JP5576738B2 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP5576738B2
JP5576738B2 JP2010171917A JP2010171917A JP5576738B2 JP 5576738 B2 JP5576738 B2 JP 5576738B2 JP 2010171917 A JP2010171917 A JP 2010171917A JP 2010171917 A JP2010171917 A JP 2010171917A JP 5576738 B2 JP5576738 B2 JP 5576738B2
Authority
JP
Japan
Prior art keywords
electrode
plasma
dielectric member
plasma processing
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010171917A
Other languages
English (en)
Other versions
JP2012033385A (ja
Inventor
涼 末光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010171917A priority Critical patent/JP5576738B2/ja
Priority to US13/051,727 priority patent/US20120024819A1/en
Publication of JP2012033385A publication Critical patent/JP2012033385A/ja
Application granted granted Critical
Publication of JP5576738B2 publication Critical patent/JP5576738B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明の実施形態は、プラズマ処理装置及びプラズマ処理方法に関する。
例えば、半導体装置などの電子デバイスの製造において、ドライエッチングやCVD(Chemical Vapor Deposition)等のプラズマを用いた処理が行われている。
例えば高密度のプラズマを得るために、励起電力の周波数をあげると、処理室中央のプラズマ密度が周辺部に比べて著しく高くなり、プラズマ密度の面内分布が大きくなる。
被処理基板を均一に処理するために、面内で均一なプラズマ密度を得ることが望まれている。
特開2008−60236号公報
本発明の実施形態は、プラズマ密度の制御性に優れたプラズマ処理装置及びプラズマ処理方法を提供する。
本発明の実施形態によれば、第1電極と、第2電極と、誘電体部材と、比誘電率制御部と、を備えたプラズマ処理装置が提供される。前記第1電極と前記第2電極との間にプラズマが生起される。前記誘電体部材は、前記第1電極と前記第2電極との間に設けられ前記第1電極から前記第2電極に向かう方向に対して交叉する面内に延在する板状、シート状、層状、膜状または線状である。前記比誘電率制御部は、前記誘電体部材自体の比誘電率を、前記面内で変える。
本発明の実施形態によれば、第1電極と第2電極との間に設けられ前記第1電極から前記第2電極に向かう方向に対して交叉する面内に延在する板状、シート状、層状、膜状または線状の誘電体部材自体の比誘電率を前記面内で変化させた第1分布で、前記第1電極と前記第2電極との間の空間に第1プラズマを生起させて、前記第1プラズマで被処理物を処理する第1の工程を備えたプラズマ処理方法が提供される。
第1の実施形態に係るプラズマ処理装置の構成を例示する模式的断面図である。 図2(a)〜図2(l)は、第1の実施形態に係るプラズマ処理装置の動作を例示する模式図である。 第1の実施形態に係るプラズマ処理装置に用いられる誘電体部材の特性を例示する模式図である。 第1の実施形態に係るプラズマ処理装置に用いられる誘電体部材の別の特性を例示する模式図である。 図5(a)〜図5(c)は、第1の実施形態に係る別のプラズマ処理装置の構成を例示する模式的断面図である。 図6(a)〜図6(d)は、第1の実施形態に係るプラズマ処理装置の別の動作を例示する模式図である。 第1の実施形態に係る別のプラズマ処理装置の構成を例示する模式的断面図である。 図8(a)〜図8(f)は、第1の実施形態に係る別のプラズマ処理装置の動作を例示する模式図である。 第1の実施形態に係る別のプラズマ処理装置の構成を例示する模式的断面図である。 第2の実施形態に係るプラズマ処理方法を例示するフローチャート図である。 第2の実施形態に係る別のプラズマ処理方法を例示するフローチャート図である。 図12(a)及び図12(b)は、第2の実施形態に係る別のプラズマ処理方法の動作を例示する模式図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施の形態)
実施形態に係るプラズマ処理装置は、プラズマを用いたドライエッチング装置や、プラズマCVD装置などのプラズマを用いた成膜装置など、プラズマを用いた任意の処理装置に適用できる。以下では、実施形態に係るプラズマ処理装置が、プラズマを用いたドライエッチング装置に応用される例として説明する。そして、ドライエッチング装置の中でも、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)処理装置の例について説明する。
図1は、第1の実施形態に係るプラズマ処理装置の構成を例示する模式的断面図である。
図2(a)〜図2(l)は、第1の実施形態に係るプラズマ処理装置の動作を例示する模式図である。
図1に表したように、本実施形態に係るプラズマ処理装置は、処理容器5と、第1電極10と、第2電極20と、誘電体部材30と、比誘電率制御部40と、を備える。
処理容器5は、例えば、その内部が密閉可能な容器であり、その内部にウェーハ60(被処理物)が格納可能である。
第1電極10及び第2電極20は、処理容器5の内部に設けられている。本具体例では、第1電極10及び第2電極20は、平行平板である。
第1電極10は、例えば、処理容器5の内部の下部に設けられる。第2電極20は、例えば第1電極10に対向する。本具体例では、第2電極20は、処理容器5の内部の上部に配置される。ただし、第1電極10及び第2電極20の処理容器5における配置は任意である。
本具体例では、第1電極10は、ESC(Electro Statistic Chuck)15の内部に設けられている。ESC15は、例えばセラミックのウェーハ固定部11を有し、第1電極10は、ウェーハ固定部11の内部に埋め込まれている。ESC15は、ウェーハ60を静電力により吸着し、ウェーハ60を保持する。
第1電極10及び第2電極20を含む回路に高周波電源70が接続される。本具体例では、第1電極10に高周波電源70が接続され、第2電極20は接地されている。高周波電源70から供給される高周波電力により、第1電極10と第2電極20との間の空間50にプラズマが生起される。プラズマ処理装置110は、高周波電源70を含むこともでき、また、高周波電源70は、プラズマ処理装置110とは別に設けられても良い。
この様に、第1電極10と第2電極20との間にプラズマが生起される。
誘電体部材30は、第1電極10と第2電極20との間に設けられる。
本具体例では、上記のように、第2電極20は第1電極10の上方に設けられており、第1電極10と誘電体部材30との間にウェーハ60(被処理物)が配置されてプラズマ処理が可能になっている。すなわち、ウェーハ60が配置される位置よりも上方(第2電極20の側)に誘電体部材30が配置されている。
比誘電率制御部40は、誘電体部材30の比誘電率を、第1電極10から第2電極20に向かう方向に対して交叉する面内で変える。
比誘電率制御部40は、誘電体部材30の熱状態及び誘電体部材30に印加される機械的な力などを含む外力の少なくともいずれかを制御することで、誘電体部材30の材料を変えることなく、誘電体部材30における比誘電率の面内分布を形成する。これにより、誘電体部材30の比誘電率の面内分布が簡便に制御でき、また、面内分布を変更することも容易である。
ここで、第1電極10から第2電極20に向かう方向をZ軸方向とする。Z軸方向に対して垂直な1つの方向をX軸方向とする。Z軸方向とX軸方向とに対して垂直な方向をY軸方向とする。
第1電極10から第2電極20に向かうZ軸方向に対して交叉する面内は、例えばX−Y平面である。誘電体部材30は、例えば、X−Y平面に対して平行な面を有する板状、シート状、層状、または、膜状の構造体である。また、誘電体部材30は、必ずしも面状でなくても良く、例えば、X−Y平面に沿って延在する線状(例えば折り畳まれた線状など)でも良い。以下では、誘電体部材30が、例えば板状(または、シート状、層状、膜状)である場合として説明する。
比誘電率制御部40は、誘電体部材30の比誘電率を、Z軸方向に対して交叉するX−Y平面で、すなわち、誘電体部材30の面内で変える。比誘電率制御部40は、誘電体部材30の比誘電率を面内で不均一にし、比誘電率の面内分布を形成することができる。
例えば、誘電体部材30及び比誘電率制御部40が設けられていない参考例のプラズマ処理装置においては、処理容器5の中央部分でプラズマ密度が高く、周辺部分でプラズマ密度が低くなる傾向がある。すなわち、プラズマ密度の面内分布が大きく、プラズマ密度が不均一である。
これに対し、本実施形態に係るプラズマ処理装置110においては、参考例のプラズマ処理装置において形成されるプラズマ密度の分布を補償するように、誘電体部材30の比誘電率を面内で不均一にし、比誘電率の面内分布を形成する。それにより、プラズマ密度の面内の不均一性を低減する。
誘電体部材30の比誘電率は、例えば温度によって変化する。このとき、比誘電率制御部40は、誘電体部材30の温度を誘電体部材30の面内で変え、温度の面内分布を形成する。これにより、誘電体部材30の比誘電率の面内分布が形成される。比誘電率制御部40には、例えば、抵抗線型ヒータ及び赤外線ヒータ(ランプなどを含む)などのヒータ、または、冷却器などを用いることができる。
図1に例示したように、比誘電率制御部40には、例えば駆動部42が接続されている。駆動部42は比誘電率制御部40を制御する。駆動部42は、電子回路等を含み、比誘電率制御部40に電気信号を含む制御用の電流を供給する。なお、駆動部42は、比誘電率制御部40の一部と見なしても良い。プラズマ処理装置110は、駆動部42を含むこともでき、また、駆動部42は、プラズマ処理装置110とは別に設けても良い。
誘電体部材30の比誘電率は、正の温度依存性を有する場合と、負の温度依存性を有する場合と、がある。この温度依存性は、誘電体部材30として用いられる材料の種類と、温度範囲と、などに依存する。
以下、まず、誘電体部材30の比誘電率が正の温度依存性を有する場合について説明する。
図2(a)は、誘電体部材30の温度特性をモデル的に例示するグラフである。すなわち、同図の横軸は誘電体部材30の温度Tdであり、縦軸は誘電体部材30の比誘電率εである。
図2(b)及び図2(c)は、比誘電率制御部40の制御動作をモデル的に例示している。これらの図の横軸は、X軸方向に沿った位置である。位置Xcは、例えば、処理容器5の中央の位置に対応し、位置X1は、処理容器5の処理領域の一方の端の位置に対応し、位置X2は、他方の端の位置に対応する。図2(b)の縦軸は、比誘電率制御部40によって制御される誘電体部材30の温度Tdである。図2(c)の縦軸は、誘電体部材30の比誘電率εである。
図2(d)〜図2(f)は、比誘電率制御部40の制御動作によって得られるプラズマ処理装置110の状態をモデル的に例示している。これらの図の横軸は、X軸方向の位置である。図2(d)の縦軸は、第1電極10と第2電極20との間の静電容量Cである。図2(e)の縦軸は、第1電極10と第2電極20との間のインピーダンスCzである。図2(f)の縦軸は、第1電極10と第2電極20との間に生起するプラズマ密度Cpである。なお、図2(f)には、本実施形態に係るプラズマ処理装置110における特性を実線で例示した他に、上記の参考例のプラズマ処理装置119の特性を破線で例示している。
図2(a)に表したように、誘電体部材30の比誘電率εは、温度Tdが低いときに低く、温度Tdが高い時に高い。すなわち、比誘電率εは、正の温度依存性110aを有する。
このとき、図2(b)に表したように、比誘電率制御部40により、誘電体部材30の温度Tdは、中央の位置Xcよりも外側の位置X1及びX2において高く制御される。
その結果、図2(c)に表したように、誘電体部材30の比誘電率εは、中央の位置Xcよりも外側の位置X1及びX2において高くなる。
第1電極10と第2電極20との間の静電容量Cは、C=ε・ε・S/dで表される。ここで、εは、真空の誘電率であり、Sは第1電極10と第2電極20とが対向する部分の面積であり、dは第1電極10と第2電極20との間の距離である。
従って、図2(d)に表したように、第1電極10と第2電極20との間の静電容量Cは、中央の位置Xcよりも外側の位置X1及びX2において大きくなる。
第1電極10と第2電極20との間のインピーダンスCzは、|Cz|=1/(ωC)で表される。ここで、ωは、高周波電源70により供給される高周波電力の角周波数(周波数をfとしたときにω=2πf)である。
従って、図2(e)に表したように、第1電極10と第2電極20との間のインピーダンスCzは、中央の位置Xcよりも外側の位置X1及びX2において小さくなる。
インピーダンスCzが小さいと、イオン電流が増大し、プラズマ密度Cpが増大する。これにより、図2(f)の実線で表したように、プラズマ密度Cpは、中央の位置Xc、外側の位置X1及びX2において均一化される。
すなわち、図2(f)の破線で表したように、誘電体部材30及び比誘電率制御部40が設けられない参考例のプラズマ処理装置119においては、プラズマ密度Cpは、中央の位置Xcにおいて外側の位置X1及びX2よりも著しく高くなる。
これに対し、本実施形態に係るプラズマ処理装置110においては、誘電体部材30の比誘電率εを中央部分よりも外側で高くすることで、プラズマ密度Cpの面内分布を補償し、プラズマ密度Cpの不均一性を低減できる。このように、本実施形態によれば、プラズマ密度Cpの制御性に優れたプラズマ処理装置が提供できる。
なお、上記においては、X軸方向に沿った特性に関して説明したが、Y軸方向に沿った特性も同様である。すなわち、本実施形態によれば、プラズマ密度CpのX−Y平面における特性を制御できる。
本実施形態に係るプラズマ処理装置110を用いることで、プラズマ密度Cpの面内の不均一性を低減できることから、例えば、ウェーハ60のシリコン酸化膜を面内で均一にエッチングすることができる。
次に、誘電体部材30の比誘電率εが負の温度依存性を有する場合について説明する。
図2(g)は、誘電体部材30の温度特性をモデル的に例示するグラフである。図2(h)及び図2(i)は、比誘電率制御部40の制御動作をモデル的に例示している。図2(j)〜図2(l)は、比誘電率制御部40の制御動作によって得られるプラズマ処理装置110の状態をモデル的に例示している。
図2(g)に表したように、誘電体部材30の比誘電率εは、温度Tdが低いときに高く、温度Tdが高い時に低い。すなわち、比誘電率εは、負の温度依存性110bを有する。
このとき、図2(h)に表したように、比誘電率制御部40により、誘電体部材30の温度Tdは、中央の位置Xcよりも外側の位置X1及びX2において低く制御される。
その結果、図2(i)に表したように、誘電体部材30の比誘電率εは、中央の位置Xcよりも外側の位置X1及びX2において高くなる。
これにより、図2(j)に表したように、第1電極10と第2電極20との間の静電容量Cは、中央の位置Xcよりも外側の位置X1及びX2において大きくなる。そして、図2(k)に表したように、第1電極10と第2電極20との間のインピーダンスCzは、中央の位置Xcよりも外側の位置X1及びX2において小さくなる。これにより、図2(l)の実線で表したように、プラズマ密度Cpは、中央の位置Xc、外側の位置X1及びX2において均一化される。
そして、上記のX軸方向に沿った特性と同様の特性が、X−Y平面においても得られる。
このように、比誘電率εが負の温度依存性110bを有する場合においても、本実施形態に係るプラズマ処理装置110により、プラズマ密度Cpの面内分布を補償し、プラズマ密度Cpの不均一性を低減できる。
なお、プラズマ密度Cpの面内分布は、例えばラングミュアプローブなどによって測定することができる。
誘電体部材30には、外部からの作用によって比誘電率が変化する任意の材料を用いることができる。誘電体部材30には、例えば、チタン酸バリウム(TiBaO)、ジルコン酸鉛(PbZrO)、チタン酸カルシウム(CaTiO)、チタン酸ストロンチウム(SrTiO)、及び、硫酸グリシン(TGS:Tri-glycine surfate)などの強誘電体材料を用いることができる。
図3は、第1の実施形態に係るプラズマ処理装置に用いられる誘電体部材の特性を例示する模式図である。
すなわち、同図は、誘電体部材30にチタン酸バリウムなどの強誘電体を用いた場合の誘電体部材30の特性を例示するグラフ図であり、横軸は温度Tdであり、縦軸は比誘電率εである。
図3に表したように、相転移温度Tc(例えばキュリー温度)よりも低い温度と、高い温度と、で比誘電率εは大きく変化する。相転移温度Tcよりも低い温度領域R1(強誘電相に対応する温度領域)においては、比誘電率εは正の温度依存性を有している。相転移温度Tcよりも低い温度から高い温度に昇温すると、相転移温度Tcにおいて比誘電率εは急激に上昇する。相転移温度Tcよりも高い温度領域R2(常誘電相に対応する温度領域)においては、比誘電率εは負の温度依存性を有している。
本実施形態においては、正の温度依存性を有する温度領域R1の範囲で、誘電体部材30の温度Tdが制御されても良く、負の温度依存性を有する温度領域R2の範囲で、誘電体部材30の温度Tdが制御されても良い。さらに、温度領域R1と温度領域R2とを含む温度領域で誘電体部材30の温度Tdが制御されても良い。
誘電体部材30には、例えばポリアミド樹脂のような有機材料を用いても良い。
図4は、第1の実施形態に係るプラズマ処理装置に用いられる誘電体部材の別の特性を例示する模式図である。
すなわち、同図は、誘電体部材30にポリアミド樹脂を用いた場合の誘電体部材30の特性を例示するグラフ図である。
図4に表したように、この場合には、比誘電率εは、正の温度依存性を有している。
このように、誘電体部材30には、強誘電体や常誘電体などを含む無機及び有機の任意の材料を用いることができる。その材料の温度依存性に基づいて、比誘電率制御部40は、誘電体部材30の温度を誘電体部材30の面内で変化させ、誘電体部材30の比誘電率εを誘電体部材30の面内で変える。
本実施形態においては、誘電体部材30の温度を面内で変えることによって誘電体部材30の比誘電率εを面内で変えるため、簡便であり、比誘電率εの制御性が高い。
図5(a)〜図5(c)は、第1の実施形態に係る別のプラズマ処理装置の構成を例示する模式的断面図である。
図5(a)に表したように、プラズマ処理装置111は、誘電体部材30と第1電極10との間に設けられたカバー部材32をさらに備えている。カバー部材32は、ウェーハ60が設置される位置と誘電体部材30との間に設けられている。カバー部材32は、プラズマが生起される空間50と誘電体部材30との間に設けられている。カバー部材32は、例えば生起されるプラズマに対して耐性を有する。カバー部材32を設けることで、誘電体部材30がプラズマによって損傷することを抑制できる。
図5(b)に表したように、プラズマ処理装置112は、第1電極10と誘電体部材30との間に設けられ、ウェーハ60(被処理物)の温度を制御する温度制御部12をさらに備えている。本具体例では、温度制御部12は、ESC15のウェーハ固定部11に埋め込まれている。
温度制御部12には、例えばヒータが用いられる。温度制御部12により、ウェーハ60の温度がウェーハ60の面内において変化される。例えば、ウェーハ60の中央部の温度が低く設定され、中央部から周辺部に進むに従って温度が高く設定される。
ウェーハ60に施されるプラズマを用いた処理(例えばエッチング及び成膜の少なくともいずれか)は温度依存性を有する。例えばウェーハ60の表面温度が高いと、表面温度が低いときよりもエッチング速度が上昇する。すなわち、ウェーハ60の表面の反応性が温度に依存する。この特性を利用することで、ウェーハ60における面内の処理の均一性をさらに向上できる。
すなわち、誘電体部材30の比誘電率εを面内で制御することによるプラズマ密度Cpの制御の効果と、ウェーハ60の温度を面内で制御することによるウェーハ60面内の反応性の制御と、の両方を利用することで、より制御性の高いプラズマ処理が実施できる。
図5(c)に表したように、プラズマ処理装置113においては、誘電体部材30及び比誘電率制御部40は、第1電極10と、ウェーハ60(被処理物)が配置される位置と、の間に設けられている。本具体例では、誘電体部材30及び比誘電率制御部40は、ESC15のウェーハ固定部11に埋め込まれている。この場合も、誘電体部材30の比誘電率εを制御することで、プラズマ密度Cpが制御でき、プラズマ密度Cpの不均一性を低減できる。
このように、誘電体部材30(及び比誘電率制御部40)は、プラズマが生起される第1電極10と第2電極20との間の任意の場所に配置されることができる。
図6(a)〜図6(d)は、第1の実施形態に係るプラズマ処理装置の別の動作を例示する模式図である。
図6(a)は、比誘電率制御部40によって制御される誘電体部材30の比誘電率εの面内分布110cを例示し、図6(b)は、面内分布110cに対応するプラズマ密度Cpを例示している。図6(c)は、比誘電率制御部40によって制御される誘電体部材30の比誘電率εの別の面内分布110dを例示し、図6(d)は、面内分布110dに対応するプラズマ密度Cpを例示している。
図6(a)に表したように、面内分布110cにおいては、図2(c)に表した例に比べて、比誘電率εは、中央の位置Xcを含む広い範囲で低く設定され、外側の位置X1及びX2の近傍で急激に高くなるように制御されている。
この場合には、図6(b)に表したように、プラズマ密度Cpは、中央の位置Xcと外側の位置X1及びX2の近傍で高く、位置Xcと、位置X1及びX2と、の間の領域では、低くなる。
図6(c)に表したように、面内分布110dにおいては、比誘電率εの変化率は、中央の位置Xcの近傍、及び、外側の位置X1及びX2の近傍において高く、位置Xcと位置X1との中間部分、及び、位置Xcと位置X2との中間部分において低い。
この場合には、図6(d)に表したように、プラズマ密度Cpは、中央の位置Xcを含む領域で比較的均一で、外側の位置X1及びX2の近傍で高い。
このように、プラズマ密度Cpは、X−Y平面内で均一に制御されるだけでなく、図6(b)及び図6(d)に例示したような任意の特性に制御されることができる。例えば、ウェーハ60の加工性がウェーハ60の面内で分布を有する場合などにおいては、プラズマ密度Cpを面内で所望の特性に制御することで、より所望の処理が実施できる。
図7は、第1の実施形態に係る別のプラズマ処理装置の構成を例示する模式的断面図である。
図7に表したように、本実施形態に係る別のプラズマ処理装置120においては、比誘電率制御部40は、誘電体部材30に印加する圧力を、Z軸方向に対して交叉する面内(例えばX−Y平面であり、誘電体部材30の面内)で変える。
例えば、比誘電率制御部40は、X−Y平面内で分割された複数の圧力印加部を有しており、圧力印加部による圧力が誘電体部材30に印加される。圧力印加部は、例えば外部からの信号により、機械的に変形する部材や、体積膨張及び収縮に基づいて変形する部材などが用いられる。
誘電体部材30には、外部から印加される圧力によって比誘電率εが変化する、例えば圧電体などが用いられる。圧電体の構造(例えば結晶の方位)と、印加される圧力の方向と、の関係に基づいて、比誘電率εが正の圧力依存性を有する場合と、比誘電率εが負の圧力依存性を有する場合とがある。
図8(a)〜図8(f)は、第1の実施形態に係る別のプラズマ処理装置の動作を例示する模式図である。
図8(a)は、誘電体部材30の比誘電率εの圧力依存性(正の依存性)をモデル的に例示するグラフである。図8(b)及び図8(c)は、比誘電率制御部40の制御動作をモデル的に例示している。図8(b)の縦軸は、比誘電率制御部40によって制御される誘電体部材30に印加される圧力Fdである。図8(c)の縦軸は、誘電体部材30の比誘電率εである。
図8(a)に表したように、誘電体部材30の比誘電率εは、圧力Fdが低いときに低く、圧力Fdが高い時に高い。すなわち、比誘電率εは、正の圧力依存性120aを有する。
このとき、図8(b)に表したように、比誘電率制御部40により、誘電体部材30に印加される圧力Fdは、中央の位置Xcよりも外側の位置X1及びX2において大きく制御される。
その結果、図8(c)に表したように、誘電体部材30の比誘電率εは、中央の位置Xcよりも外側の位置X1及びX2において高くなる。
これにより、既に説明したように、静電容量Cは、中央の位置Xcよりも外側の位置X1及びX2において大きくなり、インピーダンスCzが中央の位置Xcよりも外側の位置X1及びX2において小さくなり、その結果、プラズマ密度Cpは、面内で均一化される。
図8(d)は、誘電体部材30の比誘電率εの圧力依存性(負の依存性)をモデル的に例示するグラフである。図8(e)及び図8(f)は、比誘電率制御部40の制御動作をモデル的に例示している。
図8(d)に表したように、誘電体部材30の比誘電率εは、圧力Fdが低いときに高く、圧力Fdが高い時に低い。すなわち、比誘電率εは、負の圧力依存性120bを有する。
このとき、図8(e)に表したように、比誘電率制御部40により、誘電体部材30に印加される圧力Fdは、中央の位置Xcよりも外側の位置X1及びX2において小さく制御される。
その結果、図8(f)に表したように、誘電体部材30の比誘電率εは、中央の位置Xcよりも外側の位置X1及びX2において高くなる。
この場合も、プラズマ密度Cpは、面内で均一化される。
このように、誘電体部材30の比誘電率εを誘電体部材30に印加される圧力Fdによって制御するプラズマ処理装置120においても、プラズマ密度Cpを面内で均一化することができる。
さらに、図6(a)〜図6(d)に関して説明したように、プラズマ処理装置120によれば、プラズマ密度Cpを任意の特性に制御することができ、これにより、より所望の処理が実施できる。
また、プラズマ処理装置120において、図5(a)に関して説明したカバー部材32、及び、図5(b)に関して説明した温度制御部12をさらに設けても良い。また、図5(c)に関して説明したように、誘電体部材30及び比誘電率制御部40を、第1電極10と、ウェーハ60(被処理物)が配置される位置と、の間に設けても良い。例えば、誘電体部材30、及び、圧力を制御する比誘電率制御部40は、ESC15のウェーハ固定部11に埋め込まれても良い。
図9は、第1の実施形態に係る別のプラズマ処理装置の構成を例示する模式的断面図である。
図9に表したように、本実施形態に係るプラズマ処理装置130は、誘導結合型プラズマ(Inductively Coupled Plasma)処理装置である。
この場合には、第1電極10は処理容器5の内部に設けられ、第2電極20は、処理容器5の外部に設けられている。第2電極20は、処理容器5の上部をX−Y平面内で取り囲む。
第2電極20には、高周波電源71が接続されている。第2電極20はアンテナとして機能する。
第2電極20に供給された高周波電力により、第1電極10と第2電極20との間の空間50にプラズマが生起される。
この場合も、誘電体部材30は、第1電極10と第2電極20との間に設けられる。そして、誘電体部材30の比誘電率を、第1電極10から第2電極20に向かう方向に対して交叉する面内で変える比誘電率制御部40が設けられている。
本具体例では、誘電体部材30及び比誘電率制御部40は、ウェーハ60が配置される位置よりも上方(第2電極20の側)に配置されているが、プラズマ処理装置113のように、誘電体部材30及び比誘電率制御部40は、第1電極10と、ウェーハ60が配置される位置と、の間に設けられても良い。
本具体例では、誘電体部材30及び比誘電率制御部40は、X−Y平面内に延在する線状の形状を有している。
ICP型のプラズマ処理装置においても、比誘電率制御部40により、誘電体部材30の比誘電率εを誘電体部材30の面内で変えることにより、プラズマ密度Cpを所望の状態(例えば面内で均一)にすることができる。
(第2の実施の形態)
図10は、第2の実施形態に係るプラズマ処理方法を例示するフローチャート図である。
図10に表したように、本実施形態に係るプラズマ処理方法は、第1電極10と第2電極20との間に設けられた誘電体部材30の比誘電率εを第1電極10から第2電極20に向かう方向に対して交叉する面内で変化させた第1分布で、第1電極10と第2電極20との間の空間50に第1プラズマを生起させて、第1プラズマでウェーハ60(被処理物)を処理する第1工程(ステップS110)を備える。
例えば、誘電体部材30の温度及び誘電体部材30に加わる圧力の少なくともいずれかを誘電体部材30の面内で変えることで、誘電体部材30の比誘電率εを誘電体部材30の面内で変える。これにより、生起されるプラズマの密度Cpを所望の状態に制御することができ、所望の処理が実現できる。例えば、プラズマ密度Cpを面内で均一にし、面内で均一な処理が実現できる。
本実施形態に係るプラズマ処理方法は、プラズマを用いたエッチング及び成膜の少なくともいずれかを含む処理に適用できる。
図11は、第2の実施形態に係る別のプラズマ処理方法を例示するフローチャート図である。
図11に表したように、本実施形態に係る別のプラズマ処理は、誘電体部材30の比誘電率εを上記の第1分布とは異なる第2分布として、上記の空間50に第2プラズマを生起させて、第2プラズマでウェーハ60を処理する第2の工程(ステップS120)をさらに備える。
すなわち、この処理方法においては、第1工程と第2工程とで、誘電体部材30の比誘電率εの面内分布を互いに異ならせて、処理を行う。
図12(a)及び図12(b)は、第2の実施形態に係る別のプラズマ処理方法の動作を例示する模式図である。
すなわち、図12(a)は、第1工程における比誘電率εの面内分布(第1分布141)を例示しており、図12(b)は、第2工程における比誘電率εの面内分布(第2分布142)を例示している。これらの図において、横軸はX軸方向に沿った位置であり、縦軸は誘電体部材30の比誘電率εである。
図12(a)及び図12(b)に表したように、第2工程における比誘電率εの第2分布142は、第1工程における比誘電率εの第1分布141とは、異なる。このように、比誘電率εの面内分布を異ならせることで、プラズマ密度Cpの面内分布を互いに異ならせることができる。これにより、より所望の状態の処理を実施できる。
例えば、第1工程及び第2工程は、1つのプラズマ処理における初期の処理及び後期の処理とすることができる。初期の処理と後期の処理とで、プラズマ密度Cpの分布を変えることで、より所望の処理結果が得られる場合に、本方法が採用される。
また、第1工程は、第1のウェーハ60に対する処理で、第2工程は、別のウェーハ60に対する処理とすることができる。例えば、第1のウェーハ60と第2のウェーハ60とで、処理の履歴が異なる。また、第1のウェーハ60と第2のウェーハ60とで、それぞれの構成(金属層、半導体層及び絶縁層の材料並びに厚さ及びパターンなど)が異なる。このとき、それぞれのウェーハ60に適したプラズマの条件で処理を行うことができ、より所望の処理が実施できる。すなわち、プロセス柔軟性を高めることができる。
本実施形態に係るプラズマ処理方法は、例えば、第1の実施形態に関して説明したいずれかのプラズマ処理装置及びそれの変形のプラズマ処理装置を用いて実施できる。実施形態に係るプラズマ処理装置によれば、比誘電率制御部40により、誘電体部材30の材料を変えることなく、誘電体部材30における比誘電率εの分布を簡便に制御でき、第1工程と第2工程とにおける異なるプラズマの条件を簡便に作り出すことができる。
実施形態に係るプラズマ処理装置及びプラズマ処理方法によれば、例えばプラズマ密度Cpを所望の状態に制御することができ、大面積のプラズマにおいて高い面内の均一性を得る際に、特に有効である。そして、プラズマ密度Cpの分布を例えば工程内で、または工程ごとに変化させることができ、より所望の処理が実施できる。
実施形態に係るプラズマ処理装置及びプラズマ処理方法は、例えば、300mmサイズの被処理物の処理、450mmサイズの被処理物の処理、及び、さらにサイズが大きい次世代の被処理物の処理に適用できる。本装置及び本方法は、シリコン基板(ウェーハ)、SOI(Silicon On Insulator)の基板、及び、化合物半導体の基板などへのエッチング及び成膜を含む処理、大面積の太陽電池用アモルファスシリコン成膜の処理、並びに、大面積のフラットパネルディスプレイにおけるエッチング及び成膜の処理など、任意の処理に応用できる。
以上のように、実施形態によれば、プラズマ密度の制御性に優れたプラズマ処理装置及びプラズマ処理方法が提供する。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、プラズマ処理装置に含まれる第1電極、第2電極、誘電体部材、比誘電率制御部、処理容器、ESC、ウェーハ固定部、温度制御部、カバー部材、駆動部、高周波電源などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述したプラズマ処理装置及びプラズマ処理方法を基にして、当業者が適宜設計変更して実施し得る全てのプラズマ処理装置及びプラズマ処理方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
5…処理容器、 10…第1電極、 11…ウェーハ固定部、 12…温度制御部、 15…ESC、 20…第2電極、 30…誘電体部材、 32…カバー部材、 40…比誘電率制御部、 42…駆動部、 50…空間、 60…ウェーハ、 70、71…高周波電源、 110、111、112、113、119、120、130…プラズマ処理装置、 110a…正の温度依存性、 110b…負の温度依存性、 110c、110d…面内分布、 120a…正の圧力依存性、 120b…負の圧力依存性、 141…第1分布、 142…第2分布、 C…静電容量、 Cp…プラズマ密度、 Cz…インピーダンス、 Fd…圧力、 R1、R2…温度領域、 Tc…相転移温度、 Td…温度、 X1、X2、Xc…位置

Claims (5)

  1. 第1電極と、
    前記第1電極との間にプラズマが生起される第2電極と、
    前記第1電極と前記第2電極との間に設けられ前記第1電極から前記第2電極に向かう方向に対して交叉する面内に延在する板状、シート状、層状、膜状または線状の誘電体部材と、
    前記誘電体部材自体の比誘電率を、前記面内で変える比誘電率制御部と、
    を備えたことを特徴とするプラズマ処理装置。
  2. 前記比誘電率制御部は、前記誘電体部材の温度及び前記誘電体部材に加わる圧力の少なくともいずれかを前記面内で変えることを特徴とする請求項1記載のプラズマ処理装置。
  3. 前記第2電極は前記第1電極の上方に設けられ、
    前記第1電極と前記誘電体部材との間に被処理物が配置されて処理が行われることを特徴とする請求項1または2に記載のプラズマ処理装置。
  4. 第1電極と第2電極との間に設けられ前記第1電極から前記第2電極に向かう方向に対して交叉する面内に延在する板状、シート状、層状、膜状または線状の誘電体部材自体の比誘電率を前記面内で変化させた第1分布で、前記第1電極と前記第2電極との間の空間に第1プラズマを生起させて、前記第1プラズマで被処理物を処理する第1の工程を備えたことを特徴とするプラズマ処理方法。
  5. 前記誘電体部材自体の前記比誘電率を前記第1分布とは異なる第2分布として、前記空間に第2プラズマを生起させて、前記第2プラズマで被処理物を処理する第2の工程をさらに備えたことを特徴とする請求項4記載のプラズマ処理方法。
JP2010171917A 2010-07-30 2010-07-30 プラズマ処理装置及びプラズマ処理方法 Expired - Fee Related JP5576738B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010171917A JP5576738B2 (ja) 2010-07-30 2010-07-30 プラズマ処理装置及びプラズマ処理方法
US13/051,727 US20120024819A1 (en) 2010-07-30 2011-03-18 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171917A JP5576738B2 (ja) 2010-07-30 2010-07-30 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2012033385A JP2012033385A (ja) 2012-02-16
JP5576738B2 true JP5576738B2 (ja) 2014-08-20

Family

ID=45525650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171917A Expired - Fee Related JP5576738B2 (ja) 2010-07-30 2010-07-30 プラズマ処理装置及びプラズマ処理方法

Country Status (2)

Country Link
US (1) US20120024819A1 (ja)
JP (1) JP5576738B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2779803B1 (en) 2011-11-11 2020-01-08 Saga University Plasma generation device for suppressing localised discharges
KR20180136302A (ko) * 2017-06-14 2018-12-24 삼성전자주식회사 플라즈마 공정 장치 및 이를 이용한 반도체 장치 제조 방법
JP7004440B1 (ja) * 2020-02-27 2022-01-21 東芝三菱電機産業システム株式会社 活性ガス生成装置
US12002655B2 (en) 2020-04-30 2024-06-04 Hitachi High-Tech Corporation Plasma processing apparatus
JP2021180283A (ja) * 2020-05-15 2021-11-18 東京エレクトロン株式会社 載置台アセンブリ、基板処理装置および基板処理方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305394A (en) * 1964-06-30 1967-02-21 Ibm Method of making a capacitor with a multilayered ferroelectric dielectric
JPS6433900A (en) * 1987-07-29 1989-02-03 Hitachi Ltd Phase shifter for nuclear fusion device
US5686172A (en) * 1994-11-30 1997-11-11 Mitsubishi Gas Chemical Company, Inc. Metal-foil-clad composite ceramic board and process for the production thereof
US6095084A (en) * 1996-02-02 2000-08-01 Applied Materials, Inc. High density plasma process chamber
US5970907A (en) * 1997-01-27 1999-10-26 Canon Kabushiki Kaisha Plasma processing apparatus
US6228438B1 (en) * 1999-08-10 2001-05-08 Unakis Balzers Aktiengesellschaft Plasma reactor for the treatment of large size substrates
US6508911B1 (en) * 1999-08-16 2003-01-21 Applied Materials Inc. Diamond coated parts in a plasma reactor
US6459066B1 (en) * 2000-08-25 2002-10-01 Board Of Regents, The University Of Texas System Transmission line based inductively coupled plasma source with stable impedance
JP4472372B2 (ja) * 2003-02-03 2010-06-02 株式会社オクテック プラズマ処理装置及びプラズマ処理装置用の電極板
US7449220B2 (en) * 2004-04-30 2008-11-11 Oc Oerlikon Blazers Ag Method for manufacturing a plate-shaped workpiece
US7244311B2 (en) * 2004-10-13 2007-07-17 Lam Research Corporation Heat transfer system for improved semiconductor processing uniformity
US7895970B2 (en) * 2005-09-29 2011-03-01 Tokyo Electron Limited Structure for plasma processing chamber, plasma processing chamber, plasma processing apparatus, and plasma processing chamber component
JP5029089B2 (ja) * 2007-03-26 2012-09-19 東京エレクトロン株式会社 プラズマ処理装置用の載置台及びプラズマ処理装置
JP5112773B2 (ja) * 2007-07-25 2013-01-09 芝浦メカトロニクス株式会社 載置台およびプラズマアッシング処理装置
CN101842877B (zh) * 2007-10-31 2012-09-26 朗姆研究公司 用于半导体处理室的温度控制模块及控制元件温度的方法
JP2009123929A (ja) * 2007-11-15 2009-06-04 Tokyo Electron Ltd プラズマ処理装置
US8151851B2 (en) * 2009-06-17 2012-04-10 Tyco Healthcare Group Lp Apparatus for making bag assembly and method thereof
US9313872B2 (en) * 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5592129B2 (ja) * 2010-03-16 2014-09-17 東京エレクトロン株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
JP2012033385A (ja) 2012-02-16
US20120024819A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US10763150B2 (en) System for coupling a voltage to spatially segmented portions of the wafer with variable voltage
JP6207780B2 (ja) ピクセル化された容量制御esc
US10714372B2 (en) System for coupling a voltage to portions of a substrate
JP5597456B2 (ja) 誘電体の厚さ設定方法、及び電極に設けられた誘電体を備える基板処理装置
JP5102706B2 (ja) バッフル板及び基板処理装置
CN101194338B (zh) 具有多个异相电极的高频等离子体源
US8441772B2 (en) Substrate for electrostatic chuck and electrostatic chuck
TW202042339A (zh) 利用經供電的邊緣環的處理
US20150129112A1 (en) Shower head assembly, plasma processing apparatus and method for manufacturing a shower head assembly
JP5576738B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2009231692A (ja) プラズマ処理装置
JP2018110216A (ja) プラズマ処理装置
US20190006156A1 (en) Plasma Processing Apparatus
US9431218B2 (en) Scalable and uniformity controllable diffusion plasma source
KR101050443B1 (ko) 플라즈마 밀도 균일도 향상을 위한 다분할 적층형 플레이트 구조의 유전체 윈도우를 가지는 플라즈마 발생장치
TWI466597B (zh) 電漿製程設備(二)
TWI774550B (zh) 載台及其製作方法
JP2020017700A (ja) 基板処理装置及び基板処理制御方法
KR20070050111A (ko) 균일한 온도제어를 위한 정전척 및 이를 포함하는 플라즈마발생장치
KR100978245B1 (ko) 4중막 구조를 가지는 정전척
KR20100089541A (ko) 플라즈마 화학 기상 증착 장치
US7580238B2 (en) Electrostatic chuck structure for semiconductor manufacturing apparatus
CN113811978B (zh) 用于平板显示器的大面积高密度等离子体处理腔室
US20230136720A1 (en) Substrate support, plasma processing apparatus, and plasma processing method
JP2000003904A (ja) 静電吸着装置及び真空処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140704

R151 Written notification of patent or utility model registration

Ref document number: 5576738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees