JP5542280B2 - 放熱グリース組成物 - Google Patents

放熱グリース組成物 Download PDF

Info

Publication number
JP5542280B2
JP5542280B2 JP2010261040A JP2010261040A JP5542280B2 JP 5542280 B2 JP5542280 B2 JP 5542280B2 JP 2010261040 A JP2010261040 A JP 2010261040A JP 2010261040 A JP2010261040 A JP 2010261040A JP 5542280 B2 JP5542280 B2 JP 5542280B2
Authority
JP
Japan
Prior art keywords
heat
grease composition
fine powder
liquid metal
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010261040A
Other languages
English (en)
Other versions
JP2012111823A (ja
Inventor
浩二 斉藤
正顕 小川
久幸 大澤
節夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Yushi Co Ltd
Toyota Motor Corp
Original Assignee
Kyodo Yushi Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Yushi Co Ltd, Toyota Motor Corp filed Critical Kyodo Yushi Co Ltd
Priority to JP2010261040A priority Critical patent/JP5542280B2/ja
Publication of JP2012111823A publication Critical patent/JP2012111823A/ja
Application granted granted Critical
Publication of JP5542280B2 publication Critical patent/JP5542280B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱伝導率が高く、放熱性に優れた放熱グリース組成物に関する。
自動車や電気製品の電子機器において使用される部材の中には、インバータのような電源制御用パワーモジュール又はコンピュータのCPUのように、その使用中に発熱を伴うものがある。熱による電子機器の機能障害を回避し、その性能を維持するためには、発生した熱を速やかに電子機器外に放出する必要がある。それ故、通常はヒートシンクのような放熱部材が電子機器内に設置されている。また、発熱部材と放熱部材との間には、通常、放熱グリースが塗布され、放熱部材で発生した熱を放熱部材へ効率的に伝導し、放熱を促進する役目を担っている。
従来の一般に使用されている放熱グリースは、そのほとんどがシリコーン油のような有機ケイ素化合物又はポリαオレフィン油のような炭化水素系合成油等に、酸化亜鉛又は酸化アルミニウム等の金属酸化物や、窒化ホウ素、窒化珪素又は窒化アルミニウム等の無機窒化物から構成される熱伝導率の高い微粉末充填剤を分散させて半固体状にしたものである。しかし、電子機器の性能向上や、小型・高密度実装化が急速に進み、電子機器における発熱量もそれに伴い急速に増大している。それ故、電子機器の性能維持には、より熱伝導率の高い放熱グリースの開発が不可欠となっている。
放熱グリースにおける熱伝導率の向上は、通常、前記微粉末充填剤の含有量を増加することによって対応している。しかし、微粉末充填剤の添加による最大熱伝導率は、5W/(mK)程度であり、それ以上の向上は望めない。
上記問題点を解決するために、新たに熱伝導率の高い液体である液体金属を成分とする放熱剤も開発されている。例えば、ガリウム、インジウム、スズの合金からなる液体金属で構成され、ヒートシンク用放熱剤として市販されているLIQUID Pro(独:Cool Laboratory社製)が挙げられる。この液体金属の熱伝導率は、20W/(mK)以上もあり、一般的な放熱グリースのそれと比較すると格段に高い。しかし、一般に液体金属は、表面張力が非常に高く、そのままでは液滴となって転がり落ちてしまうため、塗布性が悪いという問題がある。それ故、液体金属をグリース状化する試みがなされている。
特許文献1〜4には、液体金属を使用した放熱グリースが開示されている。しかし、これらの放熱グリースは、従来の放熱グリースの基材の一つであったシリコーン油に液体金属を添加したものであって、液体金属を基材とするものではなく、熱伝導率の向上には限界があった。
特許文献5〜7には、放熱を目的とする低融点液体金属(ガリウム、インジウム、スズの合金を含む)を基材とする放熱グリースが開示されている。しかし、その充填剤の種類は、特許文献5がタングステン、モリブデン、シリコン、特許文献6が窒化ホウ素、アルミナ、窒化アルミニウム、そして特許文献7がセラミック粉末に留まり、また特許文献6以外は、熱伝導率についての具体的な検証がなされておらず、さらに特許文献6に記載の放熱グリースの熱伝導率も8W/(mK)に過ぎないため、熱伝導率が高いとは言い難かった。
特開平7-207160 特開平8-53664 特開2003-176414 特開2007-106809 特開平03-071992 特開2001-329068 特開2004-071816
従来品よりも熱伝導率が高く、かつ半固体状で塗布しやすい放熱グリース組成物の提供を目的とする。
本発明者らは、鋭意研究を重ね、常圧下での融点が16℃以下である金属、すなわち液体金属を基材とし、それに微粉末充填剤を添加して均一に分散させ、所定のちょう度を有する半固体状にすることによって、高熱伝導率を維持し、液体金属の塗布困難性を解決した放熱グリース組成物を開発するに至った。本発明は、当該新たに開発された放熱グリース組成物に基づくものであり、以下を提供する。
(1)ガリウム(Ga)、インジウム(In)及び/又はスズ(Sn)を含み、常圧下での融点が16℃以下である合金、及び平均粒径が0.01μm〜20μmであり、かつ2〜40重量%で包含される、金属からなる微粉末充填剤を含有し、そのちょう度が200〜400の範囲内にある放熱グリース組成物。
(2)金属が銀、銅又はその組合せである、(1)に記載の放熱グリース組成物。
(3)(1)又は(2)に記載の放熱グリース組成物を発熱部材とそれに近接した放熱部材の間隙に充填した電子機器。
本発明によれば、熱伝導率が高く、かつ半固体状で塗布しやすい放熱グリース組成物を提供することができる。
本発明の電子機器によれば、発熱部材から発生した熱の冷却性に優れ、発熱による電子機器の機能障害及び寿命の短縮化の改善、及び電子機器本体のさらなる小型化及び電子機器内の各部材の高密度な実装化が可能となる。
1.放熱グリース組成物
1−1.概要
本発明の第1の実施形態は、放熱グリース組成物に関する。一般に「グリース」とは、基油に増ちょう剤を分散させて半固体又は固体化したものと定義されるが、本発明において「グリース」とは、基油に相当する液体金属に、増ちょう剤に相当する微粉末充填剤を均一に分散させて、ペースト状又はゼリー状の半固体にした物質をいう。「放熱グリース」とは、前述のように、主として、電子機器内において発熱部材と放熱部材との間に充填され、発熱部材で発生した熱を放熱部材に効率的に伝導するグリースをいう。本発明の放熱グリース組成物は、高い熱伝導率を有し、また適度なちょう度により部材への塗布が容易な特徴を有する。
1−2.構成
本発明の放熱グリース組成物は、その構成成分として、常圧下での融点が16℃以下である合金、及びそれに均一に分散した微粉末充填剤を含有する。以下、それぞれについて説明をする。
1−2−1.常圧下での融点が16℃以下である合金
本発明において「常圧下での融点が16℃以下である合金」とは、常温(16℃より高い温度)常圧下では液体の性状で存在する、いわゆる液体金属と呼ばれる金属合金をいう(本明細書では、以下、しばしば「液体金属」と表現する)。本発明において「常圧」とは、一般的な環境下における標準的気圧であり、通常、1気圧(1013.25hpa)付近、例えば、630hpa〜1020hpaにおける気圧が該当する。
本発明の液体金属は、複数の金属からなる合金からなる。このような性質を有する合金には、例えば、ガリウム(Ga)、インジウム(In)及び/又はスズ(Sn)を含む合金が挙げられる。さらにビスマスを含んでいてもよい。より好ましくはガリウム、インジウム及びスズからなる合金である。ガリウム、インジウム及びスズからなる合金における各金属の重量比は、常圧下での融点が16℃以下であれば、特に限定はしない。好ましくは、その重量比が64.2〜68.5:20.6〜21.5:15.2〜10.0(ただし、各重量比の総計が100を超えないものとする)の場合である。
液体金属は、本発明の放熱グリース組成物の基材(ベース)として使用される。すなわち、液体金属は、本発明の放熱グリース組成物の媒体となる成分であって、後述する微粉末充填剤等をはじめとする他の成分を包含する液体成分をいう。それ故、従来の放熱グリースにおいて基材として用いられていた基油、例えば、ポリシロキサン(シリコーン油、シリコーンゴムを含む)や炭化水素系合成油は、本発明の放熱グリース組成物の必須の構成成分ではない。
1−2−2.微粉末充填剤
本発明において「微粉末充填剤」とは、液体金属に硬さを付与し得る粉末状の微粒子物質をいう。本発明における微粉末充填剤は、液体金属中に均一に分散可能で、その混合組成物がグリース状の半固体形態を呈するものが好ましい。また、本発明の放熱グリース組成物が高い熱伝導性を維持するためには、微粉末充填剤も熱伝導性の高い物質であることが好ましい。したがって、本発明において好適な微粉末充電剤は、金属の微粉末である。
微粉末充填剤として使用可能な金属には、例えば、マグネシウム、アルミニウム、ケイ素、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、銀、ロジウム、イリジウム、白金、金、タリウム、又はビスマス等が挙げられる。また、2種以上の金属の合金であってもよい。ただし、上記例示のうちアルミニウムについては、液体金属がガリウムを包含する場合には本発明の微粉末充填剤には適さない。ガリウムがアルミニウムを腐食させてしまうためである。また、ベリリウム、鉛、カドミウム、砒素、テルル、アンチモン、バリウムのような人体に対して毒性を示す金属又はラジウム、フランシウム、ポロニウム、テクネチウムのような放射性を有する金属、並びにそれらの酸化物及び無機化合物は、微粉末充填剤として好ましくない。
本発明の放熱グリース組成物において、微粉末充填剤は、前述したように高い熱伝導率、具体的には50W/(mK)以上、より好ましくは100W/(mK)以上、さらに好ましくは200W/(mK)以上、一層好ましくは400W/(mK)の熱伝導率を有する金属(合金を含む)の微粉末である。具体的には、例えば、熱伝導率が100W/(mK)以上のコバルト、亜鉛、モリブデン、ルテニウム、ロジウム、タングステン、イリジウム、銅、銀、金等が挙げられる。好ましくは、熱伝導率が300W/(mK)以上の銅、銀及び/又は金である。熱伝導率及びコスト面を考慮した場合、特に好ましくは、熱伝導率が400W/(mK)以上の銅及び/又は銀である。アルミニウムは、熱伝導率が200W/(mK)を越えるが、前述の理由から、液体金属にガリウムを包含する場合には、不適である。
微粉末充填剤の平均粒径は、0.01〜20μmの範囲内であることが好ましい。より好ましくは0.05〜10μmの範囲内、さらに好ましくは0.1〜5μmの範囲内である。これは、微粉末充填剤の平均粒径が20μmを超えると、液体金属と混練しても均質な半固体状にはならず、平滑に塗布することが困難となるためである。平均粒径の下限は特に限定はしないものの、0.01μmよりも小さくするには技術的困難性を伴い、また製造コストが高くなる等の問題を生じ得るからである。
微粉末充填剤は、放熱グリース組成物のちょう度が後述する数値の範囲内となるように適宜勘案して、前記液体金属に加えればよい。ちょう度を所望の数値範囲内にする微粉末充填剤の量は、放熱グリース組成物に使用する液体金属及び微粉末充填剤の種類・組成及び性質によって異なるが、通常は、微粉末充填剤が放熱グリース組成物の2〜40重量%、5〜30重量%又は8〜20重量%で含有されていればよい。
本発明の放熱グリース組成物において、微粉末充填剤は、前記液体金属中に均一に分散されていることが望ましい。通常は、液体金属と微粉末充填剤を混合後、公知技術によって十分に混練することで、この条件を達成し得る。
1−2−3.任意成分
本実施形態の放熱グリース組成物は、必須の構成成分である前記液体金属及び微粉末充填剤に加えて、任意の成分を包含することができる。任意成分としては、例えば、金属酸化物、窒化物、それら以外の無機化合物、有機化合物、又はその組合せが挙げられる。
金属酸化物には、例えば、前記「1−2−2.微粉末充填剤」で例示した金属の酸化物等が挙げられる。また、窒化物には、例えば、窒化アルミニウム、窒化ホウ素、窒化ガリウム、又は窒化ケイ素等が挙げられる。さらに、金属、金属酸化物及び窒化物以外の無機化合物には、例えば、炭化ケイ素、グラファイト(黒鉛)、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、タルク、マイカ、セリサイト、ベントナイト、又はヘクトライト等が挙げられる。有機化合物には、例えば、プラスチック等が挙げられる。
放熱グリース組成物における任意成分の量は、放熱グリース組成物の高熱伝導率を低減しない範囲であれば特に限定はしないが、通常は、極微量、例えば、放熱グリース組成物の0.1〜1重量%以下である。また二以上の任意成分が包含されていてもよい
1−3.特性
本発明の放熱グリース組成物は、ちょう度が所定の範囲内であり、かつ高い熱伝導率を有する。以下、本発明の放熱グリース組成物の特性であるちょう度及び熱伝導率について説明をする。
1−3−1.ちょう度
本発明の放熱グリース組成物は、ちょう度が200〜400の範囲内にあることを特徴とする。
「ちょう度」とは、グリースのような半固体物質の硬さを表す基本物性値である。本発明におけるちょう度は、JIS K2220の7号で規定される測定方法による測定値に基づいて算出されたグリースの外観的な硬さを表す値で、混和ちょう度を意味する。規定の混和器に被検グリースを入れ、25℃下で規定重量の円錐がそのグリースに5秒間で貫入した侵入深度から算出され、その値が大きいほど軟らかいグリースであることを意味する。
本発明の放熱グリース組成物のちょう度は、200〜400、好ましくは200〜398、より好ましくは200〜395である。このちょう度は、前述のように液体金属に対する微粉末充填剤の充填量によって調節することができる。
1−3−2.熱伝導率
本発明の放熱グリース組成物は、従来の放熱グリースと比較して高い熱伝導率を有することを特徴とする。熱伝導率は、本発明の放熱グリース組成物の構成成分である液体金属や微粉末充填剤の種類及び/又は性質等によって決定される。本発明においては、10W/(mK)以上、15W/(mK)以上又は20W/(mK)以上の熱伝導率を有することが好ましい。基材である液体金属と微粉末充填剤のいずれにも、熱伝導率の高い物質を用いることで、本発明の放熱グリースは、高熱伝導率を獲得し得る。それ故、特に好ましい微粉末充填剤は、前述のように銅及び/又は銀である。
1−4.効果
本実施形態の放熱グリース組成物によれば、液体金属を基材に用いることで従来の放熱グリースと比較して格段に高い熱伝導性を実現できる。また、金属からなる微粉末充填剤を液体金属に均一に分散させて所定のちょう度を獲得することで、従来の液体金属を基材とする放熱グリースで問題となっていた塗布困難性を解決し、所望の部材へ平滑かつ容易に塗布することが可能となる。
本実施形態の放熱グリース組成物を電子機器に用いれば、その良好な塗布性及び高熱伝導率によって、発熱部材の効率的な冷却が可能となる。
2.電子機器
2−1.概要
本発明の第2の実施形態は、電子機器に関する。本実施形態によれば、発熱部材から発生した熱の冷却性に優れた電子機器の提供が可能となる。
2−2.構成
本実施形態の電子機器は、少なくとも発熱部材とそれに近接した放熱部材を有し、その両部材の間隙に実施形態1の放熱グリース組成物を充填した構成を有する。これにより、放熱グリース組成物を介して発熱部材と放熱部材とは接触した状態となる。
本発明において「電子機器」とは、インバータ回路のような電源制御用パワーモジュールやCPUのような演算処理回路によって電子制御される機器全般をいう。例えば、パソコン、自動車、電子制御された家電(例えば、エアコン、冷蔵庫、電子レンジ)、通信機(例えば、携帯電話、無線機)、又は音響機器(例えば、オーディオアンプ)等が挙げられる。
「発熱部材」とは、電子機器内に設置され、通電によって発熱する部材をいう。本実施形態においては、特に、自然対流による放熱では十分な冷却が不可能な程の多量の熱を発生する部材がその対象となる。例えば、前述のインバータ回路やCPUがその代表として挙げられる。
「放熱部材」とは、発熱部材で発生した熱を受け取り、電子機器外部に熱を放散することで発熱部材を、ひいては電子機器自体を冷却する部材をいう。例えば、ヒートシンクが挙げられる。一般に、放熱部材は、熱抵抗の小さい材質によって構成され、放熱効率を高めるために表面積を大きくして板状又は棒状の放熱フィンを多数有していることが多いが、本実施形態の放熱部材も同様の材質からなり、また同様の形態を有していてもよい。発熱部材によって、自然冷却のみでも十分な熱拡散効果を有する場合、又は熱拡散のためにファンで強制冷却を必要とする場合があるが、いずれの場合の放熱部材も本実施形態の対象となる。また、発熱部材から熱を受け取り、外部にその熱を放散することができるのであれば、ヒートシンクのような放熱専用の部材である必要はなく、例えば、電子機器の筐体が放熱部材として機能してもよい。
放熱グリース組成物の充填量は、発熱部材とそれに近接する放熱部材間の間隙の大きさ及び面積に応じて適宜定めればよい。効率的な熱伝導のために両部材が放熱グリース組成物を介して完全に接触できるように、すなわち、両部材間に気層が存在しないように完全に充填されることが好ましい。
2−3.効果
本実施形態の電子機器は、実施形態1の放熱グリース組成物を介して前記発熱部材と放熱部材が接触した構造を有する。それ故、発熱部材で発生した熱は、高熱伝導率を有する放熱グリース組成物によって直ちに放熱部材へと伝導され、そこで大気中に放散される。これによって、発熱部材は、効率的に冷却される。
したがって、本実施形態の電子機器によれば、発熱部材から発生した熱の冷却性に優れ、発熱による電子機器の機能障害及び寿命の短縮化の改善、及び電子機器本体の小型化及び電子機器内の各部材の高密度な実装化が可能となる。
以下の実施例において、本発明の放熱グリース組成物を具体的に説明する。ただし、ここで挙げる具体的条件は、単なる一例に過ぎず、本発明の範囲をなんら制限するものではない。
<材料>
(1)基材
(a)液体金属LM-1: ガリウム:インジウム:スズが64.2:20.6:15.2で混合された合金で、常温、常圧で液体の性質を有する。全ての実施例及び一部の比較例の放熱グリース組成物の基材として用いた(表1参照)。
(b)PAO 10: ポリ-α-オレフィン油で、100℃において10mm2/sの動粘度を示す。一部の比較例の放熱グリース組成物の基材として用いた(表1参照)。
(2)微粉末充填剤
・実施例:銀粉(平均粒径0.4μm)又は銅粉(平均粒径0.7μm、20μm又は30μm)
・比較例:銅粉(平均粒径0.7μm、20μm又は30μm)又は酸化亜鉛(平均粒径0.7μm)
<方法>
(1)放熱グリース組成物の製造
上記材料の基材及び微粉末充填剤を表1に記載の重量比で混合し、メノウ乳鉢で混練して微粉末充填剤を十分に均一分散させて製造した。
Figure 0005542280
製造した各放熱グリースを用いて、実施例及び比較例の各放熱グリース組成物における、熱伝導率、塗布性、ちょう度及び外観について検証した。
(2)熱伝導率の測定
各実施例及び比較例の放熱グリース組成物の熱伝導率は、ホットディスク法で測定した。すなわち、一定時間に一定電流を流して試験体(実施例及び比較例の放熱グリース組成物)を加熱し、電気抵抗の時間変化を測定した後、その測定結果から熱伝導率を算出した。
(3)塗布性
塗布性は、ガラス板上に50μmの厚さのスペーサーを固定し、ガラス板上に放熱グリース組成物を樹脂製ヘラで塗布し、平滑に塗布できるか否かで評価した。
(4)ちょう度
前述のように、JIS K2220の7号で規定される測定方法で得られた測定値から混和ちょう度を算出した。
(5)外観
放熱グリースを流動させて、目視により粘性のある「グリース状」か粘性のない「液状」かを判断した。微粉末充填剤が液体金属に均一に分散されていない場合には、「不均一」とした。
<結果>
結果を表1に示し、以下、それぞれについて検討する。
(比較例1)
液体金属のみを使用した場合には、熱伝導率は27W/(mK)と高かったが、完全な液状であり、またその表面張力のため塗布ができなかった。
(比較例2及び4)
液体金属の基材に、平均粒径が30μmの銅粉を微粉末充填剤として10重量%で混合した場合(比較例2)、及び液体金属の基材に、平均粒径が20μmの銅粉を微粉末充填剤として50重量%で混合した場合(比較例4)、いずれも微粉末充填剤が液体金属中に均一に分散せず、平滑に塗布できなかった。
(比較例3)
液体金属の基材に、平均粒径0.7μmの酸化亜鉛粉を微粉末充填剤として10重量%で混合した場合、塗布性に問題はなかったが、熱伝導率が8W/(mK)にしか達しなかった。金属以外の微粉末充填剤を使用した場合、十分に高い熱伝導率が得られないと思われる。
(比較例5)
従来の放熱グリースで使用されていたPAO 10を基材に、平均粒径0.7μmの銅粉を微粉末充填剤として87.5重量%で混合した場合、塗布性に問題はなかったが、熱伝導率がわずか1W/(mK)であった。
(実施例1及び5)
液体金属の基材に、平均粒径が0.4μmの銀粉を微粉末充填剤として10重量%で混合した場合(実施例1)、及び2重量%で混合した場合(実施例5)、いずれの場合も微粉末充填剤は液体金属中に均一に分散し、10 W/(mK)以上の良好な熱伝導性と塗布性を示した。
(実施例2〜4)
液体金属の基材に、平均粒径が0.7μmの銅粉を微粉末充填剤として10若しくは15重量%で混合した場合(それぞれ実施例2及び3)又は20μmの銅粉を40重量%で混合した場合(実施例4)には、いずれの場合も微粉末充填剤は、液体金属中に均一に分散し、15W/(mK)以上の非常に良好な熱伝導性と塗布性を示した。比較例4の結果と比較すると、平均粒径が20μmの銅粉を使用しても、微粉末充填剤が40重量%以下であれば、液体金属中に均一に分散し得ることが明らかとなった。
以上の結果から、ちょう度が200〜400の範囲内にある放熱グリース組成物が塗布容易性を示すことが判明した。また、微粉末充填剤の平均粒径が20μmを超えないことや40重量%で放熱グリース組成物に包含されることが、平滑な塗布を行なう上で必要であることも明らかになった。さらに、基材を液体金属とし、また微粉末充填剤を好ましくは金属、より好ましくは銀又は銅にすることで、従来の放熱グリースと比較して格段に高い熱伝導率を達成し得ることも立証された。

Claims (3)

  1. 基材としての、ガリウム(Ga)、インジウム(In)及び/又はスズ(Sn)を含み、常圧下での融点が16℃以下である合金、及び
    平均粒径が0.01μm〜20μmであり、2〜40重量%で包含される、金属からなる微粉末充填剤
    からなる、ちょう度が200〜400の範囲内にある放熱グリース組成物。
  2. 金属が銀、銅、又はその組合せである、請求項1に記載の放熱グリース組成物。
  3. 請求項1又は2に記載の放熱グリース組成物を発熱部材とそれに近接した放熱部材の間隙に充填した電子機器。
JP2010261040A 2010-11-24 2010-11-24 放熱グリース組成物 Expired - Fee Related JP5542280B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261040A JP5542280B2 (ja) 2010-11-24 2010-11-24 放熱グリース組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261040A JP5542280B2 (ja) 2010-11-24 2010-11-24 放熱グリース組成物

Publications (2)

Publication Number Publication Date
JP2012111823A JP2012111823A (ja) 2012-06-14
JP5542280B2 true JP5542280B2 (ja) 2014-07-09

Family

ID=46496406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261040A Expired - Fee Related JP5542280B2 (ja) 2010-11-24 2010-11-24 放熱グリース組成物

Country Status (1)

Country Link
JP (1) JP5542280B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879690B2 (ja) 2016-08-05 2021-06-02 スリーエム イノベイティブ プロパティズ カンパニー 放熱用樹脂組成物、その硬化物、及びこれらの使用方法
JP7442347B2 (ja) 2020-03-06 2024-03-04 東京エレクトロン株式会社 基板処理装置及び基板処理方法
CN113388769B (zh) * 2021-06-11 2022-07-08 东莞市兆科电子材料科技有限公司 一种浆状合金导热材料
JP7417696B1 (ja) 2022-08-01 2024-01-18 千住金属工業株式会社 金属及び電子装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2018930C (en) * 1989-08-03 1999-11-09 Richard B. Booth Liquid metal matrix thermal paste
JPH0853664A (ja) * 1994-08-10 1996-02-27 Fujitsu Ltd 熱伝導材料及びその製造方法、電子部品の冷却方法、回路基板の冷却方法、並びに電子部品の実装方法
US6984685B2 (en) * 2000-04-05 2006-01-10 The Bergquist Company Thermal interface pad utilizing low melting metal with retention matrix
JP2004071816A (ja) * 2002-08-06 2004-03-04 Fujitsu Ltd 冷却構造とその製造方法,冷却方法及び熱伝導媒質
JP4987496B2 (ja) * 2007-01-30 2012-07-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 放熱材の製造方法
JP4913874B2 (ja) * 2010-01-18 2012-04-11 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP3171885U (ja) * 2011-06-14 2011-11-24 ▲らい▼ 界榮 Mg‐Al合金を有する放熱構造

Also Published As

Publication number Publication date
JP2012111823A (ja) 2012-06-14

Similar Documents

Publication Publication Date Title
CN108192576B (zh) 一种液态金属热界面材料及其制备方法和应用
JP4933094B2 (ja) 熱伝導性シリコーングリース組成物
JP2009096961A (ja) リワーク性に優れた熱伝導性シリコーングリース組成物
KR102108902B1 (ko) 열전도성 실리콘 조성물, 열전도성 층 및 반도체 장치
TWI344196B (en) Melting temperature adjustable metal thermal interface materials and use thereof
JP5089908B2 (ja) 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP6574967B2 (ja) シリコーン組成物
JP2004533705A (ja) 界面材料ならびにその製造法および使用
JP2005154532A (ja) 放熱用シリコーングリース組成物
JP6866877B2 (ja) 低熱抵抗シリコーン組成物
JP2007106809A (ja) 熱伝導性グリース組成物
JP2007070492A (ja) 熱伝導性グリース、接着剤、及びエラストマー組成物、並びに冷却装置
JP5542280B2 (ja) 放熱グリース組成物
KR102601088B1 (ko) 열전도성 실리콘 그리스 조성물
JP2010155870A (ja) 熱伝導性コンパウンドおよびその製造方法
JP2008222776A (ja) 熱伝導性シリコーングリース組成物
JP2004091743A (ja) 熱伝導性グリース
JP2008184549A (ja) 放熱材の製造方法
JP7379940B2 (ja) 熱伝導性組成物
JP3891969B2 (ja) 熱伝導性グリース
WO2021079714A1 (ja) 熱伝導性シリコーン組成物及びその製造方法
JP7237884B2 (ja) 熱伝導性シリコーン組成物
JP2012052137A (ja) 熱伝導性シリコーングリース組成物
JP2020059842A (ja) 放熱グリース組成物及び電子機器
KR20160150290A (ko) 방열 성능이 우수한 실리콘 중합체 조성물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140506

R151 Written notification of patent or utility model registration

Ref document number: 5542280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees