以下、本発明の実施例を図面に基づいて説明する。本実施例では動力工具の例として、インパクト工具を用いて説明する。尚、以下の説明において、上下前後の方向は、図1中に示した方向として説明する。
図1は本発明に係るインパクト工具1の全体構造を示す縦断面図である。インパクト工具1は、充電可能なバッテリパック2を電源とし、モータ3を駆動源として打撃機構50を駆動し、出力軸であるアンビル61に回転力と打撃を与えることによってドライバビット等の図示しない先端工具に連続する回転力や断続的な打撃力を伝達してネジ締めやボルト締め等の作業を行う。
モータ3は、ブラシレスDCモータであって、側面から見て略T字状の形状を成すハウジング6の略筒状の胴体部6a内に収容される。ハウジング6は、ほぼ対称な形状の左右2つの部材に分割可能に構成され、それら部材が複数の図示しないネジにより固定される。そのため、分割されるハウジング6の一方(本実施例では左側ハウジング)に複数のネジボス19bが形成され、図示しない他方のハウジング(右側ハウジング)に複数のネジ穴が形成される。モータ3の回転軸4は、胴体部6aの後端側のベアリング17bと中央部付近に設けられるベアリング17aによって回転可能に保持される。モータ3の後方には6つのスイッチング素子11が搭載されたインバータ基板10が設けられ、これらスイッチング素子11によってインバータ制御を行うことによりモータ3を回転させる。インバータ基板10の前方側であって回転子の永久磁石に対向する位置には、回転子の位置を検出するためのホールIC等の回転位置検出素子(図示せず)が搭載される。
ハウジング6の胴体部6aから略直角方向下方に一体に延びるグリップ部6b内の上部にはトリガスイッチ8及び正逆切替レバー14が設けられ、トリガスイッチ8には図示しないバネによって付勢されてグリップ部6bから突出するトリガ操作部8aが設けられる。グリップ部6b内の下方であってバッテリ保持部6cの内部には、トリガ操作部8aの操作に応じてモータ3の速度を制御する機能等を備えた制御回路を搭載する制御回路基板9が収容される。制御回路基板9の前方側上面には、インパクト工具1の動作モードを設定するための回転式のダイヤルスイッチ5が設けられ、ダイヤルスイッチ5のダイヤルの一部又は全部がハウジング6から外部に露出するように取り付けられる。ダイヤルスイッチ5によって、「ドリルモード(クラッチ機構無し)」、「ドリルモード(クラッチ機構付き)」、又は、「インパクトモード」に切り替えることができる。「インパクトモード」では、打撃トルクの強さを段階的に又は連続的に可変に設定できるように構成すると良い。
グリップ部6bの下方に形成されたバッテリ保持部6cには、ニッケル水素やリチウムイオン等の複数の電池セルが収容されたバッテリパック2が着脱可能に装着される。バッテリ保持部6cの後方側には、ストラップ112が取り付けられる。バッテリ保持部6cの左右側面のいずれかには、着脱可能な金属製のベルトフック111が装着可能である。
モータ3の前方には、回転軸4に取り付けられてモータ3と同期して回転する冷却ファン18が設けられる。冷却ファン18は、回転方向によらずに回転軸4付近の空気を吸引して径方向外側に排出する遠心ファンであり、冷却ファン18により胴体部6aの後方に設けられた空気取入口13a、13bから空気が吸引される。ハウジング6の内部に吸引された外気は、モータ3の回転子と固定子の間、及び、固定子の磁極の間を通過した後に冷却ファン18に到達し、冷却ファン18の半径方向外周側付近に形成される複数の空気排出口13c(図2参照)からハウジング6の外部に排出される。
打撃機構50は、アンビル61と第2遊星キャリヤ組立体51の2つの部品により構成され、第2遊星キャリヤ組立体51は遊星歯車減速機構20の2段目の遊星歯車の回転軸を連結すると共に、アンビル61を打撃するための後述するハンマを有する。現在広く使われている公知の打撃機構と違って、打撃機構50には、スピンドル、スプリング、カム溝、及びボール等を有するカム機構をもたない。そしてアンビル61と第2遊星キャリヤ組立体51とは回転中心付近に形成された嵌合軸と嵌合穴により半回転未満の相対回転だけができるように連結される。アンビル61は、図示しない先端工具を装着する出力軸部分と一体に構成され、前端には軸方向と鉛直面の断面形状が六角形の装着穴62aが形成される。アンビル61の後方側は第2遊星キャリヤ組立体51の嵌合軸と連結され、軸方向中央付近でメタル16aによりハンマケース7に対して回転可能に保持される。アンビル61の先端には先端工具をワンタッチで着脱するためのスリーブ15が設けられる。尚、これらアンビル61と第2遊星キャリヤ組立体51の詳細形状については後述する。
ハンマケース7は打撃機構50及び遊星歯車減速機構20を収容するために金属製の一体成形で製造され、ハウジング6の前方側の内部に装着される。ハンマケース7は、ベアリング機構を介してアンビル61を保持するものであり、左右分割式のハウジング6によって全体が覆われるようにして固定される。このようにハンマケース7は、ハウジング6に対してしっかりと保持されるので、アンビル61の軸受け部分にガタつきが生ずることを防止でき、インパクト工具1の長寿命化を図ることができる。
トリガ操作部8aが引かれてモータ3が起動されると、モータ3の回転は遊星歯車減速機構20によって減速され、モータ3の回転数に対して所定の比率の回転数で第2遊星キャリヤ組立体51が回転する。第2遊星キャリヤ組立体51が回転すると、その回転力は第2遊星キャリヤ組立体51に設けられるハンマを介してアンビル61に伝達され、アンビル61が第2遊星キャリヤ組立体51と同じ速度で回転を開始する。先端工具側からの受ける反力によってアンビル61にかかる力が大きくなると、後述する制御部は締め付け反力の増大を検出し、モータ3の回転が停止してロック状態になる前に、第2遊星キャリヤ組立体51の駆動モードを変更しながらハンマを連続的に又は断続的に駆動する。
図2は、図1のインパクト工具1の側面図である。ハウジング6は3つの部分(胴体部6a、グリップ部6b、バッテリ保持部6c)から構成され、胴体部6aの、冷却ファン18の半径方向外周側付近には冷却風排出用の空気排出口13cが形成される。ハウジング6は、モータ3の回転軸4を通る鉛直面にて左右分割式に形成され、複数本のネジ19aによって分割式のハウジング6が固定される。ハウジング6の前方側には、先端工具保持部を構成するスリーブ15が突出する。スリーブ15の段差部の前側には、圧縮式のスプリング15aが設けられ、このスプリングによってスリーブ15は軸方向後方側に付勢される。スプリング15aの前端は、止め輪15cによって軸方向の移動が制限されたワッシャ15bによって保持される。スリーブ15は金属製であるのが好ましく、例えば鉄又は任意の合金である。スリーブ15の内側に突出する部分付近には、ボール24が、アンビル61に形成された穴に配置され、ボール24の一部がアンビル61内に突出できるように構成される。ハウジング6のバッテリ保持部6cの上面には、回転式のダイヤルスイッチ5が設けられる。また、図示していないがハウジング6の一部には、モータ3の駆動モード(ドリルモード、インパクトモード)を切り替えるためのトグルスイッチや発光体部12をON/OFFするためのスイッチ等が配置された制御パネルが設けられる。バッテリパック2には、リリースボタン2aが設けられ、左右両側に位置するリリースボタン2aを押しながら前方にバッテリパック2を移動させることにより、バッテリパック2をバッテリ保持部6cから取り外すことができる。
図3は、図1の打撃機構50付近の拡大断面図である。本実施例における遊星歯車減速機構20は、プラネタリー型であり、第1減速機構部と第2減速機構部の2つの減速機構部を有し、各減速機構部はそれぞれ、サンギヤ、複数のプラネタリーギヤ、リングギヤを含んで構成される。モータ3の回転軸4の先端には第1ピニオン29が取り付けられ、第1ピニオン29が第1減速機構部の駆動軸(入力軸)となる。第1ピニオン29の周囲には、複数の第1プラネタリーギヤ33が位置し、第1リングギヤ28の内周側で回転する。複数の第1プラネタリーギヤ33の回転軸たるニードルピン34aは、遊星キャリヤの機能を持つ第1遊星キャリヤ組立体30にて保持される。第1遊星キャリヤ組立体30は第2減速機構部の入力軸となり、前方側中央付近には第2ピニオン35が形成される。
第2ピニオン35の周囲には、複数の第2プラネタリーギヤ56が位置し、第2リングギヤ40の内周側で回転する。複数の第2プラネタリーギヤ56の回転軸たるニードルピン57は、第2遊星キャリヤ組立体51にて保持される。第2遊星キャリヤ組立体51は、2つの打撃爪たるハンマを有し、アンビル61に形成された打撃爪に対応する。第2遊星キャリヤ組立体51は第2減速機構部の出力として、モータ3と同方向に所定の減速比で回転する。この減速比をどの程度に設定するかは、主な締付対象(ネジかボルトか)や、モータ3の出力と必要な締付トルクの大きさ等の要因から適切に設定すれば良く、本実施例ではモータ3の回転数に対して第2遊星キャリヤ組立体51の回転数が1/8〜1/15程度になるように減速比を設定する。
胴体部6aの内部であって、冷却ファン18の前方側にはインナカバー21が設けられる。インナカバー21はプラスチック等の合成樹脂の一体成形で製造された部材であり、ハウジングの内壁に沿って取り付けられる。インナカバー21の後方側には円筒状の部分が形成され、その円筒部分でモータ3の回転軸4を回転可能に固定するベアリング17aの外輪を保持する。また、インナカバー21の前方側には、3つの異なる径を有する円筒状の部分が段差状に設けられ、後方の小径内径部分にはベアリングの役目を果たす円筒状のメタル16bが設けられ、中央付近の中径内径部分には第1リングギヤ28が挿入され、前方の大径内径部分には第2リングギヤ40及びスラスト軸受45が収容される。本実施例では、ハンマの後部に設けられるスラスト軸受45の後方側は、第2リングギヤ40にて固定することによってハウジング6に間接的に保持しているが、これだけに限定されずに、インナカバー21にて保持するようにしても良いし、ハウジング6にて直接固定するように構成しても良い。尚、小径内径部分、中径内径部分、大径内径部分以外にも後述するワッシャ類を保持するための僅かな段差部分が形成されるが、ここでの説明は省略する。第1リングギヤ28はインナカバー21に対して回転不能に取り付けられ、第2リングギヤ40はインナカバー21に対して僅かな回動ができるように、しかし実質的には回転不能なように取り付けられる。インナカバー21は、ハウジング6の胴体部6aの内部に回転不能に取り付けられるので、第1リングギヤ28及び第2リングギヤ40は、ハウジング6に対して非回転状態で固定されることになる。
インナカバー21の大径内径部は、ハンマケース7の後方側開口から内部に挿入され、インナカバー21とハンマケース7によって画定される空間の内部に、第1及び第2の減速機構部からなる遊星歯車減速機構20と、ハンマ52、53及びアンビル61からなる打撃機構50が収容されることになる。従って、第1及び第2の減速機構や打撃機構に与えられる潤滑のためのグリース類が外部に流出しすることを効果的に防止でき、長期間にわたって安定して減速機構と打撃機構を動作させることができる。尚、本実施例ではインナカバー21とハンマケース7の軸方向の接合部分(インナカバー21の前端側又はハンマケース7の後端側)にシール部材を介在させていないが、Oリング等の任意のシール部材を介在させるように構成しても良い。
図4は、遊星歯車減速機構20及び打撃機構50の分解斜視図であり、各部品の一部を断面にて示している。遊星歯車減速機構20の2つの減速機構部は、インナカバー21の内部に収容される。インナカバー21の内部には軸方向前方から後方にワッシャ26、27が挿入される。ワッシャ26は回転する第1遊星キャリヤ組立体30のニードルピン34aの後方側端部を押さえるための金属製のあて板である。ワッシャ27は、第1リングギヤ28の後方側を位置決めするための金属製のあて板である。第1リングギヤ28は、第1減速機構部のアウターギヤとして作用するが、第1リングギヤ28は回転方向には固定され、回転しない。このため第1リングギヤ28の外周側の4箇所には、径方向外側に突出する突出リブ28aが形成され、突出リブ28aがインナカバー21内の後述する溝部に嵌挿されることによりハウジング6に対して非回転状態で固定される。また、第1リングギヤ28の軸方向後方の端面は、ワッシャ27を介してインナカバー21の内壁に形成される円環状の平面部分に当接し、後方への移動が制限される。
第1遊星キャリヤ組立体30は、3つの第1プラネタリーギヤ33の公転運動を保持すると共に、その公転運動を出力として取り出す機能を果たす。第1プラネタリーギヤ33の前方には、第2減速機構部の入力となりサンギヤとして機能する第2ピニオン35が形成される。第1遊星キャリヤ組立体30の第2ピニオン35の外周側には金属製のワッシャ37が位置づけられる。ワッシャ37は、第2遊星キャリヤ組立体51のニードルピン57の抜け止めとして作用するとともに、第1遊星キャリヤ組立体30と第2遊星キャリヤ組立体51がスムーズに回転できるように挿入されるものである。
次に第2減速機構部を構成する第2リングギヤ40がインナカバー21内部に配置される。第2リングギヤ40は、外径が花びら形のワッシャ38を介してインナカバー21内の内壁に形成される円環状の平面部分に当接するようにして固定される。第2リングギヤ40は、インナカバー21に対して、軸方向(前後方向)には移動せず、回転方向には弾性体44の弾性変形分だけ微少角度だけ回動する。第2リングギヤ40の内側及び前方側には第2遊星キャリヤ組立体51が装着される。第2リングギヤ40は非回転部品であり、第2遊星キャリヤ組立体51は回転部品である。そこで、第2リングギヤ40と第2遊星キャリヤ組立体51の間には、スラスト軸受45が設けられる。スラスト軸受45は、第2遊星キャリヤ組立体51から軸方向後方に受けるスラスト加重を受けるためのもので、スラスト加重を受けつつも第2遊星キャリヤ組立体51をスムーズに回転させることができる。スラスト軸受45は、後方と前方に配置される軌道ワッシャ46、49と、図示しないベアリング球を組み込むために円周方向に複数の穴48が形成された穴あきワッシャ47により構成される。
第2遊星キャリヤ組立体51は、第2プラネタリーギヤ56の第2ピニオン35の回りの公転運動を保持すると共に、その公転運動をハンマ52の回転運動に変換する機能を果たす。第2プラネタリーギヤ56はニードルピン57によって第2遊星キャリヤ組立体51の円盤部55a、55bにて保持される。本実施例において特徴的なこととして、第2遊星キャリヤ組立体51が第2プラネタリーギヤ56の複数の回転軸たるニードルピン57の両端を保持することである。そのため第2遊星キャリヤ組立体51の後端側は円筒状の空間を有し、その空間の内部には第2ピニオン35が収容される。第2遊星キャリヤ組立体51の前方側中心付近は、軸方向前方に突出する嵌合軸56bが形成され、嵌合軸56bはアンビル61の後方側中心付近に形成される円筒形の嵌合穴63aに嵌挿される。嵌合軸56bと嵌合穴63aによって、第2遊星キャリヤ組立体51とアンビル61が相対的に回転可能なように軸支される。アンビル61は、後端部から半径方向外側に向けて伸びる2つの打撃爪64、65を有し、前方には先端工具を装着するための装着穴62aが形成される。
本実施例によるインパクト工具では、ハンマによるアンビル61の打撃の際に、スラスト方向(軸方向前方)への打撃力がほとんど伝わらないため、例えばネジを締めるときに先端工具とネジ頭の嵌合が外れないようにするために、作業者はインパクト工具1本体を前方に強く押しつけることが重要である。そのため、アンビル61には押しつけの反力が軸方向後方に伝わり、その反力は第2遊星キャリヤ組立体51に伝わることになる。第2遊星キャリヤ組立体51が受ける反力は、スラスト軸受45を介して第2リングギヤ40に伝わる。第2リングギヤ40の後端側はインナカバー21により保持されるので、結果としてアンビル61にかかるスラスト反力は、第2遊星キャリヤ組立体51→スラスト軸受45→第2リングギヤ40→ワッシャ38→インナカバー21→ハウジング6と伝達されることになる。
従来の遊星歯車減速機構においては、アンビル61にかかるスラスト反力は、第2遊星キャリヤ組立体51→第1遊星キャリヤ組み立てたい40→ボールベアリング(16bに相当)→インナカバー21→ハウジング6となり、ボールベアリングの寿命が短くなってしまうおそれがあった。しかしながら、本実施例の構造においては、回転差が生ずる部分である第2遊星キャリヤ組立体51と第2リングギヤ40の間には耐スラスト荷重の高いスラスト軸受45が介在されるので、回転及び打撃動作にほとんど影響を与えることなく効果的にスラスト反力をハウジング6に逃がすことができ、インパクト工具1本体の剛性を高めることができる。また、アンビル61にかかるスラスト反力は、第1減速機構部の構成部分にはかからないので、ボールベアリングの代わりにメタル16bで実現できるようになったので、ベアリング部分の大きさを小さくすることができ、インパクト工具1の上下方向の大きさ及び前後(軸)方向の大きさを短縮することができ、同時に軽量化を達成できた。また、メタル16bの信頼性が上がり、インパクト工具1の寿命を向上させることができた。
図5は、インナカバー21の形状を示す斜視図であり、前方側から見た図である。インナカバー21は、前方側に開口部を持つ略カップ状の形状であり、底部中央(後部中央部)に貫通穴21aが形成される。貫通穴21aから前方側には少なくとも3つの径を有する、小径内径部21b、中径内径部21e、大径内径部21iが形成される。小径内径部21bの部分にはリング状のメタル16b(図3参照)が挿入され、メタル16bの後端部は図示しないワッシャを介して段差部21cに突き当てられる。
中径内径部21eの部分にはワッシャ27(図4参照)を介して第1リングギヤ28(図4参照)が軸方向前方から後方側へ挿入される。この結果ワッシャ27は段差部21dに接触するように配置され、第1リングギヤ28はワッシャ27を介して段差部21dによって軸方向後方への動きが制限されることになる。ここで、中径内径部21eの円周上の複数箇所(本実施例では4箇所)には軸方向に連続する切り欠き溝21fが形成され、第1リングギヤ28の突出リブ28aが嵌合し、これらは第1リングギヤ28の回し止め手段として作用する。このように第1リングギヤ28は、インナカバー21によって軸方向後方にも、回転方向にも移動できないので、安定して保持されることが可能となる。
大径内径部21iの部分には、円周上に複数の凹部38aが形成されたワッシャ38(図4参照)を介して第2リングギヤ40が軸方向前方から後方側へ挿入される。ここで、大径内径部21iの円周上の複数箇所(本実施例では6箇所)には中径内径部21eから同一内径で軸方向前方に連続する凸部21hが形成され、ワッシャ38の凹部38aが凸部21hと対応するようにして段差部21gに配置される。また、第2リングギヤ40に取り付けられる複数の弾性体44間の隙間に凸部21hが入り込むようにして第2リングギヤ40がワッシャ38の前方に位置づけられる。第2リングギヤ40の後述する軸方向の後端面はワッシャ38を介して段差面21gに当接するので、第2リングギヤ40は軸方向後方への移動ができないことになる。
インナカバー21の軸方向中央付近の外周には、半径が大きく形成された円環状のフランジ部分22が形成される。このフランジ部分22は、ハウジング6の胴体部6aの内壁に設けられた段差部に当接することによって、インナカバー21の軸方向後方への移動を制限する。インナカバー21の後方側には、軸方向後方に突出する突出部23a、23bが形成される。図では1組の突出部23a、23bしか見えないが、中心軸と軸対象の位置に同形状のもう一組の突出部23a、23bが形成される。また突出部23a、23bの間には空間23cが画定され、この空間23cがハウジング6の内壁側に形成された図示しない突出部と係合することによってインナカバー21がハウジング6に対して回転できないように保持される。尚、突出部23a、23bはインナカバー21が軸方向に回転しないようにするための周り止め手段であるので、図示した形状に限られずに、インナカバー21が中心軸に対して回転しないようにハウジング6に対して保持できるような凹凸部であるならば他の形状であっても良い。同様に、切り欠き溝21fや突出リブ28aのような凹凸部も、これらの凹凸関係を逆にして形成して実現しても良い。
図6は第2リングギヤ40と、弾性体44の外観を示す斜視図である。第2リングギヤ40は、内周部に第2プラネタリーギヤ56(図4参照)と噛合するギヤ部41が形成され、外周側には、弾性体44を収容するための空間となる窪み部40aが形成される。窪み部40aの前方側は弾性体の軸方向への移動を制限するための円周方向に連続する壁部40bが形成される。複数の窪み部40aの間には軸方向後方にまで延びる突出部40cが形成され、突出部40cの後端側には、ワッシャ38を介してインナカバー21の段差部21gと当接するための当接面40dが形成され、これらは第2リングギヤ40の回し止め手段として作用する。当接面40dは円周上の6ヶ所に形成されるが、それぞれ微少面積であるので、第2リングギヤ40の後方側は6ヶ所の当接面40dだけでワッシャ38に当接することになる。
6つ用いられる弾性体44のそれぞれは、2つの弾性体本体44aとそれらを接合するベルト44bにより構成される。弾性体44は、例えばゴム等の制震効果に優れた素材を用いると好ましい。ベルト44bによって接合される部分は隙間44cとなり、この隙間44cが第2リングギヤ40の突出部40cに位置づけられる。尚、第2リングギヤ40に複数の弾性体44が取り付けられた後には、矢印43で示す部分に隙間が生ずることとなる。この隙間の間にインナカバー21の凸部21hが位置するようにして、第2リングギヤ40がインナカバー21に装着されることになる。その場合、第2リングギヤ40にハンマから打撃の反力(回転方向の反力)が伝わった場合には、第2リングギヤ40に対して回転方向の反力が伝わるが、その反力は弾性体44を介してインナカバー21の凸部21hによって伝わる。従って、第2リングギヤ40に生ずる回転方向の反力に対しては弾性体44によって効果的に減衰させることができ、打撃時にインパクト工具1に振られにくくすることができ、使いやすいインパクト工具1を実現できる。
弾性体44の弾性力をどの程度に設定するかは、締め付け対象がネジかボルトか等を考慮して任意に設定すれば良い。また、弾性体44の変形によって第2リングギヤ40がインナカバー21に対してどの程度回転できるかも適宜設定すればよいが、角度にしては数度未満の微少角であることが望ましい。尚、窪み部40aの軸方向の厚さd1と、弾性体44の軸方向の厚さd2の関係をd2>d1とすることも可能である。その場合、第2リングギヤ40に対して軸方向後方へのスラスト加重がかかっていない場合は、当接面40dがワッシャ38から浮いて弾性体44だけがワッシャ38と当接することになる。このような配置関係とすると第2リングギヤ40の軸後方への動きが減衰させることになる。
図7は第1遊星キャリヤ組立体30の構造を示す図であり、その半分の斜視図とその断面を示す図である。第1遊星キャリヤ組立体30は、前側部材31aと後側部材32aの2ピースからなるプラネタリーキャリヤと、複数の第1プラネタリーギヤ33とにより構成される。前側部材31aの前方中心部には、第2減速機構部の入力軸となる第2ピニオン35が構成される。前側部材31aと後側部材32aは、円周方向に複数箇所設けられる貫通穴31b、32bと、その貫通穴31b、32bに圧入されるロールピン34bによって固定される。本実施例では、第1プラネタリーギヤ33はニードルピン34aの両端部が保持されることによって両持ちにて保持されるので、第1プラネタリーギヤ33のがたつきが生ずることを防止でき、スムーズに動作させることができる。この結果、インパクト工具の大幅な長寿命化を図ることができる。尚、本実施例では、第1遊星キャリヤ組立体30は、前側部材31aと後側部材32aの2ピースで構成されたが、一体成形とした1ピース構成としても良い。
図8は、第2遊星キャリヤ組立体51の構造を示す図であり、その半分の斜視図とその断面を示す図である。第2遊星キャリヤ組立体51は、一体に構成される円盤状部材54を基本とし、円盤状部材54の後方側は第2プラネタリーギヤ56を保持するプラネタリーキャリヤを構成し、円盤状部材54の前方側には、アンビル61の嵌合穴63aと嵌合する嵌合軸56bと、打撃爪となるハンマ53が突出する。嵌合軸56bの後方側には、径が嵌合軸56bよりも太くなった突当部56aが形成される。突当部56aはアンビル61の後端部と当接可能であり、これによってアンビル61に対して軸方向後方へのスラスト加重が加わった際に、そのスラスト加重を第2遊星キャリヤ組立体51に伝達することが可能となる。
第2プラネタリーギヤ56は、ニードルピン57によって2つの円盤部55a及び55bにより保持される。ここで、本実施例では、第2プラネタリーギヤ56はニードルピン57によって円盤部55a、55bに両持ち保持されるので、がたつきが生ずることを防止でき、スムーズに動作させることができる。この結果、インパクト工具の大幅な長寿命化を図ることができる。尚、本実施例では、第2遊星キャリヤ組立体51は、一体成形とした1ピース構成としたが、第1遊星キャリヤ組立体30のように2ピース構成としても良い。
次に図9、10を用いて、打撃機構50を構成する第2遊星キャリヤ組立体51とアンビル61の詳細構造を説明する。図9は、第2遊星キャリヤ組立体51とアンビル61の形状を示す斜視図であり、第2遊星キャリヤ組立体51は斜め前方から、アンビル61は斜め後方からのみた図である。図10は第2遊星キャリヤ組立体51とアンビル61の形状を示す斜視図であり、第2遊星キャリヤ組立体51は斜め後方から見た図であり、アンビル61は斜め前方からみた部分図である。第2遊星キャリヤ組立体51は、一体に構成される円盤状部材54を基本とし、円盤状部材54の対向する2箇所に軸方向前方に突出する2つのハンマ52、53が形成される。ハンマ52、53は打撃部(打撃爪)として機能し、ハンマ52の円周方向には、打撃面52aと52bが形成され、ハンマ53の円周方向には、打撃面53aと53bが形成される。打撃面52a、52b、53a、53bは、共に平面に形成されたもので、アンビル61の後述する被打撃面と良好に面接触する形成される。円盤状部材54の中心軸付近から前方に、突当部56aと嵌合軸56bが形成される。円盤状部材54の外周付近の後方側は、スラスト軸受45と当接するための円環状の当接面54aが形成される。
円盤状部材54の後方側には遊星キャリヤの機能を有するように2つの円盤部55a、55bが形成され、円周方向の3箇所において円盤部55a、55bを接続する接続部55cが形成される。円盤部55a、55bの円周方向のそれぞれ3箇所には、貫通穴55d、55eが形成され、円盤部55a、55bの間に3つの第2プラネタリーギヤ56(図8参照)が配置され、第2プラネタリーギヤ56の回転軸たるニードルピン57(図8参照)が貫通穴55d、55eに装着される。円盤部55bの後方側中心軸付近には円形のくり貫き穴55fが形成される。くり貫き穴55fを介して第2ピニオン35が貫通し、第2プラネタリーギヤ56の第2プラネタリーギヤ56と噛合する。尚、第2遊星キャリヤ組立体51は、金属の一体構造にて製造すると強度的にも重量的にも好ましい。同様にアンビル61も金属の一体構造にて製造すると強度的にも重量的にも好ましい。
アンビル61は、円柱形の出力軸部分62の後方に円盤部63が形成され、この円盤部63の外周方向に突出する2つの打撃爪64、65が形成される。打撃爪64の円周方向両側には被打撃面64a及び64bが形成される。同様に打撃爪65の円周方向両側には被打撃面65a及び65bが形成される。第2遊星キャリヤ組立体51が正回転(ネジ等を締め付ける回転方向)するときには、打撃面52aが被打撃面64aに当接し、同時に打撃面53aが被打撃面65aに当接する。また、第2遊星キャリヤ組立体51が逆回転(ネジ等をゆるめる回転方向)するときには、打撃面52bが被打撃面64bに当接し、同時に打撃面53bが被打撃面65bに当接する。この当接するタイミングが同時となるようにハンマ52、53及び打撃爪64、65の形状が決定されるので、回転する軸心を基準に対称な2箇所にて打撃が行われるので打撃時のバランスが良く、打撃時にインパクト工具1が振られにくく構成できる。
図11は、ハンマ52、53及び打撃爪64、65の使用状態における一回転の動きを6段階で示した断面図である。断面は軸方向と垂直面であって、図3のA−A部の断面である。図11においては、ハンマ52、53及び円盤部55aが一体に回転する部分(駆動側)であり、打撃爪64、65が一体に回転する部分(被駆動側)である。図11(1)の状態において、先端工具からうける締め付けトルクが小さいうちは、打撃爪64、65はハンマ52、53から押されることにより反時計回りに回転する。しかしながら、締め付けトルクが大きくなってハンマ52、53から押される力だけでは回転できなくなった場合には、ハンマ52、53を逆回転させるべく、モータ3の逆回転を開始する。(1)で示す状態においてモータ3の反転を開始し、それによって(2)に示すようにハンマ52、53を矢印58aの方向に回転させる。
モータ3が所定回転数まで逆回転したら、モータ3の駆動を停止する。ハンマ52、53は惰性によりさらに逆回転して、矢印58bに示すように図11(3)の位置(逆回転の停止位置)に到達したら、モータ3に正回転方向への駆動電流を流すことにより、ハンマ52、53の矢印59aの方向(正回転方向)への回転を開始する。尚、ハンマ52、53を逆回転させた際に、ハンマ52と打撃爪65、及びハンマ53と打撃爪64が衝突しないように、所定位置において確実にハンマ52、53を停止させることが重要である。ハンマ52、53の停止位置を、打撃爪64、65と衝突する位置のどの程度前に設定するかは任意であるが、必要とされる締め付けトルクが大きいときは、反転角を大きくすると良い。また、停止位置は毎回同じ位置とする必要はなく、締め付け初期段階では逆回転角を小さくして、締め付けが進むにつれて逆回転角を大きく設定するように構成しても良い。このように停止位置を可変にすれば逆回転に要する時間を最小に設定できるので、短い時間で迅速に打撃動作を行うことができる。
そして、図11(4)で示すようにハンマ52、53を矢印59bの方向に加速させて、矢印59cにように加速中の状態のまま図11(5)に示す位置にてハンマ52の打撃面52aは打撃爪64の被打撃面64aと衝突する。同時に、ハンマ53の打撃面53aは打撃爪65の被打撃面65aと衝突する。この衝突の結果、打撃爪64、65には強力な回転トルクが伝達され、打撃爪64、65は矢印59dで示す方向に回転する。図11(6)の位置は、図11(1)で示した状態から、ハンマ52、53と打撃爪64、65の双方が所定角度分だけ回転した状態であり、再び図11(1)の状態から図11(5)に至る動作を繰り返すことによって、被締付部材を適正トルクになるまで締め付けを行う。
次に、図12を用いてアンビル61からハウジング6に伝わるスラスト反力の伝達経路を説明する。図12では、各部分を概略的に表現した図である。作業者がグリップ6bを握り、インパクト工具1を前方に押しつけながら作業をすると、ハウジング6から締付部材の方向に矢印100の方向に押しつけ力が加わる。この押しつけ力の反力として、アンビル61は先端工具を介して矢印101の反力を受けることになる。矢印101の反力は、アンビル61の円盤部63からハンマの突当部56aに伝達され、矢印102のように反力が第2遊星キャリヤ組立体51に伝達される。第2遊星キャリヤ組立体51の後方側は、後方への荷重を受ける荷重受け部たるスラスト軸受45が配置されるので、スラスト軸受45を介して矢印103、104のように伝達され、第2リングギヤ40に伝達される。第2リングギヤ40の後方側は、インナカバー21の段差部にて保持されるため矢印105のようにスラスト反力がインナカバー21に伝達される。
インナカバー21はハウジング6の内側に配置され、しかもハウジング6から内側に突出する突起部6gにより保持されるので矢印106で示すようにスラスト反力がハウジング6に伝達される。以上のようにして、作業者がインパクト工具を締め付け材に押しつける荷重を、特定の部分で受けることが無くハウジング6全体で効果的に受けることができ、遊星歯車減速機構のベアリング等の特定部分に荷重が集中するのを防止することができ、インパクト工具の長寿命化を図ることができる。
尚、アンビル61も第2遊星キャリヤ組立体51も共に回転するために、第2遊星キャリヤ組立体51はスラスト反力だけでなく、ラジアル反力も受けることになる。このラジアル反力は、第2遊星キャリヤ組立体51から第2リングギヤ40に伝達され、第2リングギヤ40とインナカバー21の回転方向の隙間に介在される弾性体44を介して第2リングギヤ40からインナカバー21に伝達され、最終的にハウジング6に伝達される。このようにラジアル反力については、弾性体44を介してハウジング6に伝達されるので、弾性体44によってラジアル反力のピーク荷重を効果的に減衰させることができる。
以上のように、先端工具からの反力によってアンビル61が径方向へと力を受けた際に、ハンマ52,53を介して第1遊星キャリヤ51が径方向へと力を受けると、第1遊星キャリヤ51と連結される第2遊星キャリヤ30がメタル16bによって径方向の力を受けるので、しっかりと第1遊星キャリヤ51からの力を受けることができ、第1遊星キャリヤ51が傾くことが少なくなる。このため、第1ピニオン29に対して第1プラネタリーギヤ33が傾くことによる伝達ロスが小さくなる。
次に、モータ3の駆動制御系の構成と作用を図13に基づいて説明する。図13はモータ3の駆動制御系の構成を示すブロック図であり、本実施例では、モータ3は3相のブラシレスDCモータで構成される。このブラシレスDCモータは、いわゆるインナーロータ型であって、複数組(本実施例では2組)のN極とS極を含む永久磁石(マグネット)を含んで構成される回転子(ロータ)3aと、スター結線された3相の固定子巻線U、V、Wから成る固定子3bと、回転子3aの回転位置を検出するために周方向に所定の間隔毎、例えば角度60°毎に配置された3つの回転位置検出素子(ホール素子)78を有する。これら回転位置検出素子78からの位置検出信号に基づいて固定子巻線U、V、Wへの通電方向と時間が制御され、モータ3が回転する。
インバータ基板10上に搭載される電子素子には、3相ブリッジ形式に接続されたFETなどの6個のスイッチング素子Q1〜Q6を含む。ブリッジ接続された6個のスイッチング素子Q1〜Q6の各ゲートは、制御回路基板9に搭載される制御信号出力回路73に接続され、6個のスイッチング素子Q1〜Q6の各ドレインまたは各ソースは、スター結線された固定子巻線U、V、Wに接続される。これによって、6個のスイッチング素子Q1〜Q6は、制御信号出力回路73から入力されたスイッチング素子駆動信号(H4、H5、H6等の駆動信号)によってスイッチング動作を行い、インバータ回路72に印加されるバッテリパック2の直流電圧を3相(U相、V相及びW相)電圧Vu、Vv、Vwとして固定子巻線U、V、Wに電力を供給する。
6個のスイッチング素子Q1〜Q6の各ゲートを駆動するスイッチング素子駆動信号(3相信号)のうち、3個の負電源側スイッチング素子Q4、Q5、Q6をパルス幅変調信号(PWM信号)H4、H5、H6として供給し、制御回路基板9上に搭載された演算部71によって、トリガスイッチ8のトリガ操作部8aの操作量(ストローク)の検出信号に基づいてPWM信号のパルス幅(デューティ比)を変化させることによってモータ3への電力供給量を調整し、モータ3の起動/停止と回転速度を制御する。
ここで、PWM信号は、インバータ回路72の正電源側スイッチング素子Q1〜Q3または負電源側スイッチング素子Q4〜Q6の何れか一方に供給され、スイッチング素子Q1〜Q3またはスイッチング素子Q4〜Q6を高速スイッチングさせることによってバッテリパック2の直流電圧から各固定子巻線U、V、Wに供給する電力を制御する。尚、本実施例では、負電源側スイッチング素子Q4〜Q6にPWM信号が供給されるため、PWM信号のパルス幅を制御することによって各固定子巻線U、V、Wに供給する電力を調整してモータ3の回転速度を制御することができる。
インパクト工具1には、モータ3の回転方向を切り替えるための正逆切替レバー14が設けられ、回転方向設定回路82は正逆切替レバー14の変化を検出するごとに、モータの回転方向を切り替えて、その制御信号を演算部71に送信する。演算部71は、図示していないが、処理プログラムとデータに基づいて駆動信号を出力するための中央処理装置(CPU)、処理プログラムや制御データを記憶するためのROM、データを一時記憶するためのRAM、タイマ等を含んで構成される。
制御信号出力回路73は、回転方向設定回路82と回転子位置検出回路74の出力信号に基づいて所定のスイッチング素子Q1〜Q6を交互にスイッチングするための駆動信号を形成し、その駆動信号を制御信号出力回路73に出力する。これによって固定子巻線U、V、Wの所定の巻線に交互に通電し、回転子3aを設定された回転方向に回転させる。この場合、負電源側スイッチング素子Q4〜Q6に印加する駆動信号は、印加電圧設定回路81の出力制御信号に基づいてPWM変調信号として出力される。モータ3に供給される電流値は、電流検出回路79によって測定され、その値が演算部71にフィードバックされることにより、設定された駆動電力となるように調整される。尚、PWM信号は正電源側スイッチング素子Q1〜Q3に印加しても良い。
制御回路基板9に搭載される制御部70には、アンビル61に発生する衝撃の大きさを検出する打撃衝撃検出センサ76が接続され、その出力は打撃衝撃検出回路77を介して演算部71に入力される。打撃衝撃検出センサ76としては、振動、歪、音等で反応するセンサとすることができる。また、打撃衝撃検出センサ76の出力を用いて規定トルクで締め付けが完了した際に、モータ3を自動停止させるようにしても良い。
次に、本実施例に係るインパクト工具1の駆動方法について説明する。本実施例に係るインパクト工具1においては、アンビル61とハンマ52、53が、相対的に180度未満の回転角で回転可能なように形成される。従って、ハンマ52、53はアンビル61に対して半回転以上の相対回転ができないため、その回転制御も特有のものになる。図14は、インパクト工具1の運転時のトリガ信号、インバータ回路の駆動信号、モータ3の回転速度、ハンマ52、53とアンビル61の打撃時のトルクを示す図である。各グラフにおいて横軸は時間であり、各グラフのタイミングを比較できるように横軸を合わせて記載している。
本実施例に係るインパクト工具1において、インパクトモードにおける締め付け作業の場合は、最初“連続駆動モード”で高速に締め付けを行い、必要な締め付けトルク値が大きくなったら“断続駆動モード(1)”に切り替えて締め付けを行い、必要な締め付けトルク値がさらに大きくなったら“断続駆動モード(2)”に切り替えて締め付けを行う。図14の時間T1からT2における連続駆動モードでは、演算部71はモータ3を目標回転数に基づく制御を行う。このためモータ3は矢印95aで示す目標回転数に達するまでモータを加速させる。連続駆動モードでのアンビル61の回転は、ハンマ52、53に押されながら回転する状態である。その後、アンビル61に取り付けられた先端工具からの締め付け反力が大きくなると、アンビル61からハンマ52、53に伝わる反力が大きくなるため、矢印95bに示すようにモータ3の回転速度が徐々に落ちてくる。そこで、その回転速度の落ち込みをモータ3に供給される電流値で検出して、時間T2で“断続駆動モード(1)”による回転駆動モードに切り替える。
断続駆動モード(1)は、モータ3を連続的に駆動するのではなく断続的に駆動するモードであり、「休止→正回転駆動」を複数回繰り返すようにモータ3をパルス状に駆動する。ここで、「パルス状に駆動する」とは、インバータ回路72に加えるゲート信号を脈動させることにより、モータ3に供給される駆動電流を脈動させ、それによってモータ3の回転数又は出力トルクを脈動させるように駆動制御することである。この脈動は、時間T2からT21まではモータへ供給される駆動電流OFF(休止)、時間T21からT3まではモータの駆動電流ON(駆動)、時間T3からT31までは駆動電流OFF(休止)、時間T31から時間T4までは駆動電流ONというような、大きな周期(例えば数十Hz〜百数十Hz程度)で駆動電流のON−OFFを繰り返すことによって発生される。尚、駆動電流ON状態の時にはモータ3の回転数制御のためにPWM制御が行われるが、そのデューティ比制御の周期(通常数キロHz)に比べると、脈動させる周期は十分小さい。
図14の例では、T2から一定の時間モータ3への駆動電流の供給を休止して、モータ3の回転速度が矢印96aに低下した後に、演算部71(図13参照)は駆動信号93aを制御信号出力回路73に送ることによりモータ3にパルス状の駆動電流(駆動パルス)が供給され、モータ3を加速させる。尚、この加速時の制御は、必ずしもデューティ比100%で駆動という意味ではなく、100%未満のデューティ比で制御する事もありうる。次に、矢印96bの地点においてハンマ52、53がアンビル61に強く衝突することにより、矢印98aで示すように打撃トルクが発生する。アンビル61に打撃力が与えられると、再びモータ3への駆動電流の供給を所定期間休止し、モータ3の回転速度が矢印96cで示すように低下した後に、演算部71は駆動信号93bを制御信号出力回路73に送ることによりモータ3を加速させる。すると、矢印96dの地点においてハンマ52、53がアンビル61に強く衝突することにより、矢印98bで示すように打撃トルクが発生する。断続駆動モード(1)においては、上述したモータ3の「休止→正回転駆動」を繰り返す断続的な駆動が1回又は複数回繰り返されるが、より高い締め付けトルクが必要になったらその状態を検出し、断続駆動モード(2)による回転駆動モードに切り替える。高い締め付けトルクが必要になったか否かの判定は、例えば矢印98bで示す打撃力が与えられた際のモータ3の回転数(矢印96dの前後)が所定の回転数(閾値)以下になったか否かで判断することができる。
断続駆動モード(2)は、モータ3を断続的に駆動し、断続駆動モード(1)と同様にパルス状にモータ3を駆動するモードであるが、「休止→逆回転駆動→休止(停止)→正回転駆動」を複数回繰り返すように駆動する。つまり断続駆動モード(2)においては、モータ3の正回転駆動だけでなく逆回転駆動をも加わるために、ハンマ52、53をアンビル61に対して十分な相対角だけ逆回転させた後に、ハンマ52、53を正回転方向に加速させて勢いよくアンビル61に衝突させる。このようにハンマ52、53を駆動することにより、アンビル61に強い締め付けトルクを発生させるものである。
図14の例では時間T4で断続駆動モード(2)に切り替わると、モータ3の駆動を一時休止させて、その後負の方向の駆動信号94aを制御信号出力回路73に送ることによりモータ3を逆回転させる。正転、逆転を行う際には、制御信号出力回路73から各スイッチング素子Q1〜Q6に出力する各駆動信号(オンオフ信号)の信号パターンを切り替えることにより実現される。モータ3が所定の回転角分だけ逆回転したら(矢印97a)、モータ3の駆動を一時休止させて正回転駆動を開始する(矢印97b)。このため、正の方向の駆動信号94bを制御信号出力回路73に送る。尚、インバータ回路72を用いた回転駆動においては、駆動信号をプラス側又はマイナス側に切り替えるものではないが、図14ではどちら方向へ回転駆動するか容易に理解できるように、駆動信号を+及び−方向に分けて模式的に表現した。
モータ3の回転速度が最大速度に達する付近で、ハンマ52、53は打撃爪64、65に衝突する(矢印97c)。この衝突により断続駆動モード(1)で発生する締め付けトルク(98a、98b)に比べて格段に大きい締め付けトルク(99a)が発生する。このように衝突が行われると矢印97cから97dに至るようにモータ3の回転数が低下する。尚、矢印99aに示す衝突を検出した瞬間にモータ3への駆動信号を停止する制御をしても良く、その場合は締付対象がボルトやナット等の場合は打撃後に作業者の手に伝わる反動が少なくて済む。本実施例のように衝突後もモータ3に駆動電流を流すことにより作業者への反力が連続駆動モードに比較して小さく、中負荷状態での作業に適している。その後、同様にして、「休止→逆回転駆動→休止(停止)→正回転駆動」を所定回数だけ繰り返すことにより強い締め付けトルクでの締め付けが行われ、時間T7において作業者がトリガ操作を解除することによってモータ3が停止し、締め付け作業が完了する。作業の完了は作業者によるトリガ操作の解除だけでなく、打撃衝撃検出センサ76(図13参照)の出力を元に、演算部71が設定された締め付けトルクでの締め付けが完了したと判断したらモータ3の駆動を停止するように制御しても良い。
本実施例においては締め付けトルクが少なくてすむ締め付け初期段階は連続駆動モードで回転駆動し、締め付けトルクが大きくなるにつれて正転のみの断続駆動による断続駆動モード(1)で締め付けを行い、締め付けの最終段階においては、モータ3の正転及び逆転による断続駆動による断続駆動モード(2)によって強力に締め付けを行う。尚、断続駆動モード(1)と断続駆動モード(2)だけを使って駆動するように構成しても良い。また、断続駆動モード(1)を設けないで、連続駆動モードから断続駆動モード(2)に直接移行する制御も可能である。断続駆動モード(2)ではモータの正回転と逆回転を交互に行うため、締め付け速度が、連続駆動モードや断続駆動モード(1)よりも大幅に遅くなる。このように締め付け速度が急に遅くなると、周知の回転打撃機構を有するインパクト工具に比べて打撃動作に移行する際の違和感が大きくなるので、連続駆動モードから断続駆動モード(2)への移行にあたり、断続駆動モード(1)を介在させた方が操作感が自然な感じとなる。さらに、可能な限り連続駆動モードや断続駆動モード(1)で締め付けを行うことにより、締め付け作業時間の短縮化を図ることができる。
以上説明したように、本実施例によれば相対回転角が半回転未満のハンマとアンビルを用いて、モータを連続回転、正方向のみの断続回転、正方向及び逆方向の断続回転を行うことによって、効率的に締付部材を締付することができる。また、ハンマとアンビルの形状をシンプルな構造にすることができたので、インパクト工具の小型化及びコストダウンが実現できる。
次に図15を用いて発光体部12付近の構造を説明する。図13は、発光体部12付近の構造を説明するための部分断面図である。本実施例のインパクト工具1においては、ハンマケース7と発光体部12の間には、ハッチングで示した仕切り部6dが設けられる。この仕切り部6dは、ハウジング6の胴体部6aの一部として一体的に形成される。仕切り部6dの下方には、発光体部12が設置される。発光体部12は、基板66と、基板66に固定されるLEDチップ67と、基板66を保持する透明樹脂体68を有する。透明樹脂体68は、ハウジング6の胴体部6aの凹凸部(図示せず)と左右方向で係合することによってハウジング6に固定される。透明樹脂体68は、レンズを有しており、このレンズはLEDチップ67の前方に配置される。基板66には後方に延びるように2本の電力供給用のコード69aが接続される。仕切り部6dの下方であって、ハウジング6の側面にはコード69aを保持するための複数のリブ69bが形成される。
発光体部12の下方には、別のハッチングで示すライト収容室壁6eが設けられる。このライト収容室壁6eは、ハウジング6の胴体部6aの一部として一体的に製造され、例えば合成樹脂の一体成形で製造されると好ましい。ライト収容室壁6eの前端部であって、透明樹脂体68のレンズの前方には窓6fが設けられ、窓6fを介してLEDチップ67から発せられる光が前方に照射される。
本実施例において、インパクト工具1の発光体部12付近は上記したような構造であるため、ハンマケース7の内部に適宜塗布される図示しないグリース(潤滑油)が、仮にハンマケース7の外部へと漏れ出しても、グリースが発光体部12へと伝わりにくく、発光体部12がグリースによって汚れることを防止できる。また、インパクト動作に起因するハンマケース7の振動は、仕切り部6dを介して発光体部12に伝達されるが、本実施例では発光体部12は仕切り部6dとライト収容室壁6eに囲まれる閉空間内に配置されるため、LEDチップ67、基板66、コード69aなどが振動によって破損することを効果的に防止できる。尚、このように発光体部12を仕切り部6dとライト収容室壁6eに囲まれる閉空間内に収容する構造は、インパクト工具1のハンマケースではなく、ドライバドリルに用いられる(減速機構部を収容する)ギヤケースとLEDライトの間に仕切り部を設ける構造として実現しても、同様の効果を奏することができる。
以上、本発明について実施例に基づき説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。例えば、本実施例では動力工具の例としてインパクト工具で説明したが、これに限定されずにドライバドリルやその他の減速機構を有する回転工具でも同様に適用できる。また、アンビルとハンマの形状は任意であり、アンビルとハンマが相対的に連続回転できない(乗り越えながら回転できない)構造とし、相対的に360度未満、あるいは180度未満の所定の回転角を確保し、打撃面及び被打撃面を形成すれば他の形状のものでも良い。