more.
- the amount of the metal silicon 22 accommodated in the container 20 is, for example, an amount corresponding to the sum of the pore volume of the ceramic composite 13b and the pore volume of the support 21 (for example, 1.00 to 1.05 times the sum)
- the amount corresponding to the volume of in this case, the porosity of the silicon-impregnated ceramic composite material 13c can be close to 0%.
- the usage-amount of the metal silicon 22 can be suppressed and manufacturing cost can be suppressed.
- the container 20 is used in an inert atmosphere such as argon or nitrogen or in vacuum using a known heating means such as a firing furnace. Heat. At this time, the container 20 is heated in multiple stages at different temperature ranges.
- the temperature in the container 20 is raised to the first temperature, and the primary heating is performed by holding the temperature at the first temperature for a certain period of time. Thereafter, the temperature in the container 20 is raised to a second temperature higher than the first temperature, and is maintained for a certain period of time to perform secondary heating. Thereafter, the temperature in the container 20 is lowered.
- Primary heating is a heat treatment corresponding to the firing step.
- the first temperature of the primary heating is a temperature at which the ceramic precursor is ceramicized and a temperature lower than the melting point of metal silicon, and is set according to the type of the ceramic precursor contained in the molded body 13a.
- the ceramic precursor contained in the molded body 13a is thermally decomposed and converted into ceramic, and voids are formed.
- the molded body 13a becomes the ceramic composite material 13b.
- the temperature (first temperature) in the container 20 is a temperature lower than the melting point of the metal silicon, the metal silicon 22 accommodated in the container 20 is maintained in a solid state.
- the first temperature is, for example, preferably 500 ° C. or more and 1400 ° C. or less, more preferably 1200 ° C. or more and 1350 ° C. or less.
- the ceramic precursor can be converted into a ceramic and voids can be formed at the same time while suppressing melting of the metal silicon 22.
- the primary heating is preferably performed until the ceramic precursor contained in the molded body 13a is sufficiently ceramicized. Whether or not the ceramic precursor is sufficiently ceramicized can be determined based on, for example, a change in decomposition gas generated from the molded body 13a. That is, when the ceramic precursor is ceramized by heating, a decomposition gas accompanying the thermal decomposition of the ceramic precursor is generated. Therefore, by measuring this cracked gas, the total amount of cracked gas generated, the amount of change in cracked gas generated per unit time, the concentration and type of cracked gas in the furnace, the concentration of cracked gas per unit time Based on the amount of change or the like, it can be determined that the ceramic precursor contained in the molded body 13a has been sufficiently ceramicized (for example, 90% or more).
- Secondary heating is a heat treatment corresponding to the impregnation step.
- the second temperature of the secondary heating is set to be equal to or higher than the melting point of metal silicon.
- the silicon silicon 22 accommodated in the container 20 is melted by the secondary heating.
- the melted metal silicon enters the void of the ceramic composite material 13b through the support 21 made of a porous material by capillary action, and the void is impregnated with the metal silicon 22.
- the ceramic composite material 13b becomes a silicon-impregnated ceramic composite material 13c impregnated with the metal silicon 22.
- the second temperature is preferably a temperature of 1410 ° C. or higher and 2000 ° C. or lower, for example. By setting the temperature range, it is possible to more reliably impregnate metal silicon while suppressing deterioration of the skeleton portion 14 and the matrix portion 15b of the ceramic composite material 13b due to exposure to a high temperature.
- the secondary heating is preferably performed until the metal silicon is sufficiently impregnated into the voids present in the ceramic composite material 13b.
- the amount of the metal silicon 22 accommodated in the container 20 is an amount corresponding to the sum of the pore volume of the ceramic composite material 13b and the pore volume of the support 21, all the metal silicon 22 is impregnated. Therefore, it can be determined that the metal silicon is sufficiently impregnated.
- the temperature in the container 20 is lowered, the silicon-impregnated ceramic composite material 13c is taken out from the container 20, and the support 21 integrated on the lower surface of the silicon-impregnated ceramic composite material 13c is separated. Thereby, the silicon-impregnated ceramic composite material 13c is obtained.
- the use of the silicon-impregnated ceramic composite material 13c manufactured by the manufacturing method of the present embodiment is not particularly limited, but can be applied as a friction plate such as a brake disk or a clutch disk. Therefore, the manufacturing method of this embodiment can also be applied as one process when manufacturing friction plates, such as a brake disk and a clutch disk.
- a method for producing a silicon-impregnated ceramic composite includes a firing step in which a ceramic composite is obtained by heating a molded body containing ceramic fibers and a ceramic precursor to ceramicize the ceramic precursor; An impregnation step of impregnating the material with metallic silicon.
- a molded body is placed through a support in the interior of a container containing solid metallic silicon. The container was melted by raising the temperature in the container to a second temperature equal to or higher than the melting point of the metal silicon after performing the firing step with the temperature at which the ceramic precursor is ceramicized and a first temperature lower than the melting point of the metal silicon.
- An impregnation step of impregnating the ceramic composite material with metal silicon through a support made of a porous material is performed.
- the firing process and the impregnation process can be continuously performed in one heat treatment by the temperature control in the container, and as a result, the manufacturing process of the silicon-impregnated ceramic composite is simplified. .
- the first temperature is a temperature of 500 ° C. or higher and 1400 ° C. or lower.
- the ceramic precursor in the primary heating corresponding to the firing step, more preferably, is made into a ceramic and simultaneously formed voids while suppressing the metal silicon from melting and impregnating the molded body. it can.
- the second temperature is a temperature of 1410 ° C. or higher and 2000 ° C. or lower. According to the said structure, in the secondary heating corresponded to an impregnation process, while the metal silicon impregnation to the space
- the ceramic fiber is at least one selected from carbon fiber and silicon carbide fiber. According to the said structure, based on the property of carbon and silicon carbide with high affinity with respect to a metal silicon, it becomes easy to impregnate a ceramic composite material with a metal silicon in an impregnation process. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
- the ceramic precursor is at least one selected from a carbon-based precursor that becomes carbon by heating and a silicon carbide-based precursor that becomes silicon carbide by heating.
- the ceramic composite material which has a matrix (porous matrix) which consists of at least one of carbon and silicon carbide, forming a space
- the temperature in the container is raised from the first temperature to the second temperature based on the change in the decomposition gas derived from the ceramic precursor contained in the compact.
- the heating time by the first temperature is increased by the progress of ceramization of the ceramic precursor. It can be easily adjusted to the time when it becomes an arbitrary state (for example, a completely ceramicized state). Therefore, it can suppress that the heating time by 1st temperature runs short or becomes excessive.
- the heating time at the first temperature can be easily adjusted to the time when the ceramic precursor is sufficiently ceramicized. Therefore, the impregnation step is performed by raising the temperature to the second temperature in a state where the ceramic precursor is not sufficiently ceramicized, and heating at the first temperature is continued even after the ceramic precursor is sufficiently ceramicized. This can be suppressed.
- the molded body 13a is formed by filling the fiber structure 12 formed by combining the ceramic fibers 11 with the filler containing the ceramic precursor. Is not limited to this. For example, after the fiber structure 12 is filled with a filler, a processing such as cutting may be performed to obtain the formed body 13a. Moreover, you may form the molded object 13a by shape
- the support tool 21 comprised by the porous material
- the support tool 21 performs the secondary heating (impregnation process)
- the support tool 21 is also made into a ceramic as well as the molded body 13a and a void is formed to form the support tool 21 having a porous structure.
- the support 21 may be formed integrally with the molded body 13a, and the molded body 13a having the support 21 may be placed directly on the container 20.
- the method of setting the timing which raises the temperature in the container 20 from 1st temperature to 2nd temperature For example, the heating time during which the progress of ceramization of the ceramic precursor contained in the molded body 13a is in an arbitrary state is measured by a preliminary test in advance, and the temperature in the container 20 is set as the heating time elapses. The temperature may be raised from the first temperature to the second temperature.
- the primary heating corresponding to a baking process may change the temperature in the range of 1st temperature.
- the temperature in the container 20 may be continuously increased to the second temperature, and the period of staying in the first temperature range (first temperature range) in the middle may be primary heating.
- the temperature rise curve in the container 20 it is preferable to adjust the temperature rise curve in the container 20 so that a sufficient period of staying in the first temperature range is ensured.
- the temperature may be changed in the second temperature range.
- a disk-shaped formed body having a diameter of 300 mm and a thickness of 10 mm is formed by filling the gap and the surface of the fiber structure in which ceramic fibers are stacked with each other.
- the ceramic fiber a plain woven fabric using silicon carbide fibers having a diameter of 12 ⁇ m is used, and five woven fabrics are laminated and used as an aggregate.
- the obtained aggregate is impregnated with a liquid phenol resin as a filler, and then put in a dryer to be cured. In the dryer, the phenolic resin can be thermally cured, and a molded body that is not thermally deformed in the subsequent baking step can be obtained.
- the compact is disposed through a support made of a porous material of silicon carbide, and powdered metallic silicon is disposed. Then, using a firing furnace, the container containing the compact and the metal silicon is subjected to a two-stage heat treatment at a first temperature and a second temperature as shown in FIG. 3 in an argon atmosphere.
- a silicon-impregnated ceramic composite material can be obtained.
- the temperature conditions for the heat treatment are as follows.
- First temperature 1300 ° C Heating time by first temperature: 60 minutes Second temperature: 1500 ° C Heating time at second temperature: 20 minutes
- the decomposition gas continues to be generated from the phenol resin (ceramic precursor) until the temperature rises to the first temperature and while the temperature is maintained at the first temperature, but the generation of the decomposition gas converges with time. After confirming that the generation of cracked gas has converged, the temperature is raised to the second temperature. At the second temperature, the metallic silicon filled in the ceramic container is melted, and the ceramic composite material is impregnated by transferring the support made of a porous material, and firing and silicon impregnation can be performed continuously. .
- the ceramic precursor is thermally cured in the firing step, and deformation during firing can be prevented.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Braking Arrangements (AREA)
- Ceramic Products (AREA)
Abstract
A method for producing a silicon-impregnated ceramic composite material comprising: a firing step in which a molded article comprising ceramic fibers and a ceramic precursor is heated, and a ceramic composite material is obtained by converting the ceramic precursor into a ceramic; and an impregnating step in which a metallic silicon is impregnated into the ceramic composite material. The molded article is disposed inside of a container that houses the solid metallic silicon with a support tool therebetween. After the firing step is performed at a first temperature, which is the temperature within the container that is a temperature less than the melting point of the metallic silicon and at which the ceramic precursor is converted into a ceramic, the impregnating step is performed where, by raising the temperature to a second temperature, which is a temperature greater than or equal to the melting point of the metallic silicon, the molten metallic silicon is impregnated into the ceramic composite material through the support tool, which comprises a porous material.
Description
本発明は、シリコン含浸セラミック複合材の製造方法、摩擦板の製造方法、及びブレーキディスクの製造方法に関する。
The present invention relates to a method for producing a silicon-impregnated ceramic composite, a method for producing a friction plate, and a method for producing a brake disk.
シリコン含浸セラミック複合材として、例えば、特許文献1に開示される不透過性耐熱構造複合材料が知られている。特許文献1の不透過性耐熱構造複合材料は、炭素及び炭化ケイ素からなるマトリックスと耐火性繊維とを備える多孔質基材と、多孔質基材に含浸されたケイ素とから構成されている。こうしたシリコン含浸セラミック複合材は、構造要素を構成するために適した機械的特性を有するとともに、高温下においてもその機械的特性を保持することができる。
As the silicon-impregnated ceramic composite material, for example, an impermeable heat-resistant structural composite material disclosed in Patent Document 1 is known. The impermeable heat-resistant structural composite material of Patent Document 1 is composed of a porous base material including a matrix made of carbon and silicon carbide and refractory fibers, and silicon impregnated in the porous base material. Such a silicon-impregnated ceramic composite has mechanical properties suitable for constituting a structural element, and can retain the mechanical properties even at high temperatures.
ところで、特許文献1に開示されるシリコン含浸セラミック複合材は、以下のようにして製造される。まず、耐火性繊維を組み合わせてなる繊維強化材に対して、マトリックスを形成して多孔質基材(セラミック複合材)を得る。マトリックスは、化学蒸気浸透により繊維強化材の繊維上に熱分解炭素及び炭化ケイ素を堆積させるガスプロセス、又は繊維強化材に対して前駆体を含む液状組成物を含浸させた状態で加熱することにより前駆体を炭素や炭化ケイ素に変換する液体プロセスにより形成される。次に、多孔質基材に対して、毛細管現象を利用して溶融した金属ケイ素を含浸させる。
By the way, the silicon-impregnated ceramic composite material disclosed in Patent Document 1 is manufactured as follows. First, a porous substrate (ceramic composite material) is obtained by forming a matrix for a fiber reinforcement formed by combining refractory fibers. The matrix is heated by impregnating the fiber reinforcement with a liquid composition containing a precursor to a gas process that deposits pyrolytic carbon and silicon carbide on the fiber of the fiber reinforcement by chemical vapor infiltration. Formed by a liquid process that converts precursors to carbon or silicon carbide. Next, the porous base material is impregnated with molten metal silicon using a capillary phenomenon.
こうした特許文献1に開示される製造方法は、金属ケイ素を含浸する前に予めセラミック複合材を形成しておく必要がある。そのため、セラミック複合材を形成(マトリックスを形成)する際と、金属ケイ素を含浸する際の2回の加熱処理が必要であり、製造作業が煩雑なものとなっていた。
In the manufacturing method disclosed in Patent Document 1, it is necessary to form a ceramic composite material in advance before impregnation with metallic silicon. For this reason, two heat treatments are required when forming the ceramic composite (forming a matrix) and impregnating the metal silicon, and the manufacturing work is complicated.
この発明は、こうした実情に鑑みてなされたものであり、その目的は、摩擦板やブレーキディスク等のシリコン含浸セラミック複合材の製造工程を簡略化することにある。
The present invention has been made in view of such circumstances, and an object thereof is to simplify the manufacturing process of a silicon-impregnated ceramic composite material such as a friction plate and a brake disk.
上記目的を達成するためのシリコン含浸セラミック複合材の製造方法は、セラミック繊維とセラミック前駆体とを含有する成形体を加熱して、上記セラミック前駆体をセラミック化することによりセラミック複合材を得る焼成工程と、上記セラミック複合材に金属ケイ素を含浸させる含浸工程とを有するシリコン含浸セラミック複合材の製造方法であって、固体状の金属ケイ素を収容する容器の内部に支持具を介して上記成形体を配置し、上記容器内の温度を、上記セラミック前駆体がセラミック化する温度かつ金属ケイ素の融点未満の第1温度として上記焼成工程を行った後、上記金属ケイ素の融点以上の第2温度に昇温することにより、溶融した金属ケイ素を、多孔質材からなる上記支持具を通じて上記セラミック複合材に含浸させる上記含浸工程を行う。
A method for producing a silicon-impregnated ceramic composite material for achieving the above object comprises heating a molded body containing ceramic fibers and a ceramic precursor, and ceramicizing the ceramic precursor to obtain a ceramic composite material. A method for producing a silicon-impregnated ceramic composite material, comprising: a step of impregnating the ceramic composite material with metal silicon, wherein the molded body is inserted into a container containing solid metal silicon via a support. The temperature in the container is set to a second temperature equal to or higher than the melting point of the metal silicon after the firing step is performed with the temperature at which the ceramic precursor is ceramicized and a first temperature lower than the melting point of the metal silicon. The ceramic composite material is impregnated with molten metal silicon through the support made of a porous material by raising the temperature. Carry out the serial impregnation step.
上記構成によれば、容器内の温度を、セラミック前駆体がセラミック化する第1温度とすることにより、成形体に含まれるセラミック前駆体がセラミック化して空隙を有するセラミック複合材が得られる。このときの第1温度は、金属ケイ素の融点未満の温度であるため、容器内に収容された金属ケイ素は、固体の状態が維持される。その後、容器内の温度を金属ケイ素の融点以上の第2温度に昇温することにより、金属ケイ素が溶融する。溶融した金属ケイ素が、支持具を通じてセラミック複合材の空隙に含浸することにより、シリコン含浸セラミック複合材が得られる。このように、容器内の温度管理によって、一度の加熱処理の中で焼成工程と含浸工程を連続的に行うことができ、その結果、シリコン含浸セラミック複合材の製造工程が簡略化される。
According to the above configuration, by setting the temperature in the container to the first temperature at which the ceramic precursor is ceramicized, the ceramic precursor contained in the molded body is converted to ceramic and a ceramic composite having voids is obtained. Since the 1st temperature at this time is a temperature below melting | fusing point of a metal silicon, the metal silicon accommodated in the container maintains a solid state. Thereafter, the temperature in the container is raised to a second temperature equal to or higher than the melting point of the metal silicon, thereby melting the metal silicon. The molten metal silicon is impregnated into the voids of the ceramic composite through the support, thereby obtaining a silicon-impregnated ceramic composite. As described above, the temperature control in the container allows the firing process and the impregnation process to be performed continuously in one heat treatment, and as a result, the manufacturing process of the silicon-impregnated ceramic composite is simplified.
本発明のシリコン含浸セラミック複合材の製造方法において、上記第1温度は、500℃以上1400℃以下の温度であり、上記第2温度は、1410℃以上2000以下の温度であることが好ましい。
In the method for producing a silicon-impregnated ceramic composite material of the present invention, the first temperature is preferably a temperature of 500 ° C. or higher and 1400 ° C. or lower, and the second temperature is preferably a temperature of 1410 ° C. or higher and 2000 or lower.
上記構成の第1温度によれば、焼成工程に相当する第1温度による加熱処理時において、より好適に、金属ケイ素が溶融して成形体に含浸することを抑制しつつ、セラミック前駆体をセラミック化させ同時に空隙を形成することができる。また、上記構成の第2温度によれば、含浸工程に相当する第2温度による加熱処理時において、セラミック複合材の空隙への金属ケイ素の含浸を好適に進行させることができるとともに、過剰に加熱されることによる劣化を抑制できる。
According to the first temperature having the above-described configuration, the ceramic precursor can be ceramic while suppressing the metal silicon from melting and impregnating into the molded body more preferably during the heat treatment at the first temperature corresponding to the firing step. At the same time, voids can be formed. In addition, according to the second temperature of the above configuration, the metal silicon can be preferably impregnated into the voids of the ceramic composite material at the time of the heat treatment at the second temperature corresponding to the impregnation step, and excessive heating is performed. It is possible to suppress deterioration due to being performed.
本発明のシリコン含浸セラミック複合材の製造方法において、上記セラミック繊維は、炭素繊維及び炭化ケイ素繊維から選ばれる少なくとも一種であることが好ましい。
上記構成によれば、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、金属ケイ素がセラミック複合材に含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。 In the method for producing a silicon-impregnated ceramic composite of the present invention, the ceramic fiber is preferably at least one selected from carbon fibers and silicon carbide fibers.
According to the said structure, based on the property of carbon and silicon carbide with high affinity with respect to metallic silicon, it becomes easy to impregnate a metallic composite with a metallic silicon in an impregnation process. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
上記構成によれば、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、金属ケイ素がセラミック複合材に含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。 In the method for producing a silicon-impregnated ceramic composite of the present invention, the ceramic fiber is preferably at least one selected from carbon fibers and silicon carbide fibers.
According to the said structure, based on the property of carbon and silicon carbide with high affinity with respect to metallic silicon, it becomes easy to impregnate a metallic composite with a metallic silicon in an impregnation process. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
本発明のシリコン含浸セラミック複合材の製造方法において、上記セラミック前駆体は、加熱により炭素となる炭素系前駆体、及び加熱により炭化ケイ素となる炭化ケイ素系前駆体から選ばれる少なくとも一種であることが好ましい。
In the method for producing a silicon-impregnated ceramic composite of the present invention, the ceramic precursor is at least one selected from a carbon-based precursor that becomes carbon by heating and a silicon carbide-based precursor that becomes silicon carbide by heating. preferable.
上記構成によれば、焼成工程において、空隙を形成しつつ、炭素及び炭化ケイ素の少なくとも一方からなるマトリックス(多孔質のマトリックス)を有するセラミック複合材が得られる。そのため、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、セラミック複合材の空隙に金属ケイ素が含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。
According to the above configuration, a ceramic composite material having a matrix (porous matrix) made of at least one of carbon and silicon carbide while forming voids in the firing step can be obtained. Therefore, based on the properties of carbon and silicon carbide having high affinity for metallic silicon, metallic silicon is easily impregnated in the voids of the ceramic composite material in the impregnation step. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
本発明のシリコン含浸セラミック複合材の製造方法において、上記成形体に含有される上記セラミック前駆体由来の分解ガスの変化に基づいて、上記容器内の温度を前記第1温度から上記第2温度に昇温することが好ましい。
In the method for producing a silicon-impregnated ceramic composite material of the present invention, the temperature in the container is changed from the first temperature to the second temperature based on a change in decomposition gas derived from the ceramic precursor contained in the molded body. It is preferable to raise the temperature.
上記構成によれば、第1温度による加熱時間が不足する又は過剰となることを抑制できる。すなわち、成形体を第1温度にて加熱すると、成形体に含有されるセラミック前駆体がセラミック化する。このセラミック化に伴ってセラミック前駆体由来の分解ガスが発生する。そのため、セラミック前駆体由来の分解ガスの発生状況に基づいて第1温度から第2温度に昇温させることにより、第1温度による加熱時間を、セラミック前駆体のセラミック化の進行が任意の状態(例えば、完全にセラミック化した状態)となる時間に容易に調整できる。
According to the above configuration, it is possible to prevent the heating time at the first temperature from being insufficient or excessive. That is, when the molded body is heated at the first temperature, the ceramic precursor contained in the molded body is converted into ceramic. Along with this ceramization, decomposition gas derived from the ceramic precursor is generated. Therefore, by raising the temperature from the first temperature to the second temperature based on the generation state of the decomposition gas derived from the ceramic precursor, the heating time at the first temperature can be set to any state in which the progress of ceramization of the ceramic precursor is arbitrary ( For example, it can be easily adjusted to the time when it becomes a completely ceramicized state.
上記目的を達成するための摩擦板の製造方法は、上記シリコン含浸セラミック複合材の製造方法を含む。
上記構成によれば、摩擦板の製造工程を簡略化できる。 A friction plate manufacturing method for achieving the above object includes the above silicon impregnated ceramic composite manufacturing method.
According to the said structure, the manufacturing process of a friction board can be simplified.
上記構成によれば、摩擦板の製造工程を簡略化できる。 A friction plate manufacturing method for achieving the above object includes the above silicon impregnated ceramic composite manufacturing method.
According to the said structure, the manufacturing process of a friction board can be simplified.
上記目的を達成するためのブレーキディスクの製造方法は、上記シリコン含浸セラミック複合材の製造方法を含む。
上記構成によれば、ブレーキディスクの製造工程を簡略化できる。 A brake disk manufacturing method for achieving the above object includes the above silicon impregnated ceramic composite manufacturing method.
According to the said structure, the manufacturing process of a brake disc can be simplified.
上記構成によれば、ブレーキディスクの製造工程を簡略化できる。 A brake disk manufacturing method for achieving the above object includes the above silicon impregnated ceramic composite manufacturing method.
According to the said structure, the manufacturing process of a brake disc can be simplified.
本発明によれば、シリコン含浸セラミック複合材の製造工程を簡略化できる。
According to the present invention, the manufacturing process of the silicon-impregnated ceramic composite can be simplified.
以下、シリコン含浸セラミック複合材の製造方法の一実施形態を説明する。
シリコン含浸セラミック複合材は、以下に記載する成形工程、焼成工程、含浸工程を順に経ることにより製造される。 Hereinafter, an embodiment of a method for producing a silicon-impregnated ceramic composite will be described.
The silicon-impregnated ceramic composite material is manufactured by sequentially performing a molding process, a firing process, and an impregnation process described below.
シリコン含浸セラミック複合材は、以下に記載する成形工程、焼成工程、含浸工程を順に経ることにより製造される。 Hereinafter, an embodiment of a method for producing a silicon-impregnated ceramic composite will be described.
The silicon-impregnated ceramic composite material is manufactured by sequentially performing a molding process, a firing process, and an impregnation process described below.
(成形工程)
成形工程は、セラミック繊維とセラミック前駆体とを含有する成形体を成形する工程である。 (Molding process)
The forming step is a step of forming a formed body containing ceramic fibers and a ceramic precursor.
成形工程は、セラミック繊維とセラミック前駆体とを含有する成形体を成形する工程である。 (Molding process)
The forming step is a step of forming a formed body containing ceramic fibers and a ceramic precursor.
図1(a)に示すように、複数のセラミック繊維11を組み合わせることにより、成形体の骨材部分を構成する繊維構造体12を形成する。繊維構造体12の形成方法は特に限定されるものではなく、シリコン含浸セラミック複合材を製造する際に用いられる公知の方法を用いることができる。上記公知の方法としては、例えば、織布や不織布等のシート状の二次元繊維層を重ねる方法、三次元製織を用いる方法が挙げられる。図1(a)では、複数の複数のセラミック繊維11を積み重ねてなる繊維構造体12を図示している。
As shown in FIG. 1 (a), a fiber structure 12 constituting an aggregate part of a formed body is formed by combining a plurality of ceramic fibers 11. The formation method of the fiber structure 12 is not specifically limited, The well-known method used when manufacturing a silicon impregnation ceramic composite material can be used. Examples of the known method include a method in which sheet-like two-dimensional fiber layers such as a woven fabric and a nonwoven fabric are stacked, and a method using three-dimensional weaving. In FIG. 1A, a fiber structure 12 formed by stacking a plurality of ceramic fibers 11 is illustrated.
セラミック繊維11としては、例えば、炭素繊維、炭化ケイ素繊維、アルミナ繊維、ムライト繊維が挙げられる。これらの中でも、後述する含浸工程における金属ケイ素の含浸効率の向上の観点から、炭素繊維、炭化ケイ素繊維が特に好ましい。繊維構造体12は、一種のセラミック繊維11からなるものであってもよいし、複数種のセラミック繊維11からなるものであってもよい。また、セラミック繊維11の直径は、例えば、5~30μmである。
Examples of the ceramic fiber 11 include carbon fiber, silicon carbide fiber, alumina fiber, and mullite fiber. Among these, carbon fiber and silicon carbide fiber are particularly preferable from the viewpoint of improving the impregnation efficiency of metal silicon in the impregnation step described later. The fiber structure 12 may be composed of a kind of ceramic fibers 11 or may be composed of a plurality of kinds of ceramic fibers 11. The diameter of the ceramic fiber 11 is, for example, 5 to 30 μm.
次に、図1(b)に示すように、繊維構造体12の繊維間の隙間及び繊維構造体12の表面に対して、セラミック前駆体を主成分として含有する充填材を充填することにより成形体13aを形成する。成形体13aは、繊維構造体12により構成される骨格部分14と、セラミック前駆体(充填材)により構成されるマトリックス部分15aとを有する。
Next, as shown in FIG. 1B, the gap between the fibers of the fiber structure 12 and the surface of the fiber structure 12 are filled with a filler containing a ceramic precursor as a main component. Form body 13a. The molded body 13a includes a skeleton portion 14 constituted by the fiber structure 12 and a matrix portion 15a constituted by a ceramic precursor (filler).
セラミック前駆体は、ポリマー含浸焼成法(PIP法)に用いられる前駆体である。セラミック前駆体としては、例えば、加熱により炭素となる炭素系前駆体、加熱により炭化ケイ素となる炭化ケイ素系前駆体、加熱により酸化物系セラミックとなる金属アルコキシド系前駆体が挙げられる。炭素系前駆体としては、例えば、ピッチ、フェノール樹脂、フラン樹脂、ポリビニルアルコール、コプナ樹脂等が挙げられる。炭化ケイ素系前駆体としては、例えば、ポリカルボシラン及びその誘導体、シロキサン系樹脂と炭素系前駆体の混合物が挙げられる。金属アルコキシド系前駆体としては、例えば、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等が挙げられる。これらの中でも、後述する含浸工程における金属ケイ素の含浸効率の向上の観点から、炭素系前駆体、炭化ケイ素系前駆体、及び炭素系前駆体と炭化ケイ素系前駆体との併用が特に好ましい。充填材は、一種のセラミック前駆体からなるものであってもよいし、複数種のセラミック前駆体からなるものであってもよい。
The ceramic precursor is a precursor used in a polymer impregnation firing method (PIP method). Examples of the ceramic precursor include a carbon-based precursor that becomes carbon by heating, a silicon carbide-based precursor that becomes silicon carbide by heating, and a metal alkoxide precursor that becomes an oxide-based ceramic by heating. Examples of the carbon precursor include pitch, phenol resin, furan resin, polyvinyl alcohol, and copna resin. Examples of the silicon carbide precursor include polycarbosilane and derivatives thereof, and a mixture of a siloxane resin and a carbon precursor. Examples of the metal alkoxide precursor include sodium methoxide, sodium ethoxide, potassium t-butoxide and the like. Among these, from the viewpoint of improving the impregnation efficiency of metal silicon in the impregnation step described later, a carbon-based precursor, a silicon carbide-based precursor, and a combined use of a carbon-based precursor and a silicon carbide-based precursor are particularly preferable. The filler may be composed of a kind of ceramic precursor or may be composed of a plurality of kinds of ceramic precursors.
成形体13aに含有されるセラミック前駆体は、熱硬化性のものであれば、焼成工程の前にあらかじめ硬化させておくことが好ましい。あらかじめ硬化させておくことにより焼成工程で軟化による変形を防止することができる。硬化の方法は特に限定されず、反応触媒を用いる方法、熱硬化する方法等が利用できる。なお、熱硬化性であるとは、モノマーが網目状に結合し加熱しても流動しない樹脂のことを示し、加熱以外の方法で硬化させることができても熱硬化性であるという。
If the ceramic precursor contained in the molded body 13a is thermosetting, it is preferably cured in advance before the firing step. By pre-curing, deformation due to softening can be prevented in the firing step. The curing method is not particularly limited, and a method using a reaction catalyst, a thermal curing method, and the like can be used. The term “thermosetting” refers to a resin in which a monomer is bonded in a network and does not flow even when heated, and is said to be thermosetting even if it can be cured by a method other than heating.
また、充填材は、溶剤、セラミック粉末等のセラミック前駆体以外のその他成分を含有してもよい。
(焼成工程)
焼成工程は、成形体13aに含まれるセラミック前駆体を加熱によりセラミック化することにより、セラミック複合材13bを得る工程である。図1(c)に示すように、セラミック複合材13bは、繊維構造体12により構成される骨格部分14と、セラミック前駆体由来のセラミックから構成されるマトリックス部分15bとを有する。マトリックス部分15bは、セラミック前駆体のセラミック化に伴い形成された空隙を有し、セラミック複合材13bは、上記空隙を有する多孔質体である。 The filler may contain other components other than the ceramic precursor such as a solvent and ceramic powder.
(Baking process)
The firing step is a step of obtaining the ceramiccomposite material 13b by converting the ceramic precursor contained in the molded body 13a into a ceramic by heating. As shown in FIG.1 (c), the ceramic composite material 13b has the frame | skeleton part 14 comprised by the fiber structure 12, and the matrix part 15b comprised from the ceramic derived from a ceramic precursor. The matrix portion 15b has voids formed as the ceramic precursor is converted into ceramics, and the ceramic composite material 13b is a porous body having the voids.
(焼成工程)
焼成工程は、成形体13aに含まれるセラミック前駆体を加熱によりセラミック化することにより、セラミック複合材13bを得る工程である。図1(c)に示すように、セラミック複合材13bは、繊維構造体12により構成される骨格部分14と、セラミック前駆体由来のセラミックから構成されるマトリックス部分15bとを有する。マトリックス部分15bは、セラミック前駆体のセラミック化に伴い形成された空隙を有し、セラミック複合材13bは、上記空隙を有する多孔質体である。 The filler may contain other components other than the ceramic precursor such as a solvent and ceramic powder.
(Baking process)
The firing step is a step of obtaining the ceramic
(含浸工程)
含浸工程は、セラミック複合材13bの空隙に対して、加熱により溶融させた金属ケイ素を含浸させることによりシリコン含浸セラミック複合材13cを得る工程である。図1(d)に示すように、シリコン含浸セラミック複合材13cは、繊維構造体12により構成される骨格部分14と、セラミック前駆体由来のセラミック及び金属ケイ素により構成されるマトリックス部分15cとを有する緻密体である。 (Impregnation process)
The impregnation step is a step of obtaining the silicon-impregnated ceramic composite material 13c by impregnating the voids of the ceramiccomposite material 13b with metal silicon melted by heating. As shown in FIG. 1 (d), the silicon-impregnated ceramic composite material 13c has a skeleton portion 14 composed of a fiber structure 12, and a matrix portion 15c composed of ceramic derived from a ceramic precursor and metallic silicon. It is a dense body.
含浸工程は、セラミック複合材13bの空隙に対して、加熱により溶融させた金属ケイ素を含浸させることによりシリコン含浸セラミック複合材13cを得る工程である。図1(d)に示すように、シリコン含浸セラミック複合材13cは、繊維構造体12により構成される骨格部分14と、セラミック前駆体由来のセラミック及び金属ケイ素により構成されるマトリックス部分15cとを有する緻密体である。 (Impregnation process)
The impregnation step is a step of obtaining the silicon-impregnated ceramic composite material 13c by impregnating the voids of the ceramic
本実施形態の製造方法では、焼成工程及び含浸工程を、異なる温度域による多段階の加熱処理によって連続的に行う。
図2に示すように、セラミック等からなる有底箱状の耐熱性の容器20内に成形体13aを配置する。成形体13aは、容器20の底面に配置された支持具21の上に載置されることにより、支持具21を介して容器20内に配置される。支持具21は、成形体13aの下面の一部のみに接触する大きさ及び形状に形成されており、成形体13aの下面の一点又は数点において成形体13aを支持する。支持具21の数は単数であってもよいし、複数であってもよい。 In the manufacturing method of this embodiment, a baking process and an impregnation process are continuously performed by the multistep heat processing by a different temperature range.
As shown in FIG. 2, the molded body 13a is placed in a bottomed box-like heat-resistant container 20 made of ceramic or the like. The molded body 13 a is placed in the container 20 via the support tool 21 by being placed on the support tool 21 placed on the bottom surface of the container 20. The support tool 21 is formed in such a size and shape as to contact only a part of the lower surface of the molded body 13a, and supports the molded body 13a at one or several points on the lower surface of the molded body 13a. The support tool 21 may be singular or plural.
図2に示すように、セラミック等からなる有底箱状の耐熱性の容器20内に成形体13aを配置する。成形体13aは、容器20の底面に配置された支持具21の上に載置されることにより、支持具21を介して容器20内に配置される。支持具21は、成形体13aの下面の一部のみに接触する大きさ及び形状に形成されており、成形体13aの下面の一点又は数点において成形体13aを支持する。支持具21の数は単数であってもよいし、複数であってもよい。 In the manufacturing method of this embodiment, a baking process and an impregnation process are continuously performed by the multistep heat processing by a different temperature range.
As shown in FIG. 2, the molded body 13a is placed in a bottomed box-like heat-
支持具21の形状としては、例えば、角柱状、円柱状、角錐台状、円錐台状が挙げられる。これらの中でも、成形体13aの下面との接点を少なくできる点から、角錐台状、円錐台状が特に好ましい。
Examples of the shape of the support 21 include a prismatic shape, a cylindrical shape, a truncated pyramid shape, and a truncated cone shape. Among these, a truncated pyramid shape and a truncated cone shape are particularly preferable because the number of contacts with the lower surface of the molded body 13a can be reduced.
支持具21は、毛細管現象を生じさせる程度の大きさの連続した気孔を有する多孔質材により構成される。支持具21を構成する多孔質材としては、例えば、炭化ケイ素からなる多孔質材、黒鉛等の炭素からなる多孔質材が挙げられる。支持具21を構成する多孔質材の気孔率は、例えば、20~60%である。
The support 21 is made of a porous material having continuous pores with a size that causes a capillary phenomenon. Examples of the porous material constituting the support 21 include a porous material made of silicon carbide and a porous material made of carbon such as graphite. The porosity of the porous material constituting the support 21 is, for example, 20 to 60%.
また、容器20の底面と支持具21に載置された成形体13aとの間の隙間Sに粉末状、粒状、塊状等の固体状の金属ケイ素22を配置する。金属ケイ素の純度は、例えば、95%以上である。
Also, a solid metal silicon 22 such as powder, granule or lump is disposed in the gap S between the bottom surface of the container 20 and the molded body 13a placed on the support 21. The purity of metallic silicon is, for example, 95% or more.
容器20内に収容される金属ケイ素22の量は、例えば、セラミック複合材13bの気孔容積と支持具21の気孔容積の和に相当する量(例えば、上記和の1.00~1.05倍の体積に相当する量)とする。この場合には、シリコン含浸セラミック複合材13cの気孔率を0%に近づけることができる。また、金属ケイ素22の使用量が抑えられて、製造コストを抑制することができる。
The amount of the metal silicon 22 accommodated in the container 20 is, for example, an amount corresponding to the sum of the pore volume of the ceramic composite 13b and the pore volume of the support 21 (for example, 1.00 to 1.05 times the sum) The amount corresponding to the volume of In this case, the porosity of the silicon-impregnated ceramic composite material 13c can be close to 0%. Moreover, the usage-amount of the metal silicon 22 can be suppressed and manufacturing cost can be suppressed.
上記のように、容器20内に成形体13a及び金属ケイ素22を配置した状態として、焼成炉等の公知の加熱手段を用いて、アルゴンや窒素等の不活性雰囲気下又は真空下にて容器20を加熱する。このとき、容器20に対して異なる温度域による多段階の加熱を行う。
As described above, with the molded body 13a and the metal silicon 22 disposed in the container 20, the container 20 is used in an inert atmosphere such as argon or nitrogen or in vacuum using a known heating means such as a firing furnace. Heat. At this time, the container 20 is heated in multiple stages at different temperature ranges.
具体的には、図3に示すように、容器20内の温度を、第1温度まで昇温させ、第1温度にて一定時間、保持することにより一次加熱を行う。その後、容器20内の温度を、第1温度よりも高い第2温度まで昇温させ、一定時間、保持することにより二次加熱を行う。その後、容器20内の温度を降下させる。
Specifically, as shown in FIG. 3, the temperature in the container 20 is raised to the first temperature, and the primary heating is performed by holding the temperature at the first temperature for a certain period of time. Thereafter, the temperature in the container 20 is raised to a second temperature higher than the first temperature, and is maintained for a certain period of time to perform secondary heating. Thereafter, the temperature in the container 20 is lowered.
一次加熱は、焼成工程に相当する加熱処理である。一次加熱の第1温度は、セラミック前駆体がセラミック化する温度かつ金属ケイ素の融点未満の温度であり、成形体13aに含まれるセラミック前駆体の種類に応じて設定される。一次加熱により、成形体13aに含まれるセラミック前駆体が熱分解してセラミックに変換されるとともに空隙が形成され、成形体13aはセラミック複合材13bとなる。このとき、容器20内の温度(第1温度)は、金属ケイ素の融点未満の温度であるため、容器20内に収容された金属ケイ素22は、固体の状態が維持される。
Primary heating is a heat treatment corresponding to the firing step. The first temperature of the primary heating is a temperature at which the ceramic precursor is ceramicized and a temperature lower than the melting point of metal silicon, and is set according to the type of the ceramic precursor contained in the molded body 13a. By the primary heating, the ceramic precursor contained in the molded body 13a is thermally decomposed and converted into ceramic, and voids are formed. The molded body 13a becomes the ceramic composite material 13b. At this time, since the temperature (first temperature) in the container 20 is a temperature lower than the melting point of the metal silicon, the metal silicon 22 accommodated in the container 20 is maintained in a solid state.
第1温度は、例えば、500℃以上1400℃以下の温度であることが好ましく、1200℃以上1350℃以下の温度であることがより好ましい。上記温度範囲に設定することにより、より好適に、金属ケイ素22の溶融を抑制しつつ、セラミック前駆体をセラミック化させ同時に空隙を形成することができる。
The first temperature is, for example, preferably 500 ° C. or more and 1400 ° C. or less, more preferably 1200 ° C. or more and 1350 ° C. or less. By setting the temperature range, the ceramic precursor can be converted into a ceramic and voids can be formed at the same time while suppressing melting of the metal silicon 22.
一次加熱は、成形体13aに含まれるセラミック前駆体が十分にセラミック化するまで行うことが好ましい。セラミック前駆体が十分にセラミック化したか否かは、例えば、成形体13aから発生する分解ガスの変化に基づいて判断することができる。すなわち、セラミック前駆体が加熱によりセラミック化すると、セラミック前駆体の熱分解に伴う分解ガスが発生する。そのため、この分解ガスを測定することにより、発生した分解ガスの総量、分解ガスの発生量の単位時間あたりの変化量、炉内における分解ガスの濃度、種類、分解ガスの濃度の単位時間あたりの変化量等に基づいて、成形体13aに含まれるセラミック前駆体が十分(例えば、90%以上)にセラミック化したと判断できる。
The primary heating is preferably performed until the ceramic precursor contained in the molded body 13a is sufficiently ceramicized. Whether or not the ceramic precursor is sufficiently ceramicized can be determined based on, for example, a change in decomposition gas generated from the molded body 13a. That is, when the ceramic precursor is ceramized by heating, a decomposition gas accompanying the thermal decomposition of the ceramic precursor is generated. Therefore, by measuring this cracked gas, the total amount of cracked gas generated, the amount of change in cracked gas generated per unit time, the concentration and type of cracked gas in the furnace, the concentration of cracked gas per unit time Based on the amount of change or the like, it can be determined that the ceramic precursor contained in the molded body 13a has been sufficiently ceramicized (for example, 90% or more).
二次加熱は、含浸工程に相当する加熱処理である。二次加熱の第2温度は、金属ケイ素の融点以上に設定される。二次加熱により、容器20内に収容された金属ケイ素22が溶融する。そして、溶融した金属ケイ素は、毛細管現象によって、多孔質材からなる支持具21を通じてセラミック複合材13bの空隙に入り込み、その空隙に金属ケイ素22が含浸される。これにより、セラミック複合材13bは、金属ケイ素22が含浸されたシリコン含浸セラミック複合材13cとなる。
Secondary heating is a heat treatment corresponding to the impregnation step. The second temperature of the secondary heating is set to be equal to or higher than the melting point of metal silicon. The silicon silicon 22 accommodated in the container 20 is melted by the secondary heating. Then, the melted metal silicon enters the void of the ceramic composite material 13b through the support 21 made of a porous material by capillary action, and the void is impregnated with the metal silicon 22. As a result, the ceramic composite material 13b becomes a silicon-impregnated ceramic composite material 13c impregnated with the metal silicon 22.
第2温度は、例えば、1410℃以上2000℃以下の温度であることが好ましい。上記温度範囲に設定することにより、高温下に曝されることによるセラミック複合材13bの骨格部分14及びマトリックス部分15bの劣化を抑制しつつ、金属ケイ素をより確実に含浸させることができる。
The second temperature is preferably a temperature of 1410 ° C. or higher and 2000 ° C. or lower, for example. By setting the temperature range, it is possible to more reliably impregnate metal silicon while suppressing deterioration of the skeleton portion 14 and the matrix portion 15b of the ceramic composite material 13b due to exposure to a high temperature.
二次加熱は、セラミック複合材13bの内部に存在した空隙に金属ケイ素が十分に含浸されるまで行うことが好ましい。例えば、容器20内に収容される金属ケイ素22の量が、セラミック複合材13bの気孔容積と支持具21の気孔容積の和に相当する量である場合には、全ての金属ケイ素22が含浸されたことをもって、金属ケイ素が十分に含浸されたと判断することができる。
The secondary heating is preferably performed until the metal silicon is sufficiently impregnated into the voids present in the ceramic composite material 13b. For example, when the amount of the metal silicon 22 accommodated in the container 20 is an amount corresponding to the sum of the pore volume of the ceramic composite material 13b and the pore volume of the support 21, all the metal silicon 22 is impregnated. Therefore, it can be determined that the metal silicon is sufficiently impregnated.
そして、二次加熱の後は、容器20内の温度を降下させ、容器20からシリコン含浸セラミック複合材13cを取り出し、シリコン含浸セラミック複合材13cの下面に一体化している支持具21を分離する。これにより、シリコン含浸セラミック複合材13cが得られる。
After the secondary heating, the temperature in the container 20 is lowered, the silicon-impregnated ceramic composite material 13c is taken out from the container 20, and the support 21 integrated on the lower surface of the silicon-impregnated ceramic composite material 13c is separated. Thereby, the silicon-impregnated ceramic composite material 13c is obtained.
なお、本実施形態の製造方法により製造されるシリコン含浸セラミック複合材13cの用途は特に限定されるものではないが、例えば、ブレーキディスクやクラッチディスク等の摩擦板として適用することができる。したがって、本実施形態の製造方法は、ブレーキディスクやクラッチディスク等の摩擦板を製造する場合の一工程として適用することもできる。
The use of the silicon-impregnated ceramic composite material 13c manufactured by the manufacturing method of the present embodiment is not particularly limited, but can be applied as a friction plate such as a brake disk or a clutch disk. Therefore, the manufacturing method of this embodiment can also be applied as one process when manufacturing friction plates, such as a brake disk and a clutch disk.
次に、本実施形態の効果について記載する。
(1)シリコン含浸セラミック複合材の製造方法は、セラミック繊維とセラミック前駆体とを含有する成形体を加熱して、セラミック前駆体をセラミック化することによりセラミック複合材を得る焼成工程と、セラミック複合材に金属ケイ素を含浸させる含浸工程とを有する。固体状の金属ケイ素を収容する容器の内部に支持具を介して成形体を配置する。容器内の温度を、セラミック前駆体がセラミック化する温度かつ金属ケイ素の融点未満の第1温度として焼成工程を行った後、金属ケイ素の融点以上の第2温度に昇温することにより、溶融した金属ケイ素を、多孔質材からなる支持具を通じてセラミック複合材に含浸させる含浸工程を行う。 Next, the effect of this embodiment will be described.
(1) A method for producing a silicon-impregnated ceramic composite includes a firing step in which a ceramic composite is obtained by heating a molded body containing ceramic fibers and a ceramic precursor to ceramicize the ceramic precursor; An impregnation step of impregnating the material with metallic silicon. A molded body is placed through a support in the interior of a container containing solid metallic silicon. The container was melted by raising the temperature in the container to a second temperature equal to or higher than the melting point of the metal silicon after performing the firing step with the temperature at which the ceramic precursor is ceramicized and a first temperature lower than the melting point of the metal silicon. An impregnation step of impregnating the ceramic composite material with metal silicon through a support made of a porous material is performed.
(1)シリコン含浸セラミック複合材の製造方法は、セラミック繊維とセラミック前駆体とを含有する成形体を加熱して、セラミック前駆体をセラミック化することによりセラミック複合材を得る焼成工程と、セラミック複合材に金属ケイ素を含浸させる含浸工程とを有する。固体状の金属ケイ素を収容する容器の内部に支持具を介して成形体を配置する。容器内の温度を、セラミック前駆体がセラミック化する温度かつ金属ケイ素の融点未満の第1温度として焼成工程を行った後、金属ケイ素の融点以上の第2温度に昇温することにより、溶融した金属ケイ素を、多孔質材からなる支持具を通じてセラミック複合材に含浸させる含浸工程を行う。 Next, the effect of this embodiment will be described.
(1) A method for producing a silicon-impregnated ceramic composite includes a firing step in which a ceramic composite is obtained by heating a molded body containing ceramic fibers and a ceramic precursor to ceramicize the ceramic precursor; An impregnation step of impregnating the material with metallic silicon. A molded body is placed through a support in the interior of a container containing solid metallic silicon. The container was melted by raising the temperature in the container to a second temperature equal to or higher than the melting point of the metal silicon after performing the firing step with the temperature at which the ceramic precursor is ceramicized and a first temperature lower than the melting point of the metal silicon. An impregnation step of impregnating the ceramic composite material with metal silicon through a support made of a porous material is performed.
上記構成によれば、容器内の温度管理によって、一度の加熱処理の中で焼成工程と含浸工程を連続的に行うことができ、その結果、シリコン含浸セラミック複合材の製造工程が簡略化される。
According to the above configuration, the firing process and the impregnation process can be continuously performed in one heat treatment by the temperature control in the container, and as a result, the manufacturing process of the silicon-impregnated ceramic composite is simplified. .
(2)第1温度は、500℃以上1400℃以下の温度である。
上記構成によれば、焼成工程に相当する一次加熱において、より好適に、金属ケイ素が溶融して成形体に含浸することを抑制しつつ、セラミック前駆体をセラミック化させ同時に空隙を形成することができる。 (2) The first temperature is a temperature of 500 ° C. or higher and 1400 ° C. or lower.
According to the above configuration, in the primary heating corresponding to the firing step, more preferably, the ceramic precursor is made into a ceramic and simultaneously formed voids while suppressing the metal silicon from melting and impregnating the molded body. it can.
上記構成によれば、焼成工程に相当する一次加熱において、より好適に、金属ケイ素が溶融して成形体に含浸することを抑制しつつ、セラミック前駆体をセラミック化させ同時に空隙を形成することができる。 (2) The first temperature is a temperature of 500 ° C. or higher and 1400 ° C. or lower.
According to the above configuration, in the primary heating corresponding to the firing step, more preferably, the ceramic precursor is made into a ceramic and simultaneously formed voids while suppressing the metal silicon from melting and impregnating the molded body. it can.
(3)第2温度は、1410℃以上2000℃以下の温度である。
上記構成によれば、含浸工程に相当する二次加熱において、セラミック複合材の空隙への金属ケイ素の含浸を好適に進行させることができるとともに、過剰に加熱されることによる劣化を抑制できる。 (3) The second temperature is a temperature of 1410 ° C. or higher and 2000 ° C. or lower.
According to the said structure, in the secondary heating corresponded to an impregnation process, while the metal silicon impregnation to the space | gap of a ceramic composite material can be advanced suitably, deterioration by being overheated can be suppressed.
上記構成によれば、含浸工程に相当する二次加熱において、セラミック複合材の空隙への金属ケイ素の含浸を好適に進行させることができるとともに、過剰に加熱されることによる劣化を抑制できる。 (3) The second temperature is a temperature of 1410 ° C. or higher and 2000 ° C. or lower.
According to the said structure, in the secondary heating corresponded to an impregnation process, while the metal silicon impregnation to the space | gap of a ceramic composite material can be advanced suitably, deterioration by being overheated can be suppressed.
(4)セラミック繊維は、炭素繊維及び炭化ケイ素繊維から選ばれる少なくとも一種である。
上記構成によれば、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、セラミック複合材に金属ケイ素が含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。 (4) The ceramic fiber is at least one selected from carbon fiber and silicon carbide fiber.
According to the said structure, based on the property of carbon and silicon carbide with high affinity with respect to a metal silicon, it becomes easy to impregnate a ceramic composite material with a metal silicon in an impregnation process. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
上記構成によれば、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、セラミック複合材に金属ケイ素が含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。 (4) The ceramic fiber is at least one selected from carbon fiber and silicon carbide fiber.
According to the said structure, based on the property of carbon and silicon carbide with high affinity with respect to a metal silicon, it becomes easy to impregnate a ceramic composite material with a metal silicon in an impregnation process. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
(5)セラミック前駆体は、加熱により炭素となる炭素系前駆体、及び加熱により炭化ケイ素となる炭化ケイ素系前駆体から選ばれる少なくとも一種である。
上記構成によれば、焼成工程において、空隙を形成しつつ、炭素及び炭化ケイ素の少なくとも一方からなるマトリックス(多孔質のマトリックス)を有するセラミック複合材が得られる。そのため、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、セラミック複合材の空隙に金属ケイ素が含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。 (5) The ceramic precursor is at least one selected from a carbon-based precursor that becomes carbon by heating and a silicon carbide-based precursor that becomes silicon carbide by heating.
According to the said structure, the ceramic composite material which has a matrix (porous matrix) which consists of at least one of carbon and silicon carbide, forming a space | gap in a baking process is obtained. Therefore, based on the properties of carbon and silicon carbide having high affinity for metallic silicon, metallic silicon is easily impregnated in the voids of the ceramic composite material in the impregnation step. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
上記構成によれば、焼成工程において、空隙を形成しつつ、炭素及び炭化ケイ素の少なくとも一方からなるマトリックス(多孔質のマトリックス)を有するセラミック複合材が得られる。そのため、金属ケイ素に対する親和性が高い炭素及び炭化ケイ素の性質に基づいて、含浸工程において、セラミック複合材の空隙に金属ケイ素が含浸しやすくなる。これにより、空隙の少ない緻密なシリコン含浸セラミック複合材が得られる。 (5) The ceramic precursor is at least one selected from a carbon-based precursor that becomes carbon by heating and a silicon carbide-based precursor that becomes silicon carbide by heating.
According to the said structure, the ceramic composite material which has a matrix (porous matrix) which consists of at least one of carbon and silicon carbide, forming a space | gap in a baking process is obtained. Therefore, based on the properties of carbon and silicon carbide having high affinity for metallic silicon, metallic silicon is easily impregnated in the voids of the ceramic composite material in the impregnation step. As a result, a dense silicon-impregnated ceramic composite with few voids can be obtained.
(6)成形体に含有されるセラミック前駆体由来の分解ガスの変化に基づいて、容器内の温度を第1温度から第2温度に昇温する。
上記構成によれば、セラミック前駆体由来の分解ガスの発生状況に基づいて第1温度から第2温度に昇温させることにより、第1温度による加熱時間を、セラミック前駆体のセラミック化の進行が任意の状態(例えば、完全にセラミック化した状態)となる時間に容易に調整できる。したがって、第1温度による加熱時間が不足する又は過剰となることを抑制できる。 (6) The temperature in the container is raised from the first temperature to the second temperature based on the change in the decomposition gas derived from the ceramic precursor contained in the compact.
According to the above configuration, by increasing the temperature from the first temperature to the second temperature based on the generation state of the cracked gas derived from the ceramic precursor, the heating time by the first temperature is increased by the progress of ceramization of the ceramic precursor. It can be easily adjusted to the time when it becomes an arbitrary state (for example, a completely ceramicized state). Therefore, it can suppress that the heating time by 1st temperature runs short or becomes excessive.
上記構成によれば、セラミック前駆体由来の分解ガスの発生状況に基づいて第1温度から第2温度に昇温させることにより、第1温度による加熱時間を、セラミック前駆体のセラミック化の進行が任意の状態(例えば、完全にセラミック化した状態)となる時間に容易に調整できる。したがって、第1温度による加熱時間が不足する又は過剰となることを抑制できる。 (6) The temperature in the container is raised from the first temperature to the second temperature based on the change in the decomposition gas derived from the ceramic precursor contained in the compact.
According to the above configuration, by increasing the temperature from the first temperature to the second temperature based on the generation state of the cracked gas derived from the ceramic precursor, the heating time by the first temperature is increased by the progress of ceramization of the ceramic precursor. It can be easily adjusted to the time when it becomes an arbitrary state (for example, a completely ceramicized state). Therefore, it can suppress that the heating time by 1st temperature runs short or becomes excessive.
(7)分解ガスの発生量の単位時間あたりの変化量、又は焼成炉内における分解ガスの濃度の単位時間あたりの変化量が所定値以下になったこと、又は分解ガスの種類に基づいて、容器内の温度を第1温度から第2温度に昇温する。
(7) Based on the amount of change in the generation amount of cracked gas per unit time, or the amount of change in the concentration of cracked gas in the firing furnace per unit time is below a predetermined value, or on the type of cracked gas, The temperature in the container is raised from the first temperature to the second temperature.
上記構成によれば、第1温度による加熱時間を、セラミック前駆体が十分にセラミック化した状態となる時間に容易に調整できる。したがって、セラミック前駆体が十分にセラミック化していない状態で第2温度に昇温されて含浸工程が行われること、及びセラミック前駆体が十分にセラミック化した後も第1温度による加熱が行われ続けることを抑制できる。
According to the above configuration, the heating time at the first temperature can be easily adjusted to the time when the ceramic precursor is sufficiently ceramicized. Therefore, the impregnation step is performed by raising the temperature to the second temperature in a state where the ceramic precursor is not sufficiently ceramicized, and heating at the first temperature is continued even after the ceramic precursor is sufficiently ceramicized. This can be suppressed.
なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
In addition, the said embodiment can be changed and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
・上記実施形態では、セラミック繊維11を組み合わせてなる繊維構造体12に対して、セラミック前駆体を含有する充填材を充填することにより成形体13aを形成していたが、成形体13aの形成方法はこれに限定されるものではない。例えば、繊維構造体12に対して充填材を充填した後に、切断等の加工処理を施して成形体13aとしてもよい。また、セラミック前駆体及びセラミック繊維11を含有する混合材を所定形状に成形することにより成形体13aを形成してもよい。
In the above embodiment, the molded body 13a is formed by filling the fiber structure 12 formed by combining the ceramic fibers 11 with the filler containing the ceramic precursor. Is not limited to this. For example, after the fiber structure 12 is filled with a filler, a processing such as cutting may be performed to obtain the formed body 13a. Moreover, you may form the molded object 13a by shape | molding the mixed material containing a ceramic precursor and the ceramic fiber 11 in a predetermined shape.
・上記実施形態では、多孔質材により構成される支持具21を用いていたが、支持具21は、二次加熱(含浸工程)を行う際に、毛細管現象を生じさせる多孔質形状であればよい。例えば、成形体13aの形成に用いる充填材から構成される支持具21や、成形体13aを得る際に生じた切断片からなる支持具21としてもよい。この場合、一次加熱(焼成工程)を経ることにより、支持具21についても成形体13aと同様にセラミック化されるとともに空隙が形成されて多孔質構造の支持具21となる。また、成形工程において、成形体13aに対して支持具21部分を一体に形成し、支持具21部分を有する成形体13aを容器20に直接、載置してもよい。
-In the said embodiment, although the support tool 21 comprised by the porous material was used, when the support tool 21 performs the secondary heating (impregnation process), if it is a porous shape which produces a capillary phenomenon, Good. For example, it is good also as the support tool 21 comprised from the filler used for formation of the molded object 13a, or the support tool 21 consisting of the cut piece produced when obtaining the molded object 13a. In this case, through the primary heating (firing step), the support tool 21 is also made into a ceramic as well as the molded body 13a and a void is formed to form the support tool 21 having a porous structure. In the molding step, the support 21 may be formed integrally with the molded body 13a, and the molded body 13a having the support 21 may be placed directly on the container 20.
・容器20内の温度を第1温度から第2温度に昇温するタイミングを設定する方法を変更してもよい。例えば、事前の予備試験により、成形体13aに含有されるセラミック前駆体のセラミック化の進行が任意の状態となる加熱時間を測定しておき、その加熱時間の経過をもって、容器20内の温度を第1温度から第2温度に昇温してもよい。
-You may change the method of setting the timing which raises the temperature in the container 20 from 1st temperature to 2nd temperature. For example, the heating time during which the progress of ceramization of the ceramic precursor contained in the molded body 13a is in an arbitrary state is measured by a preliminary test in advance, and the temperature in the container 20 is set as the heating time elapses. The temperature may be raised from the first temperature to the second temperature.
・焼成工程に対応する一次加熱は、第1温度の範囲において、その温度を変化させてもよい。例えば、図4に示すように、容器20内の温度を第2温度まで連続的に上昇させ、その途中における第1温度の範囲(第1温度域)に滞在する期間を一次加熱としてもよい。この場合、第1温度域に滞在する期間が十分に確保されるように、容器20内の温度の上昇曲線を調整することが好ましい。同様に、含浸工程に対応する二次加熱についても、第2温度の範囲において、その温度を変化させてもよい。
-The primary heating corresponding to a baking process may change the temperature in the range of 1st temperature. For example, as shown in FIG. 4, the temperature in the container 20 may be continuously increased to the second temperature, and the period of staying in the first temperature range (first temperature range) in the middle may be primary heating. In this case, it is preferable to adjust the temperature rise curve in the container 20 so that a sufficient period of staying in the first temperature range is ensured. Similarly, for the secondary heating corresponding to the impregnation step, the temperature may be changed in the second temperature range.
以下、上記実施形態をさらに具体化した実施例について説明する。
図1(a),(b)に示すように、セラミック繊維を積み重ねた繊維構造体の隙間及び表面に充填材を充填することにより、直径300mm、厚さ10mmの円板状の成形体を形成する。セラミック繊維として、直径12μmの炭化ケイ素繊維を用いた平織りの織布を用い、この織布を5枚積層して骨材として使用する。得られた骨材に充填材としての液状のフェノール樹脂を含浸したのち、乾燥機に入れて硬化させる。乾燥機では、フェノール樹脂を熱硬化させることができ、後の焼成工程で熱変形しない成形体を得ることができる。 Hereinafter, examples in which the above embodiment is further embodied will be described.
As shown in FIGS. 1 (a) and 1 (b), a disk-shaped formed body having a diameter of 300 mm and a thickness of 10 mm is formed by filling the gap and the surface of the fiber structure in which ceramic fibers are stacked with each other. To do. As the ceramic fiber, a plain woven fabric using silicon carbide fibers having a diameter of 12 μm is used, and five woven fabrics are laminated and used as an aggregate. The obtained aggregate is impregnated with a liquid phenol resin as a filler, and then put in a dryer to be cured. In the dryer, the phenolic resin can be thermally cured, and a molded body that is not thermally deformed in the subsequent baking step can be obtained.
図1(a),(b)に示すように、セラミック繊維を積み重ねた繊維構造体の隙間及び表面に充填材を充填することにより、直径300mm、厚さ10mmの円板状の成形体を形成する。セラミック繊維として、直径12μmの炭化ケイ素繊維を用いた平織りの織布を用い、この織布を5枚積層して骨材として使用する。得られた骨材に充填材としての液状のフェノール樹脂を含浸したのち、乾燥機に入れて硬化させる。乾燥機では、フェノール樹脂を熱硬化させることができ、後の焼成工程で熱変形しない成形体を得ることができる。 Hereinafter, examples in which the above embodiment is further embodied will be described.
As shown in FIGS. 1 (a) and 1 (b), a disk-shaped formed body having a diameter of 300 mm and a thickness of 10 mm is formed by filling the gap and the surface of the fiber structure in which ceramic fibers are stacked with each other. To do. As the ceramic fiber, a plain woven fabric using silicon carbide fibers having a diameter of 12 μm is used, and five woven fabrics are laminated and used as an aggregate. The obtained aggregate is impregnated with a liquid phenol resin as a filler, and then put in a dryer to be cured. In the dryer, the phenolic resin can be thermally cured, and a molded body that is not thermally deformed in the subsequent baking step can be obtained.
次に、図2に示すように、セラミック製の容器内に、炭化ケイ素の多孔質材からなる支持具を介して成形体を配置するとともに、粉末状の金属ケイ素を配置する。そして、焼成炉を用いて、成形体及び金属ケイ素が収容された容器に対して、アルゴン雰囲気下にて、図3に示すように、第1温度及び第2温度による2段階の加熱処理を行うことにより、シリコン含浸セラミック複合材を得ることができる。加熱処理の温度条件は以下のとおりである。
Next, as shown in FIG. 2, in the ceramic container, the compact is disposed through a support made of a porous material of silicon carbide, and powdered metallic silicon is disposed. Then, using a firing furnace, the container containing the compact and the metal silicon is subjected to a two-stage heat treatment at a first temperature and a second temperature as shown in FIG. 3 in an argon atmosphere. Thus, a silicon-impregnated ceramic composite material can be obtained. The temperature conditions for the heat treatment are as follows.
第1温度:1300℃
第1温度による加熱時間:60分
第2温度:1500℃
第2温度による加熱時間:20分
また、加熱処理時において、焼成炉内の分解ガスの発生量を測定する。上記の第1温度に上昇するまでの間及び第1温度で保持する間、フェノール樹脂(セラミック前駆体)から分解ガスが発生し続けるが、時間の経過とともに分解ガスの発生が収束する。分解ガスの発生が収束したことを確認してから、第2温度に温度を上昇させる。第2温度では、セラミック製の容器に充填された金属ケイ素が溶融し、多孔質材からなる支持具を伝達してセラミック複合材に含浸され、焼成とシリコン含浸とを連続して行うことができる。 First temperature: 1300 ° C
Heating time by first temperature: 60 minutes Second temperature: 1500 ° C
Heating time at second temperature: 20 minutes In addition, during the heat treatment, the amount of cracked gas generated in the firing furnace is measured. The decomposition gas continues to be generated from the phenol resin (ceramic precursor) until the temperature rises to the first temperature and while the temperature is maintained at the first temperature, but the generation of the decomposition gas converges with time. After confirming that the generation of cracked gas has converged, the temperature is raised to the second temperature. At the second temperature, the metallic silicon filled in the ceramic container is melted, and the ceramic composite material is impregnated by transferring the support made of a porous material, and firing and silicon impregnation can be performed continuously. .
第1温度による加熱時間:60分
第2温度:1500℃
第2温度による加熱時間:20分
また、加熱処理時において、焼成炉内の分解ガスの発生量を測定する。上記の第1温度に上昇するまでの間及び第1温度で保持する間、フェノール樹脂(セラミック前駆体)から分解ガスが発生し続けるが、時間の経過とともに分解ガスの発生が収束する。分解ガスの発生が収束したことを確認してから、第2温度に温度を上昇させる。第2温度では、セラミック製の容器に充填された金属ケイ素が溶融し、多孔質材からなる支持具を伝達してセラミック複合材に含浸され、焼成とシリコン含浸とを連続して行うことができる。 First temperature: 1300 ° C
Heating time by first temperature: 60 minutes Second temperature: 1500 ° C
Heating time at second temperature: 20 minutes In addition, during the heat treatment, the amount of cracked gas generated in the firing furnace is measured. The decomposition gas continues to be generated from the phenol resin (ceramic precursor) until the temperature rises to the first temperature and while the temperature is maintained at the first temperature, but the generation of the decomposition gas converges with time. After confirming that the generation of cracked gas has converged, the temperature is raised to the second temperature. At the second temperature, the metallic silicon filled in the ceramic container is melted, and the ceramic composite material is impregnated by transferring the support made of a porous material, and firing and silicon impregnation can be performed continuously. .
本実施例のシリコン含浸セラミック複合材の製造方法では、焼成工程において、セラミック前駆体が熱硬化し、焼成時の変形を防止することができる。
In the method for producing a silicon-impregnated ceramic composite material of this example, the ceramic precursor is thermally cured in the firing step, and deformation during firing can be prevented.
S…隙間、11…セラミック繊維、12…繊維構造体、13a…成形体、13b…セラミック複合材、13c…シリコン含浸セラミック複合材、14…骨格部分、15a,15b,15c…マトリックス部分、20…容器、21…支持具、22…金属ケイ素。
S ... Gap, 11 ... Ceramic fiber, 12 ... Fiber structure, 13a ... Molded body, 13b ... Ceramic composite, 13c ... Silicon-impregnated ceramic composite, 14 ... Frame portion, 15a, 15b, 15c ... Matrix portion, 20 ... Container, 21 ... support, 22 ... metal silicon.
Claims (7)
- セラミック繊維とセラミック前駆体とを含有する成形体を加熱して、前記セラミック前駆体をセラミック化することによりセラミック複合材を得る焼成工程と、
前記セラミック複合材に金属ケイ素を含浸させる含浸工程とを有するシリコン含浸セラミック複合材の製造方法であって、
固体状の金属ケイ素を収容する容器の内部に支持具を介して前記成形体を配置し、
前記容器内の温度を、前記セラミック前駆体がセラミック化する温度かつ金属ケイ素の融点未満の第1温度として前記焼成工程を行った後、前記金属ケイ素の融点以上の第2温度に昇温することにより、溶融した金属ケイ素を、多孔質材からなる前記支持具を通じて前記セラミック複合材に含浸させる前記含浸工程を行うことを特徴とするシリコン含浸セラミック複合材の製造方法。 A firing process of obtaining a ceramic composite by heating a molded body containing ceramic fibers and a ceramic precursor, and ceramicizing the ceramic precursor;
A method for producing a silicon-impregnated ceramic composite comprising an impregnation step of impregnating the ceramic composite with metal silicon,
The molded body is disposed through a support inside a container containing solid metal silicon,
The temperature in the container is set to a temperature at which the ceramic precursor is ceramicized and a first temperature lower than the melting point of the metal silicon, and then the temperature is raised to a second temperature equal to or higher than the melting point of the metal silicon. A method for producing a silicon-impregnated ceramic composite material comprising performing the impregnation step of impregnating the ceramic composite material with the molten metal silicon through the support made of a porous material. - 前記第1温度は、500℃以上1400℃以下の温度であり、
前記第2温度は、1410℃以上2000℃以下の温度であることを特徴とする請求項1に記載のシリコン含浸セラミック複合材の製造方法。 The first temperature is a temperature of 500 ° C. or higher and 1400 ° C. or lower,
2. The method for producing a silicon-impregnated ceramic composite according to claim 1, wherein the second temperature is a temperature of 1410 ° C. or more and 2000 ° C. or less. - 前記セラミック繊維は、炭素繊維及び炭化ケイ素繊維から選ばれる少なくとも一種であることを特徴とする請求項1又は請求項2に記載のシリコン含浸セラミック複合材の製造方法。 3. The method for producing a silicon-impregnated ceramic composite according to claim 1, wherein the ceramic fiber is at least one selected from carbon fiber and silicon carbide fiber.
- 前記セラミック前駆体は、加熱により炭素となる炭素系前駆体、及び加熱により炭化ケイ素となる炭化ケイ素系前駆体から選ばれる少なくとも一種であることを特徴とする請求項1~3のいずれか一項に記載のシリコン含浸セラミック複合材の製造方法。 The ceramic precursor is at least one selected from a carbon-based precursor that becomes carbon by heating and a silicon carbide-based precursor that becomes silicon carbide by heating. A method for producing a silicon-impregnated ceramic composite material according to claim 1.
- 前記成形体に含有される前記セラミック前駆体由来の分解ガスの変化に基づいて、前記容器内の温度を前記第1温度から前記第2温度に昇温することを特徴とする請求項1~4のいずれか一項に記載のシリコン含浸セラミック複合材の製造方法。 The temperature in the container is raised from the first temperature to the second temperature based on a change in decomposition gas derived from the ceramic precursor contained in the molded body. A method for producing a silicon-impregnated ceramic composite according to any one of the above.
- シリコン含浸セラミック複合材からなる摩擦板の製造方法であって、
請求項1~5のいずれか一項に記載のシリコン含浸セラミック複合材の製造方法を含むことを特徴とする摩擦板の製造方法。 A method for producing a friction plate made of a silicon-impregnated ceramic composite,
A method for producing a friction plate, comprising the method for producing a silicon-impregnated ceramic composite material according to any one of claims 1 to 5. - シリコン含浸セラミック複合材からなるブレーキディスクの製造方法であって、
請求項1~5のいずれか一項に記載のシリコン含浸セラミック複合材の製造方法を含むことを特徴とするブレーキディスクの製造方法。 A method of manufacturing a brake disk made of a silicon-impregnated ceramic composite material,
A method for producing a brake disk, comprising the method for producing a silicon-impregnated ceramic composite material according to any one of claims 1 to 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018045691A JP7049869B2 (en) | 2018-03-13 | 2018-03-13 | Silicon impregnated ceramic composite manufacturing method, friction plate manufacturing method, and brake disc manufacturing method |
JP2018-045691 | 2018-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176896A1 true WO2019176896A1 (en) | 2019-09-19 |
Family
ID=67907891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009860 WO2019176896A1 (en) | 2018-03-13 | 2019-03-12 | Method for producing silicon-impregnated ceramic composite material, method for producing friction plate, and method for producing brake disc |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7049869B2 (en) |
WO (1) | WO2019176896A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113526971A (en) * | 2021-06-10 | 2021-10-22 | 浙江理工大学 | Method for preparing SiC ceramic matrix composite material from spongy silicon carbide nanofiber preform |
CN116375487A (en) * | 2023-04-03 | 2023-07-04 | 合肥富维康新材料有限公司 | Preparation method of low-porosity SiC fiber unidirectional prepreg tape |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003522709A (en) * | 2000-02-09 | 2003-07-29 | フレニ・ブレンボ エス・ピー・エー | Molded composite material for brake applications and method of making same |
JP2006517899A (en) * | 2003-02-17 | 2006-08-03 | スネクマ・プロピュルシオン・ソリド | Method for siliciding heat-resistant structural composite materials and components obtained by the method |
JP2008526662A (en) * | 2004-12-30 | 2008-07-24 | ブレンボ・セラミック・ブレイク・システムス・エス.ピー.エー. | Molding composite material |
JP2015205780A (en) * | 2014-04-17 | 2015-11-19 | グンゼ株式会社 | Method for producing porous silicon carbide sintered compact, and porous silicon carbide sintered compact having protective layer |
-
2018
- 2018-03-13 JP JP2018045691A patent/JP7049869B2/en active Active
-
2019
- 2019-03-12 WO PCT/JP2019/009860 patent/WO2019176896A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003522709A (en) * | 2000-02-09 | 2003-07-29 | フレニ・ブレンボ エス・ピー・エー | Molded composite material for brake applications and method of making same |
JP2006517899A (en) * | 2003-02-17 | 2006-08-03 | スネクマ・プロピュルシオン・ソリド | Method for siliciding heat-resistant structural composite materials and components obtained by the method |
JP2008526662A (en) * | 2004-12-30 | 2008-07-24 | ブレンボ・セラミック・ブレイク・システムス・エス.ピー.エー. | Molding composite material |
JP2015205780A (en) * | 2014-04-17 | 2015-11-19 | グンゼ株式会社 | Method for producing porous silicon carbide sintered compact, and porous silicon carbide sintered compact having protective layer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113526971A (en) * | 2021-06-10 | 2021-10-22 | 浙江理工大学 | Method for preparing SiC ceramic matrix composite material from spongy silicon carbide nanofiber preform |
CN113526971B (en) * | 2021-06-10 | 2022-12-02 | 浙江理工大学 | Method for preparing SiC ceramic matrix composite material from spongy silicon carbide nanofiber preform |
CN116375487A (en) * | 2023-04-03 | 2023-07-04 | 合肥富维康新材料有限公司 | Preparation method of low-porosity SiC fiber unidirectional prepreg tape |
Also Published As
Publication number | Publication date |
---|---|
JP7049869B2 (en) | 2022-04-07 |
JP2019156682A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2179541C2 (en) | Method of introducing melted metal-based composition into porous substrates | |
US7374709B2 (en) | Method of making carbon/ceramic matrix composites | |
US4885129A (en) | Method of manufacturing heat pipe wicks | |
JP4960082B2 (en) | Method for siliciding heat-resistant structural composite materials and components obtained by the method | |
US8268393B2 (en) | Method of fabricating a friction part out of carbon/carbon composite material | |
CN105884389A (en) | Preparation method of C/C-SIC composite with low cost and low density gradient | |
KR100634935B1 (en) | Composite Carbonaceous Heat Insulator | |
CN106083114A (en) | A kind of C/C ZrC SiC ceramic based composites brake disc and preparation method thereof | |
JP2007535461A (en) | Process for producing carbon fiber reinforced ceramic composites | |
WO2019176896A1 (en) | Method for producing silicon-impregnated ceramic composite material, method for producing friction plate, and method for producing brake disc | |
JP6276514B2 (en) | Method of making internal cavities and mandrels therefor in ceramic matrix composites | |
JP2012522714A (en) | Method for smoothing the surface of a part made of CMC material | |
CN105541364B (en) | A kind of method of step densification production carbon pottery automobile brake disc | |
US20180045260A1 (en) | System and Method for Ceramic Doping of Carbon Fiber Composite Structures | |
JP2013256436A5 (en) | ||
CN109552722A (en) | The occlusive method of opening portion in container and container | |
JP2016084255A (en) | Composite refractory and production method therefor | |
JP2013100966A (en) | Regenerative burner heat reservoir, and method for manufacturing the same | |
US20090130307A1 (en) | Method for the rapid densification of a porous substrate, comprising the formation of a solid deposit within the porosity of the substrate | |
CN114096500B (en) | Porous ceramic structure for components made of CMC material and method for obtaining same | |
CN111892416A (en) | Preparation method of carbon-ceramic brake disc | |
WO2023008392A1 (en) | Thermal insulation material and method for producing thermal insulation material | |
CN109095929B (en) | Preparation method of carbon-ceramic brake disc | |
JP2015071519A (en) | POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY | |
KR101467665B1 (en) | THE MANUFACTURING METHOD FOR C-SiC COMPOSITES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19767073 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19767073 Country of ref document: EP Kind code of ref document: A1 |