JP7069509B2 - Equipment and firing method for cell firing of solid oxide fuel cells - Google Patents

Equipment and firing method for cell firing of solid oxide fuel cells Download PDF

Info

Publication number
JP7069509B2
JP7069509B2 JP2020543319A JP2020543319A JP7069509B2 JP 7069509 B2 JP7069509 B2 JP 7069509B2 JP 2020543319 A JP2020543319 A JP 2020543319A JP 2020543319 A JP2020543319 A JP 2020543319A JP 7069509 B2 JP7069509 B2 JP 7069509B2
Authority
JP
Japan
Prior art keywords
firing
setter
laminate
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020543319A
Other languages
Japanese (ja)
Other versions
JP2021515354A (en
Inventor
パク、キュリー
ヨン パク、ウン
オ シン、ドン
チョイ、クァンウク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2021515354A publication Critical patent/JP2021515354A/en
Application granted granted Critical
Publication of JP7069509B2 publication Critical patent/JP7069509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0006Composite supporting structures
    • F27D5/0018Separating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0006Composite supporting structures
    • F27D5/0012Modules of the sagger or setter type; Supports built up from them
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0037Supports specially adapted for semi-conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D2005/0081Details
    • F27D2005/0093Means to maintain the form of the article
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Description

本明細書は2018年8月22日付けで韓国特許庁に提出された韓国特許出願第10-2018-0097787号に基づいた優先権の利益を主張し、該韓国特許出願の文献に開示された全ての内容は本明細書の一部として含まれる。 This specification claims the benefit of priority based on Korean Patent Application No. 10-2018-097787 filed with the Korean Patent Office on August 22, 2018, and is disclosed in the document of the Korean patent application. All content is included as part of this specification.

本発明は、固体酸化物燃料電池のセル焼成用装置および焼成方法に関し、より詳しくは、セッターの高低を調節して、一つの装置を用いて仮焼結および本焼結が可能な固体酸化物燃料電池のセル焼成用装置および焼成方法に関する。 The present invention relates to a cell firing device and a firing method for a solid oxide fuel cell. More specifically, the solid oxide capable of calcining and main sintering using one device by adjusting the height of the setter. The present invention relates to a cell firing device and a firing method for a fuel cell.

燃料電池とは、燃料と空気の化学エネルギーを電気化学的反応により電気および熱に直接変換させる装置である。燃料電池は、既存の発電技術が燃料の燃焼、蒸気の発生、タービンの駆動、発電機の駆動過程を取るのとは異なり、燃焼過程や駆動装置がないため、効率が高いだけでなく、環境問題を誘発しない、このような燃料電池は、SOxとNOxなどの大気汚染物質をほぼ排出せず、二酸化炭素の発生も少なくて無公害発電であり、低騒音、無振動などの長所がある。 A fuel cell is a device that directly converts the chemical energy of fuel and air into electricity and heat by an electrochemical reaction. Unlike existing power generation technologies that take the process of burning fuel, generating steam, driving turbines, and driving generators, fuel cells are not only highly efficient because they have no combustion process or drive, but also the environment. Such a fuel cell, which does not induce a problem, emits almost no air pollutants such as SOx and NOx, generates less carbon dioxide, is a pollution-free power generation, and has advantages such as low noise and no vibration.

燃料電池としては、リン酸型燃料電池(PAFC)、アルカリ型燃料電池(AFC)、高分子電解質型燃料電池(PEMFC)、直接メタノール燃料電池(DMFC)、固体酸化物燃料電池(SOFC)などのような様々な種類があり、この中でも固体酸化物燃料電池は、低い活性化分極をベースにして、過電圧が低く、非可逆的な損失が少ないので発電効率が高い。また、水素だけでなく炭素または炭化水素系の物質を燃料として使用できるため、燃料選択の幅が広く、電極での反応速度が高いため、電極触媒として高価な貴金属を必要としない。その上、発電に付随して排出される熱は温度が非常に高いので利用価値が高い。固体酸化物燃料電池から発生した熱は、燃料の改質に利用するだけでなく、熱併合発電において産業用や冷房用エネルギー源として利用することができる。 Examples of the fuel cell include a phosphoric acid fuel cell (PAFC), an alkaline fuel cell (AFC), a polymer electrolyte fuel cell (PEMFC), a direct methanol fuel cell (DMFC), and a solid oxide fuel cell (SOFC). Among these, the solid oxide fuel cell has a high power generation efficiency because it has a low overvoltage and a small irreversible loss based on a low activation polarization. Further, since not only hydrogen but also carbon or hydrocarbon-based substances can be used as fuel, the range of fuel selection is wide and the reaction rate at the electrode is high, so that an expensive noble metal is not required as an electrode catalyst. Moreover, the heat emitted from power generation has a very high temperature, so its utility value is high. The heat generated from the solid oxide fuel cell can be used not only for fuel reforming but also as an energy source for industrial use and cooling in thermal combined power generation.

固体酸化物燃料電池(SOFC:Solid Oxide Fuel Cell)の基本的な作動原理を説明すれば、固体酸化物燃料電池は基本的に水素の酸化反応を通じて発電する装置であり、燃料極のアノードと空気極のカソードにおいては以下の反応式1のような電極反応が行われる。 To explain the basic operating principle of a solid oxide fuel cell (SOFC), a solid oxide fuel cell is basically a device that generates power through an oxidation reaction of hydrogen, and is an anode of a fuel electrode and air. At the cathode of the pole, the electrode reaction as shown in the following reaction formula 1 is performed.

[反応式1]
空気極:(1/2)O + 2e→ O2-
燃料極:H + O2-→ HO + 2e
全体反応:H + (1/2)O → H
[Reaction equation 1]
Air electrode: (1/2) O 2 + 2e- → O 2-
Fuel electrode: H 2 + O 2- → H 2 O + 2e-
Overall reaction: H 2 + (1/2) O 2 → H 2 O

すなわち、電子は外部回路を経て空気極に達し、同時に空気極で発生した酸素イオンが電解質を通して燃料極に伝達され、燃料極においては水素が酸素イオンと結合して電子および水を形成する。固体酸化物燃料電池は、緻密な(dense)電解質層、およびその電解質層を間に置いて電極としてポーラス(porous)な空気極層と燃料極層とが形成されており、電極反応が電解質層と電極層との界面で発生する。 That is, the electrons reach the air electrode via an external circuit, and at the same time, the oxygen ions generated at the air electrode are transmitted to the fuel electrode through the electrolyte, and at the fuel electrode, hydrogen combines with the oxygen ions to form electrons and water. In a solid oxide fuel cell, a dense electrolyte layer and a porous air electrode layer and a fuel electrode layer are formed as electrodes with the electrolyte layer in between, and the electrode reaction is an electrolyte layer. It occurs at the interface between the fuel cell and the electrode layer.

このような固体酸化物燃料電池のセル製作時には互いに異なる物質からなる2個以上の層を接合させた積層体を焼成して製品を作り、各層は互いに異なる収縮率および熱膨張係数を有するので焼成時に曲がるという特性がある。このような曲がり現象が発生する場合には製品として作ることができなくなる。このような曲がり現象が発生する場合には、セルが受けるストレスが大きくなって製品の不良率が高くなり、焼成後に別の平坦化(Flattening)工程が必要であるという問題がある。 When manufacturing a cell of such a solid oxide fuel cell, a laminated body in which two or more layers made of different substances are joined is fired to make a product, and since each layer has a different shrinkage rate and a coefficient of thermal expansion, it is fired. It has the characteristic of sometimes bending. If such a bending phenomenon occurs, it cannot be manufactured as a product. When such a bending phenomenon occurs, there is a problem that the stress applied to the cell becomes large, the defective rate of the product becomes high, and another flattening step is required after firing.

そのため、良質の製品を生産するためには、焼成時に発生する曲がり現象を解決して平坦なセルを得ることができる固体酸化物燃料電池のセル焼成用装置および焼成方法が必要な実情である。 Therefore, in order to produce a high-quality product, there is a need for a cell firing device and a firing method for a solid oxide fuel cell that can solve the bending phenomenon that occurs during firing and obtain a flat cell.

本発明は、上述した問題を解決するために導き出されたものであり、本発明の目的は、工程条件に応じて複数のセッターの高低を調節して、固体酸化物燃料電池のセル製作時に互いに異なる物質からなる2個以上の層を接合させた積層体の焼成および平坦化工程を2段階で行うことなく同時に行うことができる固体酸化物燃料電池のセル焼成用装置および焼成方法を提供することにある。 The present invention has been derived in order to solve the above-mentioned problems, and an object of the present invention is to adjust the height of a plurality of setters according to the process conditions and to adjust the height of a plurality of setters to each other when manufacturing a cell of a solid oxide fuel cell. Provided are a cell firing device and a firing method for a solid oxide fuel cell capable of simultaneously performing a firing and flattening step of a laminate in which two or more layers made of different substances are joined without performing the firing and flattening steps in two steps. It is in.

本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置は、積層体を支持する複数のセッター、および前記セッターと結合されて前記セッターを支持する1対のサポートを含み、前記セッターは、両面の材質が互いに異なり、前記サポートに応じて高低調節が可能であることを特徴とする。 The cell firing apparatus for a solid oxide fuel cell according to an embodiment of the present invention includes a plurality of setters that support the laminate, and a pair of supports that are combined with the setters to support the setters. The materials on both sides are different from each other, and the height can be adjusted according to the support.

一つの実施形態において、最下端部に位置する前記セッターは両面が同じ材質からなることを特徴とする。 In one embodiment, the setter located at the lowermost end is characterized in that both sides are made of the same material.

一つの実施形態において、前記セッターは、一面は電解質(electrolyte)との反応性がない材質からなり、他面はアノード(anode)との反応性がない材質からなることを特徴とする。 In one embodiment, the setter is characterized in that one side is made of a material that is not reactive with an electrolyte and the other side is made of a material that is not reactive with an anode.

一つの実施形態において、前記積層体は、アノードおよび電解質を含むことを特徴とする。 In one embodiment, the laminate comprises an anode and an electrolyte.

一つの実施形態において、前記セッターは、一面は緻密なセラミック材料を含み、他面は多孔性セラミック材料を含むことを特徴とする。 In one embodiment, the setter is characterized by containing a dense ceramic material on one side and a porous ceramic material on the other side.

一つの実施形態において、前記緻密なセラミック材料はアルミナセラミック材料を含み、前記多孔性セラミック材料は多孔性アルミナセラミックおよび炭化珪素(SiC)セラミックのいずれか一つ以上を含むことを特徴とする。 In one embodiment, the dense ceramic material comprises an alumina ceramic material, wherein the porous ceramic material comprises one or more of a porous alumina ceramic and a silicon carbide (SiC) ceramic.

本発明の一実施形態による固体酸化物燃料電池のセル焼成方法は、固体酸化物燃料電池のセル焼成用装置の1対のサポートに結合された複数のセッター上に各々積層体を配置するステップ、前記積層体から離隔するように前記セッターの高さを調節した後、前記積層体を1次焼成するステップ、および前記セッターの高さを前記積層体の高さ以下に調節した後、前記積層体を2次焼成するステップを含むことを特徴とする。 The method for firing a cell of a solid oxide fuel cell according to an embodiment of the present invention is a step of arranging a laminate on a plurality of setters coupled to a pair of supports of a device for firing a cell of a solid oxide fuel cell. After adjusting the height of the setter so as to be separated from the laminate, the step of primary firing the laminate, and adjusting the height of the setter to be equal to or lower than the height of the laminate, the laminate It is characterized by including a step of secondary firing.

一つの実施形態において、前記1次焼成するステップにおいては、前記積層体が上面に向かって曲がることを特徴とする。 In one embodiment, the primary firing step is characterized in that the laminate bends toward the top surface.

一つの実施形態において、前記2次焼成するステップにおいては、前記セッターが前記積層体を加圧して前記燃料電池のセルが平坦な形態を有することを特徴とする。 In one embodiment, in the step of secondary firing, the setter pressurizes the laminate so that the cell of the fuel cell has a flat shape.

一つの実施形態において、前記2次焼成するステップにおいては、前記セッターを前記サポートに固定しないことを特徴とする。 In one embodiment, the setter is not fixed to the support in the step of secondary firing.

本発明によれば、2回の熱処理工程条件に応じて複数のセッターの高低を調節して、固体酸化物燃料電池のセル製作時に互いに異なる物質からなる2個以上の層を接合させた積層体の焼成おび平坦化工程を2段階で行うことなく同時に行うことができるという効果がある。 According to the present invention, the height of a plurality of setters is adjusted according to the conditions of the two heat treatment steps, and two or more layers made of different substances are joined to each other when the cell of the solid oxide fuel cell is manufactured. There is an effect that the firing and flattening steps can be performed simultaneously without performing the firing and flattening steps in two steps.

また、焼成および平坦化過程を同時に行うことによって、熱処理過程を減らすことができるため、工程時間および費用を節減できるだけでなく、大きさと厚さの調節が容易であり、セルを均一に形成することができるため、製品の不良率を下げ、生産性を向上させて大量生産に容易な効果がある。 In addition, since the heat treatment process can be reduced by simultaneously performing the firing and flattening processes, not only the process time and cost can be saved, but also the size and thickness can be easily adjusted, and the cells can be formed uniformly. This has the effect of lowering the defective rate of products, improving productivity, and facilitating mass production.

本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置の断面図である。It is sectional drawing of the cell firing apparatus of a solid oxide fuel cell according to one Embodiment of this invention. (a)は1次焼成ステップ(仮焼結)時の本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置の断面図であり、(b)は2次焼成ステップ(本焼結)時の本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置の断面図である。(A) is a sectional view of a cell firing apparatus for a solid oxide fuel cell according to an embodiment of the present invention at the time of the primary firing step (temporary sintering), and (b) is a secondary firing step (main sintering). It is sectional drawing of the cell firing apparatus of the solid oxide fuel cell according to one Embodiment of this invention at the time.

本発明を添付図面を参照して詳細に説明すれば以下のとおりである。ここで、繰り返される説明、本発明の要旨を不要に濁す恐れのある公知の機能および構成に関する詳細な説明は省略することにする。本発明の実施形態は当業界で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。よって、図面での要素の形状および大きさなどはより明確な説明のために誇張されることがある。 The present invention will be described in detail with reference to the accompanying drawings. Here, repeated explanations and detailed description of known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted. Embodiments of the invention are provided to more fully explain the invention to those with average knowledge in the art. Therefore, the shape and size of the elements in the drawings may be exaggerated for a clearer explanation.

明細書の全体にわたって、ある部分がある構成要素を「含む」とする時、これは、特に反する記載がない限り、他の構成要素を除くものではなく、他の構成要素をさらに含んでもよいことを意味する。 When a part of the specification "contains" a component, this does not exclude other components unless otherwise stated, and may further include other components. Means.

以下では、本発明の理解を助けるために好ましい実施形態を提示する。但し、下記の実施形態は本発明をより容易に理解するために提供されるものに過ぎず、下記の実施形態によって本発明の内容が限定されるものではない。 In the following, preferred embodiments are presented to aid in understanding the invention. However, the following embodiments are provided only for easier understanding of the present invention, and the contents of the present invention are not limited by the following embodiments.

<固体酸化物燃料電池のセル焼成用装置> <Equipment for firing cells of solid oxide fuel cells>

図1は、本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置の断面図である。 FIG. 1 is a cross-sectional view of a cell firing device for a solid oxide fuel cell according to an embodiment of the present invention.

本発明に係る固体酸化物燃料電池のセル焼成用装置は、セッター10およびサポート20を含むことができる。 The cell firing device for a solid oxide fuel cell according to the present invention can include a setter 10 and a support 20.

セッター10は、積層体を支持する構成であって、複数個を提供することができる。積層体は固体酸化物燃料電池のアノード(anode)および電解質(electrolyte)を積層したものであり、セッター10は積層体を焼成しようとする時に用いられるセラミックプレートであり、セッター10を利用すれば、被焼成物の変形を防止し、均一な熱伝達を通じて電気的な特性を維持させることができる。そして、本発明に係るセッター10は、両面の材質が互いに異なるように提供することができる。 The setter 10 has a structure that supports the laminated body, and a plurality of setters 10 can be provided. The laminate is a laminate of an anode and an electrolyte of a solid oxide fuel cell, and the setter 10 is a ceramic plate used when the laminate is to be fired. It is possible to prevent deformation of the object to be fired and maintain electrical properties through uniform heat transfer. The setter 10 according to the present invention can be provided so that the materials on both sides are different from each other.

一つの実施形態において、セッター10は、一面10aは電解質(electrolyte)との反応性がない材質からなり、他面10bはアノード(anode)との反応性がない材質からなることができる。この時、セッターの一面10aは積層体の電解質と接触する面であって積層体を支持することができ、セッターの他面10bは積層体のアノードと接触する面であって積層体を支持する反対面を意味する。 In one embodiment, the setter 10 can be made of a material in which one surface 10a is non-reactive with an electrolyte and the other surface 10b is non-reactive with an anode. At this time, one surface 10a of the setter is a surface in contact with the electrolyte of the laminate and can support the laminate, and the other surface 10b of the setter is a surface in contact with the anode of the laminate and supports the laminate. Means the opposite side.

ここで、セッター10はセラミック材料を含むことができ、一面10aは緻密なセラミック材料を含み、他面10bは多孔性セラミック材料を含むことができる。より詳細には、一面10aは緻密なアルミナセラミック材料を含み、他面10bは多孔性アルミナおよび炭化珪素(SiC)のいずれか一つのセラミック材料を含むことができる。 Here, the setter 10 can include a ceramic material, one side 10a can contain a dense ceramic material, and the other side 10b can contain a porous ceramic material. More specifically, one side 10a may contain a dense alumina ceramic material, and the other side 10b may contain any one of a porous alumina and silicon carbide (SiC) ceramic material.

1次焼成(仮焼結)工程時に積層体内に存在する有機物が燃えるバインダーバーンアウト(binder-burn out)現象が発生し、有機物が燃える間に積層体の曲がり現象が発生するようになる。 During the primary firing (temporary sintering) process, a binder-burn out phenomenon occurs in which the organic matter existing in the laminated body burns, and the bending phenomenon of the laminated body occurs while the organic matter burns.

セッターの他面10bに多孔性セラミック材料が含まれることによって、バインダーバーンアウト過程および積層体の焼成過程で発生するガスが円滑に抜け出て積層体の亀裂が発生しないという効果が発生する。また、多孔性セラミックセッター10bは、バインダーなどがバーンアウトされる前にセッターの表面に積層体が粘着または接着されないため、均一な焼成体が得られるという効果が発生する。 Since the porous ceramic material is contained in the other surface 10b of the setter, the effect that the gas generated in the binder burnout process and the firing process of the laminate smoothly escapes and the laminate does not crack is generated. Further, the porous ceramic setter 10b has an effect that a uniform fired body can be obtained because the laminated body is not adhered or adhered to the surface of the setter before the binder or the like is burned out.

さらに、セッターの一面10aに緻密なセラミック材料が含まれることによって、セッター10と積層体の電解質が反応するのを防止し、2次焼成時に電解質によってセッターの一面10aに傷かつくのを防止することができる。 Further, since the setter 10a contains a dense ceramic material, the setter 10 and the electrolyte of the laminate are prevented from reacting with each other, and the electrolyte prevents the setter 10a from being damaged during the secondary firing. be able to.

本発明に係るセッター10の個数は複数であってもよく、その中で、固体酸化物燃料電池のセル焼成用装置の最も下端部に位置するセッター10は一面および他面が同じ材質からなってもよい。最下端部に位置するセッター10cは積層体を支持することができるため、アノードとの反応性がない多孔性セラミック材料を含むことができる。 The number of setters 10 according to the present invention may be plural, and among them, the setter 10 located at the lowermost end of the cell firing device of the solid oxide fuel cell is made of the same material on one side and the other side. May be good. Since the setter 10c located at the lowermost end can support the laminate, it can contain a porous ceramic material that does not react with the anode.

サポート20は、複数のセッター10と結合されてセッター10を支持することができる。サポート10は、セッター10の対応する側面に位置することにより1対として提供されることができる。 The support 20 can be combined with a plurality of setters 10 to support the setter 10. The supports 10 can be provided as a pair by being located on the corresponding sides of the setter 10.

サポート20はスクリュー形態として提供され、よって、セッター10とネジ結合ができる。この時、セッター10は、サポート20と結合するために、対応する側面に結合部(図示せず)をさらに含むことができる。 The support 20 is provided in the form of a screw and thus can be screwed to the setter 10. At this time, the setter 10 may further include a coupling portion (not shown) on the corresponding side surface in order to couple with the support 20.

また、セッター10は、サポート20に応じて位置調節が可能であり、焼成工程に応じてセッター10間の高低を調節することができる。 Further, the position of the setter 10 can be adjusted according to the support 20, and the height between the setters 10 can be adjusted according to the firing step.

1次焼成工程においてバインダーバーンアウトにより積層体の曲がり現象が発生する場合、セッター10が積層体を押すのを防止するためにセッター10の位置を調整してセッター10間の高さを積層体の平坦度より高く形成することができる。この時、平坦度とは、焼成した後の積層体を平坦な底に置いた時、積層体が曲がって最も高い地点をセル厚さで分けた時に1に近い数値であるほどセルが平坦であると言える。 When the bending phenomenon of the laminated body occurs due to the binder burnout in the primary firing step, the position of the setter 10 is adjusted to prevent the setter 10 from pushing the laminated body, and the height between the setters 10 is adjusted. It can be formed higher than the flatness. At this time, the flatness means that when the laminated body after firing is placed on a flat bottom, the cell is flat as the value is closer to 1 when the laminated body is bent and the highest point is divided by the cell thickness. It can be said that there is.

2次焼成工程である平坦化工程においては、曲がり現象が発生した積層体を平坦にするために積層体に重さを与えて圧力を加えなければならない。したがって、セッター10が積層体と接触して圧力を加えるようにセッター10の位置を調節することができる。 In the flattening step, which is a secondary firing step, a weight must be applied to the laminated body and pressure must be applied in order to flatten the laminated body in which the bending phenomenon has occurred. Therefore, the position of the setter 10 can be adjusted so that the setter 10 comes into contact with the laminate and applies pressure.

さらに、セッター10およびサポート20のいずれか一つは、セッター10の位置を固定するための固定部(図示せず)をさらに含むことができる。 Further, any one of the setter 10 and the support 20 may further include a fixing portion (not shown) for fixing the position of the setter 10.

<固体酸化物燃料電池のセル焼成方法> <Sell firing method for solid oxide fuel cells>

図2(a)は1次焼成ステップ(仮焼結)時の本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置の断面図であり、図2(b)は2次焼成ステップ(本焼結)時の本発明の一実施形態による固体酸化物燃料電池のセル焼成用装置の断面図である。
本発明に係る固体酸化物燃料電池のセル焼成方法は1次焼成ステップ(S100)および2次焼成ステップ(S200)を含み、ここで、2次焼成ステップ(S200)は平坦化ステップである。
FIG. 2A is a sectional view of a cell firing apparatus for a solid oxide fuel cell according to an embodiment of the present invention at the time of the primary firing step (temporary sintering), and FIG. 2B is a secondary firing step. It is sectional drawing of the cell firing apparatus of the solid oxide fuel cell according to one Embodiment of this invention at the time of (this sintering).
The cell firing method for a solid oxide fuel cell according to the present invention includes a primary firing step (S100) and a secondary firing step (S200), where the secondary firing step (S200) is a flattening step.

1次焼成ステップ(S100)は、1対のサポート20に結合された複数のセッター10上に各々積層体を配置するステップ(S110)、および積層体から離隔するようにセッター10の高さを調節した後、積層体を焼成するステップ(S120)を含むことができる。 The primary firing step (S100) is a step (S110) in which the laminate is placed on each of the plurality of setters 10 coupled to the pair of supports 20, and the height of the setter 10 is adjusted so as to be separated from the laminate. After that, the step (S120) of firing the laminated body can be included.

1次焼成ステップ(S100)は、積層体内に存在する有機物が燃えるバインダーバーンアウト過程とバインダーバーンアウト過程の途中または以後に経るステップである。この時、1次焼成ステップは200℃~600℃の範囲で行われる。 The primary firing step (S100) is a step during or after the binder burnout process in which the organic matter existing in the laminated body burns and the binder burnout process. At this time, the primary firing step is performed in the range of 200 ° C to 600 ° C.

そして、1次焼成ステップにおいては、積層体を構成する構成それぞれの熱膨張係数の差によって曲がり現象が発生し、積層体が上面に向かって曲がるようになる。この時、積層体の上面とは、セッター10と接触しない面であって、後述の2次焼成時にセッター10と接触する面を意味する。 Then, in the primary firing step, a bending phenomenon occurs due to the difference in the coefficient of thermal expansion of each of the configurations constituting the laminated body, and the laminated body bends toward the upper surface. At this time, the upper surface of the laminated body means a surface that does not come into contact with the setter 10 and that comes into contact with the setter 10 during the secondary firing described later.

積層体が曲がる時に物理的な圧力を加えれば積層体に亀裂が発生しうるため、1次焼成ステップにおいて、セッター10間の高さは積層体の平坦度より高く形成されなければならない。 Since cracks may occur in the laminate if physical pressure is applied when the laminate bends, the height between the setters 10 must be formed higher than the flatness of the laminate in the primary firing step.

2次焼成ステップは、1次焼成により曲がった積層体を平坦にするステップであり、セッター10の高さを積層体の高さ以下に調節した後、温度を増加させて積層体を焼成するステップである。 The secondary firing step is a step of flattening the laminated body bent by the primary firing, and is a step of adjusting the height of the setter 10 to be equal to or lower than the height of the laminated body and then increasing the temperature to fire the laminated body. Is.

ここで、積層体の高さとは、1次焼成で変更されて曲線形態の積層体の最も高い地点と最も低い地点との差を意味する。セッター10間の高さを積層体の高さ以下に調節することによって、積層体が熱により降伏点が下がることに応じてセッター10が降伏点以上の一定の圧力を積層体に加えて積層体を平坦化することができる。 Here, the height of the laminated body means the difference between the highest point and the lowest point of the curved laminated body which is changed by the primary firing. By adjusting the height between the setters 10 to be equal to or lower than the height of the laminate, the setter 10 applies a constant pressure equal to or higher than the yield point to the laminate in response to the heat of the laminate lowering the yield point. Can be flattened.

この時、2次焼成ステップは500℃~1500℃範囲の温度区間で2次に積層体を焼成することができる。焼成温度が500℃以上の場合には、低い重さで平坦化が可能であるという効果があり、1500℃以下の場合には、高い重さで平坦化を行わなければならないが、より緻密な電解質を得ることができるという効果がある。 At this time, in the secondary firing step, the laminated body can be fired in a temperature section in the range of 500 ° C. to 1500 ° C. When the firing temperature is 500 ° C or higher, there is an effect that flattening is possible with a low weight, and when the firing temperature is 1500 ° C or lower, flattening must be performed with a high weight, but it is more precise. It has the effect of being able to obtain an electrolyte.

セッター10を介して積層体に圧力を加えるために、セッター10はサポート20に固定されなくてもよい。すなわち、セッター10がサポート20に固定されないことによって、セッター10は重力により積層体に圧力を加えるようになり、積層体が平坦化される過程中でも積層体から離隔せずに圧力を加えることができる。 The setter 10 does not have to be fixed to the support 20 in order to apply pressure to the laminate via the setter 10. That is, when the setter 10 is not fixed to the support 20, the setter 10 applies pressure to the laminated body by gravity, and the pressure can be applied without separating from the laminated body even during the process of flattening the laminated body. ..

この時、セッター10が一つの材料を含む場合、一つの実施形態において、セッター10が多孔性セラミック材料を含む場合、2次焼成ステップにおいて積層体のアノードとセッターの他面10bが接触してセッター10と積層体が反応するという問題が発生する。そして、一つの焼成装置により1次および2次焼成段階を経るようになり、二つの焼成過程の温度および圧力の差により生産品質が低下するという問題が発生しうる。 At this time, when the setter 10 contains one material, in one embodiment, when the setter 10 contains a porous ceramic material, the anode of the laminate and the other surface 10b of the setter come into contact with each other in the secondary firing step and the setter. There arises a problem that the laminated body reacts with 10. Then, one firing device goes through the primary and secondary firing steps, and there may be a problem that the production quality is deteriorated due to the difference in temperature and pressure between the two firing processes.

したがって、セッター10の一面および他面のうち積層体のアノードと接触する他面10bはアノードと反応しない多孔性セラミック材料を含み、一面10aは電解質と反応しない緻密なセラミック材料を含むことができる。 Therefore, one surface of the setter 10 and the other surface 10b in contact with the anode of the laminate may contain a porous ceramic material that does not react with the anode, and one surface 10a may contain a dense ceramic material that does not react with the electrolyte.

そして、本発明に係る固体酸化物燃料電池のセル焼成方法は、積層体の焼成後、電解質面上にカソード(cathode)がプリントされて固体酸化物燃料電池のセルが製造されるステップをさらに含むことができる。 The method for firing a cell of a solid oxide fuel cell according to the present invention further includes a step of manufacturing a cell of the solid oxide fuel cell by printing a cathode on the electrolyte surface after firing the laminate. be able to.

以上では本発明の好ましい実施形態を参照して説明したが、該技術分野の熟練した当業者であれば、下記の特許請求の範囲に記載された本発明の思想および領域から逸脱しない範囲内で本発明を多様に修正および変更できることを理解することができるであろう。 Although the above description has been made with reference to the preferred embodiments of the present invention, those skilled in the art will be skilled in the art without departing from the ideas and areas of the present invention described in the claims below. It will be appreciated that the present invention can be modified and modified in various ways.

Claims (8)

アノードおよび電解質を含む積層体を支持するように構成された複数のセッター、および
前記セッターと結合されて前記セッターを支持するように構成された1対のサポートを含み、
前記セッターは、両面の材質が互いに異なり、
前記サポートに応じて高低調節が可能であ
前記セッターの一面は、前記積層体の前記電解質と接触する面であって、前記積層体を支持し、
前記セッターの他面は、前記積層体の前記アノードと接触する面であって、多孔性セラミック材料を含み、
前記セッターの前記他面は、前記積層体を支持する反対面を含み、
最下端部に位置する前記セッターは両面が同じ材質からなる、
固体酸化物燃料電池のセル焼成用装置。
Includes a plurality of setters configured to support the laminate containing the anode and electrolyte , and a pair of supports coupled with the setter to support the setter.
The materials on both sides of the setter are different from each other.
The height can be adjusted according to the support.
One surface of the setter is a surface of the laminate that comes into contact with the electrolyte and supports the laminate.
The other surface of the setter is the surface of the laminate that comes into contact with the anode and comprises a porous ceramic material.
The other side of the setter includes an opposite side that supports the laminate.
The setter located at the lowermost end is made of the same material on both sides.
A device for firing cells of solid oxide fuel cells.
前記セッターは、
一面は電解質(electrolyte)との反応性がない材質からなり、
他面はアノード(anode)との反応性がない材質からなる、
請求項1に記載の固体酸化物燃料電池のセル焼成用装置。
The setter is
One side is made of a material that is not reactive with the electrolyte.
The other surface is made of a material that does not react with the anode.
The device for firing a cell of a solid oxide fuel cell according to claim 1.
前記セッターは、
一面は緻密なセラミック材料を含み、
他面は多孔性セラミック材料を含む、
請求項1または2に記載の固体酸化物燃料電池のセル焼成用装置。
The setter is
One side contains a dense ceramic material,
The other side contains a porous ceramic material,
The device for firing a cell of a solid oxide fuel cell according to claim 1 or 2 .
前記緻密なセラミック材料はアルミナセラミック材料を含み、
前記多孔性セラミック材料は多孔性アルミナセラミックおよび炭化珪素(SiC)セラミックのいずれか一つ以上を含む、
請求項に記載の固体酸化物燃料電池のセル焼成用装置。
The dense ceramic material includes an alumina ceramic material.
The porous ceramic material comprises one or more of a porous alumina ceramic and a silicon carbide (SiC) ceramic.
The device for firing a cell of a solid oxide fuel cell according to claim 3 .
請求項1から4のいずれか1項に記載の固体酸化物燃料電池のセル焼成用装置の1対のサポートに結合された複数のセッター上に各々積層体を配置するステップ、
前記積層体から離隔するように前記セッターの高さを調節した後、前記積層体を1次焼成するステップ、および
前記セッターの高さを前記積層体の高さ以下に調節した後、前記積層体を2次焼成するステップ
を含む、
固体酸化物燃料電池のセル焼成方法。
A step of arranging each laminate on a plurality of setters coupled to a pair of supports of the cell firing device of the solid oxide fuel cell according to any one of claims 1 to 4 .
After adjusting the height of the setter so as to be separated from the laminate, the step of primary firing the laminate, and after adjusting the height of the setter to be equal to or lower than the height of the laminate, the laminate Including the step of secondary firing,
A method for firing a cell of a solid oxide fuel cell.
前記1次焼成するステップにおいては、
前記積層体が上面に向かって曲がる、
請求項に記載の固体酸化物燃料電池のセル焼成方法。
In the step of primary firing,
The laminate bends toward the top surface,
The method for firing a cell of a solid oxide fuel cell according to claim 5 .
前記2次焼成するステップにおいては、
前記セッターが前記積層体を加圧して前記固体酸化物燃料電池のセルが平坦な形態を有する、
請求項またはに記載の固体酸化物燃料電池のセル焼成方法。
In the step of secondary firing,
The setter pressurizes the laminate so that the cell of the solid oxide fuel cell has a flat shape.
The method for firing a cell of a solid oxide fuel cell according to claim 5 or 6 .
前記2次焼成するステップにおいては、
前記セッターを前記サポートに固定しない、
請求項からのいずれか1項に記載の固体酸化物燃料電池のセル焼成方法。
In the step of secondary firing,
Do not fix the setter to the support,
The cell firing method for a solid oxide fuel cell according to any one of claims 5 to 7 .
JP2020543319A 2018-08-22 2019-08-20 Equipment and firing method for cell firing of solid oxide fuel cells Active JP7069509B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2018-0097787 2018-08-22
KR1020180097787A KR102610471B1 (en) 2018-08-22 2018-08-22 Firing apparatus for solid oxide fuel cell and method for manufacturing the same
PCT/KR2019/010545 WO2020040515A1 (en) 2018-08-22 2019-08-20 Apparatus and method for plasticizing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2021515354A JP2021515354A (en) 2021-06-17
JP7069509B2 true JP7069509B2 (en) 2022-05-18

Family

ID=69593225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543319A Active JP7069509B2 (en) 2018-08-22 2019-08-20 Equipment and firing method for cell firing of solid oxide fuel cells

Country Status (6)

Country Link
US (1) US11946695B2 (en)
EP (1) EP3716379B1 (en)
JP (1) JP7069509B2 (en)
KR (1) KR102610471B1 (en)
CN (1) CN111837271B (en)
WO (1) WO2020040515A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4308868A1 (en) * 2021-03-16 2024-01-24 DSB Technologies, LLC Racking system for use in continuous sintering furnaces
KR102563609B1 (en) * 2021-06-08 2023-08-04 주식회사 와이컴 Methods for manufacturing electrolyte substrate and solid oxide fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053147A (en) 2002-07-22 2004-02-19 Imae Kogyo Kk Sintering setter
JP2007001786A (en) 2005-06-21 2007-01-11 Nissan Motor Co Ltd Laminate baking method and laminate baking tool
US20090068373A1 (en) 2007-09-11 2009-03-12 Maw-Chwain Lee Novel synergistic process and recipe for fabrication of a high integrity membrane electrode assembly of solid oxide fuel cell

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755570A (en) * 1995-05-26 1998-05-26 International Business Machines Corporation Apparatus for in situ environment sensitive sealing and/or product controlling
JP2980029B2 (en) 1996-07-12 1999-11-22 日本電気株式会社 Method for firing ceramic molded body
JP2001019562A (en) * 1999-06-29 2001-01-23 Ngk Insulators Ltd Sintered flat plate and its burning method
JP2003082403A (en) * 2001-09-11 2003-03-19 Ngk Insulators Ltd Bottom board for firing
JP2004075421A (en) * 2002-08-12 2004-03-11 Ngk Insulators Ltd Setter for firing ceramic electronic component
GB0316504D0 (en) 2003-07-15 2003-08-20 Rolls Royce Plc A solid oxide fuel cell
JP4377856B2 (en) 2005-06-23 2009-12-02 株式会社日本触媒 Method for manufacturing flat fuel cell
JP2009245896A (en) 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Spacer for manufacturing solid oxide fuel cell, manufacturing method of member for solid oxide fuel cell using this, and manufacturing method of solid oxide fuel cell
US8894920B2 (en) 2008-10-31 2014-11-25 Corning Incorporated Methods and apparatus for casting ceramic sheets
JP5284878B2 (en) 2009-06-05 2013-09-11 日本ライフライン株式会社 Guide wire
KR101595541B1 (en) * 2009-08-03 2016-02-19 주식회사 포스코 Setter for manufacturing ceramic and manufacturing method thereof
KR101070148B1 (en) * 2009-11-06 2011-10-05 삼성전기주식회사 Setter for firing multi-layer ceramic substrate and manufacturing method of multi-layer ceramic substrate using the same
GB2475239A (en) * 2009-11-10 2011-05-18 Rolls Royce Fuel Cell Systems Ltd A continuous flow furnace for heat treating components
TWI528013B (en) * 2010-07-26 2016-04-01 Ngk Insulators Ltd Burn the use of the framework
KR20120046562A (en) * 2010-11-02 2012-05-10 삼성전기주식회사 A device for sintering a ceramic board and a method of sintering a ceramic board by using the same
KR101835891B1 (en) * 2012-10-10 2018-03-07 포스코에너지 주식회사 Heat treatment method for solid oxide fuel cell
JPWO2015182108A1 (en) 2014-05-26 2017-04-20 凸版印刷株式会社 Anti-counterfeit structure and anti-counterfeit article
KR101842319B1 (en) * 2014-12-05 2018-05-14 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053147A (en) 2002-07-22 2004-02-19 Imae Kogyo Kk Sintering setter
JP2007001786A (en) 2005-06-21 2007-01-11 Nissan Motor Co Ltd Laminate baking method and laminate baking tool
US20090068373A1 (en) 2007-09-11 2009-03-12 Maw-Chwain Lee Novel synergistic process and recipe for fabrication of a high integrity membrane electrode assembly of solid oxide fuel cell

Also Published As

Publication number Publication date
WO2020040515A1 (en) 2020-02-27
CN111837271A (en) 2020-10-27
KR102610471B1 (en) 2023-12-05
EP3716379A4 (en) 2021-03-10
EP3716379A1 (en) 2020-09-30
JP2021515354A (en) 2021-06-17
US11946695B2 (en) 2024-04-02
US20210018268A1 (en) 2021-01-21
EP3716379B1 (en) 2022-04-20
KR20200022093A (en) 2020-03-03
CN111837271B (en) 2022-05-06

Similar Documents

Publication Publication Date Title
JP4794178B2 (en) Solid electrolyte fuel cell
JP7069509B2 (en) Equipment and firing method for cell firing of solid oxide fuel cells
JP2004063355A (en) Fuel cell
JP2009217959A (en) Flat plate type solid oxide fuel cell stack
KR101842319B1 (en) Solid oxide fuel cell and method for manufacturing the same
JP2004281094A (en) Cell stack and fuel cell
JP5284876B2 (en) Method for producing flat solid oxide fuel cell
JP2007194170A (en) Flat solid oxide fuel cell and method of manufacturing same
KR101353636B1 (en) Anode bearing layer of solid oxide fuel cell and method for manufacturing the same
KR102262654B1 (en) Fuel-cell apparatus
JP3774445B2 (en) Fuel cell container and fuel cell
JP4389492B2 (en) Fuel cell separator and solid oxide fuel cell
JP5205700B2 (en) Ceramic substrate firing apparatus and ceramic substrate firing method
JP5362979B2 (en) Method for producing solid oxide fuel cell
KR101940712B1 (en) Solid oxide fuel cell and method for manufacturing the same
WO2017195214A1 (en) Thermally integrated hotbox with passive device
JP2012089443A (en) Manufacturing method of fuel cell
JP2007026929A (en) Fuel cell
JP2003059502A (en) Manufacturing method of fuel cell separator
KR101217502B1 (en) Coating methdo of internal reforming catalyst for molten carbonate fuel cell
JPH0684540A (en) Method for operating solid electrolyte type fuel cell
JP2007180023A (en) Solid-oxide fuel cell power generator
JP2007280908A (en) Reaction apparatus
JP2011198546A (en) Flat-plate solid oxide fuel cell module and method for operating the same
KR20160068205A (en) Solid oxide fuel cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R150 Certificate of patent or registration of utility model

Ref document number: 7069509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150