JP5486379B2 - 面形状計測装置 - Google Patents

面形状計測装置 Download PDF

Info

Publication number
JP5486379B2
JP5486379B2 JP2010083402A JP2010083402A JP5486379B2 JP 5486379 B2 JP5486379 B2 JP 5486379B2 JP 2010083402 A JP2010083402 A JP 2010083402A JP 2010083402 A JP2010083402 A JP 2010083402A JP 5486379 B2 JP5486379 B2 JP 5486379B2
Authority
JP
Japan
Prior art keywords
reference point
measuring
test surface
shape
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010083402A
Other languages
English (en)
Other versions
JP2011095241A (ja
JP2011095241A5 (ja
Inventor
隆一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010083402A priority Critical patent/JP5486379B2/ja
Priority to US12/891,736 priority patent/US8411280B2/en
Priority to EP10180680A priority patent/EP2306144A1/en
Publication of JP2011095241A publication Critical patent/JP2011095241A/ja
Publication of JP2011095241A5 publication Critical patent/JP2011095241A5/ja
Application granted granted Critical
Publication of JP5486379B2 publication Critical patent/JP5486379B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts

Description

本発明は、被検面の形状を計測する面形状計測装置に関する。
球面レンズあるいは非球面レンズなどの面形状を計測する代表的な方法として、プローブにより被検面をならい走査する方法が知られている。典型的な方法は、X軸ステージとY軸ステージとZ軸ステージとを有する3軸直交ステージに取り付けられたプローブを、プローブと被検面との距離が一定となるように走査する。この走査面におけるプローブの位置をレーザー測長器などで遂次測定することにより、被検面形状を3次元座標点群として求めることができる。
プローブを用いて被検面をならい走査して形状を測定する方法においては、測定精度を保証するために座標系の校正が重要な課題となっている。座標系の校正の方法としては、基準部材を計測して得られる計測データと基準データとを比較し、その差を最小にする方法が一般的である。特許文献1には、基準球面を基準部材として用いて座標系を校正する方法が開示されている。この方法では、座標系の直交度が正確ではない場合に球面が楕円面として測定されることを利用し、測定された楕円面が球面になるように座標系の直交度誤差を校正する。
特許第3474448号公報
基準部材を用いて座標系を校正する方法においては、被検面の形状と基準部材の形状との差が大きくなると、計測精度が低下するという課題がある。これは、プローブを被検面に対してならい走査するため、基準部材を計測するときのプローブの移動領域と被検面を計測するときのプローブの移動領域とが異なるためである。一般に、形状計測機の計測可能領域内における部分的な領域間での座標系の直交度はサブppmのオーダーで異なる。このため、プローブの移動領域が異なることによって形状としてはサブミクロンからナノオーダーの形状誤差となり、高精度な形状計測においては無視できないものとなる。
本発明は、上記の課題認識を契機としてなされたものであり、高精度な面形状計測に有利な面形状計測装置を提供することを目的とする。
本発明の1つの側面は、被検面の形状を計測する面形状計測装置であって、基準点を通過するように放射されて前記被検面で反射され前記基準点を通って戻ってくる被検光を検出することによって、前記基準点と前記被検面上の点との間の距離を計測する計測ヘッドと、前記基準点を移動するように前記計測ヘッドを走査する走査機構と、前記計測ヘッドを使った計測により得られた前記距離と前記基準点の座標とに基づいて前記被検面上の点から前記基準点への法線の方位を計算し、前記距離と前記方位とに基づいて前記被検面の形状を計算する処理部とを備え、前記処理部は、走査経路に沿って前記計測ヘッドを走査しながら第1の被検面を計測して得られた前記第1の被検面の形状を用いて、前記基準点の座標を校正し、前記第1の被検面を計測するための前記走査経路と同一の経路に沿って前記計測ヘッドを走査しながら前記第1の被検面とは異なる第2の被検面を計測して得られた前記第2の被検面の形状を、校正された基準点の座標に基づいて補正する。
本発明によれば、高精度な面形状計測に有利な面形状計測装置が提供される。
本発明の実施形態の面形状計測装置の概略構成を示す図である。 本発明の実施形態における計測ヘッドの構成を概略的に示す図である。 本発明の実施形態の面形状計測装置の概略構成を示す図である。 走査経路の一例を示す図である。 走査経路の他の例を示す図である。 計測ヘッドの原点を決定する方法を説明する図である。 計測ヘッドからの距離を算出する基準を決定する方法を説明する図である。 本発明の他の実施形態を示す模式図である。 校正と補正の手順を示すフローチャートである。 本発明の一実施形態における計測ヘッドの構成を概略的に示す図である。 計測ヘッドと被検面距離の初期値を決定する方法を説明する図である。 アブソリュートに測長計測する構成の例を示す図である。
本発明に係る面形状計測装置は、例えば、カメラ(ビデオカメラを含む)、複写機、望遠鏡、露光装置などに用いられるレンズ、ミラー、金型などの滑らかに連続した物体の面形状を計測するために好適である。
まず、本発明に係る面形状計測装置の基本原理について説明する。図3に関連するパラメーターを示す。面形状計測装置は、被検面10の面形状を計測するための計測ヘッド110を有する。点F(s,t,u)は、計測ヘッド110から放射される球面波の中心、すなわち基準点の座標である。点C(x,y,z)は、点F(s,t,u)を中心とする球面波が被検面10において正反射する点の座標である。qは、点C(x,y,z)と点F(s,t,u)との間の距離である。n=(α,β,γ)は、被検面10の点C(x,y,z)における単位法線ベクトルである。面形状計測装置は、計測ヘッド110を走査しながら点F(s,t,u)の座標と距離qを計測し、その結果から被検面10上の点C(x,y,z)の座標群、即ち、面形状を決定する。
点C(x,y,z)は、点F(s,t,u)を中心とする半径qの球面上にあるから、式(1)が成り立つ。
(x−s)+(y−t)+(z−u)=q ・・・(1)
ここで、式(1)の両辺を、s,t,uで偏微分すると、式(2)が得られる。
x=s−q∂q/∂s
y=t−q∂q/∂t
z=u−q∂q/∂u・・・(2)
したがって、計測ヘッド110の基準点位置F(s,t,u)と点F(s,t,u)から被検面10までの距離qとを計測することにより、式(2)に従って被検面10上の点の座標群、即ち被検面10の面形状を求めることができる。これを基本原理としている。
単位法線ベクトルの性質により、α=∂q/∂s 、β=∂q/∂t、γ=∂q/∂uであるから、式(2)は、式(3)、(4)のようにベクトル形式で表現することができる。
(x y z)=(s t u)−q(α β γ)・・・(3)
(α β γ)=(∂q/∂s ∂q/∂t ∂q/∂u)・・・(4)
式(4)を使うことにより、計測ヘッド110の基準点位置F(s,t,u)と、点Fから被検面10までの垂直距離qとから、単位法線ベクトル(α β γ)が得られ、それを式(3)に代入することにより、被検面形状(x y z)が得られる。以上が基本原理である。
一方、式(4)は、計測ヘッド110の基準点位置F(s,t,u)と、被検面から基準点Fへ向けての単位法線ベクトル(α β γ)により、垂直距離qが得られ、それを式(3)に代入することによっても形状が得られることを示している。
したがって、実施形態2において説明するように、計測ヘッドは基準点位置F(s,t,u)と、被検面から基準点Fへ向けての単位法線ベクトル(α β γ)を計測するようにしてもよい。
また、離散的な計測データの処理においては、偏分は差分として扱われるので、式(4)と等価な差分形式である式(5)を適用する。
Figure 0005486379
・・・(5)
(第1実施形態)
図1は、本発明の第1実施形態の面形状計測装置の概略構成を示す図である。図1(a)は正面図、図1(b)は側面図である。ここでは、図1に示すようにxyz座標系が定義されている。面形状計測装置は、ベース定盤101と、ベース定盤101によって支持された基準フレーム102と、ベース定盤101によって支持されたワークホルダー106と、計測ヘッド110とを備えている。ワークホルダー106によって被検面10を有する被検物が保持されている。面形状計測装置は、計測ヘッド110のx位置を計測するための基準平面ミラー103、計測ヘッド110のy位置を計測するための基準平面ミラー104、計測ヘッド110のz位置を計測するための基準平面ミラー105を備えている。これらは基準フレーム102に取り付けられている。
面形状計測装置は、更に、計測ヘッド110を走査する走査機構として、Xスライド107、Yスライド108、Zスライド109を含むXYZステージ機構を備えている。計測ヘッド110は、Zスライド109に搭載され、Zスライド109は、Xスライド107に搭載され、不図示の駆動機構によりz軸方向に駆動される。Xスライド107は、Yスライド108に搭載されており、不図示の駆動機構によりx軸方向に駆動される。Yスライド108は、ベース定盤101に搭載されており、不図示の駆動機構によりy軸方向に駆動される。これにより、計測ヘッド110と被検面10とは3次元的に相対的な位置関係を変更可能な構成を有する。
ヘテロダイン干渉測長のための2周波数発振レーザー1から射出されたレーザー光束は、偏波面保存ファイバー2により、ファイバー入力コリメーター3に導光される。コリメーター3より出射されたレーザー光束は、Yスライド108に取り付けられたミラー111で反射される。その後、該レーザー光束は、Xスライド107上に取り付けられた無偏光ビームスプリッタ112および反射プリズム113、Zスライド109上に取り付けられた無偏光ビームスプリッタ114とにより、レーザー干渉計115、116、117へ導光される。ここで、レーザー干渉計115、116、117は、それぞれ、x位置、y位置、z位置の計測用の干渉計である。レーザー干渉計115、116、117で得られる干渉信号は、不図示の光ファイバーを通して信号処理ユニット7に提供される。Xスライド107、Yスライド108、Zスライド109は、XYZステージ制御ユニット8によって制御される。
コンピューター(処理部)9は、計測ヘッド110の走査経路を設定する機能、計測データ群を取得する機能、被検面10の面形状を3次元座標群として求める機能、走査経路の座標を校正する機能、被検面10の面形状の計測結果を補正する機能を含む。コンピューター9は走査経路を表す座標群を生成し、XYZステージ機構の制御ユニット8は、その座標群に基づいて、XYZステージ機構における不図示の駆動機構を制御して計測ヘッド110を走査経路に沿って走査する。コンピューター9は、信号処理ユニット7を介して走査経路における計測ヘッド110からの距離情報qとレーザー干渉計115、116、117からの計測ヘッド110の位置情報とを計測データ群として取得する。コンピューター9は、これらの計測データ群を演算処理して、被検面10の面形状を3次元座標群として求めたり、走査経路の座標を校正したり、被検面10の面形状の計測結果を補正したりする。
面形状計測装置は、当該面形状計測装置のxyz座標系の原点を定める原点ユニット121を備えている。原点ユニット121は、その内部に不図示の凹球面を有し、その球面の曲率中心が面形状計測装置のxyz座標系の原点とされている。
レーザーユニット4は、計測ヘッド110に光束を提供する光源である。レーザーユニット4は、ヘテロダイン干渉測長のための2つの光束(これらは、偏光方向が互いに直交し、周波数が互いに僅かに異なる)を同一光路上に出射して計測ヘッド110に提供する。レーザーユニット4はまた、計測ヘッド110に提供する2つの光束の周波数差によるビートを含む基準ビート信号を生成し、信号処理ユニット7に提供する。レーザーユニット4から発したレーザー光が、偏波面保存ファイバー5、ファイバー入力コリメーター6、ミラー118、ミラー119、ミラー120を介して、図2に示された計測ヘッド110のビームエキスパンダ201に導かれる。
図2を参照しながら計測ヘッド110について説明する。計測ヘッド110は、トワイマングリーン型の干渉計を構成している。照明光学系は、ビームエキスパンダ201、偏光ビームスプリッタ202、λ/4板209、および対物レンズ210によって構成されている。受光光学系は、対物レンズ210、λ/4板209、偏光ビームスプリッタ202、集光レンズ205、および遮蔽部材207により構成されている。ビームエキスパンダ201から出射された光束は、偏光ビームスプリッタ202により、S成分が透過し、P成分が反射し、互い直交する偏光方向をもつ直線偏光に分れる。透過した光束は、参照面204側へ進み、反射した光束は被検面10側へ進む。参照面204へ進んだ光束は、λ/4板203で円偏光に変換されて参照面204で正反射され、再びλ/4板203を透過して直線偏光に変換されて偏光ビームスプリッタ202に戻る。こんどは、偏光ビームスプリッタ202に対してS成分の直線偏光となっているので、反射して集光レンズ205側へ進む。
一方、被検面10側へ進んだ光束は、λ/4板209で円偏光に変換されて対物レンズ210に入射する。この光束は、対物レンズ210の集光点211(点F)を曲率中心とする球面波に変換され被検面10で反射される。被検面10で反射した光のうち、ほぼ正反射した光束212は、被検光として対物レンズ210を戻り、λ/4板209へ戻る。こんどは、偏光ビームスプリッタ202に対してP成分の直線偏光となっているので、透過して集光レンズ205側へ進む。参照面204で反射された光(参照光)と被検面10で反射された光(被検光)は干渉波となり、集光レンズ205により干渉信号検出ユニット208に至り、計測ビート信号が検出される。この計測ビート信号は、ケーブル213を介して、信号処理ユニット7に提供される。信号処理ユニット7において、レーザーユニット4から提供される参照ビート信号と信号検出ユニット208から提供される計測ビート信号との周波数差を積分することにより、参照面204と被検面10との間の光路長の変化が検出される。
図2において、集光レンズ205の集光点206は、対物レンズ210の集光点211(点F)と共役な関係を有する。遮蔽部材207は、集光レンズ205の集光点206およびその近傍に集光してきた光束のみを通過させる。これにより、被検面10において反射された光束のうち正反射された光束212のみが干渉信号検出ユニット208に入射する。したがって、信号処理ユニット7において検出される参照面204と被検面10との間の光路長の変化は、集光点211と被検面10における光束を正反射する部分との間の光路長の変化と等価である。これにより、集光点211と被検面10における光束を正反射する部分との間の距離を検出することができる。
ただし、被検面10の形状によっては、光路長の変化を正しく得られない場合がある。例えば、被検面10が広い領域で共通の曲率中心を持ち、走査経路において被検面10の曲率中心位置と基準点Fが一致する場合である。この場合、被検面10の広い領域からの反射光が曲率中心の近傍にしか戻らない状態となるので、わずかの走査でも干渉信号が得られなくなるためである。例えば、被検面10が球面の場合に起こりうる。このような場合は、走査経路を被検面の曲率中心から充分に離れたものとすることによって、光路長の変化を正しく得ることができる。したがって、被検面10の形状の計測が可能となる。
また、被検面10が交差する2以上の法線を持ち、走査経路において被検面10の2以上の法線の交点と基準点Fが一致する場合においても光路長の変化を正しく得ることができない。複数の異なる領域からの反射光による干渉が起きるためである。このような場合においても、走査経路を被検面の2以上の法線の交点から充分に離れたものとすることにより、光路長の変化を正しく得ることができる。したがって、被検面10の形状の計測が可能となる。
次に、上記の構成における面形状の計測手順とアルゴリズムを説明する。前述のとおり、点F(s,t,u)は、計測ヘッド110から放射される球面波の中心(基準点)の座標である。点C(x,y,z)は、点F(s,t,u)を中心とする球面波が被検面10において正反射する点の座標である。qは、点C(x,y,z)と点F(s,t,u)との距離である。n=(α,β,γ)は、被検面10の点C(x,y,z)における単位法線ベクトルである。
点F(s,t,u)の座標は、詳細は後述されるが、レーザー干渉計115、116、117を使って計測される。点C(x,y,z)と点F(s,t,u)との距離qは、詳細は後述されるが、計測ヘッド110を使って計測される。前述のとおり、被検面10上の点C(x,y,z)は、式(3)、(4)、(5)のように表現することができる。計測ヘッド110を走査経路に沿って走査しながらレーザー干渉計115、116、117によって点Fの位置を計測するとともに計測ヘッド110によって距離qを計測し、式(3)、(4)、(5)に従って、被検面10上の点Cの座標群を求めることができる。求めた被検面10上の点Cの座標群は、面形状に相当する。
図4、図5は走査経路を例示している。図4は、走査経路が平面上にある例を示している。図4に示す例では、計測ヘッド110の基準点F(s,t,u)が走査経路である平面301に沿って移動するように計測ヘッド110が走査される。図5は、走査経路が球面上にある例を示している。図5に示す例では、計測ヘッド110の基準点Fが走査経路である球面302に沿って移動するように計測ヘッド110が走査される。その他、走査経路は、被検面10の形状に応じて任意に決定されうる。
計測ヘッド110を走査経路に沿って走査しながら、レーザー干渉計115、116、117によって点F(s,t,u)の位置を計測するとともに計測ヘッド110によって距離qを計測することによって、次のような計測データ群が得られる。なお、添え字として付された1、2、・・・、j、・・・、Nは、データの番号を意味する。
(s,t,u),q
(s,t,u),q


(s,t,u),q

(s,t,u),q
このデータ群のうち、j番目の計測点における単位法線ベクトルn=(α,β,γ)を、次のようにして求めることができる。
j番目の点の近傍に位置する計測点として、j番目の計測点を含めて(k+1)個の計測点を選ぶ。このとき、(k+1)個の計測点のうち少なくとも3点は同一直線上には並ばないように選ぶ。選んだ各計測点において、前述の式(5)の関係を適用して次の連立方程式が得られる。
Figure 0005486379
・・・(6)
ただし、
(Δsjm,Δtjm,Δujm)=(sjm,tjm,ujm)−(s,t,u
Δqjm=qjm−q
(sjm,tjm,ujm):j番目の計測点の近傍に位置する計測点、qjm:j番目の計測点の近傍に位置する計測点における点Cと点Fとの距離
m=1,2,・・・,k
である。
また、単位法線ベクトルの性質から、
α +β +γ =1 ・・・(7)
である。
式(6)は、前記計測点の選び方により、2以上の独立な行を含む。したがって、式(7)の条件のもとに式(6)へ最小二乗法を適用して、j番目の計測点における単位法線ベクトルn=(α,β,γ)を決定することができる。この結果を式(3)に適用することにより、j番目の計測点における被検面10の座標C(x,y,z)が次のように定まる。
(x)=(s)−q(α β γ) ・・・(8)
これを各計測点について行うことにより、被検面10の面形状を表す座標点の集合を式(9)のように決定することができる。
(x,y,z
(x,y,z


(x,y,z


(x,y,z
・・・(9)
ここで、レーザー干渉計115、116、117によって、計測ヘッド110の基準点F(s,t,u)を計測する方法について説明する。通常、レーザー干渉計は、インクリメンタル型の測長計であるから、原点からの変位量を検出することにより位置を計測する。この実施形態では、原点を提供する構成として原点ユニット121が使用される。原点ユニット121により提供される面形状計測装置の原点に計測ヘッド110が放射する球面波の中心(基準点)Fを一致させ、そのときにレーザー干渉計115、116、117によって提供される値を原点に対応する値とする。
図6を参照してより詳細に説明すると、原点ユニット121に備えられている凹球面122の曲率中心が面形状計測装置の原点123である。この原点123と計測ヘッド110から放射される球面波の中心Fとが一致したとき、凹球面122で反射された光束が全て計測ヘッド110に戻るので、信号処理ユニット7に提供される計測ビート信号の振幅は最も強いものとなる。計測ビート信号の振幅が最大になる位置をもって、原点ユニット121により提供される面形状計測装置の原点と計測ヘッド110から放射される球面波の中心Fとが一致していると判断することができる。このときにレーザー干渉計115、116、117から提供される値を原点に相当する値とする。
次に、計測ヘッド110によって、計測ヘッド110から放射される球面波の中心点Fと該球面波が被検面10において正反射する点Cとの距離qを計測する方法を説明する。計測ヘッド110も、インクリメンタル型の測長計を構成している。そこで、計測ヘッド110から放射される球面波の中心点Fと該球面波が被検面10において正反射する点Cとの距離が分かっている状態で計測ヘッド110から提供される値が基準とされる。そして、その値からの変化量を変位量に換算することにより距離qを計測することができる。図7(a)、(b)を参照してより詳細に説明する。図7(a)は、計測ヘッド110から放射される球面波の中心点Fが被検面10上の点と一致するように計測ヘッド110を位置決めした状態を示している。このとき、距離qはゼロである。また、この場合において計測ヘッド110から放射される球面波は、頂点反射の状態(いわゆるキャッツアイの状態)で、被検面10により反射されるので、計測ヘッド110に戻る光束が最も多い。したがって、信号処理ユニット7に提供される計測ビート信号の振幅は最も強いものとなる。計測ビート信号の振幅が最大になるときの計測値を、計測ヘッド110から放射される球面波の中心点Fと該球面波が被検面10において正反射する点Cとの距離qの基準値Qを決定することができる。図7(b)は、図7(a)の状態から、計測ヘッド110を走査して、他の位置へ移動させた状態を示している。前述の如く、計測ヘッド110は、集光点211すなわち点Fと被検面10で正反射する部分Cとの間の光路長の変化を計測する構成を有する。したがって、このときの読み値をQとすると、求める距離qは、式(10)で表される。
q=Q−Q ・・・(10)
以上のように、計測ヘッド110を走査しながら、計測ヘッド110の基準点Fの位置と、基準点Fから被検面10までの垂直距離qとを計測することにより、被検面10の面形状を計測することができる。
次に、基準部材の基準面の形状計測による座標の校正とそれに基づく被検面計測データの補正について例示的に説明する。図9は、校正と補正の手順を示すフローチャートである。工程501において、コンピューター(処理部)9は走査経路を設定する。走査経路は、計測ヘッド110の基準点Fの軌跡であり、走査経路上の3次元の座標列として式(11)のように表される。
(s,t,u),j=1,2,・・・,N ・・・(11)
後述の工程503および工程506では、XYZステージ制御ユニット8は、式(11)に示される座標列(s,t,u)を目標座標列(指令値)とする。そして、XYZステージ制御ユニット8は、計測ヘッド110の基準点F(s,t,u)が座標列(s,t,u)で与えられる走査経路を走査するようにXYZステージ機構を制御する。ここで、式(11)で与えられる走査経路は、基準部材の計測および被検面10の計測において共通に使用される。また、走査経路上における計測点も、基準部材の計測および被検面10の計測において共通に使用される。共通して使用できる計測点がない計測点に対しては、周辺の計測点から内挿により計測点を生成し、共通して使用する計測点とすることができる。
工程502において、基準面を有する基準部材が面形状計測装置のワークホルダー106にセットされる。工程503では、式(11)で与えられる走査経路に従って計測ヘッド110が走査されながら、信号処理ユニット7により基準部材の基準面の座標を示す形状計測データが逐次生成され、これらが形状計測データ群としてコンピューター9に蓄積される。工程504では、コンピューター9は、基準部材の基準面の形状計測データ群と該基準面の既知の基準形状値とに基づいて、走査経路の座標校正データを生成する。校正データの生成例については後述する。
次に工程505では、基準部材がワークホルダー106から外され、代わりに、被検面10を有する被検物がワークホルダー106にセットされる。工程506では、式(11)で与えられる走査経路(即ち、校正時と同一の面)に従って計測ヘッド110が走査されながら、信号処理ユニット7により被検面10の表面の座標を示す形状計測データが逐次生成される。逐次生成された形状計測データは、形状計測データ群としてコンピューター9に蓄積される。工程507では、コンピューター9は、工程504において求めた座標校正データを用いて、被検面10の形状計測データ群を補正する。補正の例については後述する。工程508では、被検面10を有する被検物がワークホルダー106から外され、必要に応じて、次の被検物がワークホルダー106にセットされ、工程506にもどり、当該次の被検物について計測がなされる。
以上のように、この実施形態によれば、基準部材の計測および被検面10の計測において共通の走査経路に従って計測ヘッド110が走査されるので、走査経路の違いによる計測誤差が生じず、被検面10の面形状を高精度に計測することができる。
次に、工程504における座標校正データの生成について例示的に説明する。この例では、計測ヘッド110の基準点F(s,t,u)から基準部材までの距離qの計測精度が十分に高いものとして、中心F(s,t,u)の座標を校正する。qの計測精度は、主に計測ヘッド110の波面収差に依存し、一般にサブミクロンからサブナノメーターレベルの精度を達成可能である。
工程504では、式(8)に従って、式(12)で表される基準部材の形状計測データ群が得られる。
(x’ y’ z’)=(s)−q’(α’ β’ γ’)j=1,2,・・・,N
・・・(12)
ここで、(s)は、計測ヘッド110の基準点座標を示すベクトルであり、走査経路を示す目標座標列(指令値)である。q’は、距離qの計測値である。(α’ β’ γ’)は、走査経路を示す目標座標列(指令値)(sj,j,)と垂直距離qの計測値q’とに基づいて計算される単位法線ベクトルである。
一方、基準部材の形状(xj,j,)は既知であり、式(8)に従って、走査経路を示す目標座標列(指令値)(sj,j,)とは、式(13)で示される関係を有する。
(x)=(s)−q(α β γ)j=1,2,・・・,N
・・・(13)
ここで、qは、走査経路と基準部材の既知の形状とから計算される垂直距離である。(α β γ)は、走査経路を示す目標座標列(指令値)(sj,j,)と垂直距離の計算値qiとに基づいて計算される単位法線ベクトルである。
ここでは、垂直距離q’の計測精度が十分に高いという前提であるから、(x’,y’,z’)と(x,y,z)との間の差は、走査経路を示す目標座標列(指令値)(sj,j,)と実際の走査経路との差によって引き起こされるものである。したがって、(sj,j,)として、指令値ではなく実際の位置を使用することによって、面形状を正しく計算することができる。この実際の位置が、計測ヘッド110の基準点座標の校正値である。
目標座標列(指令値)(sj,j,)に対する実際の位置は次のようにして決定することができる。ここでは、簡単化のためにx成分について説明する。基準部材の表面の座標におけるx成分は、式(13)より、式(14)のように表される。
=s−q・α ・・・(14)
ここで、球面波の実際の中心座標が指令値Sにオフセット値δsを加えた座標であるときに、xがx’として計測されると考えることができる。オフセット値δsによるxの変化量は、式(15)式のように表すことができる。
Figure 0005486379
・・・(15)
よって、オフセット値δsは、式(15)を変形して、式(16)のように表すことができる。
Figure 0005486379
・・(16)
他成分についても同様である。計測ヘッド110のる基準点座標の指令値(sj,j,)に対するオフセット(δsj,δtj,δu)は、式(17)のようになる。
Figure 0005486379
・・・(17)
よって、工程504において、計測ヘッド110の基準点座標の校正された座標は、式(18)のように、基準点座標の指令値(sj,j,)をオフセット(δsj,δtj,δu)によって補正した座標として与えられる。
(s+δsj,+δtj,+δu)j=1,2,・・・,N
・・・(18)
工程507では、式(18)で示される校正された基準点座標を用いて、前述した形状を求めるアルゴリズムを実行することにより、補正された被検面の形状を得ることができる。
この実施形態によれば、校正時と計測時とにおいて同一の走査経路に沿って計測ヘッドを走査するので、校正時と計測時とにおいて別個の走査経路に沿って計測ヘッドを走査する構成に比べて高い精度で面形状を計測することができる。
(第2実施形態)
本実施形態は、計測ヘッド110を、基準点位置F(s,t,u)と、被検面から基準点Fへ向けての単位法線ベクトル(α β γ)を計測するようにした場合である。ここで言及しない事項は、第1実施形態に従いうる。
上記の式(4)は、積分形式で、式(20)として表すことができる。
q=q+∫(αds+βdt+γdu)・・・(20)
ただし、q0は積分定数である。
したがって、計測ヘッド110の基準点位置F(s,t,u)と被検面から基準点Fへ向けての単位法線ベクトル(α β γ)とから、式(20)により垂直距離qが得られ、それを式(3)に代入することによって形状が得られることになる。
図10を参照しながら計測ヘッド110について説明する。計測ヘッド110は、照明光学系と受光光学系とを含む。照明光学系は、ビームエキスパンダ1201、偏光ビームスプリッタ1202、λ/4板1209、および対物レンズ1210によって構成されている。受光光学系は、対物レンズ1210、λ/4板1209、偏光ビームスプリッタ1202、集光レンズ1205、および遮蔽部材1207によって構成されている。ビームエキスパンダ1201から出射された光束は、S偏光であり、偏光ビームスプリッタ1202で反射されて被検面10側へ進む。
被検面10側へ進んだ光束は、λ/4板1209で円偏光に変換されて対物レンズ1210に入射する。この光束は、対物レンズ1210の集光点1211(点F)を曲率中心とする球面波に変換され被検面10に入射し、被検面10で反射される。被検面10で反射した光のうち、正反射した光束1212は、被検光として対物レンズ1210を戻り、再びλ/4板1209を透過してλ/4板1209によって直線変換される。λ/4板1209を透過した光束は、偏光ビームスプリッタ1202に対してP偏光の直線偏光となっているので、透過して集光レンズ1205側へ進み位置検出ユニット1208に至る。位置検出ユニット1208は、光スポット位置センサーを含み、被検面10で正反射して計測ヘッド110に戻ってくる光束1212の方位の情報として光スポット位置センサーに入射する光束の位置を示す光束位置信号を検出する。この光束位置信号は、光量を示す情報を含む。検出された光束位置信号は、ケーブル213を介して、信号処理ユニット7に提供される。信号処理ユニット7は、計測ヘッド110から提供される光束位置信号に基づいて、被検面10で正反射して計測ヘッド110に戻ってくる光束1212の方位を示す単位法線ベクトル、即ち被検面10の法線ベクトルを検出する。光スポット位置センサーとしては、2次元フォトセンシティブディテクター(PSD)や、2次元配列画像素子(CCD)などがある。
図10において、集光レンズ1205の集光点1206は、対物レンズ1210の集光点1211(点F)と共役な関係を有する。遮蔽部材1207は、集光レンズ1205の集光点1206およびその近傍に集光してきた光束のみを通過させる。これにより、被検面10において反射された光束のうち正反射された光束1212のみが位置検出ユニット1208に入射する。したがって、この光束位置信号は、被検面10での法線ベクトルを示す情報を含んでいる。
ただし、被検面10の形状によっては、光束位置信号は、被検面10の法線ベクトルを示さない場合がある。例えば、被検面10が広い領域で共通の曲率中心を持ち、走査経路においてその曲率中心位置と基準点Fとが一致する場合である。この場合、広い領域からの反射光が信号ユニット208に入射するためである。これは、例えば被検面10が球面の場合に起こりうる。このような場合は、走査経路を被検面10の曲率中心から充分に離れたものとすることによって、光束位置信号が被検面10の法線ベクトルを示す信号とすることができるので、被検面10の形状の計測が可能となる。
また、被検面10が交差する2以上の法線を持ち、走査経路において被検面10の2以上の法線の交点と基準点Fとが一致する場合も光束位置信号が被検面10の法線ベクトルを示さない。複数の異なる領域からの反射光が信号検出ユニット1208に入射するためである。このような場合も、走査経路を被検面10の2以上の法線の交点から充分に離れたものとすることにより、光路長の変化を正しく得ることができる。したがって、被検面10の形状の計測が可能となる。
次に、本例における単位法線ベクトルの計算法をより具体的に説明する。位置検出ユニット1208は、被検光束1212のx位置とy位置を検出する。より具体的には、位置検出ユニット1208は、被検光束1212のx位置とy位置を示す光束位置検出信号を発生する。ここで、被検光束1212のx位置、y位置は、それぞれDx、Dyとする。このx位置はx軸に対する方向余弦αに比例し、y位置はy軸に対する方向余弦βに比例する。この比例係数をKとすると、位置検出ユニット1208で検出される被検光束の位置Dx、Dyは、
Dx=Kα
Dy=Kβ
である。Kは、計測ヘッド110の受光光学系の構成により定められる定数である。この関係と、単位法線ベクトルの性質
α+β+γ=1
より、単位法線ベクトルは、
α=Dx/K
β=Dy/K
γ=(1−α−β1/2
として計算することができる。
前述のとおり、点F(s,t,u)は、計測ヘッド110から放射される球面波の中心すなわち基準点の座標である。点C(x,y,z)は、点F(s,t,u)を中心とする球面波が被検面10において正反射する点の座標である。qは、点C(x,y,z)と点F(s,t,u)との距離である。n=(α,β,γ)は、被検面10の点C(x,y,z)における単位法線ベクトルである。
点F(s,t,u)の座標は、詳細は後述されるが、レーザー干渉計115、116、117を使って計測される。単位法線ベクトルn=(α,β,γ)は、計測ヘッド110を使って計測される。前述のとおり、被検面10上の点C(x,y,z)は、式(3)、(4)、(20)のように表現することができる。計測ヘッド110を走査経路に沿って走査しながらレーザー干渉計115、116、117によって点Fの位置を計測するとともに計測ヘッド110によって単位法線ベクトルn=(α,β,γ)を計測する。そして、式(3)、(4)、(20)に従って、被検面10上の点Cの座標群、即ち面形状を求めることができる。
計測ヘッド110を走査しながら、レーザー干渉計115、116、117によって点F(s,t,u)の位置を計測するとともに計測ヘッド110によって単位法線ベクトルn=(α,β,γ)を計測することによって、次のような計測データ群が得られる。なお、添え字として付された1、2、・・・、j、・・・、Nは、データの番号を意味する。
(s,t,u),(α,β,γ
(s,t,u),(α,β,γ


(s,t,u),(α,β,γ


(s,t,u),(α,β,γ
このデータ群のうち、i番目の計測点における距離qを、次のようにして求めることができる。
式(20)により、点i=jにおける距離qは、
Figure 0005486379
・・・(21)
ただし、
(Δs,Δt,Δu)=(s,tk,uk)−(sk-1,tk-1,uk-1
である。積分定数q0を定める方法は後述する。
ここで、測定点jにおける点Fの位置(s,t,u)と,単位法線ベクトル(α,β,γ)と式(21)により求められた距離qjを(3)式に代入する。これにより、j番目の計測点における被検面10の座標C(x,y,z)を示す式(22)が得られる。
(xjjj)=(sjjj)−qj(αj βj γj) ・・・(22)
これを各計測点について行うことにより、被検面10の面形状を表す座標点の集合を式(23)のように決定することができる。
(x,y,z
(x,y,z


(x,y,z


(x,y,z
・・・(23)
ここで、レーザー干渉計115、116、117によって、計測ヘッド110の基準点F(s,t,u)を計測する方法について説明する。通常、レーザー干渉計は、インクリメンタル型の測長計であるから、原点からの変位量を検出することにより位置を計測する。この実施形態では、原点を提供する構成として原点ユニット121が使用される。原点ユニット121により提供される面形状計測装置の原点に計測ヘッド110が放射する球面波の中心、即ち基準点Fを一致させ、そのときにレーザー干渉計115、116、117によって提供される値を原点に対応する値とする。
図6を参照してより詳細に説明すると、原点ユニット121に備えられている凹球面122の曲率中心が面形状計測装置の原点123である。この原点123と計測ヘッド110から放射される球面波の中心、即ち基準点Fとが一致したとき、凹球面122で反射された光束が全て計測ヘッド110に戻るので、信号処理ユニット7に提供される光束位置信号が最も強いものとなる。この光量が最大になる位置をもって、原点ユニット121により提供される面形状計測装置の原点と計測ヘッド110の基準点Fとが一致していると判断することができる。このときにレーザー干渉計115、116、117から提供される値を原点に相当する値とする。
次に、積分定数qを定める方法を説明する。第1の例において、積分定数qは、式(20)の積分経路の始点、即ち走査経路の始点における基準点Fと被検面10との垂直距離として定めることができる。したがって、走査経路の始点における基準点Fと被検面10との垂直距離を求めることにより、積分定数qを定めることができる。
図11(a)、(b)を参照してより具体的な例を説明する。図11(a)は、走査経路始点における配置を示している。Fは基準点、Cは基準点Fから放射される球面波が正反射する被検面10上の点である。図11(b)は、基準点Fが被検面10上の点Cと一致するように計測ヘッド110を配置したことを示している。ここで、図11(b)における点Cは、図11(a)における点Cと同じ点、即ち走査経路の始点において基準点Fから放射される球面波が正反射する被検面上の点である。図11(a)に示す状態から図11(b)に示す状態に、図11(a)における単位法線ベクトルnの方向に沿って計測ヘッド110を移動したときの移動距離が積分定数qである。
図11(b)の位置では、計測ヘッド110から放射される球面波は、頂点反射の状態(いわゆるキャッツアイの状態)で、被検面10により反射されるので、計測ヘッド110に戻る光束が最も多い。したがって、図11(a)における単位法線ベクトルnの測定値の方向に沿って計測ヘッド110を移動させるながら、光束位置信号の値が最大になる位置をもって、図11(b)の位置になったと決定することができる。図11(a)と図11(b)における計測ヘッド110の位置に基づいて移動距離、即ち積分定数qを求めることができる。計測ヘッド110の位置は、前述のように、レーザー干渉計115、116、117によって求められる。
第2の例において、積分定数qを次のように定めることができる。(a)設計形状からの形状誤差が最も小さくなるように定められた積分定数qと、(b)この積分定数qおよび設計形状によって定まる形状からの被検面の誤差と、によって被検面の面形状を表現する方法がある。例えば、球面形状を、(a)形状誤差が最も小さくなるように定められた半径と、(b)その半径を有する球面からの被検面の誤差(面精度)と、で表現する場合がこれに相当する。
第2の例では、次のようにして積分定数qを求めることができる。積分定数qをある値qとすると形状は、式(22)より、
(x0j0j0j)=(s)−(q+q0j)(α0j β0j γ0j)・・・(24)
とあらわすことができる。ここで、(x0j0j0j)は被検面上の点、(s)は基準点Fの位置座標、q0jは、積分定数qをある値qとして式(21)から計算される、基準点Fから被検面までの距離である。
また、設計形状(x)を
(x)=(s)−q(α β γ)・・・(25)
とする。ここで、(s)は基準点Fの位置座標で式(24)と同じ値、qは設計形状から計算される、基準点Fから被検面までの距離である。
被検面形状と設計形状上とが最も近い条件は、
Figure 0005486379
・・・(26)
である。したがって、式(24)、式(25)を式(26)へ代入し、qについて最小二乗法を適用することにより、積分定数qが求められる。
以上のように、計測ヘッド110を走査しながら、計測ヘッド110の基準点Fの位置と、単位法線ベクトル(α β γ)とを計測することにより、被検面10の面形状を計測することができる。
(第3実施形態)
垂直距離qは、例えば、アブソリュート型測長器によって計測されうる。本実施形態は、計測ヘッド110をアブソリュート型測長器とする場合である。なお、ここで言及しない事項は、第1実施形態に従いうる。
特許第2764630号公報にアブソリュート型測長器が開示されている。特許第2764630号公報に開示されたアブソリュート型測長器は、光の干渉縞の干渉次数を特定する機能を有し、これにより物体までの絶対距離を測定する。前記アブソリュート型測長器は、(a)出力光の周波数を所定範囲で連続的に変化させることができる光源と、(b)前記光源の周波数安定化手段とを有する。前記アブソリュート型測長器はまた、(c)前記物体からの反射光と参照光との干渉位相を測定する干渉位相測定手段と、(d)少なくとも一つの長さ基準を具備し該長さ基準を光路差として得られる干渉位相を測定する手段とを有する。前記周波数安定化手段は、光吸収用セルと、光センサと、帰還手段とを具備する。前記光吸収用セルは、特定の周波数域において光吸収のピークを有し、前記光源の出力光を入力とする。前記光センサは、前記光吸収用セルを通過した光の強度を測定する。前記帰還手段は、前記光センサの出力の低下により前記光源の出力光の周波数が前記光吸収用セルの吸収ピークの周波数に達したことを検出し、制御信号を前記光源に帰還させる。前記周波数安定化手段は、前記光源の周波数が前記吸収ピークの周波数と一致すると、前記光源の周波数を前記吸収ピークの周波数に固定する。
本発明の1つの実施形態において、アブソリュート型測長器は、図12に例示される光源ユニット522と、干渉位相測定部と、演算部を含んで構成されうる。光源ユニット522は、図1に示されたレーザーユニット4として使用されうる。光源ユニット522は、光源520と、補正部521とを含みうる。前記干渉位相測定部は、計測ヘッド110で構成されうる。前記演算部は、信号処理ユニット7に組み込まれうる。
光源520は、DBRレーザ501と、コリメータレンズ502と、ハーフミラー508、509と、Rbガスセル503と、光センサ(フォトダイオード)505と、光センサ506と、比較器507とを含む。DBRレーザ501は、駆動電流により発振周波数を変化させることができる。光センサ505は、DBRレーザ501の出力光の強度を直接に計測する。光センサ506は、Rbセル503を通過した後のレーザ光の強度を計測する。
補正部521は、ハーフミラー510、511と、反射ミラー512と、基準長さLrを有する基準ギャップ(ゼロデュアー、スーパーインバー等の熱膨脹率の小さな材料で構成されている)513と、光センサ514とを含む。光源520が発生した光束は、ハーフミラー510を介して光源522から射出される。この光束は、偏波面保存ファイバー5、ファイバー入力コリメーター6、ミラー118、ミラー119、ミラー120を介して、図2に例示された計測ヘッド110のビームエキスパンダ201に導かれる。計測ヘッド110は、前記干渉位相計測部として機能し、計測ヘッド110による検出信号は、信号処理ユニット7に提供される。補正部521の光センサー14の検出信号もまた、信号処理ユニット7に提供される。信号処理ユニット7に組み込まれる演算部は、計測ヘッド110からの検出信号と、補正部521の光センサー14からの検出信号を受けて、この検出信号に基づいて距離qをアブソリュートに計算する。
アブソリュート型測長器を用いることによって、被検面が段差や穴などの不連続な面である場合や、被検面上に異物や傷がある場合などのように被検面からの光束が一時的に遮断される場合においても距離qを計測することができる。したがって、アブソリュート型測長器を用いることによって、被検面からの光束が一時的に遮断される場合においても、被検面の形状の計測が可能である。
(第4実施形態)
図8を参照しながら本発明の第4実施形態を説明する。ここで言及しない事項は、第1実施形態、または第2の実施形態、または第3の実施形態に従いうる。第3実施形態は、天体望遠鏡などで使用されうる大口径の凹面非球面ミラーの形状計測に好適である。図8において、401は被検面10の近似球面の一例であり、この例では、近似球面は被検面10の外接円である。近似球面は、内接球面や近軸内接球面などでもよい。点Oは近似球面401の中心、点Fは計測ヘッド110から放射される球面波の中心すなわち基準点、点Cは計測ヘッド110から放射される球面波が被検面10において正反射する点である。402は走査経路であり、計測ヘッド110の基準点は、この走査経路に沿って走査される。図8では、走査経路がxy平面に平行な平面である例が示されているが、走査経路は平面である必要はない。
図8に示すように、被検面10と近似球面401の中心Oとの間に走査経路402を配置することによって、計測ヘッド110を走査する領域を、被検面10より狭くできる。このことにより面形状計測装置を小型化できる。特に、口径が数メートルにおよぶ天体望遠鏡などの大口径非球面の形状計測には有効な構成である。
[その他]
なお、以上の実施形態の計測ヘッド110は、球面波を基準点Fから一度に放射していた。しかし、その球面波の一部に相当する細い光束(平面波)を基準点Fから放射し、被検面10上のその球面波が入射する領域をその細い光束で走査するように、計測ヘッド110を構成しても良い。このように計測ヘッド110を構成することで、被検面10上の狭い領域のみで反射された被検光を検出ユニット208で検出することになるため、検出結果に含まれるノイズを低減することが可能となる。
また、以上の実施形態では、計測ヘッドで垂直距離qまたは単位法線ベクトル(α β γ)を計測していた。しかし、垂直距離qおよび単位法線ベクトル(α β γ)が計測できるように計測ヘッドを構成し、その計測ヘッドで計測した垂直距離qおよび単位法線ベクトル(α β γ)を式(3)に代入することによって被検面の形状を得ることとしてもよい。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。

Claims (8)

  1. 被検面の形状を計測する面形状計測装置であって、
    基準点を通過するように放射されて前記被検面で反射され前記基準点を通って戻ってくる被検光を検出することによって、前記基準点と前記被検面上の点との間の距離計測する計測ヘッドと、
    前記基準点を移動するように前記計測ヘッドを走査する走査機構と、
    前記計測ヘッドを使った計測により得られた前記距離記基準点の座標と基づいて前記被検面上の点から前記基準点への法線の方位を計算し、前記距離と前記方位とに基づいて前記被検面の形状を計算する処理部とを備え、
    前記処理部は、
    走査経路に沿って前記計測ヘッドを走査しながら第1の被検面を計測して得られた前記第1の被検面の形状を用いて、前記基準点の座標を校正し、
    前記第1の被検面を計測するための前記走査経路と同一の経路に沿って前記計測ヘッドを走査しながら前記第1の被検面とは異なる第2の被検面を計測して得られた前記第2の被検面の形状を、校正された基準点の座標に基づいて補正する、
    ことを特徴とする面形状計測装置。
  2. 前記計測ヘッドは、前記基準点を通過するように放射され前記被検面で反射され前記基準点を通って戻ってくる被検光と参照光との干渉波を検出することによって前記距離を計測する、
    ことを特徴とする請求項1に記載の面形状計測装置。
  3. 被検面の形状を計測する面形状計測装置であって、
    基準点を通過するように放射されて前記被検面で反射され前記基準点を通って戻ってくる被検光を検出することによって、記被検面上の点から前記基準点への法線の方位計測する計測ヘッドと、
    前記基準点を移動するように前記計測ヘッドを走査する走査機構と、
    前記計測ヘッドを使った計測により得られた前記方位記基準点の座標と基づいて前記基準点と前記被検面上の点との間の距離を計算し、前記距離と前記方位とに基づいて前記被検面の形状を計算する処理部とを備え、
    前記処理部は、
    走査経路に沿って前記計測ヘッドを走査しながら第1の被検面を計測して得られた前記第1の被検面の形状を用いて、前記基準点の座標を校正し、
    前記第1の被検面を計測するための前記走査経路と同一の経路に沿って前記計測ヘッドを走査しながら前記第1の被検面とは異なる第2の被検面を計測して得られた前記第2の被検面の形状を、校正された基準点の座標に基づいて補正する、
    ことを特徴とする面形状計測装置。
  4. 前記計測ヘッドは、光スポット位置センサーを含み、前記基準点を通過するように放射され被検面で反射され前記基準点を通って戻ってくる被検光が前記光スポット位置センサーに入射する位置を検出することによって前記方位を計測する
    ことを特徴とする請求項に記載の面形状計測装置。
  5. 前記走査機構は、前記基準点が前記走査経路に沿って移動するように前記計測ヘッドを走査する、
    ことを特徴とする請求項1乃至のいずれか1項に記載の面形状計測装置。
  6. 前記処理部は、前記走査機構が前記基準点が前記走査経路に沿って移動するように前記計測ヘッドを走査したときに生じる前記走査経路に対する前記基準点のオフセット値を計算し、該オフセット値により前記走査経路の座標を補正することによって、前記基準点の校正された座標を決定する、
    ことを特徴とする請求項に記載の面形状計測装置。
  7. 前記計測ヘッドは、前記基準点から前記基準点を中心とする球面波を放射する、
    ことを特徴とする請求項1乃至のいずれか1項に記載の面形状計測装置。
  8. 前記計測ヘッドは、球面波の一部に相当する光束を、前記基準点を通過して前記被検面で反射されて前記基準点に戻ってくるように放射することを特徴とする請求項1乃至のいずれか1項に記載の面形状計測装置。
JP2010083402A 2009-10-01 2010-03-31 面形状計測装置 Expired - Fee Related JP5486379B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010083402A JP5486379B2 (ja) 2009-10-01 2010-03-31 面形状計測装置
US12/891,736 US8411280B2 (en) 2009-10-01 2010-09-27 Surface shape measurement apparatus
EP10180680A EP2306144A1 (en) 2009-10-01 2010-09-28 Surface shape measurement apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009229993 2009-10-01
JP2009229993 2009-10-01
JP2010083402A JP5486379B2 (ja) 2009-10-01 2010-03-31 面形状計測装置

Publications (3)

Publication Number Publication Date
JP2011095241A JP2011095241A (ja) 2011-05-12
JP2011095241A5 JP2011095241A5 (ja) 2013-05-09
JP5486379B2 true JP5486379B2 (ja) 2014-05-07

Family

ID=43303950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083402A Expired - Fee Related JP5486379B2 (ja) 2009-10-01 2010-03-31 面形状計測装置

Country Status (3)

Country Link
US (1) US8411280B2 (ja)
EP (1) EP2306144A1 (ja)
JP (1) JP5486379B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430472B2 (ja) * 2009-10-01 2014-02-26 キヤノン株式会社 面形状計測装置
DE102011011065B4 (de) * 2011-02-11 2013-04-04 Luphos Gmbh Verfahren und Vorrichtung zur hochpräzisen Vermessung von Oberflächen
WO2012140285A1 (es) * 2011-04-15 2012-10-18 Albiasa Collector Trough, S.L. Procedimiento para comprobar la geometría de captadores solares cilíndro-parabólicos y sistema para llevar a cabo dicho procedimiento
US8526012B1 (en) 2012-04-17 2013-09-03 Laser Design, Inc. Noncontact scanning system
DE102014007201B4 (de) * 2014-05-19 2016-03-10 Luphos Gmbh Vorrichtung und Verfahren zur geometrischen Vermessung eines Objekts
DE102014007203A1 (de) * 2014-05-19 2015-11-19 Luphos Gmbh Vorrichtung und Verfahren zur geometrischen Vermessung eines Objekts
CN105783790A (zh) * 2016-05-09 2016-07-20 常州机电职业技术学院 导轨间垂直度的测量工装及测量方法
JP6513846B2 (ja) * 2017-06-06 2019-05-15 株式会社日立製作所 距離測定装置、及び立体形状測定装置。
CN107339941A (zh) * 2017-07-21 2017-11-10 复旦大学 一种基于双频激光干涉原理的精确位移监测系统
JP7353644B2 (ja) 2020-01-08 2023-10-02 株式会社Xtia 光学スキャナ装置の校正方法、光学スキャナ装置及び光学式三次元形状測定装置
CN114894116B (zh) * 2022-04-08 2024-02-23 苏州瀚华智造智能技术有限公司 一种测量数据融合方法及非接触式测量设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836564A1 (de) * 1988-10-27 1990-05-03 Zeiss Carl Fa Verfahren zur pruefung von optischen elementen
US5003166A (en) * 1989-11-07 1991-03-26 Massachusetts Institute Of Technology Multidimensional range mapping with pattern projection and cross correlation
JP2764630B2 (ja) 1990-03-20 1998-06-11 横河電機株式会社 アブソリュート測長器
JPH08226814A (ja) * 1995-02-22 1996-09-03 Fuji Xerox Co Ltd 形状測定方法及びその装置
US5625454A (en) * 1995-05-24 1997-04-29 Industrial Technology Research Institute Interferometric method for optically testing an object with an aspherical surface
JP3474448B2 (ja) 1998-09-01 2003-12-08 株式会社リコー 座標軸直角度誤差の校正方法及び三次元形状測定装置
JP2002116010A (ja) * 2000-10-04 2002-04-19 Ricoh Co Ltd 三次元形状測定方法及び装置
JP2002148025A (ja) * 2000-11-09 2002-05-22 Ricoh Co Ltd 3次元形状測定装置
US6771375B2 (en) 2001-06-20 2004-08-03 Zygo Corporation Apparatus and method for measuring aspherical optical surfaces and wavefronts
US6972849B2 (en) 2001-07-09 2005-12-06 Kuechel Michael Scanning interferometer for aspheric surfaces and wavefronts
US6714307B2 (en) * 2001-10-16 2004-03-30 Zygo Corporation Measurement of complex surface shapes using a spherical wavefront
GB0322115D0 (en) * 2003-09-22 2003-10-22 Renishaw Plc Method of error compensation
KR20070012459A (ko) * 2004-05-10 2007-01-25 코닌클리케 필립스 일렉트로닉스 엔.브이. 광학 정밀 측정을 위한 디바이스 및 방법
US8224066B2 (en) * 2007-05-29 2012-07-17 Gerd Haeusler Method and microscopy device for the deflectometric detection of local gradients and the three-dimensional shape of an object
KR100956853B1 (ko) * 2008-04-04 2010-05-11 선문대학교 산학협력단 3차원 형상의 고속 형상측정장치 및 방법

Also Published As

Publication number Publication date
JP2011095241A (ja) 2011-05-12
US8411280B2 (en) 2013-04-02
US20110080593A1 (en) 2011-04-07
EP2306144A1 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP5486379B2 (ja) 面形状計測装置
JP5430472B2 (ja) 面形状計測装置
US5898501A (en) Apparatus and methods for measuring wavefront aberrations of a microlithography projection lens
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
JP5349739B2 (ja) 干渉計及び干渉計の校正方法
US8345263B2 (en) Measurement method and measurement apparatus that measure a surface figure of an aspheric surface based on an interference pattern
EP2549222B1 (en) Use of an abscissa calibration jig, abscissa calibration method and laser interference measuring apparatus
US20130044332A1 (en) Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method
KR20140048824A (ko) 교정 장치, 교정 방법 및 계측 장치
JP2009162539A (ja) 光波干渉測定装置
US20020057495A1 (en) Measuring system for performance of imaging optical system
JP2005140673A (ja) 非球面偏心測定装置及び非球面偏心測定方法
JP2005201703A (ja) 干渉測定方法及び干渉測定システム
JP5430473B2 (ja) 面形状計測装置
JP7293078B2 (ja) 解析装置、解析方法、干渉測定システム、およびプログラム
JP2009244227A (ja) 光波干渉測定装置
JP5333919B2 (ja) 平面形状測定装置および平面形状測定方法
JP2000088546A (ja) 形状測定装置および測定方法
JP2012247361A (ja) 面形状計測装置
JP5894464B2 (ja) 計測装置
JP2010145184A (ja) 測定方法及び測定装置
JP2003004424A (ja) 面形状測定方法および装置
JPH10260020A (ja) 非球面形状測定装置及び方法
JP2010145185A (ja) 測定方法及び測定装置
JP2011247736A (ja) 被検曲面形状測定装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140221

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees