JPH02199077A - Microporous material - Google Patents

Microporous material

Info

Publication number
JPH02199077A
JPH02199077A JP1860689A JP1860689A JPH02199077A JP H02199077 A JPH02199077 A JP H02199077A JP 1860689 A JP1860689 A JP 1860689A JP 1860689 A JP1860689 A JP 1860689A JP H02199077 A JPH02199077 A JP H02199077A
Authority
JP
Japan
Prior art keywords
fiber
resin
heat insulating
microporous material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1860689A
Other languages
Japanese (ja)
Inventor
Takashi Kishimoto
隆 岸本
Shozo Hirao
平尾 正三
Masaru Yokoyama
勝 横山
Koichi Takahama
孝一 高濱
Hiroshi Yokogawa
弘 横川
Atsushi Makino
牧野 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1860689A priority Critical patent/JPH02199077A/en
Publication of JPH02199077A publication Critical patent/JPH02199077A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain microporous material having sufficient mechanical strength and excellent handling properties with keeping excellent heat insulating properties by dispersing fiber of thermoplastic resin into microporous material and mutually fusing fiber with fiber and fiber with ultrafine particle. CONSTITUTION:In a microporous material obtained by molding of ultrafine granular powder, fiber of thermoplastic resin is dispersed and fiber with fiber, and fiber with ultrafine particle are mutually fused to form a microporous material. In said microporous material, volume of the resin component is small in comparison with ultrafine particles of the heat insulating material and almost constructing microporous material as aggregate of ultrafine particle, thus heat insulating property is extremely high. Besides, said resin fiber is bonded by fusion and area of bonded part (adhered area) is extremely, thus increase of heat conduction in solid is small as the resin is a material having relatively small thermal conductivity. Therefore, traditional properties are able to be nearly kept with regard to heat insulating properties and area of the bonded part (adhered area) is extremely small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、断熱材などに用いられる微細多孔体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a microporous material used for heat insulating materials and the like.

〔従来の技術〕[Conventional technology]

従来の微粒子集合体(微粒子成形体)からなる微細多孔
体は、極めて低い熱伝導率を有する、高性能な断熱材で
あるが、その強度が弱いために、取扱性(加工性、大サ
イズ化)に制限があり、実用上に雌があった。たとえば
、成形体の強度を増加するために、セラミック繊維など
−の無機繊維を混合して、その繊維のからみを利用した
り、あるいは、袋に微粒子からなる断熱材の粉末を充填
してから成形するという、包体化による方法がとられて
いるが、いずれも取扱性は不十分なものであった。
Conventional microporous bodies made of fine particle aggregates (fine particle compacts) are high-performance heat insulating materials with extremely low thermal conductivity, but their weak strength makes them difficult to handle (processability, large size). ) was limited, and there was a female in practical use. For example, in order to increase the strength of the molded product, inorganic fibers such as ceramic fibers are mixed and the entanglement of the fibers is utilized, or a bag is filled with insulating material powder made of fine particles and then molded. However, the ease of handling has not been satisfactory in either method.

以上、特公昭51−40088号公報、特開昭57−1
73689号公報、特開昭58−45154号公報およ
び特開昭60−33479号公報参照。
Above, Japanese Patent Publication No. 51-40088, Japanese Patent Application Publication No. 57-1
See JP-A No. 73689, JP-A-58-45154, and JP-A-60-33479.

一方、微細多孔体の強度を増加させるために、一般のバ
インダー、たとえば、低融点ガラスや低融点無機化合物
などを用いる方法が考えられた。
On the other hand, in order to increase the strength of the microporous material, a method using a general binder such as a low melting point glass or a low melting point inorganic compound has been considered.

この方法によれば、バインダーを溶融させて微粒子の凝
集体を結合して同バインダーを固化させるので、微細多
孔体の強度や取扱性が良くなる。
According to this method, the binder is melted and aggregates of fine particles are combined to solidify the binder, so that the strength and handleability of the microporous body are improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記バンイダーを用いると、微粒子の凝集体が
バインダーで結合されてしまうため、固体を通しての伝
導が太き(なり、また、微細な空隙を埋めてしまう結果
、熱伝導率が高(なり、断熱材としての性能を著しく低
下させていた。
However, when the binder is used, aggregates of fine particles are bound together by the binder, so conduction through the solid becomes thick, and as a result of filling minute voids, the thermal conductivity becomes high. Its performance as a heat insulator was significantly reduced.

この発明は、上記の事情に鑑み、微粒子の集合体の有す
る、優れた断熱性を保持したまま、機械的強度が十分に
あって取り扱い易い微細多孔体を提供することを課題と
する。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a microporous material that has sufficient mechanical strength and is easy to handle while maintaining the excellent heat insulating properties of an aggregate of microparticles.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、請求項記載の発明にかかる微
細多孔体は、微粒子粉末が成形されてなるものにおいて
、熱可塑性樹脂からなる繊維(以下、「樹脂繊維」と言
う)が分散され、樹脂繊維同士、および、樹脂繊維と前
記微粒子とが互いに融着されていることを特徴とする。
In order to solve the above problems, the microporous body according to the claimed invention is formed by molding fine particle powder, in which fibers made of thermoplastic resin (hereinafter referred to as "resin fibers") are dispersed, and resin fibers are dispersed therein. It is characterized in that the fibers and the resin fibers and the fine particles are fused to each other.

〔作   用〕[For production]

この発明の微細多孔体は、断熱材の微粒子の集合体の部
分と、融着して構成された樹脂繊維の骨組み部分からな
っている。樹脂分は断熱材の微粒子に比べて容量が小さ
く、はとんどが微粒子の集合体である微細多孔体となっ
ているため、断熱性は極めて高い。また、樹脂繊維を融
着により結合させるため、結合部分の面積(接着面積)
は非常に小さくなり、樹脂自体も、熱伝導率が比較的小
さい材料であることから、固体伝導の増加は小さい。し
たがって断熱性能は、従来の性能をほぼ保持できる。
The microporous body of the present invention is composed of an aggregate of fine particles of a heat insulating material and a framework of resin fibers that are fused together. The resin component has a smaller capacity than the fine particles of the heat insulating material, and is mostly a microporous body made up of aggregates of fine particles, so it has extremely high heat insulation properties. In addition, since the resin fibers are bonded by fusion, the area of the bonded part (adhesion area)
becomes very small, and the resin itself is a material with relatively low thermal conductivity, so the increase in solid conduction is small. Therefore, the heat insulation performance can maintain almost the same as the conventional performance.

強度については、結合力の小さい微粒子集合体を、樹脂
繊維の骨組みが取り囲むため、機械的強度が増加し、取
扱性の良好なものとなる。
As for strength, since the resin fiber framework surrounds the fine particle aggregates with low bonding strength, the mechanical strength increases and the handleability becomes good.

〔実 施 例〕〔Example〕

以下、この発明にかかる微細多孔体を、その実施例をあ
られす図面を参照しながら詳しく説明する。
Hereinafter, examples of the microporous body according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は、この発明の微細多孔体の一実施例をあられす
。第1図18)は微細多孔体全体をあられす模式図であ
り、第1図(b)は樹脂固体として樹脂繊維を用いた場
合の拡大図であり、第2図は、樹脂固体として樹脂繊維
および樹脂微粒子を併用した別の一実施例の拡大図であ
る。
FIG. 1 shows an embodiment of the microporous material of the present invention. Fig. 1 (18) is a schematic diagram of the entire microporous material, Fig. 1 (b) is an enlarged view of the case where resin fibers are used as the resin solid, and Fig. 2 is an enlarged view of the case where resin fibers are used as the resin solid. FIG. 3 is an enlarged view of another example in which fine resin particles and resin particles are used together.

これらの図にみるように、微細多孔体1は、多数の微粒
子2・・・によって構成される空隙Sが、たとえば、1
〜60nmという非常に小さい空隙となっており、また
微粒子2・・・は、凝集力(ファンデアワールスカ)で
IJiSしている微細多孔体となっている。
As shown in these figures, in the microporous body 1, the voids S constituted by a large number of fine particles 2 are, for example, 1
There are very small voids of ~60 nm, and the fine particles 2 are microporous bodies that undergo IJiS due to cohesive force (Van der Waalska).

樹脂部分は、全体に均一に分散しており、樹脂繊維3同
士が一部接触している部分M・・・、あるいは樹脂繊維
3と断熱材の微粒子2とが一部接触している部分M・・
・は、融着して互いに結合している第2図に示した実施
例では、樹脂繊維3同士が、樹脂繊維3と断熱材の微粒
子2とが、樹脂繊維3と樹脂微粒子4とが、断熱材の微
粒子2と樹脂微粒子4とが、それぞれ、一部接触してい
る部分M・・・で融着して互いに結合している。
The resin portion is uniformly dispersed throughout, and there is a portion M where the resin fibers 3 are partially in contact with each other, or a portion M where the resin fibers 3 and the fine particles 2 of the heat insulating material are partially in contact with each other.・・・
In the embodiment shown in FIG. 2 in which the resin fibers 3 are bonded to each other, the resin fibers 3 and the heat insulating material fine particles 2 are bonded together, and the resin fibers 3 and the resin fine particles 4 are bonded to each other. The fine particles 2 of the heat insulating material and the fine resin particles 4 are fused and bonded to each other at portions M where they are partially in contact with each other.

この発明の微細多孔体は、たとえば、以下のようにして
作られているが、製法を下記のものに限定するものでは
ない。断熱材料の微粒子等をあらかじめ混合して、混合
粉体としておき、これに樹脂固体(樹脂繊維、または、
樹脂繊維および樹脂微粒子)を混合して、均一に分散さ
せる。次に金型に、この混合物を充填し、圧縮成形する
。このとき断熱材の微粒子は十分に小さい空隙(好まし
くは1〜60na+)をもった微細多孔体に成形される
ことになり、樹脂分は、多孔体の一部に均一に分散した
状態となっている。次に1.この成形体を圧縮したまま
、樹脂をその融点以上の温度に加熱して融着させ、その
まま融点以下の温度まで冷却して樹脂を硬化(固化)さ
せる。冷却後、金型から取り出して、成形された微細多
孔体ができる。
The microporous body of the present invention is manufactured, for example, as follows, but the manufacturing method is not limited to the following method. Fine particles of heat insulating material are mixed in advance to form a mixed powder, and resin solids (resin fibers or
(resin fibers and resin particles) are mixed and dispersed uniformly. A mold is then filled with this mixture and compression molded. At this time, the fine particles of the heat insulating material are formed into a microporous body with sufficiently small voids (preferably 1 to 60 na+), and the resin content is uniformly dispersed in a part of the porous body. There is. Next 1. While this molded body is compressed, the resin is heated to a temperature above its melting point to fuse it, and then cooled to a temperature below its melting point to harden (solidify) the resin. After cooling, it is removed from the mold to form a molded microporous body.

この発明にかかる微細多孔体は、機械的強度が大きくて
、切断等の加工も可能なことから取扱性に優れたもので
あり、しかも、断熱性が十分に保持される。このため、
この微細多孔体は、断熱材(断熱体)とすることができ
る。しかし、この発明の微細多孔体の用途は、断熱材に
限らない。
The microporous material according to the present invention has high mechanical strength and can be processed by cutting, etc., so it is easy to handle, and it also maintains sufficient heat insulation properties. For this reason,
This microporous body can be used as a heat insulating material (insulating body). However, the use of the microporous material of the present invention is not limited to heat insulating materials.

前記断熱材料の微粒子は、超微粒子A(シリカ、表面処
理粒子など)、微粒子B (TiOx等、輻射防止効果
のある粒子)であり、この他に、無機繊維(シリカアル
ミナファイバー等)を混合してもよい。
The fine particles of the heat insulating material are ultrafine particles A (silica, surface treated particles, etc.) and fine particles B (particles with a radiation prevention effect such as TiOx), and in addition to these, inorganic fibers (silica alumina fibers, etc.) are mixed. You can.

この発明では、微粒子として、下記の超微粒子Aおよび
微粒子Bのうち、少なくとも超微粒子Aを用い、必要に
応じて、下記の微粒子Bおよび/または無機繊維を超微
粒千人とともに用いるのがよい。これは、微粒子Bおよ
び/または無機繊維だけを断熱材料として用いると構成
される空隙が大きくなり、十分な断熱効果が得られない
が、超微粒子Aを用いると構成される空隙が小さくなり
(たとえば、1〜60nm)、高性能な断熱材を得るこ
とができるからである。
In this invention, as the fine particles, it is preferable to use at least ultrafine particles A out of the following ultrafine particles A and fine particles B, and, if necessary, to use the following fine particles B and/or inorganic fibers together with the ultrafine particles B. This is because if only fine particles B and/or inorganic fibers are used as a heat insulating material, the voids formed will become large and a sufficient heat insulating effect cannot be obtained, but when ultrafine particles A are used, the voids formed will be small (for example, , 1 to 60 nm), and a high-performance heat insulating material can be obtained.

超微粒子Aと、微粒子Bおよび/または無ta繊維とを
併用する場合、これらの使用割合は、使用温度、取り扱
い状態などにより異なるが、たとえば、超微粒子Aを3
0〜100重量%、微粒子Bを0〜70重量%、無機繊
維を5〜20重量%とするのがよい、無機繊維について
は、この範囲を外れると、強度、断熱性において問題が
生じることがある゛。
When ultrafine particles A are used together with fine particles B and/or ta-free fibers, the ratio of these uses varies depending on the usage temperature, handling conditions, etc., but for example, if ultrafine particles A are used in
It is preferable that the amount of fine particles B be 0 to 100% by weight, the amount of fine particles B be 0 to 70% by weight, and the amount of inorganic fiber be 5 to 20% by weight.For inorganic fibers, if the amount is out of this range, problems may occur in strength and heat insulation. There is.

超微粒子Aとしては、乾式製法または湿式製法による超
微粒子シリカが、1例として挙げられる、超微粒子シリ
カは、必要ならば凝集防止処理して用いられる。超微粒
子Aの粒径としては、1〜20n−程度が好ましく、1
0nm以下のもの、3〜8n涌のものがより好ましい。
An example of the ultrafine particles A is ultrafine silica produced by a dry manufacturing method or a wet manufacturing method. The ultrafine silica particles may be treated to prevent agglomeration if necessary. The particle size of the ultrafine particles A is preferably about 1 to 20 n-
Those with a diameter of 0 nm or less, and those with a diameter of 3 to 8 nanometers are more preferable.

前記超微粒子シリカ粉末を用いる場合、その粒度を選ぶ
ことが好ましく、その好ましい粒度としては、未処理の
超微粒子シリカ粉末の比表面積が400rrf/g以上
、または、粒径60Å以下であることである。
When using the ultrafine silica powder, it is preferable to select its particle size, and the preferable particle size is that the specific surface area of the untreated ultrafine silica powder is 400 rrf/g or more, or the particle size is 60 Å or less. .

前記W簗防止処理に用いる表面処理剤としては、粒子表
面のシラノール基のOHに結合して水素結合の生起を防
げるようにするもの、粒子同士に反発性をもたせ直接的
に粒子の凝集を防止するものなどが挙げられる。その例
としては、有機シラン化合物、たとえば、トリメチルメ
トキシシラン、ジメチルジェトキシシラン、メチルトリ
メトキシシラン等のアルコキシシラン化合物、ジメチル
ジクロロシラン、トリメチルクロロシラン、トリフェニ
ルクロロシラン等のクロロシラン化合物、ヘキサメチル
ジシラザン、ジメチルトリメチルシリルアミン等のシラ
ザン化合物が挙げられるが、これらに限定されるもので
はない。
The surface treatment agent used in the above-mentioned W sludge prevention treatment includes one that binds to the OH of the silanol group on the particle surface to prevent the generation of hydrogen bonds, and one that provides repulsion between particles and directly prevents particle aggregation. Examples include things to do. Examples include organic silane compounds such as alkoxysilane compounds such as trimethylmethoxysilane, dimethyljethoxysilane, and methyltrimethoxysilane; chlorosilane compounds such as dimethyldichlorosilane, trimethylchlorosilane, and triphenylchlorosilane; hexamethyldisilazane; Examples include, but are not limited to, silazane compounds such as dimethyltrimethylsilylamine.

なお、表面処理剤による処理に溶剤を用いる場合の溶剤
としては、ベンゼン、水、トルエン等が挙げられるが、
超微粒子が分散し易いものであれば、これらに限定され
るものではない。
In addition, when using a solvent for treatment with a surface treatment agent, examples of the solvent include benzene, water, toluene, etc.
The ultrafine particles are not limited to these as long as they can be easily dispersed.

表面処理剤によって凝集防止処理するに際しては、その
処理の程度を制御してもよい。ここに、処理の程度とは
、超微粒子の表面に結合している疎水基(表面処理剤に
由来する基)の量の程度を言い、処理粒子中の炭素含有
量(重量%。以下「C値」と言う)と、表面処理粒子の
疎水性の度合(以下「M値」と言う)とで評価できる。
When performing agglomeration prevention treatment using a surface treatment agent, the degree of the treatment may be controlled. Here, the degree of treatment refers to the amount of hydrophobic groups (groups derived from the surface treatment agent) bonded to the surface of the ultrafine particles, and refers to the carbon content (wt%) in the treated particles. (hereinafter referred to as "M value") and the degree of hydrophobicity of the surface-treated particles (hereinafter referred to as "M value").

前記M値は、水50ccに処理品0.2gを入れ、M 
e OHを滴下して、処理品が全て水に濡れた時の消費
MeOHの容量%で表し、下式で求めることができる。
The above M value is determined by adding 0.2 g of the treated product to 50 cc of water and
It is expressed as the volume % of MeOH consumed when all treated products are wetted with water by dropping e OH, and can be determined by the following formula.

表面処理の程度は、予め想定したC値とM値に合わせた
処理条件により変えることができる。なお、C値とM値
は、処理の系(超微粒子と表面処理剤の組み合わせ)に
より異なる。このように表面処理の程度を制御すること
により、過剰な処理を施すことな(、弱い処理(C値、
M値小)で有効な凝集防止処理を効果的に達成すること
ができるようになる。
The degree of surface treatment can be changed depending on the treatment conditions according to the C value and M value assumed in advance. Note that the C value and M value differ depending on the treatment system (combination of ultrafine particles and surface treatment agent). By controlling the degree of surface treatment in this way, it is possible to avoid excessive treatment (, weak treatment (C value,
It becomes possible to effectively achieve effective agglomeration prevention treatment with a small M value).

この発明においては、超微粒子Aは、これ単独で用いる
ほか、これより一次粒子径の大きい他の微粒子Bの1種
以上と混合して用いることもありこのような混合体を成
形することにより、成形性の向上、製造コストの低廉化
などを図ることができる。
In this invention, the ultrafine particles A are used alone or may be mixed with one or more types of other fine particles B having a larger primary particle size than the ultrafine particles A. By molding such a mixture, It is possible to improve moldability and reduce manufacturing costs.

超微粒子Aとこれよりも一次粒子径の大きい他の微粒子
Bとを混合して成形すると、粒子径の大きな微粒子Bの
間の大きな空隙に、粒径の小さな超微粒子Aが充填され
ており、そのため、微細多孔体内の空隙は、実質的には
、超微粒子A間の空隙とみることができる。このため、
静止空気の熱伝導率の影響を受けない微細な空隙を形成
することが可能となる。このような構造では、粒径の大
きな微粒子Bが含まれることにより、成形性が向上する
。これは、粒径の大きな微粒子Bと粒径の小さな超微粒
子Aとが互いに成形圧を分散し吸収し合う等して、成形
圧を均一に保つ働きをするからであると考えられる。
When ultrafine particles A and other fine particles B having a larger primary particle size are mixed and molded, the large voids between the fine particles B having a larger particle size are filled with the ultrafine particles A having a smaller particle size. Therefore, the voids within the microporous body can be essentially considered to be voids between the ultrafine particles A. For this reason,
It becomes possible to form fine voids that are not affected by the thermal conductivity of still air. In such a structure, moldability is improved by including fine particles B having a large particle size. This is thought to be because the fine particles B, which have a large particle size, and the ultrafine particles A, which have a small particle size, disperse and absorb the molding pressure with each other, thereby maintaining the molding pressure uniformly.

超微粒子Aよりも一次粒子径の大きな微粒子Bとしては
、パーライトやシラスバルーンの微粉砕物、スス、コー
ジェライト、粘土等の無機層状化合物、ケイソウ土、ケ
イ酸カルシウム、カーボンブラック、SiC,、Ti0
g 、ZrO,Crow、F e s O4、Cu S
 % Cu OlM n Ot 、S iOx 、A1
10x 、Coo、LitOlCaO等の微粒子が挙げ
られる。これらは、いずれも、熱放射率が大きいもので
、波長3μ以上の赤外領域での熱放射率が0.8以上の
ものが好ましい。このように、熱放射率の大きいものが
好ましい理由は、つぎのとおりである。すなわち、輻射
による熱伝達は、超微粒子Aによっては防ぎきれない(
透過する)、シかし、上記熱放射率の良い微粒子Bは、
輻射エネルギーを一旦熱に変換し透過させない働きをす
る。そして、輻射エネルギーが、このようにして、−旦
熱エネルギーに変換されてしまえば、熱伝導による熱伝
達については、この発明にかかる微細多孔体は、断熱性
にすぐれているので、容易に目的を達成できるのである
。もっとも、この発明では、−次粒子径の大きな微粒子
Bの種類は、上記熱放射率の大きなものに限定されるも
のでなく、粒径が5〜10000n−程度の微粒子であ
れば、上記以外のものであっても良いのである。なお、
超微粒子Aと微粒子Bとの粒径の好ましい範囲が一部重
複しているが、超微粒子Aと微粒子Bとを併用する場合
には、超微粒子Aよりも粒径の大きなものを用いるよう
に微粒子Bを適宜選択する。
Fine particles B having a larger primary particle diameter than ultrafine particles A include finely pulverized pearlite and shirasu balloons, soot, cordierite, inorganic layered compounds such as clay, diatomaceous earth, calcium silicate, carbon black, SiC, Ti0
g, ZrO, Crow, FesO4, CuS
%CuOIMnOt,SiOx,A1
Examples include fine particles such as 10x, Coo, and LitOlCaO. All of these materials have a high thermal emissivity, and preferably have a thermal emissivity of 0.8 or more in the infrared region with a wavelength of 3 μ or more. The reason why a material with a large thermal emissivity is preferable is as follows. In other words, heat transfer due to radiation cannot be prevented by ultrafine particles A (
However, the fine particles B with good thermal emissivity are
It works by converting radiant energy into heat and preventing it from passing through. Once the radiant energy is converted into thermal energy in this way, the microporous material according to the present invention has excellent heat insulation properties, so that it can easily be used for the purpose of heat transfer by conduction. can be achieved. However, in this invention, the type of fine particles B with a large -order particle size is not limited to those with a large thermal emissivity as described above, and any fine particles with a particle size of about 5 to 10,000 n- may be used. It may even be something. In addition,
Although the preferable particle size ranges of ultrafine particles A and fine particles B partially overlap, when ultrafine particles A and fine particles B are used together, it is recommended to use particles with a larger particle size than ultrafine particles A. Fine particles B are selected as appropriate.

この発明では、微細多孔体の成形物の取扱性をより向上
させるために、前記微粒子粉末に無機繊維を混合して成
形してもよい。この場合、無機繊維としては、たとえば
、セラミック繊維、ガラス繊維、ロックウール繊維、ア
スベスト繊維、炭素繊維、アラミド繊維等が挙げられる
。その添加量は、断熱材料の微粒子重量に対して20%
以下が好ましい。無機繊維の繊維径は、30n以下が好
ましく、5μ以下がより好ましい。繊維長は、30mが
好ましく、201m以下がより好ましいが、50酊程度
でも十分用いることができる。
In this invention, in order to further improve the handling properties of the microporous molded product, inorganic fibers may be mixed with the fine particle powder and molded. In this case, examples of the inorganic fibers include ceramic fibers, glass fibers, rock wool fibers, asbestos fibers, carbon fibers, and aramid fibers. The amount added is 20% of the weight of the fine particles of the insulation material.
The following are preferred. The fiber diameter of the inorganic fiber is preferably 30n or less, more preferably 5μ or less. The fiber length is preferably 30 m, more preferably 201 m or less, but a fiber length of about 50 m can also be used.

微細多孔体の成形方法は、この発明では特に限定されず
、通常、このような多孔体を成形するために使用されて
いる方法、たとえば、加圧成形法をそのまま用いること
もできる。
The method for molding the microporous body is not particularly limited in the present invention, and a method that is normally used for molding such a porous body, such as a pressure molding method, may be used as is.

なお、超微粒子Aとして、たとえば、乾式製法または湿
式製法超微粒子シリカを用い、溶剤に分散させて凝集防
止処理する場合において、表面処理剤としてシラノール
基と反応する前記例示のシラン化合物を用いるようにす
れば、凝集防止と同時に粒子表面に撥水性を付与すこと
ができ、空気中の水の吸着による経時変化のほとんどな
い断熱性に優れた微細多孔体を製造することができる。
In addition, when the ultrafine particles A are, for example, ultrafine particle silica produced by a dry process or a wet process, and are dispersed in a solvent to perform an agglomeration prevention treatment, the above-mentioned silane compound that reacts with silanol groups may be used as a surface treatment agent. By doing so, it is possible to prevent agglomeration and at the same time impart water repellency to the particle surface, and it is possible to produce a microporous body with excellent heat insulation properties that hardly changes over time due to adsorption of water in the air.

前記樹脂繊維3、樹脂微粒子4は、それぞれ、加熱によ
って融着可能な熱可塑性の樹脂からなる、熱可塑性の樹
脂としては、たとえば、ポリエチレン、ポリプロピレン
、熱可塑性ポリエステル、ポリアクリレート、ポリ塩化
ビニル、ポリアクリロニトリル系合成樹脂、合成ポリア
ミドおよびそれらの複合物等が用いられる。熱可塑性の
樹脂の形状は、上記のように、繊維状か1.微粒子であ
る。この発明では、樹脂繊維および樹脂微粒子のうちの
少なくとも樹脂繊維を必ず用いるようにする。これは、
繊維が添加されることにより、繊維のからみができるた
め、粉末単独の場合に比べて少量で強度を向上させるこ
とができるからである。
The resin fibers 3 and the resin particles 4 are each made of a thermoplastic resin that can be fused by heating. Examples of the thermoplastic resin include polyethylene, polypropylene, thermoplastic polyester, polyacrylate, polyvinyl chloride, and polyvinyl chloride. Acrylonitrile synthetic resins, synthetic polyamides, composites thereof, etc. are used. As mentioned above, the shape of the thermoplastic resin is fibrous or 1. It is a fine particle. In this invention, at least resin fibers out of resin fibers and resin fine particles are always used. this is,
This is because the addition of fibers creates intertwining of the fibers, so the strength can be improved with a small amount compared to the case of powder alone.

前記樹脂繊維は、直径】O〜50μ、長さ1〜5龍程度
が好ましく、ストレートな繊維がよい。繊維が長い場合
や、クリンプ(凹凸)のある繊維の場合には、からんで
しまって、均一に分散できないことがあるからである。
The resin fiber preferably has a diameter of about 0 to 50 μm and a length of about 1 to 5 μm, and is preferably a straight fiber. This is because if the fibers are long or have crimps (irregularities), they may become tangled and cannot be uniformly dispersed.

また、前記樹脂微粒子は、IOpm以下の粒径がよ(、
より好ましくは、1p■以下がよい。
Further, the resin fine particles have a particle size of IOpm or less (,
More preferably, it is 1 p or less.

混合方法については、断熱材料の混合の場合、高速ミキ
サーで混合するが、樹脂との混合の場合には、空気など
の気体を十分に含ませて、粉体を流動状態にして混合す
るのがよい。たとえば流動層を用いた混合がよい。急激
な混合をした場合には、部分的に発熱することによって
、樹脂部分が一部融着して、均一に分散しにくくなるが
らである。
Regarding the mixing method, when mixing heat insulating materials, it is mixed using a high-speed mixer, but when mixing with resin, it is best to incorporate enough gas such as air to make the powder fluid and mix. good. For example, mixing using a fluidized bed is preferable. In the case of rapid mixing, heat is generated locally, which causes some of the resin parts to fuse together, making it difficult to disperse uniformly.

樹脂の添加層は、種類によって若干界なるが、断熱材料
(微粒子)の重量に対して1〜10%(より好ましくは
2〜5%)にするのが良い。
The amount of the resin added layer is preferably 1 to 10% (more preferably 2 to 5%) based on the weight of the heat insulating material (fine particles), although this varies depending on the type.

成形圧力は10〜30kg/cflIが好ましく、加熱
温度は樹脂の融点より30〜60℃高い温度が好ましい
The molding pressure is preferably 10 to 30 kg/cflI, and the heating temperature is preferably 30 to 60° C. higher than the melting point of the resin.

なお、この発明は、第1図および第2図に例示したもの
に附られない。超微粒子Aは、凝築防止処理したもの、
未処理のもののいずれを用いてもよい。
Note that this invention is not applicable to what is illustrated in FIGS. 1 and 2. Ultrafine particles A are treated to prevent aggregation,
Any untreated material may be used.

以下、この発明のより具体的な実施例と比較例を製造の
様子を含めて説明するが、下記実施例に限定するもので
はない。
More specific examples and comparative examples of the present invention will be described below, including the manufacturing process, but the invention is not limited to the following examples.

実施例1〜 断熱材料として、超微粒子シリカのヘキサメチルジシラ
ザンによる表面処理物(徳山曹達■製、特注品、平均粒
径8nm) 、Tiotルチル粉末(古河鉱業■製FR
−41、粒径0.2x)をそれぞれ重量比で3:1とな
るように混合したものを用い、これに、樹脂繊維として
ポリエステル繊維(東洋紡製、PETw!i維、直径1
5μ■、長さ3n)を断熱材料に対する重量比で5%に
なるように、断熱材料粉体に空気を含ませて流動状態に
してから、少しずつ添加し、ゆっ(りと攪拌して均一に
分散した。次に、この混合粉体を金型に流し込み、5分
間静置して、自然脱気させた。その後、上型を載せて、
直圧プレスで20 kg / cJの成形圧でプレスし
たまま、金型温度を220℃にし、温度が一定になって
から30分間保持した。次に金型のまま別のプレスに移
し、成形圧を20kg/−にしたまま冷却した。冷却後
に金型から取り出して、板状に成形された微細多孔体(
断熱体)を得た。同微細多孔体の外形寸法は、直径80
鶴、厚さ約7鶴であった・ 前記超微粒子シリカの表面処理物は、未処理時に粒径7
ntm、比表面!l1380m1gであったものを表面
処理して、粒径8〜9nm、比表面積300rrr/g
、C値2.8wt%、M値60volχとなったもので
あった。・他方、これとは別に、未処理時に粒径5nm
、比表面積480+vr/gであったものを表面処理し
て、粒径7nm、比表面積350rrr/g、C値2.
8wt%、M値60volχとなった、超微粒子シリカ
の表面処理物を用いて同様にして微細多孔体く断熱体)
を得た。
Example 1 ~ As a heat insulating material, ultrafine silica surface treated with hexamethyldisilazane (manufactured by Tokuyama Soda ■, custom made product, average particle size 8 nm), Tiot rutile powder (FR manufactured by Furukawa Mining ■)
-41, particle size 0.2x) in a weight ratio of 3:1, and to this, polyester fiber (manufactured by Toyobo, PETw!i fiber, diameter 1
Add air to the insulating material powder to make it fluid so that the weight ratio of the insulating material powder is 5% by weight to the insulating material, then add it little by little, and stir slowly to make it uniform. Next, this mixed powder was poured into a mold and left to stand for 5 minutes to allow natural degassing.Then, the upper mold was placed on the mold.
While pressing with a direct press at a molding pressure of 20 kg/cJ, the mold temperature was set at 220° C. and held for 30 minutes after the temperature became constant. Next, the mold was transferred to another press and cooled while keeping the molding pressure at 20 kg/-. After cooling, the microporous body is removed from the mold and formed into a plate shape (
A heat insulator) was obtained. The external dimensions of the microporous body are 80 mm in diameter.
The surface-treated ultrafine particle silica had a particle size of about 7 mm when untreated.
ntm, specific surface! The particle size of 1,380ml/g was surface-treated to have a particle size of 8 to 9 nm and a specific surface area of 300 rrr/g.
, C value was 2.8 wt%, and M value was 60 volχ.・On the other hand, apart from this, the particle size is 5 nm when untreated.
, which had a specific surface area of 480+vr/g, was surface-treated to have a particle size of 7 nm, a specific surface area of 350 rrr/g, and a C value of 2.
8 wt%, M value of 60 vol.
I got it.

実施例2− 樹脂繊維として、ポリエチレンをコーティングしたポリ
エステル繊維(東洋紡製、PE−PET繊維、直径15
μ■、長さ2■1)を重量比で、断熱材料の3%になる
ように混合し、加熱温度を180℃にしたこと以外は、
実施例1と同様にして微細多孔体(断熱体)を得た。
Example 2 - Polyester fiber coated with polyethylene (manufactured by Toyobo, PE-PET fiber, diameter 15
Except that μ■, length 2■1) was mixed so that the weight ratio was 3% of the insulation material, and the heating temperature was 180℃.
A microporous body (insulating body) was obtained in the same manner as in Example 1.

実施例3− 樹脂として、ポリエチレン微粒子(昭和電工■製のショ
ーレックスP235WH−2、平均粒径50〜70μ菖
)と、実施例2で用いたPE−PET繊維を用い、断熱
材料に対してそれぞれ重量比で3%ずつになるように混
合し、加熱温度を180℃にした他は実施例1と同様に
して微細多孔体(断熱体)を得た。
Example 3 - Polyethylene fine particles (Shorex P235WH-2 manufactured by Showa Denko ■, average particle size 50 to 70 μm) and the PE-PET fibers used in Example 2 were used as the resin, and each A microporous body (insulating body) was obtained in the same manner as in Example 1, except that the components were mixed at a weight ratio of 3% and the heating temperature was 180°C.

実施例4 断熱材料として、実施例1で用いた表面処理シリカ、T
i0=粉末の他に、無機繊維のセラミックファイバー(
新日鉄化学■製、SCバルク#111、直径2.8n、
長さ5m)を用い、配合比をそれぞれ、重量比で表面処
理シリカ: Troz粉末:セラミノクツアイバー=1
1:0.2とした。それ以外は実施例1と同様にして微
細多孔体(断熱体)を得た。
Example 4 As a heat insulating material, the surface treated silica used in Example 1, T
i0 = In addition to powder, inorganic ceramic fiber (
Made by Nippon Steel Chemical ■, SC bulk #111, diameter 2.8n,
5 m in length), and the blending ratio by weight was: Surface treated silica: Troz powder: Ceraminokutsu iber = 1
The ratio was set to 1:0.2. A microporous body (insulating body) was obtained in the same manner as in Example 1 except for the above.

実施例5− 断熱材料として実施例4で用いたものにした他は、実施
例2と同様にして、微細多孔体く断熱体)を得た。
Example 5 - A microporous material (insulating material) was obtained in the same manner as in Example 2, except that the material used in Example 4 was used as the heat insulating material.

比較例1 実施例1で用いた断熱材料のみを、成形圧力20 kg
 / ctAで5分間プレスして、微細多孔体(断熱体
)を得た。
Comparative Example 1 Only the heat insulating material used in Example 1 was molded under a molding pressure of 20 kg.
/ctA for 5 minutes to obtain a microporous body (insulating body).

−比較例2 実施例4で用いた断熱材料のみを、成形圧力20kg/
cdで5分間プレスして、微細多孔体(断熱体)を得た
- Comparative Example 2 Only the heat insulating material used in Example 4 was used at a molding pressure of 20 kg/
A fine porous body (insulating body) was obtained by pressing with CD for 5 minutes.

上記実施例1〜5および比較例1〜2の微細多孔体につ
いて、熱伝導率と曲げ強度を測定した。
Thermal conductivity and bending strength of the microporous bodies of Examples 1 to 5 and Comparative Examples 1 to 2 were measured.

結果を第1表に示す。The results are shown in Table 1.

なお、熱伝導率の測定は、英仏精機0菊製の熱伝導率測
定装置を用い、ASTM−C518に準を処した方法で
行い、曲げ強度は、JIS−A9510に準拠した方法
で行った。
The thermal conductivity was measured using a thermal conductivity measuring device manufactured by English-French Seiki Oki in accordance with ASTM-C518, and the bending strength was measured in accordance with JIS-A9510. .

第1表にみるように、実施例の微細多孔体は、比較例の
?li細多細体孔体べて、熱伝導率が若干高くなるもの
の、十分な断熱効果を有し、かつ、機械的強度が、はる
かに大きいものであることがわかる。
As shown in Table 1, the microporous material of the example is different from that of the comparative example. It can be seen that although the thermal conductivity of all the li fine and porous bodies is slightly higher, they have a sufficient heat insulating effect and have much greater mechanical strength.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明にかかる微細多孔体は、機
械的強度が大きくて、取扱性に優れたものであり、しか
も、断熱性が十分に保持されるため、実用性が高い。
As described above, the microporous material according to the present invention has high mechanical strength and excellent handling properties, and also maintains sufficient heat insulation properties, so it is highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは、この発明の微細多孔体の一実施例をあ
られす模式図、第1図(blは、その融着の状態を表す
拡大模式図、第2図は、別の実施例の融着の状態を表す
拡大模式図である。 1・・・微細多孔体 2・・・(断熱材料の)微粒子3
・・・樹脂繊維 4・・・樹脂微粒子代理人 弁理士 
 松 本 武 彦
FIG. 1 (al is a schematic diagram showing one embodiment of the microporous material of the present invention, FIG. 1 (bl is an enlarged schematic diagram showing the state of fusion, and FIG. 2 is another embodiment) It is an enlarged schematic diagram showing the state of fusion. 1... Fine porous body 2... Fine particles (of the heat insulating material) 3
... Resin fiber 4 ... Resin fine particle agent Patent attorney
Takehiko Matsumoto

Claims (1)

【特許請求の範囲】[Claims] 1 微粒子粉末が成形されてなる微細多孔体において、
熱可塑性樹脂からなる繊維が分散され、同繊維同士、お
よび、同繊維と前記微粒子とが互いに融着されているこ
とを特徴とする微細多孔体。
1. In a microporous body formed by molding fine particle powder,
A microporous body characterized in that fibers made of a thermoplastic resin are dispersed, and the fibers and the fine particles are fused to each other.
JP1860689A 1989-01-26 1989-01-26 Microporous material Pending JPH02199077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1860689A JPH02199077A (en) 1989-01-26 1989-01-26 Microporous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1860689A JPH02199077A (en) 1989-01-26 1989-01-26 Microporous material

Publications (1)

Publication Number Publication Date
JPH02199077A true JPH02199077A (en) 1990-08-07

Family

ID=11976304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1860689A Pending JPH02199077A (en) 1989-01-26 1989-01-26 Microporous material

Country Status (1)

Country Link
JP (1) JPH02199077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2011056814A (en) * 2009-09-10 2011-03-24 Toto Ltd External structure and coating liquid for external structure
JP2013245692A (en) * 2012-05-23 2013-12-09 Isolite Insulating Products Co Ltd Heat insulating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2011056814A (en) * 2009-09-10 2011-03-24 Toto Ltd External structure and coating liquid for external structure
JP2013245692A (en) * 2012-05-23 2013-12-09 Isolite Insulating Products Co Ltd Heat insulating material

Similar Documents

Publication Publication Date Title
JP4120992B2 (en) COMPOSITE MATERIAL CONTAINING AIRGEL AND ADHESIVE, ITS MANUFACTURING METHOD, AND USE THEREOF
JP4118331B2 (en) Airgel composite containing fibers
KR100716485B1 (en) Method for the production of opaque quartz glass, sio2 granulate suitable for use in performing the method and a component made of opaque quartz glass
JPS58145652A (en) Calcium silicate formed body
EP2411450B1 (en) A particle containing a hydrophobic region and a hydrophilic region and methods to make same
WO1988007503A1 (en) Method for manufacturing fine porous member
JP2017530306A (en) Method for producing hydrophobic heat insulating molded body
JP3563071B2 (en) Inorganic compact having low density and method for producing the same
CN102143911A (en) Silica structure and method of producing the same, and heat insulating material
JP2012081701A (en) Heat insulating material and method of manufacturing the same
JPH05194008A (en) Production of heat insulating material
JPH02199077A (en) Microporous material
JP2023516146A (en) Silica-based heat insulating molding
JPH0569063B2 (en)
CN100417626C (en) Coated granulated raw materials for refractory products and producing method thereof and use of granulated raw materials
JPH03247576A (en) Production of fine porous body
JPH03140718A (en) Heater device
JPH04108677A (en) Production of microporous body
JP2893508B2 (en) Granular ceramic fiber aggregate and method for producing the same
JPH03247575A (en) Fine porous body
JP3635289B2 (en) Volcanic ejecta foam particles having excellent whiteness and heat resistance, aggregated cured products of the same, and methods for producing the same
JPH10226582A (en) Multilayered heat insulating material and its production
JP2893513B2 (en) Porous granular molded product
JP4558982B2 (en) Zonolite powder and composition for producing friction material
JPH03247577A (en) Heat insulating material