JP5606465B2 - 半導体発光素子及びその製造方法 - Google Patents

半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP5606465B2
JP5606465B2 JP2012020249A JP2012020249A JP5606465B2 JP 5606465 B2 JP5606465 B2 JP 5606465B2 JP 2012020249 A JP2012020249 A JP 2012020249A JP 2012020249 A JP2012020249 A JP 2012020249A JP 5606465 B2 JP5606465 B2 JP 5606465B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
semiconductor
semiconductor layer
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012020249A
Other languages
English (en)
Other versions
JP2013161830A (ja
Inventor
聡 三木
直治 杉山
泰輔 佐藤
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012020249A priority Critical patent/JP5606465B2/ja
Priority to US13/601,015 priority patent/US20130234178A1/en
Publication of JP2013161830A publication Critical patent/JP2013161830A/ja
Application granted granted Critical
Publication of JP5606465B2 publication Critical patent/JP5606465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Description

本発明の実施形態は、半導体発光素子及びその製造方法に関する。
窒化ガリウムなどの窒化物半導体などを用いた各種の半導体発光素子が開発されている。このような半導体発光素子に用いる半導体層は、主に、サファイア基板などの上に結晶成長される。半導体発光素子において、高い効率と共に、生産性の向上が求められている。
特開2008−205475号公報
本発明の実施形態は、生産性が高く高効率の半導体発光素子及びその製造方法を提供する。
本発明の実施形態によれば、シリコン基板と、バッファ層と、下地半導体層と、第1半導体層と、発光部と、第2半導体層と、を含む半導体発光素子が提供される。前記シリコン基板は、主面の一部の上に設けられたSiO 層を含む。前記バッファ層は、前記主面のうちの前記SiO 層が設けられていない領域の上に設けられる。前記下地半導体層は、前記バッファ層の上面から結晶成長される。前記下地半導体層は、前記SiO を覆い前SiO と離間している。前記第1半導体層は、前記下地半導体層の上に設けられ、第1導電形である。前記発光部は、前記第1半導体層の上に設けられる。前記第2半導体層は、前記発光部の上に設けられ、第2導電形である。
本発明の別の実施形態によれば、主面の一部の上に設けられたSiO 層を含むシリコン基板の前記主面のうちの前記SiO 層が設けられていない領域の上にバッファ層を形成し、前記バッファ層の上面から横方向成長させて、前記SiO 層を覆い前記SiO 層と離間した下地半導体層を結晶成長させ、前記下地半導体層の上に第1導電形の第1半導体層を結晶成長させ、前記第1半導体層の上に発光部を結晶成長させ、前記発光部の上に第2導電形の第2半導体層を結晶成長させる半導体発光素子の製造方法が提供される。
第1の実施形態に係る半導体発光素子を示す模式的断面図である。 第1の実施形態に係る半導体発光素子の一部を示す模式的断面図である。 図3(a)〜図3(h)は、第1の実施形態に係る半導体発光素子の一部を示す模式的断面図である。 第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。 第1の実施形態に係る別の半導体発光素子を示す模式的断面図である。 第1の実施形態に係る半導体発光素子の特性を示すグラフ図である。 第1の実施形態に係る半導体発光素子の特性を示すグラフ図である。 第1の実施形態に係る半導体発光素子の特性を示すグラフ図である。 第1の実施形態に係る半導体発光素子の特性を示すグラフ図である。 図10(a)〜図10(d)は、第1の実施形態に係る別の半導体発光素子を示す模式的断面図である。 第2の実施形態に係る半導体発光素子の製造方法を示すフローチャート図である。 第2の実施形態に係る半導体発光素子の製造方法の一部を示すフローチャート図である。 第2の実施形態に係る半導体発光素子の一部を示す模式的断面図である。 第2の実施形態に係る半導体発光素子の製造方法の一部を示すフローチャート図である。 第2の実施形態に係る半導体発光素子の一部を示す模式的断面図である。 第2の実施形態に係る半導体発光素子の特性を示すグラフ図である。 第2の実施形態に係る半導体発光素子の製造方法の一部を示すフローチャート図である。 第2の実施形態に係る半導体発光素子の一部を示す模式的断面図である。 図19(a)〜図19(c)は、第3の実施形態に係る半導体発光素子を示す模式図である。 図20(a)及び図20(b)は、第4の実施形態に係る半導体発光素子を示す模式図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る半導体発光素子の構成を例示する模式的断面図である。 図1に表したように、本実施形態に係る半導体発光素子110は、シリコン基板5と、バッファ層8と、下地半導体層11と、第1半導体層10と、発光部30と、第2半導体層20と、を含む。
シリコン基板5は、主面5aを有する。バッファ層8は、シリコン基板5の主面5aの一部5pの上に設けられる。バッファ層8の平面形状の例については後述する。
下地半導体層11は、バッファ層8の上面8uから結晶成長される。下地半導体層11は、主面5aのうちでバッファ層8が設けられていない非形成領域5qを覆う。下地半導体層11は、非形成領域5qと離間している。例えば、下地半導体層11と非形成領域5qとの間に間隙8gが設けられる。
非形成領域5qにおけるシリコン基板5の主面5aと、下地半導体層11と、の間の空間(すなわち間隙8g)は、例えば、減圧状態(真空を含む)である。または、その空間は、空気または不活性ガス(例えば窒素ガスなど)の気体で充填されている。
バッファ層8は、ナノ構造を有する。バッファ層8及び間隙8gは、TIR(Total Internal Reflection)ミラー8rを形成する。
第1半導体層10は、下地半導体層11の上に設けられる。第1半導体層10は、第1導電形である。発光部30は、第1半導体層10の上に設けられる。第2半導体層20は、発光部30の上に設けられる。第2半導体層20は、第2導電形である。第2導電形は、第1導電形とは異なる。
例えば、第1導電形はn形であり、第2導電形はp形である。また、第1導電形がp形であり、第2導電形がn形でも良い。以下では、第1導電形がn形で、第2導電形がp形である場合として説明する。
ここで、シリコン基板5の主面5aに対して垂直な軸をZ軸とする。Z軸に対して垂直な1つの軸をX軸とする。Z軸とX軸とに対して垂直な軸をY軸とする。
バッファ層8は、例えば、アルミニウムを含む窒化物半導体を含む。例えば、バッファ層8には、例えば、AlNが用いられる。
下地半導体層11、第1半導体層10、発光部30及び第2半導体層20は、窒化物半導体を含む。下地半導体層11には、例えば、GaNが用いられる。下地半導体層11における不純物濃度は、第1半導体層10における不純物濃度よりも低い。下地半導体層11には、例えば、不純物を添加しないGaNが用いられる。
発光部30は、第1半導体層10の一部10pの上に設けられる。
半導体発光素子110は、第1電極70と、透光電極81と、第2電極80と、をさらに含む。第1電極70は、第1半導体層10の発光部30が設けられていない領域10qの上に設けられる。透光電極81は、第2半導体層20の上に設けられる。透光電極81は、発光部30から放出される光に対して透過性である。第2電極80は、透光電極81の上に設けられる。透光電極81には、例えばITO(Indium Tin Oxide)などが用いられる。
第1電極70と第2電極80との間に電圧を印加することで、第1半導体層10及び第2半導体層20を介して発光部30に電流が供給され、発光部30から光が放出される。半導体発光素子110は、例えば、LED(Light Emitting Diode)である。
図2は、第1の実施形態に係る半導体発光素子の一部の構成を例示する模式的断面図である。
図2は、発光部30の構成の例を示している。
図2に表したように、発光部30は、複数の障壁層31と、複数の障壁層31どうしの間に設けられた井戸層32と、を含む。例えば、複数の障壁層31と、複数の井戸層32と、がZ軸に沿って交互に積層される。
本願明細書において、「積層」とは、互いに接して重ねられる場合の他に、間に他の層が挿入されて重ねられる場合も含む。また、「上に設けられる」とは、直接接して設けられる場合の他に、間に他の層が挿入されて設けられる場合も含む。
井戸層32は、例えば、Inx1Ga1−x1N(0<x1<1)を含む。障壁層31は、例えば、GaNを含む。すなわち、井戸層32はInを含み、障壁層31はInを実質的に含まない。障壁層31におけるバンドギャップエネルギーは、井戸層32におけるバンドギャップエネルギーよりも大きい。
発光部30は、単一量子井戸(SQW:Single Quantum Well)構成を有することができる。このとき、発光部30は、2つの障壁層31と、その障壁層31の間に設けられた井戸層32と、を含む。または、発光部30は、多重量子井戸(MQW:Multi Quantum Well)構成を有することができる。このとき、発光部30は、3つ以上の障壁層31と、障壁層31どうしのそれぞれの間に設けられた井戸層32と、を含む。
すなわち、発光部30は、(n+1)個の障壁層31と、n個の井戸層32と、を含む(nは、1以上の整数)。第(i+1)障壁層BL(i+1)は、第i障壁層BLiと第2半導体層20との間に配置される(iは、1以上(n−1)以下の整数)。第(i+1)井戸層WL(i+1)は、第i井戸層WLiと第2半導体層20との間に配置される。第1障壁層BL1は、第1半導体層10と第1井戸層WL1との間に設けられる。第n井戸層WLnは、第n障壁層BLnと第(n+1)障壁層BL(n+1)との間に設けられる。第(n+1)障壁層BL(n+1)は、第n井戸層WLnと第2半導体層20との間に設けられる。
発光部30から放出される光(発光光)のピーク波長は、例えば400ナノメートル(nm)以上650nm以下である。ただし、実施形態において、ピーク波長は任意である。
第1半導体層10には、例えば、n型不純物を含むGaN層が用いられる。n型不純物には、Si、Ge、Te及びSnの少なくともいずれかを用いることができる。第1半導体層10は、例えば、n側コンタクト層を含む。
第2半導体層20には、例えば、p型不純物を含むGaN層が用いられる。p型不純物には、Mg、Zn及びCの少なくともいずれかを用いることができる。第2半導体層20は、例えば、p側コンタクト層を含む。
発光部30から放出された光は、バッファ層8及び間隙8gで形成されるTIRミラー8rで効率良く反射する。反射した光は、シリコン基板5から第2半導体層20に向かう上方に進み、半導体発光素子110の外部に出射する。半導体発光素子110においては、光は、半導体発光素子110の上面から出射する。
半導体発光素子110においては、第1半導体層10、発光部30及び第2半導体層20を含む機能部は、シリコン基板5上に形成される。シリコン基板5は、比較的大面積である。このため、半導体発光素子110において、生産性が高い。
実施形態においては、シリコン基板5の主面5a上に、ナノ構造のバッファ層8を形成し、さらにバッファ層8の上面8uから横方向成長(ELO:Epitaxial Lateral Overgrowth)により下地半導体層11を形成する。シリコン基板5の非形成領域5qと、下地半導体層11と、の間に間隙8gを形成することで、バッファ層8と間隙8gとで、TIRミラー8rが形成される。すなわち、工程数を増やすことなく、光を反射する構造体(TIRミラー8r)を形成できる。これにより、生産性が高く高効率の半導体発光素子が提供できる。
窒化物半導体を用いた半導体発光素子において、半導体層は、例えば、SiC基板、サファイア基板、または、シリコン基板などの上に成長される。半導体発光素子を作製する場合、生産性と共に光学的特性も重要である。
SiC基板及びサファイア基板は、高価であり、小面積である。SiC基板及びサファイア基板は、350nm以上500nm以下の波長に光に対し透過性である。このため、これらの基板を用いる場合には、フェイスアップ構造やフリップチップ構造などの単純な構造を採用しても実用的な光取出し効率が得られる。
一方、シリコン基板は、SiC基板及びサファイア基板に比べて、高品質であり、大面積である。しかし、シリコン基板は、可視光波長帯においては強い吸収を示す。このため、シリコン基板を用いて半導体層を結晶成長させた場合には、結晶成長させた半導体層を、別の支持基板への接合し、シリコンの成長用基板を除去する方法が採用される。
この支持基板への半導体層の接合は、加熱などにより行われる。この加熱が、電極等の金属に悪影響を与える場合がある。熱膨張による応力バランスの変化により発光特性が劣化する場合もある。また、成長用基板の除去は、研削とエッチングによる除去、または、レーザーリフトオフによる剥離により行われる。前者は、プロセス効率が低い。後者は、熱衝撃により歩留まりを低下させる原因となる。いずれの方法も、結晶成長時に発生する残留応力の解放により、発光特性を劣化させることがある。従って、基板の貼り換えを必要としない手法が求められている。
結晶成長させるシリコン基板をそのまま用いる場合において、シリコン基板に光が進入すると、光は吸収され、損失となる。例えば、シリコン基板の上に金属のメッシュミラーを形成し、シリコン基板のうちでメッシュミラーで覆われていない部分から、窒化物半導体の選択成長を行なう手法が考えられる。しかしながら、窒化物半導体の成長温度は例えば1000℃以上と高温である。この温度において化学的に安定な金属は、反射率が低いため、この手法は現実的ではない。
本実施形態においては、結晶成長用のシリコン基板5上にバッファ層8を形成する。このバッファ層8は、例えば、柱状、または、壁状である。これらの形状は、例えば、パターニングなどの手法により形成される。すなわち、ナノ構造のバッファ層8が設けられる。バッファ層8の上に発光素子となる層を選択成長する。これにより、成長用基板と、発光素子となる層と、の間に、バッファ層8と間隙8g(例えば空気層)と、により反射構造体(TRIミラー8r)が形成される。結晶成長用の基板の上に、発光素子となる部分を形成し、結晶成長用の基板の一部または全てを残して、支持基板とする。これにより、結晶成長用の基板としてシリコン基板5を用い、基板貼り換えが不要にできる。これにより、生産性が高く、かつ実用的な光取出しを得られる。
バッファ層8は、発光波長に対し概ね透明である。バッファ層8の屈折率は、下地半導体層11の屈折率よりも低い。バッファ層8において、ナノ構造の空隙(間隙8g)が設けられている。
バッファ層8と間隙8gとの組み合わせは、TIRミラー8rとなる。TIRミラー8rは、半導体層からシリコン基板5へ進む光に関して、エスケープコーンが狭くなるように設計される。全立体角の平均では、金属ミラーと実質的に同等の反射率が得られる。
なお、バッファ層8内の空隙の上面は、第1電極70の下面の位置よりも下である。これにより、十分な電流拡散が得られる。
図3(a)〜図3(h)は、第1の実施形態に係る半導体発光素子の一部の構成を例示する模式的断面図である。
図3(a)、図3(c)、図3(e)及び図3(g)は、それぞれ、図3(b)、図3(d)、図3(f)及び図3(h)のB1−B2線断面を示す。図3(b)、図3(d)、図3(f)及び図3(h)は、図3(a)、図3(c)、図3(e)及び図3(g)のA1−A2線断面を示す。
図3(a)及び図3(b)に示した例では、バッファ層8は、連続的である。すなわち、バッファ層8が設けられる、シリコン基板5の主面5aの一部5pは連続的である。非形成領域5qは島状であり、間隙8gは島状である。この例では、空隙(間隙8g)は、柱状である。
図3(c)及び図3(d)に示した例では、間隙8gは、連続的であり、非形成領域5qは、連続的である、バッファ層8は、島状であり、シリコン基板5の主面5aの一部5pは島状である。この例では、空隙(間隙8g)は、壁状である。
図3(a)及び図3(b)、並びに、図3(c)及び図3(d)に示した例では、バッファ層8または間隙8gの形状及び配置は、不規則である。
図3(e)及び図3(f)に示した例では、バッファ層8(及び、上記の一部5p)は、連続的であり。非形成領域5qは島状であり、間隙8gは島状である。
図3(g)及び図3(h)に示した例では、間隙8gは、連続的であり、非形成領域5qは、連続的である、バッファ層8(及び、上記の一部5p)は、島状である。
図3(a)及び図3(b)、並びに、図3(c)及び図3(d)に示した例では、バッファ層8または間隙8gの形状及び配置は、規則的である。これらの例では、バッファ層8及び間隙8gは、格子状に配列している。
上記は、バッファ層8(及び間隙8g)の構成の例であり、この他、指紋状や葉脈状等の形状及び配置を有していても良い。
ナノ構造の空隙(間隙8g)の面内の面積比は、例えば50%以上95%以下である。すなわち、間隙8gの面積比率は、バッファ層8の面積比率よりも高い。換言すれば、主面5aに対して平行な平面で切断したバッファ層8の断面積の、主面5aの面積に対する比率は、5%を超え50%未満である。
フォトニックバンド効果がない場合、空隙(間隙8g)の面内の面積比率が高いと反射率が高くなる。面積比率が過度に高くなると、熱伝導率が低下し、素子特性が低下する。また、空隙(間隙8g)の面内の面積比率が過度に高いと、機械的強度が低下し易い。
例えば、GaN系青色LEDでバッファ層8がAlNの場合、空隙占有率が50%以上において、50%以上の光取出し効率が得られる。空隙占有率が90%以下であれば、同等の厚さのSiと同程度以上の熱伝導率が得られる。また、空隙占有率が95%以下であれば、結晶のSiO程度以上の熱伝導率が得られる。放熱性を考慮した実用的な空隙占有率の範囲は、50%以上95%となる。
空隙(間隙8g)のサイズは、下地半導体層11の厚さ程度以下である。これよりも大きいと、熱拡散の均一性が損なわれ易くなり、素子特性に悪影響を及ぼすことがある。空隙(間隙8g)のサイズは、周期構造としてフォトニックバンドを形成するサイズ以上であることが好ましい。この効果により、反射率をより高めることができる。この場合、空隙(間隙8g)のサイズは、発光波長の1/2以下1/3以上である。
なお、フォトニックバンドの効果により透過率が上昇する条件も存在するが、この条件は、本実施形態においては性能低下の原因となる。
なお、本願明細書において「波長」は、発光部から放出された光が、言及している部材内部で示す波長を指す。
空隙(間隙8g)の厚さtg(Z軸に沿う長さ、図1参照)は、光のピーク波長の1/3以上であることが好ましい。すなわち、非形成領域5qにおけるシリコン基板5の主面5aと、下地半導体層11と、の距離は、発光部30から放出される光のピーク波長の1/3以上であることが好ましい。これ未満の場合、全反射の効果が薄れ、エバネッセント波結合によるシリコン基板5へのトンネリングが顕著となる。
空隙(間隙8g)の厚さtgは、適正となるいくつかの値が存在する。これは、空隙内でのSi表面からの反射光と半導体層での反射光の干渉による反射の増強効果によるものである。この適正値は、空隙の配置方法や占有率により異なる。
空隙(間隙8g)の厚さtgは、1マイクロメートル(μm)以下である。これにより、所定の熱伝導率が得られ、また、高品質な結晶成長が得られる。
間隙8g中は、例えば、真空である。または、間隙8gは、空気、または、不活性ガスなどで充填されている。間隙8gの少なくとも一部が、低誘電率の液体または固体で満たされていても良い。間隙8gに充填される液体または固体の屈折率は、バッファ層8の屈折率よりも低い。その液体または固体の屈折率は、下地半導体層11の屈折率よりも低い。その液体または固体の屈折率は、例えば、1.5以下である。
図4は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図4に表したように、本実施形態に係る別の半導体発光素子111においては、シリコン基板5は、基体5rと、基体5rの上に設けられた絶縁層5iと、絶縁層5iの上に設けられたシリコン層5sと、を含む。すなわち、シリコン基板5として、SOI(Silicon On Insutator)が用いられる。これ以外の構成は、半導体発光素子110と同様である。
SOI構造のシリコン基板5を用いた場合も、シリコン基板5の主面5aの上にバッファ層8を形成し、下地半導体層11をELOにより形成する。これにより、バッファ層8と間隙8gとで、TIRミラー8rが形成される。これにより、生産性が高く高効率の半導体発光素子が提供できる。
図5は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図5に表したように、本実施形態に係る別の半導体発光素子112においては、シリコン基板5の主面5aのうちの非形成領域5qは、主面5aのうちのバッファ層8が設けられる一部5pよりも後退している。さらに、下地半導体層11のうちの非形成領域5qに対向する下面11aは、下地半導体層11のうちのバッファ層8に対向する下面11bよりも後退している。下面11aは、下面11bよりも上方に位置する。すなわち、バッファ層8に設けられる間隙8g(空隙)は、シリコン基板5の後退部分と、下地半導体層11の後退部分と、を含む。これ以外の構成は、半導体発光素子110と同様である。
半導体発光素子112においても、バッファ層8と間隙8gとで、TIRミラー8rが形成される。これにより、生産性が高く高効率の半導体発光素子が提供できる。
以下、本実施形態に係る半導体発光素子の特性の例について説明する。
以下では、バッファ層8としてAlNを用い、下地半導体層11、第1半導体層10及び第2半導体層20として、GaNを用いる場合について説明する。
発光部30から放出される光の波長は、450nmとする。この光に関して、GaN/AlN/Siの界面で反射特性が計算される。GaNの屈折率は2.47であり、AlNの屈折率は2.11である。発光の分布には、双極子発光分布(等方配光)と、ランバート配光分布と、を仮定している。発光部30で発光した光が、上記の界面に直接入射する場合、等方配光分布となる。半導体層内部で乱反射した光が、上記界面に入射する場合、ランバート配光分布となる。光取出し効率を精度良く計算するために、これら2つの反射特性が求められる。
図6は、第1の実施形態に係る半導体発光素子の特性を例示するグラフ図である。
図6は、AlN層の厚さを変えたときの、全立体角の平均反射率を表している。横軸は、AlN膜の厚さt1(nm)であり、縦軸は、平均反射率Rf(%)である。図6には、双極子発光分布(等方配光分布)に関する平均反射率Rdpと、ランバート配光分布に関する平均反射率Rlbと、が示されている。
等方配光分布に関する平均反射率Rdpは、比較的高い。これに対して、ランバート配光分布に関する平均反射率Rlbは、低い。これは、ランバート配向分布においては、垂直入射成分の比率が高く、全反射の割合が相対的に低くなるためである。平均反射率Rdp及び平均反射率Rlbは、厚さt1が200nm以下において、急激に低下する。これは、主にエバネッセント波によるトンネリングが起こるためである。
図7は、第1の実施形態に係る半導体発光素子の特性を例示するグラフ図である。
図7は、バッファ層8を空気に置き換えたときの特性を示す。横軸は、空気層の厚さt2(nm)であり、縦軸は、平均反射率Rf(%)である。図7には、等方配光分布に関する平均反射率Rdp及びランバート配光分布に関する平均反射率Rlb、に加え、FDTD(Finite Difference Time Domain)法により求めた平均反射率RFDTDを示している。平均反射率RFDTDにおいては、柱状AlNが、フォトニック結晶状に配置されている構成を想定している。
図7から分かるように、空気層の厚さt2が200nm以上において、等方配光分布に関する平均反射率Rdpは約95%であり、ランバート配光分布に関する平均反射率Rlbは90%以上である。平均反射率RFDTDは、平均反射率Rdpに近い値を示す。このように高い反射率が得られるのは、空気とGaNとの屈折率差、及び、空気とSiと屈折率差が大きいためである。なお、金属アルミニウムとGaNとの界面においては、平均反射率Rdpは87%であり、平均反射率Rlbは85%である。空気層を設けることで、これらの値を越える反射率が得られる。また、干渉効果により、高い平均反射率Rfが得られる厚さt2は離散的である。厚さt2が、130nm以上200nm以下、または、350nm以上430nm以下の領域で、高い平均反射率Rfが得られる。
図8は、第1の実施形態に係る半導体発光素子の特性を例示するグラフ図である。
図8は、AlN層と空気層との面積の割合を変化させたときの特性を例示している。この例では、AlNの特性と空気の特性とを線形に平均化している。図8の横軸は、AlN層の全体に占める面積比率RAlN(%)である。面積比率RAlNが100%のときは、全面がAlN層であるときに対応し、面積比率RAlNが0%のときは、全面が空気であるときに対応する。縦軸は、平均反射率Rfである。この例では、AlN層の厚さは、200nmである。
図8から分かるように、平均反射率RFDTDは、平均反射率Rdpの線形平均の値と、非常に良く一致する。これは、フォトニックバンド効果が得られていないことを意味している。そして、この場合には、AlN層の面積比率RAlN(%)(または空隙占有率)により、反射率が定まることを意味している。
以上の結果を基に、半導体発光素子における光取り出し効率Eff(限界効率)を求めることができる。光取り出し効率Effは、近似的に以下となる。

Eff={(1+Rdp)/2}・(1−Rext)/(1−r・Rlb・Rext

ここで、Rdpは、等方配向分布におけるTIRミラー8rの反射率であり、Rlbは、ランバート配向分布におけるTIRミラー8rの反射率であり、Rextは、光取り出し面の反射率であり、rは、内部減衰である。
図9は、第1の実施形態に係る半導体発光素子の特性を例示するグラフ図である。
図9の横軸は、AlN層の全体に占める面積比率RAlN(%)であり、縦軸は、光取り出し効率Effである。
図9に表したように、AlN層の全体に占める面積比率RAlN(%)が50%以下(空隙占有率50%未満)において、50%以上の光取り出し効率Effが得られる。このように、半導体発光素子110において、主面5aに対して平行な平面で切断したバッファ層8の断面積の、主面5aの面積に対する比率は、50%未満である。これにより、光取り出し効率Effが50%よりも高くなる。なお、バッファ層8の断面積の、主面5aの面積に対する比率が5%未満の場合は、既に説明したように、熱伝導率や機械的強度が低下する。空隙占有率を上げることにより、原理的には80%の光取出し効率Effが得られる。
図10(a)〜図10(d)は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図10(a)及び図10(b)に表したように、本実施形態に係る半導体発光素子113及び114においては、バッファ層8は、複数の第1層8aと、第2層8bと、を含む。第2層8bは、複数の第1層8aの間に設けられる。第2層8bの屈折率は、第1層8aの屈折率とは異なる。第1層8aは、例えば、AlN層である。第2層8bは、例えば、AlGaN層またはGaN層である。第2層8bにおけるAlの組成比は、第1層8aにおけるAlの組成比よりも低い。これ以外の構成は、例えば半導体発光素子110と同様である。
半導体発光素子113においては、第1層8aの厚さは、例えば10nm以上50nm以下であり、第2層8bの厚さは、200nm以上300nm以下である。半導体発光素子114においては、第1層8aの厚さは、例えば30nm以上80nm以下であり、第2層8bの厚さは、30nm以上80nm以下である。
第1層8a及び第2層8bにより、例えば、DBR反射構造が形成される。これにより、さらに高い反射率が得られる。
図10(c)に表したように、半導体発光素子115においては、非形成領域5qにおけるシリコン基板5の主面5aと、下地半導体層11と、の間の空間の少なくとも一部に、低屈折率層5lが設けられている。低屈折率層5lは、液体または固体である。このように、間隙8g(空隙)の少なくとも一部に、液体または固体が充填されても良い。
低屈折率層5lには、例えば、SiOが用いられる。低屈折率層5lは、シリコン基板5の主面5a上に接して設けられる。低屈折率層5lは、例えば、非形成領域5qにおけるシリコン基板5の表面を酸化させることで形成することができる。低屈折率層5lを設けることで、反射率をより向上させることができる。
図10(d)に表したように、半導体発光素子116においては、バッファ層8として、複数の第1層8a及び第2層8bが設けられ、さらに、低屈折率層5lが設けられている。これにより、反射率をさらに向上させることができる。
(第2の実施形態)
第2の実施形態は、半導体発光素子の製造方法に係る。
図11は、第2の実施形態に係る半導体発光素子の製造方法を例示するフローチャート図である。
本製造方法では、シリコン基板5の主面5aの一部の上にバッファ層8を形成する(ステップS110)。バッファ層8の上面から横方向成長させて、主面5aのうちでバッファ層8が設けられていない非形成領域5qを覆い、非形成領域5qと離間した下地半導体層11を結晶成長させる(ステップS120)。そして、下地半導体層11の上に第1導電形の第1半導体層10を結晶成長させ、第1半導体層10の上に発光部30を結晶成長させ、発光部30の上に第2導電形の第2半導体層20を結晶成長させる(ステップS130)。さらに、半導体層(第1半導体層10、発光部30及び第2半導体層20)を所定の形状に加工し、電極(第1電極70、第2電極80及び透光電極81など)を形成す(ステップS140)。
この製造方法のうちで、ステップS110は、発光素子用窒化ガリウム結晶成長基板の製造工程に対応する。発光素子用窒化ガリウム結晶成長基板は、シリコン基板5と、シリコン基板5の上に形成した高反射空隙層と、を有する。ステップS120〜ステップS140は、フェイスアップ型LED素子部の製造工程に対応する。ステップS120は、ELO成長による半導体層の形成に対応し、ステップS130は、半導体機能層の形成に対応し、ステップS140は、デバイス形成に対応する。
図12は、第2の実施形態に係る半導体発光素子の製造方法の一部を例示するフローチャート図である。
図13は、第2の実施形態に係る半導体発光素子の一部を例示する模式的断面図である。
図12は、ステップS110の1つの例を示している。図12に表したように、例えばシリコン基板5の上に、バッファ層8となるバッファ膜を形成する(ステップS111)、バッファ膜の上に、所定のパターンが転写されたパターン層を形成し(ステップS112)、パターン層をマスクとして、バッファ膜の一部を除去する(ステップS113)。これにより、バッファ層8が形成される。
例えば、シリコン基板5の主面5aの上に、バッファ膜となる、AlN膜及びiGaN膜を含む半導体層の結晶成長を行う。この結晶成長層の厚さは、例えば100nm以上であり、より好ましくは、200nm以上である。
そして、結晶成長された半導体層の上にマスク膜を形成し、マスク膜を所定の形状に加工してマスク層を形成する。この後、マスク層をマスクにして、半導体層を部分的に除去する。これにより、TIRミラー8rが形成される。マスク膜の加工には、例えば、ナノプリント、干渉露光、電子ビーム露光、または、イオンビーム露光などが用いられる。これにより、ナノメートルオーダーの周期構造が得られる。TIRミラー8rにおいて、フォトニックバンド効果により、反射率を上昇させることができる。除去部分の深さは、波長の1/3以上であり、例えば、200nm以上である。除去により、半導体層を貫通する孔が形成され、シリコン基板5が露出していることが好ましい。さらに、孔は、シリコン基板5の内部に到達しても良い。これにより、空隙の厚さが大きくできる。
その後、図13に表したように、バッファ層8が形成された基板を用いて、半導体結晶(下地半導体層11)の成長を行なう。結晶成長の初段階においてはELOによる結晶成長モードを用いる。これにより、下地半導体層11は、主面5aのうちでバッファ層8が設けられていない非形成領域5qを覆い、非形成領域5qと離間した状態となる。空隙(間隙8g)が形成され、TIRミラー8rが形成される。その後、さらに、半導体機能層を形成し、デバイス加工を行う。
図14は、第2の実施形態に係る半導体発光素子の製造方法の一部を例示するフローチャート図である。
図15は、第2の実施形態に係る半導体発光素子の一部を例示する模式的断面図である。
図14及び図15に表したように、ステップS113によりバッファ層8を形成した後、バッファ層8に覆われていないシリコン基板5の表面を酸化する(ステップS114)。この酸化には、熱酸化が用いられる。これにより、シリコン基板5の主面5aの非形成領域5qにおいて、空気とは別のSiO膜5oが形成される。このSiO膜5oは、低誘電体層である。
SiO膜5oを形成することで、バッファ層8とシリコン基板5とが接する面積の減少により反射率が向上する。さらに、例えば、空気/SiO膜5o/Siの三層構造のTIRにより反射率が向上する。
図16は、第2の実施形態に係る半導体発光素子の特性を例示するグラフ図である。
図16は、SiO膜5oの厚さと反射率との関係を示す。横軸は、SiO膜5oの厚さt3(nm)である。縦軸は、SiO膜5oの厚さt3が0であるときを1とした、規格化反射率Rrである。この図には、平均反射率Rdp及び平均反射率Rlbに加え、垂直入射に関する反射率Rniが示されている。この例は、波長が450nmの光に対する特性を示している。
図16から分かるように、SiO膜5oの厚さt3が30nm以下のとき、または、150nm以上180nm以下のときに、平均反射率Rdp、平均反射率Rlb及び反射率Rniが高くなる。このことから、発光波長が450nmの発光素子の場合、SiO膜5oの厚さは、30nm以下、または、150nm以上180nm以下であることが好ましい。
図17は、第2の実施形態に係る半導体発光素子の製造方法の一部を例示するフローチャート図である。
図18は、第2の実施形態に係る半導体発光素子の一部を例示する模式的断面図である。
図17及び図18に表したように、シリコン基板5の主面5aの上にマスク膜5fを形成する(ステップS115)。マスク膜5fには、例えば、誘電体層が用いられる。マスク膜5fには、例えば、Si酸化膜、Si窒化膜、または、Si炭化膜等を用いることができる。これらの膜は、例えば、スパッタ、蒸着、または、CVD等により形成できる。または、シリコン基板5の表面を反応させてマスク膜5fを形成しても良い。マスク膜5fは、光透過性であり、低屈折率である。マスク膜5fには、1200℃程度の高温に耐えられる材料が用いられる。
例えば、450nmの発光素子の場合、マスク膜5fの厚さは、30nm以下、または、150nm以上180nm以下であることが好ましい。これにより高い反射率が得られる。
マスク膜5fの上に、所定のパターンが転写されたパターン層を形成し(ステップS116)、パターン層をマスクとして、マスク膜の一部を除去する(ステップS117)。これにより、パターンが転写されたマスク膜5fが形成できる。この後、加工体の表面にバッファ層8(例えばAlN膜)を形成する(ステップS118)。バッファ層8となるAlN膜は、マスク膜5fの残留部分を除く部分の上(すなわち、シリコン基板5の上)に形成される。
この後、半導体結晶(下地半導体層11)の成長を行なう。結晶成長の初段階においてELOの結晶成長モードを用いことで、下地半導体層11とシリコン基板5との間(下地半導体層11とマスク膜5fとの間)に、空隙(間隙8g)が形成される。これにより、TIRミラー8rが形成される。その後、さらに、半導体機能層を形成し、デバイス加工を行う。
(第3の実施形態)
図19(a)〜図19(c)は、第3の実施形態に係る半導体発光素子の構成を例示する模式図である。
図19(a)は、模式的断面図であり、図19(b)は、一部を拡大して示した模式的斜視図であり、図19(c)は、図19(b)のA1−A2線断面図である。
図19(a)〜図19(c)に表したように、本実施形態に係る半導体発光素子131においては、透光電極81の上面に、凹凸82が設けられている。これ以外は、第1〜第3の実施形態に係る任意の半導体発光素子と同様とすることができる。
第1〜第4の実施形態に係る半導体発光素子においては、上面(シリコン基板5とは反対側の面)から光を取り出す。このため、サファイア基板系発光素子とは異なる構成が採用される。すなわち、より多くの光を上面から出射させるための構成が採用される。透光電極81の凹凸82は、例えば、テクスチャパターンを有する。これにより光取り出し効率が向上する。
凹凸82の高低差は、発光部30から放出される光のピーク波長の1/2以上が好ましい。また、ピーク波長以上であることがより好ましい。第2半導体層20が薄い場合、または、透光電極81の光吸収が比較的大きい場合は、電流拡散や光吸収を考慮し、凹凸82の高低差は、ピーク波長の1/2以上でピーク波長以下とする。
また、図19(c)に表したように、透光電極81の上に、低屈折率の封止層83を設けても良い。
また、第1電極70と第2電極80との間における第1半導体層10と第2半導体層との段差部、及び、チップ側面の少なくともいずれかに、傾斜部、または、凹凸を形成しても良い。
(第4の実施形態)
図20(a)及び図20(b)は、第4の実施形態に係る半導体発光素子の構成を例示する模式図である。
図20(a)及び図20(b)に表したように、本実施形態に係る半導体発光素子141は、シリコン基板5上に形成された電子回路を含む。この例では、電子回路として、第1電子回路65、第2電子回路66及びシリコンフォトセンサ67などが設けられる。電子回路の少なくとも一部は、第1半導体層10及び第2半導体層20の少なくともいずれかに電気的に接続される。
この例では、第1電子回路65は、第1電極70に電気的に接続される。第2電子回路66は、第2電極80に電気的に接続される。第1電子回路65と第1電極70とを繋ぐ配線70eと、シリコン基板5との間には絶縁層61が設けられている。第2電子回路66と第2電極80とを繋ぐ配線80eと、シリコン基板5との間には絶縁層61が設けられている。
電子回路は、発光部30に流れる電流を制御する機能を有することができる。また、電子回路は、他の機能を有しても良い。
半導体発光素子141においては、電子回路として、シリコンフォトセンサ67が設けられている。シリコンフォトセンサ67による光の検出結果に基づいて、発光部30に流れる電流を制御しても良い。また、GND端子69と、Vcc端子68が設けられ、これらの端子は電源に接続される。
半導体発光素子141においては、LEDのドライバ回路が集積されることで、より小型で信頼性の高い半導体発光素子を提供することができる。また、フォトセンサを内蔵することで、光量をフィードバックし、より便利である。また、動作温度などのを監視することで、より効率の高い動作を実現できる。また、照明機能に加えて、データ通信の機能を有する半導体発光素子が提供できる。このように、LEDの駆動回路や、その他の機能回路を、LEDを作製する基板上に集積することができる。
実施形態によれば、基板貼り換え工程を不要とする、生産性が高く実用的な光取出し効率をもつ発光素子が実現できる。実施形態によれば、Si基板を結晶成長用基板に用いた発光素子において、基板接合・除去工程を経ることなく、実用的な光取出しを得る素子が実現できる。実施形態によれば、窒化物半導体発光素子をSi基板上に直接製作可能である。プロセスの観点からは、製造の低コスト化、高歩留まり、高生産性が期待できる。資源の観点からは、基板接合に用いられる金合金等の高価な材料の消費量を削減できる。素子特性の観点からは、Thin Film型発光素子と同程度以上に、熱抵抗率の高い素子を実現することができる。さらに、Si基板上で、モノリシック集積化が容易である。
実施形態に係る半導体発光素子及びその製造方法において、半導体層の成長方法には、例えば、有機金属気相堆積(Metal-Organic Chemical Vapor Deposition:MOCVD)法、及び、有機金属気相成長(Metal-Organic Vapor Phase Epitaxy)法などを用いることができる。
実施形態によれば、生産性が高く高効率の半導体発光素子及びその製造方法が提供できる。
なお、本明細書において「窒化物半導体」とは、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むもの、導電形などの各種の物性を制御するために添加される各種の元素をさらに含むもの、及び、意図せずに含まれる各種の元素をさらに含むものも、「窒化物半導体」に含まれるものとする。
なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれは良い。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子に含まれるシリコン基板、下地半導体層、第1半導体層、第2半導体層、発光部、透光電極及び電極などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した半導体発光素子及びその製造方法を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子及びその製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
5…シリコン基板、 5a…主面、 5f…マスク膜、 5i…絶縁層、 5l…低屈折率層、 5o…SiO膜、 5p…一部、 5q…非形成領域、 5s…シリコン層、 8…バッファ層、 8a…第1層、 8b…第2層、 8g…間隙、 8r…TIRミラー、 8u…上面、 10…第1半導体層、 10p…一部、 10q…領域、 11…下地半導体層、 11a、11b…下面、 20…第2半導体層、 30…発光部、 31…障壁層、 32…井戸層、 40…基板、 61…絶縁層、 65…第1電子回路、 66…第2電子回路、 67…シリコンフォトセンサ、 68…Vcc端子、 69…GND端子、 70…第1電極、 70e…配線、 80…第2電極、 80e…配線、 81…透光電極、 82…凹凸、 83…封止層、 110〜116、131、141…半導体発光素子、 BL…障壁層、 Eff…効率、 RAlN…面積比率、 RFDTD、Rdp、Rlb…平均反射率、 Rni…反射率、 Rr…規格化反射率、 WL…井戸層、 t1〜t3…厚さ

Claims (12)

  1. 主面の一部の上に設けられたSiO 層を含むシリコン基板と、
    前記主面のうちの前記SiO 層が設けられていない領域の上に設けられたバッファ層と、
    前記バッファ層の上面から結晶成長され、前記SiO を覆い前SiO と離間した下地半導体層と、
    前記下地半導体層の上に設けられた第1導電形の第1半導体層と、
    前記第1半導体層の上に設けられた発光部と、
    前記発光部の上に設けられた第2導電形の第2半導体層と、
    を備えた半導体発光素子。
  2. 前記主面に対して平行な平面で切断した前記バッファ層の断面積の、前記主面の面積に対する比率は、5パーセントを超え50パーセント未満である請求項1記載の半導体発光素子。
  3. 前記SiO 層が設けられた領域の前記主面と、前記下地半導体層と、の距離は、前記発光部から放出される光のピーク波長の1/3以上である請求項1記載の半導体発光素子。
  4. 前記SiO 層が設けられた領域の前記主面と、前記下地半導体層と、の間の空間のサイズは、前記発光部から放出される光のピーク波長の1/2以下1/3以上である請求項1記載の半導体発光素子。
  5. 前記SiO 層が設けられた領域上における前記下地半導体層との間の空間は、減圧状態、または、気体が充填されている請求項1〜3のいずれか1つに記載の半導体発光素子。
  6. 前記SiO 層の屈折率は、前記バッファ層の屈折率よりも低い請求項1〜のいずれか1つに記載の半導体発光素子。
  7. 前記バッファ層は、アルミニウムを含む窒化物半導体を含み、
    前記下地半導体層、前記第1半導体層、前記発光部及び前記第2半導体層は、窒化物半導体を含む請求項1〜のいずれか1つに記載の半導体発光素子。
  8. 前記シリコン基板の前記主面のうちの前記SiO 層が設けられた領域は、前記主面のうちの前記バッファ層が設けられる前記一部よりも後退している請求項1〜のいずれか1つに記載の半導体発光素子。
  9. 前記バッファ層は、複数の第1層と、前記複数の第1層の間に設けられ前記第1層の屈折率とは異なる第2層と、を含む請求項1〜のいずれか1つに記載の半導体発光素子。
  10. 前記発光部は、前記第1半導体層の一部の上に設けられ、
    前記第1半導体層の前記発光部が設けられていない領域の上に設けられた第1電極と、
    前記第2半導体層の上に設けられ前記発光部から放出される光に対して透過性の透光電極と、
    前記透光電極の上に設けられた第2電極と、
    をさらに備えた請求項1〜のいずれか1つに記載の半導体発光素子。
  11. 前記バッファ層の側面は、前記SiO 層領域上と前記下地半導体層との間の空間に露出している請求項1〜10のいずれか1つに記載の半導体発光素子。
  12. 主面の一部の上に設けられたSiO 層を含むシリコン基板の前記主面のうち前記SiO 層が設けられていない領域の上にバッファ層を形成し、
    前記バッファ層の上面から横方向成長させて、前記SiO を覆い前SiO と離間した下地半導体層を結晶成長させ、
    前記下地半導体層の上に第1導電形の第1半導体層を結晶成長させ、
    前記第1半導体層の上に発光部を結晶成長させ、
    前記発光部の上に第2導電形の第2半導体層を結晶成長させる半導体発光素子の製造方法。
JP2012020249A 2012-02-01 2012-02-01 半導体発光素子及びその製造方法 Active JP5606465B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012020249A JP5606465B2 (ja) 2012-02-01 2012-02-01 半導体発光素子及びその製造方法
US13/601,015 US20130234178A1 (en) 2012-02-01 2012-08-31 Semiconductor light emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020249A JP5606465B2 (ja) 2012-02-01 2012-02-01 半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2013161830A JP2013161830A (ja) 2013-08-19
JP5606465B2 true JP5606465B2 (ja) 2014-10-15

Family

ID=49113286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020249A Active JP5606465B2 (ja) 2012-02-01 2012-02-01 半導体発光素子及びその製造方法

Country Status (2)

Country Link
US (1) US20130234178A1 (ja)
JP (1) JP5606465B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI546979B (zh) * 2012-03-05 2016-08-21 晶元光電股份有限公司 對位接合之發光二極體裝置與其製造方法
JP5881560B2 (ja) * 2012-08-30 2016-03-09 株式会社東芝 半導体発光装置及びその製造方法
KR101966623B1 (ko) * 2012-12-11 2019-04-09 삼성전자주식회사 반도체층 형성 방법 및 반도체 발광소자
KR102015907B1 (ko) * 2013-01-24 2019-08-29 삼성전자주식회사 반도체 발광소자
KR101834785B1 (ko) * 2013-10-21 2018-03-06 센서 일렉트로닉 테크놀로지, 인크 합성물 반도체 층을 포함하는 이종 접합 구조
US9806229B2 (en) * 2014-03-06 2017-10-31 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
KR101590475B1 (ko) * 2014-07-10 2016-02-01 주식회사 헥사솔루션 반도체 적층 구조 및 그 형성 방법
JP6486726B2 (ja) * 2015-03-10 2019-03-20 シチズン時計株式会社 発光モジュール
TWI668502B (zh) * 2018-04-24 2019-08-11 微采視像科技股份有限公司 光偏折膜及應用其之顯示裝置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60030279T2 (de) * 1999-03-17 2007-08-30 Mitsubishi Cable Industries, Ltd. Halbleiterbasis, ihre herstellungsmethode und halbleiterkristallherstellungsmethode
JP2001160627A (ja) * 1999-11-30 2001-06-12 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US6657236B1 (en) * 1999-12-03 2003-12-02 Cree Lighting Company Enhanced light extraction in LEDs through the use of internal and external optical elements
JP2003022973A (ja) * 2001-07-06 2003-01-24 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
WO2008054994A2 (en) * 2006-10-18 2008-05-08 Nitek, Inc. Deep ultraviolet light emitting device and method for fabricating same
KR100836455B1 (ko) * 2007-01-11 2008-06-09 엘지이노텍 주식회사 반도체 발광소자 및 반도체 발광소자의 제조 방법
GB0702560D0 (en) * 2007-02-09 2007-03-21 Univ Bath Production of Semiconductor devices
KR101631599B1 (ko) * 2009-12-02 2016-06-27 삼성전자주식회사 발광 소자 및 그 제조 방법

Also Published As

Publication number Publication date
US20130234178A1 (en) 2013-09-12
JP2013161830A (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5606465B2 (ja) 半導体発光素子及びその製造方法
JP5840744B2 (ja) 発光ダイオード
KR100721147B1 (ko) 수직구조 질화갈륨계 발광다이오드 소자
JP5550078B2 (ja) 半導体発光素子
US8237180B2 (en) Light emitting element including center electrode and thin wire electrode extending from periphery of the center electrode
JP5829453B2 (ja) 半導体発光素子
US8022436B2 (en) Light emitting diode, production method thereof and lamp
JP5095785B2 (ja) 半導体発光素子及びその製造方法
JP5258853B2 (ja) 半導体発光素子及びその製造方法
JP2009004625A (ja) 半導体発光装置
JP2006100569A (ja) 半導体発光素子およびその製造方法
JP2007281037A (ja) 半導体発光素子及びその製造方法
JP2008282851A (ja) 半導体発光素子
JP2013026451A (ja) 半導体発光素子
JP2011187658A (ja) 半導体発光素子
JP4894411B2 (ja) 半導体発光素子
TW201432938A (zh) Led元件及其製造方法
JP4862386B2 (ja) 半導体発光ダイオード
JP2010092965A (ja) 発光装置及びその製造方法
WO2022079971A1 (ja) 赤外led素子
JP4881003B2 (ja) 放射を発する薄膜半導体チップ
JP5298927B2 (ja) 発光素子
JP5191937B2 (ja) 発光素子及びその製造方法
CN107591463B (zh) 发光组件及发光组件的制造方法
JP5885436B2 (ja) 発光素子および発光素子パッケージ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R151 Written notification of patent or utility model registration

Ref document number: 5606465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250