JP5538103B2 - 太陽電池セルの製造方法 - Google Patents

太陽電池セルの製造方法 Download PDF

Info

Publication number
JP5538103B2
JP5538103B2 JP2010154934A JP2010154934A JP5538103B2 JP 5538103 B2 JP5538103 B2 JP 5538103B2 JP 2010154934 A JP2010154934 A JP 2010154934A JP 2010154934 A JP2010154934 A JP 2010154934A JP 5538103 B2 JP5538103 B2 JP 5538103B2
Authority
JP
Japan
Prior art keywords
concentration
region
impurity diffusion
impurity
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010154934A
Other languages
English (en)
Other versions
JP2012019029A (ja
Inventor
篤郎 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010154934A priority Critical patent/JP5538103B2/ja
Publication of JP2012019029A publication Critical patent/JP2012019029A/ja
Application granted granted Critical
Publication of JP5538103B2 publication Critical patent/JP5538103B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池セルの製造方法に関し、特に、良好な特性を有する太陽電池セルを効率良く製造することが可能な太陽電池セルの製造方法に関する。
太陽電池セルの受光面には、一般に基板の導電型と異なる導電型を持つ不純物拡散領域が形成されてpn接合が構成される。そして、発生したキャリアを効率良く受光面電極に到達させ、入射する太陽光の基板による吸収を極力避けるために、pn接合は基板の厚み方向において極浅い領域に形成される。
ここで、現在広く用いられている太陽電池セルの製造プロセスについて説明する。まず、スライス時に形成されたダメージ層が取り除かれたp型シリコン基板を用意する。ダメージ層は、例えば80℃〜100℃程度の水酸化ナトリウムや水酸化カリウムなどのアルカリ水溶液、または室温程度のフッ酸と硝酸との混合溶液などの酸溶液を用いたエッチングにより除去できる。
つぎに、p型シリコン基板の受光面側にPOCl、リン酸等を拡散させてn型不純物拡散領域を形成する。n型不純物拡散領域の形成直後の表面にはガラスを主成分とする膜が形成されているため、フッ酸等を用いてこの膜を除去する。さらに、p型シリコン基板の受光面側をレジストや耐酸性樹脂等で保護した後にフッ硝酸溶液中にp型シリコン基板を浸漬することにより、端面と裏面側のn型不純物拡散領域を除去する。
つぎに、p型シリコン基板の受光面側に反射防止膜を形成する。つぎに、p型シリコン基板の受光面と反対側の面(裏面)の一部の領域に、銀(Ag)、ガラスを含む電極材料ペーストを用いて裏面集電電極を形成する(焼成前)。つぎに、p型シリコン基板の裏面における裏面集電電極の形成されていない領域に、アルミニウム(Al)、ガラスを含む電極材料ペーストを用いて裏面電極を形成する(焼成前)。さらに、反射防止膜上に、銀(Ag)、ガラスを含む電極材料ペーストを用いて受光面電極を形成する(焼成前)。
その後、大気中、例えば780℃〜800℃程度の温度で焼成を行うと、裏面電極からアルミニウムがp型シリコン基板中に拡散し、BSF層を形成する。また、これと同時に受光面電極から銀がいわゆるファイヤースルーによって反射防止膜を突き破ることにより受光面電極がn型不純物拡散領域と電気的にコンタクトし、太陽電池セルが完成する。この様に各電極を一度の焼成で形成できるため、現在ではこの方法がもっとも広く用いられている。
上述したような現在広く行われているファイヤースルーによる電極形成では、受光面の電極材料が反射防止膜を突き抜けて受光面の不純物拡散領域に到達することにより電極を不純物拡散領域に電気的にコンタクトさせる。しかし、受光面の不純物拡散領域は気相拡散により形成されるため濃度制御が困難である。そして、部分的に低濃度な不純物拡散領域が存在する場合には、電極材料が不純物拡散領域をも突き抜けて基板と導通して太陽電池セルにいわゆるpnリーク不良を発生させる危険性がある。
一方、今後のシリコン太陽電池の光電変換効率向上のためには、受光面の不純物拡散濃度の制御が大きな鍵となっている。光電変換効率の向上には、入射する太陽光の基板による吸収を極力避けるために受光面における不純物の拡散濃度を低くし、pn接合(不純物拡散領域)の深さを浅くすることが必要である。しかし、受光面電極との接触抵抗低減のためには接触部分の不純物の拡散濃度を高くする必要がある。
この相反する要求に対して、受光面電極直下のみに部分的に高濃度拡散領域を形成し、受光面電極との接触抵抗を低減しつつ受光部分には低濃度拡散領域を形成する試みがフォトマスク法・ベリッドコンタクト法・セレクティブエミッタ法などによってなされている。しかし、上記の方法は、製造コスト・生産性・安定性での問題を抱えている。また、上記の方法によると低濃度拡散領域には受光面電極が配置されず、低濃度拡散領域の面内方向が高抵抗であるためこの領域での電圧降下による電力損失が大きくなる。これを避けるため、線状の高濃度拡散層と直交する向きに受光面電極を配置し、高抵抗である低濃度拡散層での電圧降下を抑える方法が提案されている(たとえば、特許文献1参照)。
特開2005−123447号公報
しかしながら特許文献1の方法では低濃度拡散層に受光面電極を配置するため、高い出力を得るための低濃度拡散層の面積が構造的に限定される、という問題があった。また、高い太陽電池出力を得るために更に受光面の拡散層を低濃度とした場合は、該当部分のpn接合が基板の最表面付近に形成されるため、受光面電極の形成時に電極材料が拡散層を突き抜けていわゆるpnリーク不良を発生させるリスクが増大する、という問題があった。
また、特許文献1の方法では、受光面にマスクを形成する工程と、高濃度拡散層に溝を形成する工程と、受光面に形成されたマスクを除去する工程と、さらには低濃度拡散層を形成する工程とが必要となる。このため、上記の一般的な方法と比較して大幅に工程が増加し、太陽電池セルの製造コストが増加する、という問題があった。また、レーザー等によりシリコン基板の表面に溝を形成するため、基板強度が低下し、太陽電池セル製造工程での基板割れの危険性が増大する、という問題があった。さらには、受光面の凹凸により受光面電極の断線を引き起こす危険性も増大する、という問題があった。
本発明は、上記に鑑みてなされたものであって、良好な光電変換特性を有する太陽電池セルを効率良く製造可能な太陽電池セルの製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池セルの製造方法は、第1導電型の半導体基板の一面上に、第2導電型の不純物を含む拡散源層を形成する第1工程と、前記拡散源層を加熱することにより前記拡散源層から前記半導体基板の表層に前記不純物を拡散させて、前記不純物が前記半導体基板の一面の表層に第1の濃度で拡散された第1の不純物拡散領域と、前記不純物が前記半導体基板の一面の表層に前記第1の濃度よりも高い第2の濃度で拡散されて前記第1の不純物拡散領域よりも深い第2の不純物拡散領域とを選択的に且つ同時に形成する第2工程と、前記第1の不純物拡散領域上および前記第2の不純物拡散領域上に反射防止膜を形成する第3工程と、前記反射防止膜における第2の不純物拡散領域上の領域に電極材料ペーストを塗布した後に焼成することにより、前記第2の不純物拡散領域に電気的に接続する第1電極を前記半導体基板の一面側に形成する第4工程と、前記半導体基板の他面側に第2電極を形成する第5工程と、を含み、前記第1工程では、前記半導体基板の面内において前記不純物が一定の濃度を有する前記拡散源層を、前記第1の不純物拡散領域の形成領域上および前記第2の不純物拡散領域の形成領域上に形成し、前記半導体基板の面内において、前記拡散源層の厚みの形成条件と前記拡散源層の加熱条件とのうち少なくとも一方を前記第1の不純物拡散領域の形成領域と前記第2の不純物拡散領域の形成領域とで異ならせて調整することにより、前記拡散源層から前記半導体基板の表層への前記不純物の拡散濃度を前記第1の不純物拡散領域の形成領域と前記第2の不純物拡散領域の形成領域とで異ならせて制御して前記第1の不純物拡散領域と前記第2の不純物拡散領域とを選択的に形成すること、を特徴とする。
本発明によれば、受光面における不純物拡散濃度およびpn接合の深さを容易に制御することができ、良好な光電変換特性を有する太陽電池セルを効率良く製造可能な太陽電池セルの製造方法が得られる、という効果を奏する。
図1は、本発明の実施の形態1にかかる太陽電池セルの概略構成を示す図である。 図2は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するためのフローチャートである。 図3−1は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−2は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−3は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−4は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−5は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−6は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−7は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−8は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−9は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図3−10は、本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するための断面図である。 図4は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明するためのフローチャートである。 図5−1は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明するための断面図である。 図5−2は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明するための断面図である。 図5−3は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明するための断面図である。 図5−4は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明するための断面図である。 図5−5は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明するための断面図である。
以下に、本発明にかかる太陽電池セルの製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池セルの概略構成を示す図である。本実施の形態にかかる太陽電池セル10においては、第1導電型のp型単結晶シリコンからなる半導体基板1の受光面側にリン拡散によって第2導電型の低濃度n型不純物拡散層2aおよび高濃度n型不純物拡散層2bが形成されて、pn接合を有する半導体基板11が形成されている。低濃度n型不純物拡散層2a上および高濃度n型不純物拡散層2b上には、シリコン窒化膜(SiN膜)よりなる反射防止膜3が形成されている。なお、半導体基板1としてはp型単結晶のシリコン基板に限定されず、p型多結晶のシリコン基板やn型の多結晶のシリコン基板、n型の単結晶シリコン基板を用いてもよい。
また、半導体基板11の受光面側の表面には、テクスチャー構造として微小凹凸が形成されている(図示せず)。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。
反射防止膜3は、シリコン窒化膜(SiN膜)、シリコン酸化膜(SiO膜)や酸化チタン膜(TiO)膜などの絶縁膜からなる。また、半導体基板11の受光面側において、高濃度n型不純物拡散層2b上には受光面電極6が同一方向に複数並べて設けられており、それぞれ底面部において高濃度n型不純物拡散層2bに電気的に接続している。受光面電極6は、銀材料により構成されている。
一方、半導体基板11の裏面(受光面と反対側の面)には、全体にわたってアルミニウム材料からなる裏面電極5が設けられ、また受光面電極6と略同一方向に延在して銀材料からなる裏面集電電極4が設けられている。また、半導体基板11の裏面(受光面と反対側の面)側の表層部には、高濃度不純物を含んだp+層(BSF(Back Surface Field))7が形成されている。
つぎに、本実施の形態にかかる太陽電池セル10の製造方法について図面に沿って説明する。図2は、実施の形態1にかかる太陽電池セル10の製造工程の一例を説明するためのフローチャートである。図3−1〜図3−10は、実施の形態1にかかる太陽電池セル10の製造工程の一例を説明するための断面図である。
まず、半導体基板1として例えば数百μm厚のp型単結晶シリコン基板を用意する(図3−1)。p型単結晶シリコン基板は、溶融したシリコンを冷却固化してできたインゴットをワイヤーソーでスライスして製造するため、表面にスライス時のダメージが残っている。そこで、シリコン基板の切り出し時に発生してp型単結晶シリコン基板の表面近くに存在するダメージ領域を取り除く。ダメージ層は、例えば80℃〜100℃程度の水酸化ナトリウムや水酸化カリウムなどのアルカリ水溶液、または室温程度のフッ酸と硝酸との混合溶液などの酸溶液を用いたエッチングにより除去できる。
ダメージ除去に続いて、同様のアルカリ水溶液にIPA(イソプロピルアルコール)を添加した溶液でp型単結晶シリコン基板の異方性エッチングを行ない、p型単結晶シリコン基板の受光面側の表面に微小凹凸を形成してテクスチャー構造を形成する(図示せず)。このようなテクスチャー構造をp型単結晶シリコン基板の受光面側に設けることで、太陽電池セル10の表面側で光の多重反射を生じさせ、太陽電池セル10に入射する光を効率的に半導体基板11の内部に吸収させることができ、実効的に反射率を低減して変換効率を向上させることができる。
つぎに、p型単結晶シリコン基板の一面側(受光面側)のほぼ全面にn型の不純物を含む拡散源層2を形成する(図3−2、ステップS10)。拡散源層2は、例えばn型の不純物を含むレジストやペーストをスピンコートやスクリーン印刷などの方法により塗布することにより形成できる。
つぎに、拡散源層2の面内において加熱温度を選択的に異ならせて拡散源層2を加熱する(図3−3)。これにより、拡散源層2が低温度で加熱された部分では、該拡散源層2からp型単結晶シリコン基板の表層にn型不純物が浅く低濃度で拡散することにより低濃度n型不純物拡散層2aが形成される。また、拡散源層2が高温度で加熱された部分では、該拡散源層2からp型単結晶シリコン基板の表層にn型不純物が深く高濃度で拡散することにより高濃度n型不純物拡散層2bが形成される。また、p型単結晶シリコン基板の面内において、拡散源層2の選択的な加熱を行わなかった領域の表層には、低濃度n型不純物拡散層2aおよび高濃度n型不純物拡散層2bは形成されない。
低濃度n型不純物拡散層2aは、n型の不純物が拡散源層2からp型単結晶シリコン基板の一面の表層に第1の濃度で拡散された第1の不純物拡散領域である。高濃度n型不純物拡散層2bは、n型の不純物が拡散源層2からp型単結晶シリコン基板の一面の表層に第1の濃度よりも高い第2の濃度で拡散された第2の不純物拡散領域である(図3−4、ステップS20)。ここで、高濃度n型不純物拡散層2bは、p型単結晶シリコン基板の厚み方向において低濃度n型不純物拡散層2aよりも深く(厚く)形成される。拡散源層2の選択的な加熱は、例えばレーザー照射により、照射パワーや照射回数を変更することにより実施する。その後、拡散源層2を除去する(図3−5)。ここで、低濃度とは例えばn型不純物の濃度が1立方センチメートル当たり5×1019〜1×1020程度、高濃度とは例えばn型不純物の濃度が1立方センチメートル当たり5×1020〜1×1021程度である。また、低濃度n型不純物拡散層2aは、例えば0.15ミクロン程度の深さで形成できる。また、高濃度n型不純物拡散層2bは、例えば0.25ミクロン程度の深さで形成できる。
つぎに、n型不純物拡散領域の形成直後の表面にはガラスを主成分とする膜が形成されているため、フッ酸等を用いてこの膜を除去する。さらに、p型シリコン基板の受光面側をレジストや耐酸性樹脂等で保護した後にフッ硝酸溶液中にp型シリコン基板を浸漬することにより、端面と裏面側のn型不純物拡散領域を除去する。なお、これらの工程は、本発明の要旨とは直接関係はないので、詳細な図示は省略する。
つぎに、光電変換効率改善のために、p型単結晶シリコン基板の受光面側に反射防止膜3を一様な厚みで形成する(図3−6、ステップS30)。反射防止膜3の膜厚および屈折率は、光反射を最も抑制する値に設定する。
ついで、スクリーン印刷により電極を形成する。まず、裏面集電電極4を形成する(焼成前)。すなわち、p型単結晶シリコン基板の受光面と反対側の面(裏面)の一部の領域に、銀(Ag)、ガラスを含む電極材料ペースト(銀ペースト)を裏面集電電極4の形状にスクリーン印刷により塗布した後、ペーストを乾燥させる(図3−7、ステップS40)。
つぎに、裏面電極5を形成する(焼成前)。すなわち、p型単結晶シリコン基板の裏面における裏面集電電極4の形成されていない領域に、主成分として高濃度のアルミニウム(Al)、ガラスを含む電極材料ペースト(アルミニウムペースト)を裏面電極5の形状にスクリーン印刷により塗布した後、ペーストを乾燥させる(図3−8、ステップS40)。このとき、電極材料ペースト中のアルミニウム濃度は、65重量%〜75重量%、ペーストの塗布厚さは30μm程度が好ましい。
つぎに、受光面電極6を形成する(焼成前)。すなわち、反射防止膜3上における高濃度n型不純物拡散層2bに対応した領域に、銀(Ag)、ガラス等を主成分として含む電極材料ペースト(銀ペースト)を受光面電極6の形状にスクリーン印刷により塗布した後、ペーストを乾燥させる(図3−9、ステップS50)。
その後、半導体基板11の表面および裏面の電極ペーストを大気中、例えば780℃〜850℃程度の温度で同時に焼成する(図3−10、ステップS60)。半導体基板11の表側では、銀ペースト中に含まれているガラス材料で反射防止膜3が溶融している間に銀材料が反射防止膜3を突き破ってシリコンと接触し再凝固する。これにより、半導体基板11の面内における高濃度n型不純物拡散層2b上の領域に該高濃度n型不純物拡散層2bに電気的に接続する受光面電極6が得られ、受光面電極6と半導体基板11のシリコンとの導通が確保される。
また、半導体基板11の裏側では、アルミニウムペーストが半導体基板11のシリコンと反応して裏面電極5が得られ、かつ裏面電極5の直下にp+層7を形成する。また、銀ペーストの銀材料がシリコンと接触し再凝固して裏面集電電極4が得られる。
以上のような工程を実施することにより、図1に示す本実施の形態にかかる太陽電池セル10を作製することができる。なお、電極材料であるペーストの半導体基板11への配置の順番を、受光面側と裏面側とで入れ替えてもよい。
上述した実施の形態1にかかる太陽電池セルの製造方法においては、一定の濃度でn型の不純物を含む拡散源層2を半導体基板1の一面上に形成し、拡散源層2の加熱温度を半導体基板1の面内において選択的に異ならせて該拡散源層2を加熱する。これにより、半導体基板1の表層に異なる濃度でn型の不純物が拡散して低濃度n型不純物拡散層2aおよび高濃度n型不純物拡散層2bが同時に形成され、pn接合を有する半導体基板11が形成される。すなわち、拡散源層2におけるn型の不純物が一定の濃度を一定とし、該拡散源層2の加熱温度を拡散源層2の面内において選択的に異ならせることにより半導体基板1の表層への不純物の拡散濃度を制御する。そして、半導体基板11の面内における高濃度n型不純物拡散層2b上の領域に受光面電極6を形成する。
このような実施の形態1にかかる太陽電池セルの製造方法では、半導体基板11の受光面における受光面電極6と接触する領域には不純物の拡散濃度の高い高濃度n型不純物拡散層2bを形成するため受光面電極6との接触抵抗を低減することができ、受光面電極6と半導体基板11との接触抵抗に起因した光電変換効率の低下を防止できる。
また、半導体基板11の受光面における受光面電極6の形成領域以外には、不純物の拡散濃度の低い低濃度n型不純物拡散層2aを浅い深さで形成するため、pn接合(不純物拡散領域)の深さを浅くすることができる。これにより、発生したキャリアを効率良く受光面電極6に到達させ、また入射する太陽光の半導体基板11による吸収を低減して光電変換効率の低下を防止できる。
また、実施の形態1にかかる太陽電池セルの製造方法では、高濃度n型不純物拡散層2b上に受光面電極6を形成するため、ファイヤースルーによる受光面電極6の形成時に電極材料が拡散層を突き抜けてpnリーク不良を発生させることがない。
また、実施の形態1にかかる太陽電池セルの製造方法では、不純物拡散層および受光面電極6の形成において半導体基板11の形状変更を伴わないため、製造工程における基板強度の低下による基板割れや受光面電極6の断線などの不良が発生しない。
したがって、実施の形態1にかかる太陽電池セルの製造方法によれば、受光面における不純物拡散濃度およびpn接合の深さを容易に制御することができ、半導体基板の形状変更を伴うことなく不純物濃度の異なる拡散領域を一度に形成することが可能となるため、良好な特性を有する太陽電池セルを簡便に且つ効率的に製造することができる。
実施の形態2.
実施の形態2では、図1に示した太陽電池セルの他の製造方法について図面に沿って説明する。図4は、実施の形態2にかかる太陽電池セルの製造工程を説明するためのフローチャートである。図5−1〜図5−5は、実施の形態2にかかる太陽電池セルの製造工程を説明するための断面図である。
まず、実施の形態1の場合と同様に半導体基板1として例えば数百μm厚のp型単結晶シリコン基板を用意し(図5−1)、シリコン基板の切り出し時に発生してp型単結晶シリコン基板の表面近くに存在するダメージ領域を取り除く。ダメージ除去に続いて、実施の形態1の場合と同様にp型単結晶シリコン基板の受光面側の表面に微小凹凸を形成してテクスチャー構造を形成する。
つぎに、p型単結晶シリコン基板の一面側(受光面側)に、n型の不純物を低濃度で含む低濃度拡散源層3aとn型の不純物を高濃度で含む高濃度拡散源層3bとを選択的に形成する(図5−2、ステップS110)。低濃度拡散源層3aおよび高濃度拡散源層3bは、例えばn型の不純物を含むレジストやペーストをスピンコートやスクリーン印刷などの方法により塗布することにより形成できる。ここで、ここで、低濃度とは例えばn型不純物の濃度が1立方センチメートル当たり5×1019〜1×1020程度、高濃度とは例えばn型不純物の濃度が1立方センチメートル当たり5×1020〜1×1021程度である。また、低濃度拡散源層3aと高濃度拡散源層3bとは、p型単結晶シリコン基板の受光面上において離れていてもよく、一部が重なっていてもよい。
つぎに、p型単結晶シリコン基板の面内において加熱温度を一定にして低濃度拡散源層3aと高濃度拡散源層3bとを一定の温度で加熱する(図5−3)。これにより、低濃度拡散源層3aからp型単結晶シリコン基板の表層にn型の不純物が浅く低濃度で拡散することにより低濃度n型不純物拡散層2aが形成される。また、低濃度拡散源層3aからp型単結晶シリコン基板の表層にn型の不純物が深く高濃度で拡散することにより高濃度n型不純物拡散層2bが形成される。また、p型単結晶シリコン基板の面内において低濃度拡散源層3aおよび高濃度拡散源層3bのうちいずれも形成されていない領域の表層には、低濃度n型不純物拡散層2aおよび高濃度n型不純物拡散層2bのいずれも形成されない。
低濃度n型不純物拡散層2aは、n型の不純物がp型単結晶シリコン基板の一面の表層に第1の濃度で拡散された第1の不純物拡散領域である。高濃度n型不純物拡散層2bは、n型の不純物がp型単結晶シリコン基板の一面の表層に第1の濃度よりも高い第2の濃度で拡散された第2の不純物拡散領域である(図5−4、ステップS120)。なお、高濃度n型不純物拡散層2bは、低濃度n型不純物拡散層2aよりも深く形成される。この際、p型単結晶シリコン基板の全面を一様に加熱してもよい。その後、低濃度拡散源層3aおよび高濃度拡散源層3bを除去する(図5−5)。ここで、低濃度とは例えばn型不純物の濃度が1立方センチメートル当たり5×1019〜1×1020程度、高濃度とは例えばn型不純物の濃度が1立方センチメートル当たり5×1020〜1×1021程度である。また、低濃度n型不純物拡散層2aは、例えば0.15ミクロン程度の深さで形成できる。また、高濃度n型不純物拡散層2bは、例えば0.25ミクロン程度の深さで形成できる。
以降は、p型シリコン基板の表面に形成されたガラスを主成分とする膜を除去した後、実施の形態1におけるステップS30〜ステップS60の工程を実施することにより、図1に示した太陽電池セルを作製することができる。
上述した実施の形態2にかかる太陽電池セルの製造方法においては、異なる濃度でn型の不純物を含む低濃度拡散源層3aと高濃度拡散源層3bとを半導体基板1の一面上に形成し、一定の温度で低濃度拡散源層3aと高濃度拡散源層3bとを加熱する。これにより、半導体基板1の表層に異なる濃度でn型の不純物が拡散して低濃度n型不純物拡散層2aおよび高濃度n型不純物拡散層2bが同時に形成され、pn接合を有する半導体基板11が形成される。すなわち、低濃度拡散源層3aと高濃度拡散源層3bとにおけるn型の不純物の濃度を異ならせ、一定の加熱温度で加熱することにより半導体基板1の表層への不純物の拡散濃度を制御する。そして、半導体基板11の面内における高濃度n型不純物拡散層2b上の領域に受光面電極6を形成する。
このような実施の形態2にかかる太陽電池セルの製造方法では、実施の形態1と同様に半導体基板11の受光面における受光面電極6と接触する領域には不純物の拡散濃度の高い高濃度n型不純物拡散層2bを形成するため受光面電極6との接触抵抗を低減することができ、受光面電極6と半導体基板11との接触抵抗に起因した光電変換効率の低下を防止できる。
また、半導体基板11の受光面における受光面電極6の形成領域以外には、不純物の拡散濃度の低い低濃度n型不純物拡散層2aを浅い深さで形成するため、pn接合(不純物拡散領域)の深さを浅くすることができる。これにより、発生したキャリアを効率良く受光面電極6に到達させ、また入射する太陽光の半導体基板11による吸収を低減して光電変換効率の低下を防止できる。
また、実施の形態2にかかる太陽電池セルの製造方法では、高濃度n型不純物拡散層2b上に受光面電極6を形成するため、ファイヤースルーによる受光面電極6の形成時に電極材料が拡散層を突き抜けてpnリーク不良を発生させることがない。
また、実施の形態2にかかる太陽電池セルの製造方法では、実施の形態1と同様に不純物拡散層および受光面電極6の形成において半導体基板11の形状変更を伴わないため、製造工程における基板強度の低下による基板割れや受光面電極6の断線などの不良が発生しない。
したがって、実施の形態2にかかる太陽電池セルの製造方法によれば、実施の形態1と同様に受光面における不純物拡散濃度およびpn接合の深さを容易に制御することができ、半導体基板の形状変更を伴うことなく不純物濃度の異なる拡散領域を一度に形成することが可能となるため、良好な特性を有する太陽電池セルを簡便に且つ効率的に製造することができる。
なお、上記においては、不純物が異なる濃度を有するように低濃度拡散源層3aと高濃度拡散源層3bとを形成し、一定の温度で加熱することによりp型単結晶シリコン基板の表層への不純物の拡散濃度を制御したが、不純物の濃度が一定の拡散層源をp型単結晶シリコン基板の面内において異なる厚みを有するように形成し、一定の温度で加熱することによりp型単結晶シリコン基板の表層への不純物の拡散濃度を制御してもよい。この場合も、上記の実施の形態と同様に受光面における不純物拡散濃度およびpn接合の深さを容易に制御することができ、半導体基板の形状変更を伴うことなく不純物濃度の異なる拡散領域を一度に形成することが可能となるため、良好な特性を有する太陽電池セルを簡便に且つ効率的に製造する事が可能となる。
以上のように、本発明にかかる太陽電池セルの製造方法は、半導体基板の受光面側に不純物濃度の異なる拡散領域を有する太陽電池セルの製造に有用である。
1 半導体基板
2 拡散源層
2a 低濃度n型不純物拡散層
2b 高濃度n型不純物拡散層
3 反射防止膜
3a 低濃度拡散源層
3b 高濃度拡散源層
4 裏面集電電極
5 裏面電極
6 受光面電極
7 p+層
10 太陽電池セル
11 半導体基板

Claims (3)

  1. 第1導電型の半導体基板の一面上に、第2導電型の不純物を含む拡散源層を形成する第1工程と、
    前記拡散源層を加熱することにより前記拡散源層から前記半導体基板の表層に前記不純物を拡散させて、前記不純物が前記半導体基板の一面の表層に第1の濃度で拡散された第1の不純物拡散領域と、前記不純物が前記半導体基板の一面の表層に前記第1の濃度よりも高い第2の濃度で拡散されて前記第1の不純物拡散領域よりも深い第2の不純物拡散領域とを選択的に且つ同時に形成する第2工程と、
    前記第1の不純物拡散領域上および前記第2の不純物拡散領域上に反射防止膜を形成する第3工程と、
    前記反射防止膜における第2の不純物拡散領域上の領域に電極材料ペーストを塗布した後に焼成することにより、前記第2の不純物拡散領域に電気的に接続する第1電極を前記半導体基板の一面側に形成する第4工程と、
    前記半導体基板の他面側に第2電極を形成する第5工程と、
    を含み、
    前記第1工程では、前記半導体基板の面内において前記不純物が一定の濃度を有する前記拡散源層を、前記第1の不純物拡散領域の形成領域上および前記第2の不純物拡散領域の形成領域上に形成し、
    前記半導体基板の面内において、前記拡散源層の厚みの形成条件と前記拡散源層の加熱条件とのうち少なくとも一方を前記第1の不純物拡散領域の形成領域と前記第2の不純物拡散領域の形成領域とで異ならせて調整することにより、前記拡散源層から前記半導体基板の表層への前記不純物の拡散濃度を前記第1の不純物拡散領域の形成領域と前記第2の不純物拡散領域の形成領域とで異ならせて制御して前記第1の不純物拡散領域と前記第2の不純物拡散領域とを選択的に形成すること、
    を特徴とする太陽電池セルの製造方法。
  2. 前記第2工程では、前記拡散源層の面内において前記拡散源層の加熱温度を前記第1の不純物拡散領域の形成領域と前記第2の不純物拡散領域の形成領域とで選択的に異ならせることにより前記不純物の拡散濃度を制御して前記第1の不純物拡散領域と前記第2の不純物拡散領域とを選択的に形成すること、
    を特徴とする請求項に記載の太陽電池セルの製造方法。
  3. 前記第1工程では、前記半導体基板の面内において前記第1の不純物拡散領域の形成領域上と前記第2の不純物拡散領域の形成領域上とで異なる厚みを有するように前記拡散源層を形成し、
    前記第2工程では、前記拡散源層の面内において前記拡散源層の加熱温度を一定とすることにより前記不純物の拡散濃度を制御して前記第1の不純物拡散領域と前記第2の不純物拡散領域とを選択的に形成すること、
    を特徴とする請求項に記載の太陽電池セルの製造方法。
JP2010154934A 2010-07-07 2010-07-07 太陽電池セルの製造方法 Expired - Fee Related JP5538103B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154934A JP5538103B2 (ja) 2010-07-07 2010-07-07 太陽電池セルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154934A JP5538103B2 (ja) 2010-07-07 2010-07-07 太陽電池セルの製造方法

Publications (2)

Publication Number Publication Date
JP2012019029A JP2012019029A (ja) 2012-01-26
JP5538103B2 true JP5538103B2 (ja) 2014-07-02

Family

ID=45604078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154934A Expired - Fee Related JP5538103B2 (ja) 2010-07-07 2010-07-07 太陽電池セルの製造方法

Country Status (1)

Country Link
JP (1) JP5538103B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312420B2 (en) 2012-04-17 2016-04-12 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR101929445B1 (ko) * 2012-04-17 2018-12-14 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101929444B1 (ko) * 2012-04-17 2019-03-14 엘지전자 주식회사 태양 전지 및 이의 제조 방법
JPWO2016111132A1 (ja) * 2015-01-07 2017-04-27 三菱電機株式会社 太陽電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045917B2 (ja) * 1994-01-28 2000-05-29 シャープ株式会社 太陽電池の製造方法
EP0851511A1 (en) * 1996-12-24 1998-07-01 IMEC vzw Semiconductor device with two selectively diffused regions
KR101631711B1 (ko) * 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 확산용 인 페이스트 및 그것을 이용한 태양 전지의 제조 방법
KR100974221B1 (ko) * 2008-04-17 2010-08-06 엘지전자 주식회사 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법

Also Published As

Publication number Publication date
JP2012019029A (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
US10147828B2 (en) Solar cell and method for manufacturing the same
JP5174903B2 (ja) 太陽電池セルの製造方法
KR101225978B1 (ko) 태양전지 및 그 제조방법
JP4980494B2 (ja) 太陽電池セルおよびその製造方法
JP5220197B2 (ja) 太陽電池セルおよびその製造方法
KR20130036258A (ko) 혼성 확산 및 이온 주입 공정에 의해서 제조된 선택적 이미터 태양전지
JP5826380B2 (ja) 太陽電池および太陽電池の製造方法、太陽電池モジュール
JP5538103B2 (ja) 太陽電池セルの製造方法
JP5830143B1 (ja) 太陽電池セルの製造方法
WO2009157052A1 (ja) 光起電力装置の製造方法
KR20100089473A (ko) 고효율 후면 전극형 태양전지 및 그 제조방법
JP5344872B2 (ja) 光起電力装置
WO2012117558A1 (ja) 光起電力装置およびその製造方法、光起電力モジュール
JP2013161818A (ja) 太陽電池の製造方法
JP5452535B2 (ja) 太陽電池の製造方法
JP5436276B2 (ja) 太陽電池の製造方法
JP2011018748A (ja) 太陽電池セルの製造方法
WO2011048656A1 (ja) 基板の粗面化方法、光起電力装置の製造方法
JP5868528B2 (ja) 光起電力装置およびその製造方法、光起電力モジュール
WO2015083259A1 (ja) 太陽電池セルの製造方法
WO2016075867A1 (ja) 太陽電池及び太陽電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5538103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees