JP5461369B2 - 多入力多出力システムおよび方法 - Google Patents

多入力多出力システムおよび方法 Download PDF

Info

Publication number
JP5461369B2
JP5461369B2 JP2010260337A JP2010260337A JP5461369B2 JP 5461369 B2 JP5461369 B2 JP 5461369B2 JP 2010260337 A JP2010260337 A JP 2010260337A JP 2010260337 A JP2010260337 A JP 2010260337A JP 5461369 B2 JP5461369 B2 JP 5461369B2
Authority
JP
Japan
Prior art keywords
mimo
symbol
antenna
data
packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010260337A
Other languages
English (en)
Other versions
JP2011124996A (ja
Inventor
スン,キンファン
チョイ,ウォン−ジョン
エム. ギルバート,ジェフリー
マレキ テヘラニ,アルダヴァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2011124996A publication Critical patent/JP2011124996A/ja
Application granted granted Critical
Publication of JP5461369B2 publication Critical patent/JP5461369B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

関連出願
この出願は2003年11月4日提出の米国特許仮出願第60/517,445号の優先権を主張する。
この発明は無線通信環境における多入力多出力(MIMO)システムに関し、レガシーデバイスとの後向き互換性の確保を容易にするMIMO方法およびシステムに関する。
無線ローカルエリアネットワーク(WLAN)用の通信システムの設計はIEEE802.11に規定された一群の規格に基づいている。例えば、802.11a規格は5GHz帯における54Mbpsまでの範囲を規定し、802.11g規格は2.4GHz帯における54Mbpsまでの範囲を規定している。これら802.11aおよび802.11g両規格とも直交周波数分割多重化(OFDM)の符号化手法を用いる。
重要なことは、これら両規格ともデータストリームの送受信をどの時点でも一つずつ行うように規定していることである。例えば、図1に単純化して示したシステム100では、送信機101はどの時点でも一つの出力を生ずることができ、受信機102はどの時点でも一つの信号だけを信号処理できる。すなわち、上記システム100は単一入力単一出力を特徴とする。
マルチパス、およびさらに詳しくいうとマルチパスを原因とするフェーディング(送信電波信号を伝搬経路内の物体が反射することによる)その他の現象に対処するために、無線通信システムは多様な手法を採用できる。それら手法の一つは、切換ダイバーシティ、すなわち送信機や受信機が複数のアンテナを選択的に切換え利用するダイバーシティである。例えば、図2に簡略化して示したシステム200では、送信機101は信号の送信にアンテナ201Aまたは201Bを(スイッチ203により)選択でき、受信機102はアンテナ202Aまたは202Bからの信号を(スイッチ204により)選択して信号処理できる。すなわち、このシステム200はアンテナ切換構成を特徴とする。
図3に簡略化して示した多入力多出力(MIMO)システム300では、複数のアンテナで同時並行的に送信し、複数のアンテナで同時並行的に受信することができる。より詳しくいうと、送信機301は、アンテナ302Aから(送信機チェーン303Aを用いて)およびアンテナ302Bから(送信機チェーン303Bを用いて)同時並行的に複数の信号を送信できる。同様に、受信機304は、アンテナ305Aから(受信機チェーン306Aを用いて)およびアンテナ305Bから(受信機チェーン306Bを用いて)同時並行的に複数の信号を受信できる。
MIMOシステムには多数の種類がある。例えば、MIMO−AGは802.11aおよび802.11gの両規格に互換性のあるMIMOシステムである。一方、MIMO−SMは、空間多重化機能付きのMIMOシステムである。この明細書のこれ以下の説明では「MIMO」の表記をMIMO−SMの意味で用いる。
特定の実施例に応じて複数のアンテナを用いると、交信可能距離範囲を広げたり、所定距離範囲についてのデータ伝送速度を高めたりすることができる。図4には、多様なアンテナ構成について相対距離とデータ伝送速度中央値との関係を例示している。曲線401は単一アンテナ構成の場合を表し、曲線402は切換ダイバーシティアンテナ構成の場合を表し、曲線403はMIMOアンテナ構成の場合を表す。相対距離2と4との間では、MIMOアンテナ構成の場合のデータ伝送速度中央値が単一アンテナ構成および切換ダイバーシティアンテナ構成の場合のデータ伝送速度中央値よりも著しく大きくなっていることに注目されたい。例えば、相対距離3の点、すなわち通常の家庭空間404の中の最大相対距離3の点では、MIMOアンテナ構成の場合のデータ伝送速度中央値(50Mbps)が、単一アンテナ構成の場合の上記中央値(18Mbps)およびスイッチ切換ダイバーシティアンテナ構成の場合の上記中央値(33Mbps)よりも著しく大きくなる。
また、MIMOシステムは互いに相異なる周波数についての信号対雑音比(SNR)の差を最小にすることができる点で有利である。多様なアンテナ構成について広い周波数範囲にわたるSNRの値、すなわち第1のアンテナの場合のSNR501(点線の波形で表示)、第2のアンテナの場合のSNR502(鎖線の波形で表示)、および第1・第2アンテナ同時利用の場合のSNR503(実線の波形で表示)を図5に例示する。周波数ビン0乃至60にわたってSNR501および502の両方とも大幅に変動することに注目されたい。これと対照的に、第1および第2のアンテナの両方を同時に用いたMIMOについては、SNR曲線503に示すとおり、互いに異なる周波数ビンにわたるSNRのばらつきを最小にすることができ(一つのチャネルについての変動をもう一つのチャネルについての変動で補償する)、受信機チェーンや送信機チェーンにおけるSNRのより効果的な補償を可能にする。
MIMOシステム300(図3)においては、送信機301からの複数のデータストリーム(例えばデータパケット)の受信および復号化に複数個のチェーンを用いる。しかし、レガシー802.11a/gデバイスには複数データストリームの復号化が不可能であるために、その種のレガシーデバイスはMIMOパケットの送信の完了のための送信によってMIMOパケットを「踏みつける」ことがあり得る。
USP 6 636 568 USP 6 611 231 USP 6 556 173 USP 6 504 885 USP 6 504 506 USP 6 493 399 USP 6 493 331 USP 6 473 467
したがって、レガシーデバイスがMIMOパケットの長さをデコードし、そのパケットの期間中は送信を止めることができるようにするMIMOシステムおよび方法が必要である。また、MIMOパケットの送信をより効率的に行う方法が必要になっている。
多入力多出力(MIMO)システムは多アンテナで同時並行的に送信できるとともに多アンテナで同時並行的に受信できる。レガシー802.11a/gデバイスは、複数のデータストリームを復号化できないので、MIMOパケットの送信の完了の前に送信を行うことによってMIMOパケットを「踏みつける」ことがあり得る。したがって、レガシーデバイスがMIMOパケットの長さをデコードしそのパケットの期間中は送信を差し控えられるようにするMIMOシステムおよび方法をここに提供する。これらのMIMOシステムおよび方法はMIMOパケットの効率的送信のために最適化する。
MIMOパケットについて時分割トレーニングパターンを提供する。このパターンでは、第1のアンテナが短シンボル、第1の長シンボル、およびレガシーSIGNALシンボルをこの順に送信できる。このレガシーSIGNALシンボルの送信のあと第2のアンテナが第2の長シンボルを送信できる。この第2の長シンボルの送信のあと、第1および第2のアンテナがSIGNALシンボル(MIMOデータに伴う)をほぼ同時並行的に送信できる。
MIMOパケットについてのもう一つのパターンを提供する。このパターンでは、短シンボルを第1のアンテナおよび第2のアンテナで送信できる。その短シンボルは予め定めた短ビンのセットに分割できる。上記第1のアンテナをそれら短ビンの第1のセットに関連づけ、第2のアンテナをそれら短ビンの第2のセットに関連づける。長シンボルは、第2の短シンボルの送信のあと第1および第2のアンテナからほぼ同時並行に送信する。その長シンボルを長ビンの第1のセットおよび長ビンの第2のセットに関連づける。第1のアンテナは、上記長ビンの第2のセットを用いる前に長ビンの第1のセットを用いて送信できる。これと対照的に、第2のアンテナは、長ビンの第1のセットを用いる前に長ビンの第2のセットを用いて送信できる。MIMOデータに伴うSIGNALシンボルは第1および第2のアンテナからほぼ同時に送信できる。
一つの実施例では、短ビンの第1のセットは−24,−16,−8,4,12,20を含み、短ビンの第2のセットは−20,−12,−4,8,16,24を含む。もう一つの実施例では、短ビンの第1のセットは−24,−16,−8,8,16,24を含み、短ビンの第2のセットは−20,−12,−4,4,12,20を含む。
一つの実施例では、長ビンの第1のセットは−26,−24,・・・,−2,1,3,・・・,25を含み、長ビンの第2のセットは−25,−23,・・・,−1,2,4,・・・,26を含む。もう一つの実施例では、長ビンの第1のセットは−26,−24,・・・,−2,2,4,・・・,26を含むことができ、長ビンの第2のセットは−25,−23,・・・,−1,1,3,・・・,25を含むことができる。
一つの実施例では、上記パターンは、短ビンの少なくとも二つの分割パターンについてのピーク値対平均値比(PAR)の値を計算することと、最小PAR値の分割パターンを用いることとを含む。もう一つの実施例では、上記パターンは、長ビンの少なくとも二つの分割パターンについてのピーク値対平均値比(PAR)の値を計算することと、最適化したPAR値の分割パターンを用いることとを含む。
短ビンの第1および第2のセットは互いに異なる周波数シフトを用いることができる。パターンからNビンあたり1個のビンを用いている場合は、周波数シフトパターンは1個乃至N−1個のビンを含む。
一つの実施例では、上記第1のアンテナは複数のアンテナの一つのセットを用いて具体化できる。その場合は、複数のアンテナの第1のセットの複数のビンにわたって複素重みづけを行い、ビーム形成効果を最小にする。複素重みは位相シフトおよび位相値の少なくとも一方を含み、ビーム形成効果の最小化によってほぼ全方位送信を可能にする。
レガシーヘッダを備える一つの実施例では、上記パターンに、MIMOパケット送信中を表示するためにレガシーヘッダのあとに符号化シンボルを含める。この符号化シンボルは、少なくとも送信データストリームの数を表示する。一つの実施例では、符号化シンボルに、MIMOデータに伴うSIGNALシンボルを含める。これらのSIGNALシンボルは、反転パイロットトーン、すなわち通常のシンボルと同位置にあってそれとは異なる反転パイロットトーンを含み得る。
レガシーデバイス環境でMIMOパケットを送信する方法をこの発明は提供する。この方法においては、レガシーSIGNALシンボルの中の予め指定したビットのセットを予め定めた値に設定して、MIMO信号送信中であることを表示するようにすることができる。もう一つの実施例では、レガシーSIGNALシンボルのビットのセットでMIMOパケットに伴う情報を表示できる。一つの実施例では、そのビットのセットはレガシーSIGNALシンボルの長さフィールドの最下位から数えて複数のビットを含む。MIMOパケットに伴う情報は、そのMIMOパケット関連の送信データストリームの数を表示し得る。もう一つの方法では、レガシーSIGNALシンボルの中のビットのセットについて、MIMOパケット関連の情報(例えばストリームの数)を表示するように、「モジュロ」動作を行う。
MIMO信号について複数の受信データシンボルの位相変動を追跡して補正する方法をこの発明は提供する。この方法では、データシンボルの各々に複数のパイロットビンを挿入する。一つの実施例では、それら複数のビンにわたるパターンを用いて位相シフトを加える。例えば、位相シフトのパターンをそれら複数のパイロットビンにわたって循環させる(例えば周期的に)。一つの実施例では、フォーマット[111−1]の中のデータシンボルの各々に四つのパイロットビンを挿入する。ここで[111−1]は四つのパイロットビンに跨るパターンであり、p1はシンボル1のパイロット極性である。
MIMO信号について複数の受信データシンボルの位相変動を追跡して補正するもう一つの方法もこの発明は提供する。この方法では、データシンボルM個分の長さの期間にわたってデータストリームを跨る直交パターンを生ずることができる。直交パターンの発生は、次式、すなわち
に従う。ここで、Mは送信データストリームの数、mはストリーム、kはM個の直交データシンボルの始点指標、lはMIMOシンボルの指標、δmnはm=nのとき1、m≠nのとき0に等しい数をそれぞれ表す。M個の送信データストリームについては、ストリームmの変調パターンは、次式、すなわち
で表される。ここで1≦m≦Mおよびl≧0である。
複数のストリームにわたる共同パイロット追跡の方法をこの発明は提供する。この方法では、各パイロットビンの中の受信信号をチャネル推算および既知のパイロットパターンに基づいて推算する。パイロットKの中の受信機nの受信信号は次式、すなわち、
で表される。ここで、sm,kはストリームmのパイロットシンボルであり、θは共通位相オフセットであり、Hn,m,kはチャネル応答であり、nn,kは雑音であり、共通位相オフセットは次式、すなわち
で表される(ここでHn,m,k(バー)はチャネル推算値である)。
送信チェーンごとのパイロット追跡の方法をこの発明は提供する。この方法では、MIMO検出アルゴリズムをパイロットビンに適用してパイロットsm,k(バー)を検出する。ここで、sm,k(バー)≒sm,k・ejθl(m)であり、θ (m)はストリームmの位相オフセットである。復号化ずみのパイロットと理想化パイロットとの間で各データストリームのパイロットビンにわたり位相差の平均値をとり、位相推算値、すなわち、
を発生する。
送信/受信チェーンごとのパイロット追跡の方法をこの発明は提供する。この方法はパイロット極性系列を直交パターンで変調し、それによって、送信/受信チェーンの各々につき位相を推算する過程を含む。送信データストリームの数がMの場合は、ストリームm(1≦m≦M)についての変調パターンは、次式、すなわち
で表される。ここでl≧0はMIMOシンボルの指標である。この方法は、受信アンテナnにおけるストリームmの位相オフセットの推算を複数のパイロットビンにわたって平均することによって行う過程をさらに含み得る。その位相オフセットの推算は次式、すなわち、
で表される。
MIMO信号を形成するようにソースデータビットを分割する方法をこの発明は提供する。この方法では、符号器を初期化して終了させるようにソースデータビットを加え、それによって改変ずみのソースデータビットを作ることができる。この改変データビットを符号器に加え、符号化ずみのソースデータビットを生ずる。この符号化ずみのソースデータビットをN個のデータストリームに分割する。
MIMO信号を生ずるようにソースデータビットを分割するもう一つの方法をこの発明は提供する。この方法では、ソースデータビットをN個のデータストリームに分割する。N個の符号化器を初期化するとともに終了させてN個の改変ずみのデータストリームを生ずるように、N個のデータストリームにビットを加える。この方法には、ビット総数を選択する過程をさらに含めて、N個のデータストリームの各々につきシンボルにわたって分割した際にデータストリームの各々の中のシンボル数が互いにほぼ等しくなるようにすることができる。
MIMO信号を生ずるようにソースデータビットを分割するもう一つの方法をこの発明は提供する。この方法では、符号器を初期化するとともに終了させて改変ずみのソースデータビットを生ずるように、ソースデータビットにビットを付加する。これらの改変ずみのソースデータビットを符号器に供給して符号化ずみのソースデータビットを生ずる。符号化ずみのソースデータビットをパンクチュアラに供給してパンクチャ処理ずみのソースデータビットをN個のビットストリームに分割する。
レガシーSIGNALシンボルを用いてMIMOパケットの長さを表示する方法をこの発明は提供する。このレガシーSIGNALシンボルは伝送速度フィールドと長さフィールドとを含む。しかし、MIMOパケットの長さは、長さフィールドを用いて表す長さよりも長くすることができる。その場合は、この方法に、MIMOパケットの長さを表すために伝送速度フィールドおよび長さフィールドの両方を用いる過程を含める。例えば、伝送速度疑似値を伝送速度フィールドに供給し、疑似長さ値を長さフィールドに供給する。一つの実施例では、上記伝送速度疑似値レガシーレート最小値にし、疑似長さ値を伝送期表示の実際のレガシー長にすることもできる。一つの実施例では、MIMOパケットのMIMOSIGNALシンボルにパケット長相対値を含める。
MIMOパケットのパターンをこの発明は提供する。このパターンはレガシーヘッダとMIMOヘッダとを備える。レガシーヘッダはレガシーヘッダ受信のための自動利得制御を定める複数の短シンボルを含む。一方、MIMOヘッダはMIMOヘッダ受信の自動利得制御を容易にするための第2の複数の短シンボルを含む。
MIMOパケットのもう一つのパターンをこの発明は提供する。このパターンは複数のアンテナから送信される第1の短シンボルを含み得る。この第1の短シンボルを短ビンの予め定めたセット、すなわちサブセットが前記複数のアンテナの各々と関連づけてある短ビンの予め定めたセットに分割する。第1の短シンボルを、MIMOパケット(前記第1の短シンボルを含むMIMOパケット)のための自動利得制御に用いる。
上記パターンは複数のアンテナからほぼ同時に送信された第1の長シンボルをさらに含み得る。上記第1の長シンボルを長ビンの複数のセットと関連づけ、それら長ビンのセットの互いに異なる順序を用いて各アンテナから送信することができるようにする。第1の長シンボルはMIMOチャネル推算に用い得る(MIMOパケットは第1の長シンボルをさらに含む)。
一つの実施例では、上記複数のアンテナが第1および第2のアンテナを含む。その場合は、それら第1および第2のアンテナからレガシーSIGNALシンボルの送信のあと第1の短シンボルを送信する。その第1のアンテナを短ビンの第1のセットと関連づけ、第2のアンテナを短ビンの第2のセットと関連づける。これら第1および第2のアンテナは第1の長シンボルとほぼ同時に送信する。第1の長シンボルを長ビンの第1セットおよび長ビンの第2のセットと関連づけ、第1のアンテナが長ビンの第2のセットによる送信の前に第1のセットによる送信を行い、第2のアンテナが第1のセットによる送信の前に第2のセットによる送信を行うようにする。
上記パターンは、上記第1の短シンボルおよび第1の長シンボルのあと第1および第2のアンテナからほぼ同時に送信されるMIMOと関連づけたSIGNALシンボルも含み得る。このパターンはさらに第2の短シンボル、第2の長シンボルおよびレガシーSIGNALシンボルを含み得る。その第2の短シンボルはレガシーヘッダのための自動利得制御に用いることができる。レガシーヘッダは第2の短シンボル、第2の長シンボル、およびレガシーSIGNALシンボルを含み得る。レガシーヘッダはMIMOヘッダの前に送信する。
MIMOパケットのさらにもう一つのパターンをこの発明は提供する。このパターンはレガシーヘッダおよびMIMOヘッダをも含み得る。レガシーヘッダは、レガシーデバイスチャネル推算用の第1の複数の長シンボルを含む。MIMOヘッダは、MIMOデバイスチャネル推算用の第2の複数の長シンボルを含む。
MIMOパケットのさらにもう一つのパターンをこの発明は提供する。このパターンは第1の複数のアンテナから送信される第1の長シンボルを含み得る。この第1の長シンボルを複数のアンテナでほぼ同時に送信する。この第1の長シンボルを複数の長ビンのセットに関連づけ、各アンテナから互いに異なる長ビンのセットの順序により送信するようにすることができる。この第1の長シンボルをMIMOパケット(第1の長シンボルを含む)のためのMIMOチャネル推算に用いることができる。
このパターンはさらに第1の短シンボルを含み得る。第1の短シンボルも複数のアンテナで送信できる。この第1の短シンボルを予め定めた短ビンのセットに分割して、それら短ビンのサブセットに複数のアンテナの各々を関連づけるようにすることができる。第1の短ビンはMIMOパケット(第1の短シンボルを含む)のための自動利得制御に用いることができる。
一つの実施例では、上記複数のアンテナが第1および第2のアンテナを含む。これら第1および第2のアンテナはレガシーSIGNALシンボルの送信のあと第1の短シンボルを送信できる。第1のアンテナを短ビンの第1のセットに関連づけ、第2のアンテナを短ビンの第2のセットに関連づけることができる。これら第1および第2のアンテナは第1の長シンボルをほぼ同時に送信できる。第1の長シンボルを長ビンの第1のセットおよび長ビンの第2のセットを用いて送信できる。一方、第2のアンテナは長ビンの第1のセットによる送信の前に長ビンの第2のセットを用いて送信できる。
上記パターンは、第1の短シンボルおよび第1の長シンボルのあと第1および第2のアンテナによりほぼ同時に送信されたMIMOと関連づけたSIGNALシンボルをさらに含み得る。
MIMO送信のための複数の符号化ずみデータストリームを復号化する方法をこの発明は提供する。この復号化方法においては、良いビンからのデータビットを、悪いビンからのデータビットよりも重く重みづけする。例えば、ビンへの重みづけの重みを、信号対雑音比(SNR)、またはSNRの平方根に比例した値にすることができる。
この重みづけはビタービブランチ計量算出に影響し得る。一つの実施例では、この方法は、第1および第2のストリームについて実効雑音項算出のための次式に基づいて誤差伝搬の影響を算出する過程をさらに含み得る。
ここで、σ はもとの雑音項、wは零位ベクトル、hはチャネル、σ (バー)はm番目のデータストリームについての実効雑音項をそれぞれ表す。
複数の受信機チェーンのためのチャネル補正を改変する方法をこの発明は提供する。この方法では、複数の受信機チェーンについてのチャネル推算を受信する。複数の受信チェーンについての利得調整値を基底雑音値および自動利得制御値に基づいて計算できる。次に、この利得調整値を複数の受信機チェーンに印加する。
MIMOシステムについての位相推算値を用いる方法をこの発明は提供する。この方法においては、単一の共同位相推算を、複数のデータストリーム全部に適用できる位相補正値の算出のために複数のデータストリームから行う。一つの実施例では、上記複数のデータストリームがデータストリーム全部を含む。
送信機/受信機対の各々について位相推算値を生ずる方法をこの発明は提供する。この方法において、チャネル行列Hの各エレメントの位相オフセットQn,m(ここで、1≦m≦M,1≦n≦N)をパイロットから推算し、その位相オフセット推算値をθ(m)(1≦m≦M)およびQ(n)(1≦n≦N)に変換できる。チャネル行列Hにおいては、
ここで1は全部1のN×1ベクトルであり、IはサイズNの単位行列であり、θ=[θ(1)θ(2)・・・θ(N)]はN個の受信機における位相ベクトルであり、θ=[θ1,mθ2,m・・・θN,m]は行列Hの第m列の位相ベクトルである。
MIMO信号の送信を最適化する方法をこの発明は提供する。この発明において、チャネルの品質を、MIMO信号送信機から送信先受信機の受信したパケットを用いて評価する。その際に、パケット(例えばCTSパケットまたはACKパケット)、すなわち送信最適化のための饋還情報を含むパケットを送信先の受信機から送信機に送る。この饋還情報は、互いにほぼ同時にすでに送信ずみの複数のデータストリームから抽出できる。例えば、この饋還情報は、チャネル補正ずみのパイロットおよび既知のクリーンパイロットから算出した(1)チャネル推算値または(2)検出パイロットEVMを含む。
一つの実施例では、この饋還情報は、送信機用のデータ伝送速度を含み得る。もう一つの実施例では、この饋還情報は、送信機用のデータ伝送速度最小値、同最大値、高い方のデータ伝送速度、低い方のデータ伝送速度などを含む。
送信MIMO信号の送信を最適化する方法をこの発明は提供する。この方法においては、チャネルの品質を、送信先の受信機からMIMO信号送信機の受けたMIMOパケットを用いて評価する。そのMIMOパケットに基づいて最適化送信情報を算定できる。
ダイバーシティアンテナシステムにおけるMIMO信号用受信機選択の方法をこの発明は提供する。少なくとも一つの受信機チェーンが複数の受信アンテナに接続可能である。この方法においては、受信機チェーンの各々について、信号強度最大の受信アンテナを選択できる。
ダイバーシティアンテナシステムにおけるMIMO信号用受信機選択の方法もこの発明は提供する。この方法においては、少なくとも一つの受信機チェーンを複数の受信アンテナに接続できる受信アンテナ組合せを決定する。各組合せについて信号対雑音比(SNR)を計算し、次に、最小のSNRの組合せを選択する。
分割系列の選択の方法もこの発明は提供する。この方法においては、複数の分割系列についての電力対平均値比(PAR)を計算し、次に、最適PARを有する分割系列を選択する。
上述のMIMOシステムの利点を図面を参照して次に述べる。
伝送品質および伝送効率のより高い無線LAN(WLAN)システムを提供する。
[レガシーヘッダおよびシンボル分割]
この発明の一つの実施例によると、レガシーデバイスは、MIMOパケットに先行する後向き互換性のあるプリアンブルを受けることにより、MIMO信号の「踏みつけ」(すなわち、MIMOパケットの送信の完了前に送信すること)を防ぐ。この後向き互換性のあるプリアンブルはIEEE802.11a/g規格システムに適合しており、レガシーデバイスによるMIMOパケット長さの復号化およびそのパケットの期間中の送信の阻止を可能にするので有利である。また、このプリアンブルは、それに続くパケットがMIMOパケットであるか否かと、そうである場合は送信中のデータストリームがいくつあるかとを表示できる。
図6は上記プリアンブルを含むMIMOパケットの時分割トレーニングパターン600の例を示す。より詳しく述べると、この明細書でレガシーヘッダと呼ぶプリアンブル612は、標準の802.11a/g短シンボル、長シンボルおよびSIGNALシンボルを含む。以下の説明では、これらのシンボル(複数形であるが)を単数扱いにすることもある。
一つの実施例では、空間ストリーム610および611を二つの(第1および第2の)アンテナからそれぞれ送信する。他の実施例では、送信ストリーム610をビーム形成アンテナ構成の複数のアンテナから送信する。すなわち、空間ストリーム610はアンテナの一つのセットから送信されることを特徴とする。説明の便宜のために、空間ストリーム610を第1のアンテナから送信し、空間ストリーム611を第2のアンテナから送信するものとして説明する。
レガシーヘッダ612の中の短シンボル601を粗ppm推算およびタイミングに用いる。第1のアンテナから送信される長シンボル602は第1のアンテナからのチャネルの推算に用い得る。一つの実施例では、SIGNALシンボル603がMIMOパケットの長さ情報を含み、それによってレガシーデバイスによるMIMOパケット踏みつけを防止できるので有利である。第2のアンテナから送信され、それ以外は上記長シンボル602と同一である長シンボル604は、第2のアンテナからのチャネルの推算に用いることができる。SIGNALシンボル605Aおよび605Bは、空間ストリーム610および611のMIMO部分(レガシーヘッダ612のあとの部分)の変調および長さに関する情報をそれぞれ含む。
図7Aはレガシーヘッダ612を含むMIMOパケットのもう一つの例示用パターン700を示す。パターン700は、受信機利得制御の改良を容易にする(送信経路が互いに異なる場合も受信信号電力の継続を確保する)ように短シンボルと長シンボルとを分割するので有利である。パターン700では、追加の短シンボル704Aおよび704Bをレガシーヘッダのあとに挿入して、受信機が二次利得調整を実行できるようにしている。
受信電力を一定にするためには、二つの(すなわち第1および第2の)アンテナから送信されるトレーニングシンボルは非コヒーレントである必要がある。この非コヒーレンスは、短シンボルと長シンボルとを周波数領域で分割することによって達成できる。すなわち、短シンボル704Aが短シンボル601の用いるビンの半分を用い、短シンボル704Bがそのビンの残りの半分を用いる(すなわち704A+704B=602)。一つの実施例では、各アンテナがこれらビンの半分ずつを用いた互いに異なる時間に送信する。
一つのアンテナではビンの半分だけを用いるので、ビンあたりの電力は、分割した短シンボルおよび長シンボルについて2倍になる。すなわち、分割短シンボルを始点として受信電力レベルは一定になる。したがって、分割短シンボルの期間中の利得設定はそのデータシンボルについて有効である。受信機では、チャネル推算をビン半分ずつ抽出してその結果を合成して平滑化する。
上記分割は多様な方法で達成できる。一つの実施例では、長シンボル705Aがビン−26、−24,・・・,−2,1,3,・・・,25を用い、長シンボル705Bがビン−25,−23,・・・,−1,2,4,・・・,26を用いる。もう一つの実施例では、長シンボル705Aがビン−26,−24,・・・,−2,2,4,・・・,26を用い、長シンボル705Bがビン−25,−23,・・・,−1,1,3,・・・,25を用いる。長シンボル602のピーク値対平均値比(PAR)が3.18dBであって各ビンのデータが分割後も同じである場合は、この第1のビンを用いた実施例のPARは長シンボル705Aおよび705Bについてそれぞれ5.84dBおよび6.04dBとなり、第2のビンを用いた実施例のPARは長シンボル705Aおよび705Bについてそれぞれ5.58dBおよび5.85dBとなる。
分割した短シンボルおよび長シンボルは任意の複数のデータストリームについても一般化して適用できる。例えば、図7Bに示すとおり、三つのデータストリームがある場合は、ビンを三つのグループA,BおよびCに分けて、それらグループの間をすべてのビンについて等間隔にする。すなわち、分割した短ビンについては、第1のアンテナが短シンボル414Aを(ビンAを用いて)送信し、第2のアンテナが短シンボル414Bを(ビンBを用いて)送信し、第3のアンテナが短シンボル414Cを(ビンCを用いて)送信する。
分割した長シンボルについては、第1のアンテナが長シンボル415A、415Bおよび415Cを(ビンA、BおよびCをそれぞれ用いて)順次に送信し、第2のアンテナが長シンボル415B、415Cおよび415Aを(ビンB、CおよびAをそれぞれ用いて)順次に送信し、第3のアンテナが長シンボル415C、415Aおよび415Bを(ビンC、AおよびBをそれぞれ用いて)順次に送信する。この循環パターンによって、ビン全部についてのチャネル推算が可能になり、周波数領域における直交性を常時保持する。周波数26MHzにおける二つのストリームについての長系列の例を挙げると、L−26:26={−1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 1 1 1 −1 1 1 0 −1 1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 1 1 1 −1 1 1 1 1 1 1 1}である。ここで、長シンボル705AはPAR値2.73dBのビン[−26:2:−2 2:2:26]を用い、長シンボル705BはPAR値2.67dBのビン[−25:2:−1 1:2:25]を用いている。
周波数20MHzにおける三つのストリームについての系列の例を挙げると、L−26:26={−1 −1 1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 −1 −1 1 0 1 −1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 1 1 −1 1 −1 −1}である。ここで、第1のトーンセットはPAR値3.37dBの[−26:3:−2 2:3:26]であり、第2のトーンセットはPAR値3.10dBの[−25:3:−1 3:3:24]であり、第3のトーンセットはPAR値3.10dBの[−24:3:−3 1:3:25]である。周波数20MHzにおける四つのストリームについての系列の例を挙げると、L−26:26={−1 1 1 1 1 −1 −1 −1 1 −1 1 1 1 −1 1 1 −1 1 −1 −1 −1 1 1 1 −1 1 0 1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1 1 −1 1 1 1}である。ここで、第1のトーンセットはPAR値3.05dBの[−26:4:−2 3:4:23]であり、第2のトーンセットはPAR値3.05dBの[−25:4:−1 4:4:24]であり、第3のトーンセットはPAR値3.11dBの[−24:4:−4 1:4:25]であり、第4のトーンセットはPAR値3.11dBの[−23:4:−3 2:4:26]である。
周波数40MHzにおける一つのストリームについての長系列の値を挙げると、
−58:+58={−1 1 1 1 1 −1 1 1 ―1 −1 −1 −1 1 1 1 1 1 −1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1 −1 1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1 −1 1 1 −1 1 1 1 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 1}
である。
周波数40MHzにおける二つのストリームについての長系列の値を挙げると、
−58:+58={−1 1 1 1 1 −1 1 1 ―1 −1 −1 −1 1 1 −1 1 1 −1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1 −1 1 −1 1 −1 1 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 1 −1 1 1 −1 1 1 1}
である。ここで、第1のトーンセットは[−58:2:−2 2:2:58]であり、第2のトーンセットは[−57:2:−3 3:2:57]である。
周波数40MHzにおける三つのストリームについての長系列の値を挙げると、
−58:+58={−1 −1 −1 −1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1}
である。ここで、第1のトーンセットは[−58:3:−4 2:3:56]であり、第2のトーンセットは[−57:3:−3 3:3:57]であり、第3のトーンセットは[−56:3:−2 4:3:58]である。
周波数40MHzにおける四つのストリームについての長系列の値を挙げると、
−58:+58={−1 1 −1 −1 −1 1 1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 −1 −1 1 1 1 1 −1 1 −1 −1 1 −1 1 1 1 1 1 −1 −1 −1 1 0 0 0 −1 1 1 −1 −1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 −1 −1 1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1 ―1 1 1}
である。ここで、第1のトーンセットは[−58:4:−2 5:4:57]であり、第2のトーンセットは[−57:4:−5 2:4:58]であり、第3のトーンセットは[−56:4:−4 3:4:55]であり、第4のトーンセットは[−55:4:−3 4:4:56]である。なお、PAR値低減のためにデータパターンのサーチを行うことができる。
短シンボルも、四つのビンのうちの一つだけを用いる点を別にすれば上述の場合と同様に分割できる。例えば、一つの実施例では、短シンボル704Aがビン−24,−16,−8,4,12,20を用い、短シンボル704Bがビン−20,−12,−4,8,16,24を用い得る。もう一つの実施例では、短シンボル704Aがビン−24,−16,−8,8,16,24を用い、短シンボル704Bがビン−20,−12,−4,4,12,20を用い得る。短シンボル601のPAR値が2.09dBである場合は、短シンボル704Aおよび704Bの両方について第1のビンを用いた実施例のPAR値は4.67dBとなり、第1のビンを用いた実施例のPAR値は短シンボル704Aについて4.32dB、短シンボル704Bについて2.79dBとなる。なお、第1ビン利用の実施例を網羅的にサーチする場合は、PAR最小値4.26dBとなる。第2のビン利用の実施例について同様のサーチを行う場合は、極性{1 −1 1 −1 −1 −1}の短シンボル704AについてのPAR最小値は1.6dBになり、極性{1 −1 −1 −1 −1 1}の短シンボル704BについてのPAR最小値は2.79dBとなる。
分割した短シンボルに用いたビンの数は少ないことに注目されたい。したがって、チャネルが周波数選択性を備える場合は、分割した短シンボル、分割した長シンボルおよびSIGNALシンボルの送信電力が互いに等しいとすると、受信電力の平均値は分割ずみの短シンボル相互間で大幅に異なる。受信電力のこの差は受信機利得制御を困難にする。したがって、一つの実施例では短シンボルに24個のビンを用いて分割短シンボルの各々により多くのビンを確保するようにしている。もう一つの実施例では、12個のビンで周波数シフトずみの短シンボルをデータストリームすべてに用いるものの、各データストリームが互いに異なる周波数シフトを用い得る。すなわち、もとの短シンボル用の周波数からビン1個分、2個分または3個分のシフトをかけた周波数で用い得る。この周波数シフトによって、短シンボルから分割ずみ長シンボルおよびそれ以後への受信電力の連続性を確実にすることができる。しかし、この構成では、サポートできる送信データストリームの数は4以下である。また、シフトした短シンボルの周期はレガシー短シンボルの周期よりも長く、そのために周波数オフセットの実現に改変を要することもあろう。
上述のとおり、レガシーヘッダはアンテナの一つのセットから送信する。そのセットが複数のアンテナを含む場合は、ビーム形成効果が生じ得る。全方位送信を達成するために、それらアンテナの各々に対する各周波数ビンの複素寄与分を重み付けする。例えば、位相シフト(例えば、位相ランプまたは任意の位相シフト)や位相値を他のアンテナへのビン全体に適用してビーム形成効果がビンごとに異なるようにする。位相ランプ形成手法の例としては、無線技術分野の当業者に周知の巡回遅延ダイバーシティ(CDD)などがある。
位相値の例としては、一つのアンテナに偶数番目のビンを用いもう一つのアンテナに奇数番目のビンを用いる手法がある。位相値のもう一つの例としては、正極性の周波数ビン全部を一つのアンテナに用い、負極性の周波数ビン全部をもう一つのアンテナに用いる手法がある。すなわち、二つのアンテナへの各周波数ビンの寄与を互いに独立に重みづけする手法を全方位送信の達成に用いることができる。
MIMOパケットを受信できる受信機はレガシー802.11a/gパケットも受信できるはずであるので、レガシーパケットとは異なるMIMOパケットという名称を与えるメカニズムも提供できる。また、パケットがMIMOパケットである場合は、受信機は送信されてきたデータストリームの数を把握する必要がある。図7Cに示した実施例では、レガシーSIGNALシンボル603の第1のビットのセットがMIMOパケットを表示し、同シンボル603の第2のビットセットが送信されてきたデータストリームの数を表示し得る。例えば、SIGNALシンボル603の予備ビットRを「1」にセットして、MIMOパケットが送信中であることを表示することができる。また、SIGNALシンボル603の長さフィールド721の中の所定数の下位ビットを、送信されてきたデータストリームの数の表示に用いることができる。すなわち、最下位の二つのビットを用いた場合は、長さフィールドの長さの値を最下位から三番目のビットに端数切り上げにする。
MIMO受信機は、レガシーSIGNALシンボル603の復号化の後、予備ビットRをチェックすることができる。そのビットが「0」の場合はそのパケットはレガシーパケットであり、長さフィールド721の中の長さの値はバイト数表示のパケット長さの真値である。しかし、予備ビットが「1」の場合は、そのパケットはMIMOパケットであり、長さフィールドの最下位から二つのビットは送信されてきたデータストリームの数である。後者の場合は、パケットの長さは2バイト以内の精度である。レガシー受信機は送信差控え時間の算出に長さの値だけを用いる。したがって、長さフィールドの値をレガシーデバイスのために高精度にする必要はない。上述のとおり各データストリームの長さの真値をMIMO SIGNALシンボル(例えば図7Aの706Aおよび706B)に含めることができる。したがって、MIMO受信機は長さフィールド721の蓄積された値を実効的に無視できる。
もう一つの実施例ではMIMOストリームの数を表すのに「モジュロ」動作を用いることができる。より詳細に述べると、パケットのデータバイト数がLである場合は、シンボルあたりのデータバイトの数はBであり、サービスバイトおよび末尾バイトの数はCであり、所要シンボル数は次式、すなわち
で与えられる。ここで┌┐は最も近い整数への端数切上げを示す。ここで、データストリームの数がMでありMBであると仮定する。その場合は改変ずみの長さは次式、すなわち
で表される。
レガシーデバイスで計算したシンボルの数がやはりNsym、すなわち
で表されることに注目されたい。
MIMOデバイスはストリーム数を次式、すなわち
で算出できる。
M=BであればM(バー)は零である。その場合は、M(バー)=Bのマッピングが行われる。なお、この同じ手法をストリーム数以外の他の情報のシグナリングにも適用でき、その場合はシグナリング対象の情報は上述のとおりMとして符号化される。
さらに他の実施例では、符号化シンボル722をMIMOパケット表示のために(予備ビットは他の用途のために保持して)レガシーSIGNALシンボル603の後に挿入できる。符号化シンボル722は(同位置に現れるはずの通常のシンボルに対して)反転したパイロットトーン(すなわち+/−)付きのMIMO SIGNALシンボルを含み得る。例えば、符号化シンボル722は、雑音耐性強化のためにBPSK変調で改変したSIGNALシンボル706A’および706B’を含み得る。この実施例では、MIMO受信機は入来パケットがMIMOパケットであるかレガシーパケットであるかを符号化シンボル722のパイロットの位相に基づいて判定できる。それがMIMOパケットであった場合は、送信データストリームの数を抽出でき、そのパケットの残り部分をMIMO適合の方法で検出できる。それ以外については、そのパケットをレガシー802.11a/gパケットとして取り扱う。
[パイロット]
周波数オフセット追跡および位相雑音追跡のために802.11a/gシステムにパイロットを挿入する。送信機および受信機において多数の無線周波数回路を用いるMIMOシステムでは、互いに異なる送信チェーンおよび受信チェーンが受ける位相雑音には共通なものまたは互いに別々のものもある。この発明の一つの側面によると、パイロット追跡スキームを送信チェーンごとに共通に、または送信機受信機対ごとに設ける。
送信機受信機間の周波数オフセットおよび位相雑音のために、受信データシンボルの位相はパケットの送信中に変動し得る。その位相変動を追跡して補正するために、802.11a/gのOFDMシンボルの各々に[111−1]*pのフォーマットで四つのパイロットを挿入する。この[111−1]はパイロットビンにまたがるパターンであり、p1はシンボル1のパイロット極性である。MIMO OFDMシンボルについては、4ビットパターンおよびパイロット極性系列の両方を複数の空間ストリームに適用する。
一つの実施例では、802.11a/gと同じパイロットフォーマットを送信データストリーム全部に複写使用する。例えば802.11a/gシンボルのパイロット極性系列がp,p,p,p,p,・・・である場合は、MIMOシンボルに次のパイロット極性、すなわち
を用い得る。ここで、この行列は行ごとに互いに異なる送信ストリームを表す。
パイロット極性は互いに異なる空間ストリームについて同じであるので、4ビットパターンをそれらストリーム全部に複写使用すればパイロットビンは固定のビーム形成パターンが生ずる結果になる。状態の悪いビンが常に零にとどまることがないようにするために、位相シフトを加えて四つのビンにわたりシンボルごとに循環するようにする。例えば、
第2のアンテナ(Ant2)のパイロットは第1のシンボルで位相シフト0゜、90゜、180゜および270゜を受け、後続のシンボルで周期的に循環する。なお、四つのパイロットビンについて初期パイロットパターン[1111]を用いているが、このスキームは任意の初期パイロットパターンに適用でき、また五つ以上のパイロットビンにも適用でいる。すなわち、推算のために挿入するパイロットは任意の周波スペクトラムにわたって間隔を設けることができる。
パイロット追跡は互いに異なる方法で実行できる。例えば、位相雑音が送信機チェーンおよび受信機チェーン全部にわたって共通である(それによって共同追跡が可能になる)場合は、受信機チェーンの各々がチャネル推算値および既知のパイロットパターンに基づき各パイロットビン中の受信信号を推算できる。この推算値の複素共役値を実際の受信パイロット信号に乗算する。その乗算結果をパイロットビンおよび受信機チェーンを跨いで合成する。最終結果の位相が所望の位相オフセット値になる。数式で表すと、受信機nにおけるパイロットビンkの受信信号は次式、すなわち
で表される。ここで、sm,kはストリームmのパイロットシンボル、θは共通位相オフセット、Hn,m,kはチャネル応答、nn,kは雑音である。また、共通位相オフセットは、式2,すなわち
で表される。ここで、Hn,m,k(バー)は推算したチャネルである。
これに対して、他の送信チェーンにわたって別の位相雑音がある(そのために送信チェーンごとのパイロット追跡が必要になる)場合は、MIMO検出アルゴリズムをパイロットsm,k(バー)のためにパイロットビンにまず適用する。
であるので(ここでθ(m)はストリームmの位相オフセット)、復号化したパイロットと理想パイロットとの間の位相差は各データストリームのパイロットビンにわたって平均して式3、すなわち
で表される位相推算値を生ずることができる。
位相雑音が送信チェーン全体と受信チェーンとの間で互いに独立である(そのために送信チェーン・受信チェーン対あたりのパイロット追跡が必要になる)場合は、パイロット極性系列を、送信チェーン・受信チェーン対の各々について別々に位相を推算できるように、直交パターンで変調することができる。送信データストリームの数がMである場合は、ストリームmについての変調パターン(ここで、1≦m≦M)は次式、すなわち
で表される。ここでl≧0はMIMOシンボルの指標である。例えば、三つの被変調ストリームについての被変調パイロット極性系列の例を挙げると、
が挙げられる。
なお、次式、すなわち
の関係が成立する。ここでδm,n(バー)=1(m=nの場合)、または0(m≠nの場合)である。すなわち、シンボルM個分の長さの任意の区間にわたるデータストリームについて(kはM個の直交データシンボルの開始指標を表す)パターンは直交パターンである。この場合は、直交性維持のためにストリーム全部について同一の4ビットパイロットパターンを用いる必要がある。
一つの実施例では、各アンテナが受信した最後の(M−1)個のシンボルをバッファに保存することができる。そのあと各アンテナが新たなシンボルを受信した際にこれらM個のシンボルについてのパイロットの複素共役値をシンボルと乗算して加算し、次式、すなわち
を計算する。ここで、yn,k(l)はl番目のシンボルについてのビンkのチェーンnの受信信号であり、rm,k(l)はl番目のシンボルについてのビンkのストリームmのパイロットシンボルである。項rm,k(l)はビンパイロットパターンと、もとのパイロット極性と、直交変調とを含む。この計算をすべてのパイロットビンkの中のすべての送信・受信対(m,n)について行う。その結果をチャネル推算の複素共役値に乗算し、式4、すなわち
で表される直交合成ずみでチャネル補正ずみのパイロットを生ずる。
次に、受信アンテナnのストリームmの位相オフセットをパイロットビンにわたって平均した式5,すなわち
のとおり推算する。
初めの(M−1)個のMIMOシンボルについては、履歴の長さが十分でないので、共同の、または送信チェーンあたりのパイロット追跡方法を用いることができる。また、次の条件、すなわち
を満足する任意の直交パターンq(l)(mおよびlは上に定義したとおり)をパイロット極性系列の変調に用いることができる(ここで、m,n,l,kおよびMは上に定義したとおり)。例えば、上述の例の三つの送信ストリームについての変調ずみパイロット極性系列は
となる。
なお、802.11a/gパイロット極性系列の継承物は類似点についてだけであるので、全部度外視してp=1と設定することができる。この設定により第3および第4の実施例が得られる。第3の実施例では、パイロット極性系列は全部1,すなわち
となる。
第1の実施例と同様に、パイロットビンを跨いで周期的に循環する位相シフトを、固定ビーム形成効果を避けるように、含める必要がある。共同パイロット追跡、または送信チェーンごとのパイロット追跡を行うことができる。
第4の実施例では、パイロット系列はq(l)のみであり、次のとおり表される。
この場合はビン全部に同一のパイロットパターンを全ストリームについて用いることができる。送信・受信対ごとのパイロット追跡を行うことができる。
[データストリーム分割]
MIMO SIGNALシンボルを形成するには、もとのデータビットを複数のデータストリームに適切に分割しなければならない。規格801.11a/gでは、レート1/2、2/3および3/4の畳込み符号を用い、四つの変調スキーム(すなわち、BPSK、QPSK、16QAMおよび64QAM)を提供する。符号速度と変調スキームによって各OFDMシンボルにおけるビット数が定まる。MIMO性能を最大にするには、互いに異なるデータストリームごとに互いに異なる変調と符号化速度を許容する必要がある。したがって、各MIMO信号シンボルのビット数は、データシンボルごとに異なり得る。
通常の符号化ブロックは、WLAN技術分野で周知の符号器およびパンクチュアラ(例えば、IEEE802.11aの第17.3.5.6節に記載)で構成する。この発明の一つの側面によると、互いに異なる符号は、共通の符号器と別々のパンクチュアラとの組み合わせを用い、または共通のパンクチュアラと別々の符号器との組み合わせを用いて構成できる。共通の符号器を用いた場合は、分割は符号器の前段またはパンクチュアラの前段で行うことができる。互いに別々の符号器を用いた場合は、分割は符号器の前段で行われなければならない。パンクチュアラの前段での分割の場合をこの明細書では、「共用」符号器と呼び、符号器の前段での分割の場合を「個別」符号器と呼ぶ。なお、802.11a/gでは、レート2/3符号および3/4符号の両方をレート1/2の畳込み符号からパンクチャする。したがって、上記の共用符号器でも個別符号器でも具体化できる。
符号器を初期化して終了させることができるように、ソースデータビットの前または後に付加ビットを挿入することができる。例えば、802.11a/gでは、ソースデータビットの前に16個のサービスビットを付加し、ソースデータビットの後に6個の末尾ビットを付加することができる。したがって、上記個別符号器の場合は、これら付加ビットを各符号器について挿入する。
図8には二つの空間ストリームのための共用符号器システム800の例を示す。このシステム800では、ソースビット801をブロック802に供給し、このブロック802で上述のサービスビットおよび末尾ビットを付加する。符号器803は上記付加ずみのビットを受けてn1+n2ビットを生ずる。スプリッタ804はこのn1+n2ビットを受けて二つの空間ストリームn1およびn2を生じ、それらストリームをパンクチュアラ805Aおよび805Bにそれぞれ供給する。
一つの実施例では、符号器803の出力におけるn1+n2ビットごとに、初めのn1ビットが第1の空間ストリームを形成し、後のn2ビットが第2の空間ストリームを形成する。分割後のビット列のサイズnはn=Ncbps(i)(ここでNcbpsはパンクチュアリング操作前のシンボルあたりの符号化ビットの数)で表され、シンボルごとに分割を行う。ビット列のサイズのもう一つの例は、n=Ncbps(i)/gcd(Ncbps(1)、Ncbps(2))(ここでgcd( )は最大公約数)で表され、この場合は処理遅延低減に適切な比を維持しつつ分割後のビット列のサイズを小さくする。
この実施例ではMIMO SIGNALシンボルの長さフィールドをパケットの実際のバイト長に設定する。MIMO SIGNALシンボルの中のR14フィールドを個々のデータ速度に設定する。レガシーSIGNALシンボルの中のR14フィールドは第1データストリームのデータ速度に設定でき、また最小データ速度に常に設定しておくこともできる。以下に詳述するとおり、レガシーSIGNALシンボルの中の長さフィールドは、レガシーデバイスで計算したシンボル数がパケットの実際の長さと整合するように操作できる。
図9は二つの空間ストリームに対する共用符号器システム900を示す。このシステム900ではソースデータ901をブロック902に供給し、このブロック902によってサービスビットおよび末尾ビットを付加する。この付加処理ずみの出力を符号器903が受けてn1+n2ビットを生ずる。このn1+n2ビットをパンクチュアラ904が受けて所定の速度の出力符号を生ずる。スプリッタ905がその所定の速度でn1+n2ビットを受けて、二つの空間ビットn1およびn2を生ずる。符号器903の出力のn1+n2ビットの各々のうち初めのn1ビットが第1の空間ストリームを形成し、後のn2ビットが第2の空間ストリームを形成する。
図10は二つの空間ストリームに対するもう一つの個別符号器システム1000を示す。このシステム1000では、ソースデータバイト、すなわちN1+N2をスプリッタ1002に供給し、二つの空間ストリーム(初めのN1バイトが第1の空間ストリームを形成し、後のN2バイトが第2の空間ストリームを形成する)を形成する。これら第1および第2の空間ストリームN1およびN2をブロック1003Aおよび1003Bにそれぞれ供給し、それらブロックにおいて、サービスビットおよび末尾ビットの付加をそれぞれ行う。これらブロック1003Aおよび1003Bの出力を符号器904Aおよび904Bにおいてそれぞれ符号化し、符号化ずみの出力をパンクチュアラ905Aおよび905Bにそれぞれ供給する。
なお、この個別符号器システムにおいては、SIGNALシンボルの中の長さフィールドがバイト表示であるので最小データ単位もバイト表示である。したがって、この場合は各ストリームには前縁で2バイトのサービスビットを付加し末尾で6ビット(乃至1バイト)を付加し得る。また、N1はシンボルあたりのデータバイトの数であり得るし、そのデーバイトの数をシンボルあたりのデータバイトの数全部の最大公約数で除した値でもあり得る。シンボルあたりのバイトの数は9Mbpsを除く全データ速度において整数である。なお、データ速度9Mbpsの場合は各シンボルは4.5バイトを含む。したがって、上記の場合は、ビット列のサイズはデータ速度9Mbpsのデータストリームについて交互に4バイトおよび5バイトとする。
例えば、二つの空間ストリーム(ストリーム1およびストリーム2)があって、シンボルあたりのデータバイトの数をそれぞれ27(54Mbps)および4.5(9Mbps)とする。当初は二つのサービスバイトをストリーム1およびストリーム2の各々に送ることができる。次に、初めの25(27−2)データバイトをストリーム1に送り、次の2データバイト(4−2)をストリーム2に送り、次の27データバイトをストリーム1に、次の5バイトをストリーム2にそれぞれ送り、以下同様とすることができる。
MIMO SIGNALシンボルの長さフィールドの値が実際の分割を行う前に必要になる。上述の順次式分割では長さ計算が僅かながら複雑になる。分割の動作に僅かな改変を加えることによって実現できる簡単な長さ値算出方法を次に述べる。初めに所要シンボル数を式6により計算する。
ここで、Lはパケットの中の未符号化バイトの総数、Mはデータストリームの数、B(i)はストリームiのシンボルあたりの未符号化バイトの数である。┌┐は直近の整数への切り上げを示す。9MbpsでK個のデータストリームを用いた場合であって,Nsymが奇数の場合は、式7により計算する。
第1のデータストリームの中のバイトの数はL(1)=└B(1)Nsym−3┘(ここに└┘は直近の整数への切り下げを表す)となり、第2のデータストリームの中のバイト数はL(2)=min(└B(2)Nsym−3┘、L−L(1))となり、以下同様となる。各ストリームに対してバイトカウンタを用いる。バイト数条件が満たされると、順次式分割動作でストリームをスキップする。なお、式6および式7は、普通の符号器およびパンクチュアラ、一般化したデータストリームの数、および一般化したサービスビット数/末尾ビット数にも当てはまる。また、システム900では長さが一つだけであるので式6および式7はこのシステムには当てはまらない。
802.11a/gパケットではSIGNALシンボルにおける長さフィールドは長さ12ビットであり、これはパケットサイズ最大値4095バイトに対応する。MIMOシステムでは4Kバイトよりも大きいパケットがペイロード効率の維持のために望ましい。したがって、正確なパケット長の伝送には、単にSIGNALシンボルに含め得るビット数よりも多いビット数を必要とする。
この発明の一つの実施例によると、MIMOパケットと等しい伝送時間を占める速度および長さを表示するように、レガシーSIGNALシンボルで疑似伝送速度および疑似長を用いることができる。許容可能なレガシー速度最低値(802.11a/gでは6Mbps)をパケット長最大化のために用い得る(4069バイト@6Mbps=5.46ms、または、有効な802.11パケット長最大値に対して2304@6Mbps=3.07ms)。
一つの実施例では、MIMO SIGNALシンボルについて所要ビット数の制限のためにパケット長絶対値の代わりにパケット長相対値を用い得る。パケット長相対値とは、同一数のシンボルで一つのパケットにより伝送できるバイト数マイナス伝送バイトの実数、すなわち詰め込み処理ずみのバイトの数にほぼ等しい値である。上述のとおり、バイトの総数はパケットの中のシンボルの数(レガシーSIGNALシンボルで定まる)およびデータ速度(MIMO SIGNALシンボルで符号化)を用いて計算できる。
共用符号器の場合は単一の長さ相対値を算出して第1のストリームの中のMIMO SIGNALシンボルだけで伝送する。それ以外のデータストリームの中の長さフィールドは他の用途のために保留しうる。個別符号器の場合は、データストリーム各々について相対長を計算して個別に伝送し得る。データストリーム全部についての単一の相対長を計算して第1のデータストリームだけで伝送することもできる(すなわち、この総合相対長から送信機受信機間であらかじめ設定ずみのバイト割り当てスキーム比について個々の相対長を抽出できる)。
[AGCおよびチャネル推算]
図7Aに戻ると、レガシー短シンボル601を、粗周波数推算、粗タイミング推算および自動利得制御(AGC)に用いることができる。レガシー長シンボル602は、精周波数推算、精タイミング推算およびチャネル推算に用いることができる。レガシーSIGNALシンボル603は、レガシーデバイスによるMIMOパケット踏み付けの防止に必要な情報、MIMOパケットのシグネチャ、および伝送ずみデータパケット数を含み得る。分割ずみの短シンボル704Aおよび704BはパケットのMIMO部分のAGC用、およびアンテナダイバーシティ切換用(該当する部分)に用い得る。分割ずみの長シンボル705Aおよび705BはMIMOチャネル推算に用い得る。MIMO SIGNALシンボル706Aおよび706Bは伝送データストリームの長さ情報および変調情報を含み得る。
レガシーヘッダ612は一つのアンテナから送信され、MIMOヘッダ(短シンボル704Aおよび704B、長シンボル705Aおよび705BおよびSIGNALシンボル706Aおよび706Bを含む)は多アンテナから送信し、各受信アンテナからの受信電力はレガシーヘッダからMIMOヘッダに変わる。この場合、分割ずみの短シンボルは、ADCへの入力の大きさを適宜定められるようにAGCが利得設定を調節する形に設計する。なお、AGCは受信チェーン全部について一つの状態マシーンを用いることができるが、受信チェーン各々が対応の受信信号に互いに異なる利得をもたらすものでも差し支えない。
必要であれば付加的タイミング回復および周波数オフセット推算を多アンテナからの受信シンボルにより共同で行う。この共同動作は複数の受信信号の合成によって行う。また、この共同の動作は、最良の信号の選択と、その最良の信号によるタイミング回復およびオフセット推算とで行ってもよい。
一つの実施例では、レガシーヘッダ612を最良のアンテナから目的の受信機に送信し得る。すなわち、レガシーヘッダからMIMOヘッダへの電力増加は、M個の空間ストリームを扱うシステムでは、10*log10(M)dB以下であることを意味する。この電力増加は目的の受信機以外の受信機についてはより高くてもよいが、増加の平均値は10*log10(M)以下とする。したがって、精利得変動だけが求められる。
上述の分割ずみの長シンボルは2M個のOFDMシンボルの期間(Mは空間ストリームの数)だけ継続する。任意の空間ストリームについてチャネル推算を計算するために、各ストリームの用いる対応のピンを2M個のOFDMシンボルのFFTで抽出し、平均し、周波数領域で合成する。推算誤差を減らすためにチャネル応答出力をフィルタ処理する。Mが大きい場合は、2M個のOFDMシンボルにわたる位相変化は大きくなり得る。一つの実施例では、各OFDMシンボルの位相を、FFT処理、平均値算出、およびフィルタ処理の前に、レガシーヘッダから得た精周波数推算を用いて時間領域で補正できる。2Mシンボル長の期間中の付加的位相変化測定値(精周波数推算値と位相雑音との低精度に起因する)を円滑化処理の前に位相整合のために用い得る。
[MIMO信号の検出]
MIMO信号の検出には多様な手法を用いることができる。既知の二つの手法を挙げると、MMSE−LE検出スキームとMMSE−DFE検出スキームとが挙げられる。すなわち、多数のデータストリームの分離および検出に、最小二乗平均誤差(MMSE)線形等化(LE)アルゴリズム、または判定饋還形等化(DFE)アルゴリズムを用いることができる。表記の単純化のために、以下の説明では単一の副搬送波だけを考慮するが、同じ処理を他の副搬送波の各々に反復適用できる。
M個の送信アンテナとN個の受信アンテナとを用いるものとする。周波数領域送信信号をx、チャネルをH、雑音をn、受信信号をyでそれぞれを表すと、xはM×1、yおよびnはN×1,HはN×Mとなり、次式、すなわち
が成立する。
E‖Wy−x‖を最小にするMMSEの解Wは次式、すなわち
で与えられる。ここでRは誤差分散行列である。上記MMSE−LEアルゴリズムではWは上述のとおり算出してyに適用し、データストリーム全部を並行して検出する。
MMSE−DFE検出アルゴリズムは二つのステップ(1)および(2)を用いて相次ぐ消去動作を行う。ステップ(1)では零化ベクトルを計算する。この零化ベクトルを計算する過程は三つのステップ(a)、(b)および(c)を含む。ステップ(a)では
の対角成分を計算して最小成分を特定する。その最小成分は信号品質最良の送信アンテナに対応する。ステップ(b)ではWの対応の行を計算する。これは選択した送信アンテナの零化ベクトルとなる。ステップ(c)ではHの中の対応の列を消去してMを1だけ減らす。上記ステップ(a)、(b)および(c)をM=0になるまで繰り返す。
ステップ(2)では、複数のデータストリームを検出する。ステップ(2)は四つのステップ(d)、(e)、(f)および(g)を含む。ステップ(d)では、最良の送信アンテナについての零化ベクトルをyに乗算して、最良の送信アンテナの粗判定を行う。ステップ(e)では、Hの対応の列にその粗判定の結果を乗算してその積をyから減算する。ステップ(f)では、全アンテナについて処理を終るまで次善の送信アンテナについてステップ(d)および(e)を繰り返す。ステップ(g)(オプションである)では、判定饋還チャネル推算値更新をデータ判定の結果に基づいて行う。
なお、上記粗判定動作は、ハード判定、すなわちチャネル補正ずみの受信シンボルに最も近いコンステレーション点による判定でも、ソフト判定、すなわちいくつかの候補のコンステレーション点を重みづけのうえ加算して得た点(重みは各コンステレーションの尤度に比例)による判定でも行い得る。
[ビタービビン重みづけ]
一つの実施例では、慣用の手法で符号化されたデータストリームを受信機での検出のあと複号化するのにビタービ復号器を用いることができる。周波数選択性フェーディングを伴うチャネルでは、信号の品質は周波数ビンごとに異なる。したがって、ビダービ枝路定数計算において状態不良のビンからのデータに割り当てる重みは小さくする。一つの実施例では、最適のビン重みはSNR(信号対雑音比)に比例した値とする。
データストリーム一つだけを送信する802.11a/gでは、雑音がビン全体にわたる相加性白色ガウス雑音であるとすると、SNRはチャネル振幅の二乗で近似算出できる。しかし、実際のシステムでは、SNRは、チャネル推算誤差、位相雑音および量子化雑音によってチャネル振幅の二乗よりも緩やかに増加することが多い。したがって、一つの実施例では、チャネル振幅をビン重みづけに用いることができる。
MIMOシステムでは、送信されてきたデータストリームの検出時のSNRは、特定の雑音電力密度を仮定して計算できる。同様に、ビタービビン重みの算出にはこの互いに異なる方法を用いることができる。第1の実施例では、ビタービビン重みを検出時SNRに比例する値として算出する。第2の実施例では、ビタービビン重みを検出時SNRの平方根に比例する値として算出する。
MMSE−DFEでは、MMSEの式から算出した検出時SNRは誤差伝搬の影響を含んでおらず、あとで検出されるデータストリームの検出時SNRが楽観的過ぎる値になる。そのために、復号器の性能が低下して望ましくない。
復号器の性能を改善するために、雑音伝搬の影響をSNR算出時の雑音の項に含めることができる。第2および第3のデータストリームに対する実効雑音項の例を次に示す。
ここで、σ は、もとの雑音の項であり、Wは零化ベクトルであり、hはチャネルであり、σ (バー)はm番目のデータストリームについての実効雑音項である。
[互いに異なる雑音最低値に対する補償]
MMSE検出器に関する上述の展開は、雑音電力がyの諸成分全体にわたって同じであるとの仮定に基づいている。実際のシステムではこの仮定は一般的には正しくない。すなわち、受信機チェーンにおける雑音最低値や利得設定値が互いに異なるからである。したがって、以下に述べるとおり式を変形する。
アンテナで受信した信号が次式、すなわち
で表されると仮定する。
AGCをかけたあとでは、この受信信号は、次式、すなわち
で表される。ここで、σ は雑音最低値、gはn番目の受信アンテナについての振幅利得である。H(バー)は、AGCをかけたあとのチャネル推算値である。
MMSE手法を適用するために雑音分散を同じ値にスケーリングする。そのために、
K=min(gσ)とし、スケーリング行列を次のとおり画定する。
スケーリングしたチャネルはHeq=II・H(バー)であり、結果として得られる雑音分散はσeq =Kであって受信アンテナ全部について一定である。この段階で零化ベクトルWeq をHeqおよびσeq から算出できる。
eq をyeq=II・y(バー)に適用する。全シンボルについてy(バー)をスケーリングする代わりにW(バー)=Weq ・IIを一回だけ計算して、そのW(バー)をy(バー)に直接適用するのが好ましい。MMSE−DFEについては、y(バー)およびH(バー)を用いて相次ぐ消去を行うことができる。スケーリングは不要である。
図11は複数の受信機チェーンについてチャネル補正を改変できる受信機1100の一部を示す。受信機1100では、可変利得増幅器1101がアンテナから無線信号(関連のチャネル情報を含む)を受けて、増幅出力をチャネル反転ブロック1102に供給する。自動利得制御(AGC)ブロック1103が増幅器1101への制御信号を生じる。チャネル反転ブロック1102はAGC制御信号および雑音最低値(AGCブロック1103が発生する)を受けてチャネル補正値を生じる。このチャネル補正値をAGCブロック1103に供給してAGC制御信号を修正する。
[位相誤差の補償]
位相雑音、残留周波数オフセット、誘発位相誤差、送信機・受信機間の伝搬経路におけるドップラ変動などにより、実効チャネル行列Hの位相はパケット全体を通じて緩やかに変動する。これらの効果を式で表示するために、実効チャネルをΛ・H・Λで表す。ここで
および
はN個の受信アンテナおよびM個の送信アンテナでの位相変動をそれぞれ表す。これに対応する等化行列はΛ ・W・Λ であり、この行列は位相推算が得られれば容易に修正できる。
上述のとおり、共同パイロット追跡、送信機チェーンごとのパイロット追跡、または送信機・受信機対ごとのパイロット追跡を可能にする互いに別々のパイロットスキームを用いることができる。共同パイロット追跡では送信チェーンおよび受信チェーン、すなわち
ΛおよびΛの全部について一つの共通の位相オフセットを推算してスカラ量ejθと乗算する。等化行列への修正はスカラ量e−jθとを掛けるだけである。
送信チェーンごとのパイロット追跡の場合は、送信データストリームあたり一つの位相推算値を推算し、ΛおよびΛを一つのΛに集約する。したがって、等化行列はΛ ・W に変形できる。必要であれば、位相推算値を一つの共通位相値を得るように、送信チェーンにわたって平均化することができる。この平均値は、角度θ=(1/M)Σθ(m)または平均の角度(和と等価)すなわちθ=angle(Σjθt(m))から誘導することができる。
送信機・受信機対ごとのパイロット追跡の場合は、直交合成しチャネル補正したパイロットをまず抽出する(式4参照)。第1の実施例では、チャネル行列Hの各成分の位相オフセット、すなわちθn、m(1≦m≦M、1≦n≦N)をそれらパイロットから推算してθ(m)(1≦m≦M)およびθ(n)(1≦n≦N)に変換する。なお、マッピングは次のとおりである。
ここで、1は全部1のN×1ベクトル、Iは大きさNの単位行列、θ=[θ(1)θ(2)・・・θ(N)]はN個の受信機における位相のベクトル、θ=[θ1、mθ2、m・・・θN、mは行列Hのm番目の列の位相ベクトルである。疑似反転は送信機および受信機における位相の最小二乗(LS)であり、この値は送信アンテナおよび受信アンテナの数のみで定まり、したがってオフラインで計算できる。
具体化に伴う二つの問題をここで検討する。まず、Θの角度は、シンボルからシンボルへの変動で2πを超えないようにする。すなわちΘの変動が2πに及ぶと、Θの変動は2πにならないからである。Θをアンラップするために、現シンボルと先行シンボルとの間のΘの変動を、2πを加算または減算して先行Θに加えることによって、(−π、π)の範囲内に収める。
次に、Θの中に信頼度の低い角度がある場合(例えば、行列に信号強度の小さい成分が含まれている場合)は、解も不安定になる。この問題に対する解決策は、Θの中の成分に、コスト関数の形成の際に信頼度に応じた重みづけをし、重みづけずみのLSの式を解くこと、すなわち、‖A・Θ−Θの代わりに、
を最小にすることである。ここで┌は重みづけ係数つきの対角行列である。したがって、解は次式、すなわち
のとおりとなる。
信頼度のより高い成分には重みづけを大きくし、より低い成分には重みづけを小さくする。信頼度の一つの尺度はチャネル成分の大きさである。重みは最大値で正規化し、必要があれば単純化のために量子化する。
必要があれば、送信アンテナ・受信アンテナ対全部についての位相オフセット推算値を受信アンテナ全部にわたって平均して送信アンテナあたりの一つの位相推算値すなわちθ(m)=(1/N)Σθn,mを算出し、または送信チェーン・受信チェーン全部にわたって平均して一つの共通位相推算値θ=(1/MN)Σn,mθn,mを算出する。
第2の実施例では、θおよびθを対角合成しチャネル補正したパイロットυn、m、k(式4参照)の組み合わせを算出する。パイロットビンおよび受信アンテナ全部にわたる合計の角度は各送信アンテナについてのオフセット値であり、θ(m)=angle(Σn、kυn、m、k)となる。送信アンテナ全体にわたる合計の角度は各受信アンテナについてのオフセット値であり、θ(n)=angle(Σm、kυn、m、k)となる。送信アンテナおよび受信アンテナ全部にわたる合計の角度θ=angle(Σn、m、kυn、m、k)は、計算したのちその半分をバイアス除去のために送信オフセットおよび受信オフセットとの両方から減算する。すなわち、θ(m)=θ(m)−θ/2およびθ(n)=θ(n)−θ/2となる。
必要があれば、送信チェーンの各々についてのオフセットだけをθ(m)=angle(Σn、kυn、m、k)により算出して適用する。または、送信チェーンおよび受信チェーン全体にわたる共通位相オフセットをθ=angle(Σn、m、kυn、m、k)により算出して適用する。
残留周波数オフセットの継続的補正には、送信チェーンおよび受信チェーン全部にわたる共通の位相オフセットθを用いる。そのオフセット値が残留周波数オフセットに起因する共通位相シフトを反映し、位相雑音による変動を抑制するからである。
[閉ループ送信最適化]
MIMO送信機にMIMOチャネルが既知である場合は、送信すべきデータストリームの数、各データストリームに適用すべき伝送速度、各データストリームに用いるべき副搬送波、送信アンテナの選択、各アンテナへの出力電力などの送信スキームを最適化することができる。このようなスキーム最適化によって、MIMOシステムの動作安定性およびスループットが改善される。
図3に示した第1の実施例においては、受信機304がチャネルの品質を評価し、その品質情報を送信機301に饋還する。この品質情報はチャネル情報(例えば、チャネル推算値または検出パイロットEVM)のフォーマットでもよく、推賞送信スキームのフォーマットでもよい。なお、検出パイロットEVMはチャネル補正ずみのパイロットおよび既知の清浄パイロットから算出でき、したがって信号品質の格好の尺度になり得る。チャネル情報の饋還には、二つの互いに異なるパケット、すなわち標準的RTS/CTS交換におけるCTSパケットおよびACKパケットを用いることができる。
第2の実施例では、送信機301が受信機304からのパケットによりチャネルを推算する。このスキームには相反性が成立し、アップリンクおよびダウンリンクの両方で両側に同じアンテナを使うことができるものとする。したがって、送信機301は、推算したチャネルに基づき最良の送信スキームを決めることができる。
なお、空間的大きさの程度の高いチャネルではより多くのデータストリームをサポートでき、その程度の低いチャネルではより少数のデータストリームをサポートできるに留まる。使用データストリームの数の最適値はMIMOチャネル推算値の大きさに基づいて定める。送信ダイバーシティなしのシステムでは、最良チャネルの際の送信アンテナと同数の送信アンテナを利用可能な送信アンテナ全部の中から選ぶ。
送信ダイバーシティ付きのシステムでは、各データストリームを適宜位相シフトにかけて、合成ビーム(送信ビーム形成器(TxBP))を生ずるように、複数のアンテナから同時並行的に送信する。データストリームの各々に対するBF処理は、2003年10月8日提出の米国特許出願第10/682,381号「高データ速度信号の多アンテナ送信機ビーム形成装置および方法」、および同年同日提出の米国特許出願第10/682,787号「高データ速度広帯域信号の多アンテナ受信機合成のための装置および方法」(これら出願をここに引用して記載内容をこの明細書に組み入れる)に記載した手法を用いて行うことができる。
概括的にいうと、互いに異なるデータストリームを受信アンテナに向けてビーム形成して、受信SNRを高める。この手法は、ダウンリンクトラフィックの多いシステムにおけるアクセスポイントに有用である。送信ビーム形成は、二つ以上でM個以下の独特のデータストリームを送信するとともに過剰のアンテナを用いて冗長度つき符号化および所望の方向への送信ビーム形成を行うことによって、高速度MIMOと組み合わせることができる。
離間的マルチトーン(DMI)手法では、各副搬送波の電力および変調の積類をチャネル推算に基づいて定め得る。品質の良い副搬送波は品質の劣る副搬送波よりも消費電力が大きく変調レベルも高い。
[受信機選択ダイバーシティ]
コストおよび消費電力の節約のために、MIMO受信機の有する受信機チェーンの数は通常限られている。一方、RFアンテナのコストはずっと小さい。したがって、受信機チェーン数よりも多い受信アンテナを備え、それらアンテナの中の受信状態の良いものを動的に選択する構成にするのが望ましい。受信アンテナ動的選択能力によってダイバーシティ利得が得られ、システムの安定性が改善される。一つの実施例では、複雑さを抑え、切換損失を減らすように、複数のRFアンテナを受信機チェーンと同数の群に群分けし、それら群をスイッチ経由で対応の受信機チェーンに接続する。
第1の実施例では、高速アンテナダイバーシティを用いる。高速アンテナダイバーシティでは、各受信機チェーンがそのチェーンに接続されたRFアンテナの信号を高速でサンプリングして、受信信号強度の最も大きいアンテナを選択する。
第2の実施例では、選択を検出時SNRに基づいて行う。チャネル推算はRFアンテナ全部について行う。受信アンテナの可能な組み合わせの各々について検出時SNRをデータストリーム対応で計算する。次に、算出されたSNRの最小値をアンテナの可能な組み合わせ全部について比較するSNR最大値および最小値のアンテナの組を選択する。
[データ速度適応化]
MIMOシステムのデータ速度適応化は、802.11a/gシステムへの適応化よりも難しい。送信アンテナの各々からチャネル品質を評価するには、相反性利用の非明示的饋還または明示的制御メッセージ利用の明示的饋還が必要である。
この饋還の精細度は多様であり得る。最粗レベルでは、全ストリームの中の全データが正しいことを表示するために単一の受信確認を用いる。この手法では、全ストリームに同じデータ速度を用いるスキームでも困難になる。すなわち、サポート可能な送信ストリームの数および最適送信ストリームの判定が困難であるからである。
饋還の次のレベルは各データストリームを個別に受信確認する手法である。この受信確認手法は、最適送信アンテナの判定およびサポート可能なデータストリームの数の決定は困難であるが、ストリームの各々について互いに独立のデータ速度適応を可能にする。
饋還のもう一つのレベルでは、意図した受信機が、チャネル推算プリアンプルやパケットデータ部の期間中に入来パケットについてチャネル測定を行い得る。この測定による推算で周波数・送信アンテナ組合せの各々の個別のSNRを算定したり、送信機のデータ速度適応に利用可能なアンテナあたりのバルク値に情報を取り込んだりすることができる。中間的な対処策は、パイロットトーン周波数の組など周波数ビンの削減ずみの組のSNRを算定して知らせるだけの方策である。
一つの実施例では、意図した受信機が受信に基づいて用いるべき最適データ速度を算定し、そのデータ速度をACKで送信機に送る。送信機はこのACKをデコードし、データ速度を検出し、その検出結果をそのユーザあての次のパケットの処理に適用する。この情報は、各データストリームについてのデータ速度情報、単一のデータ速度およびそれをサポートできる送信アンテナのリスト、または単一のデータ速度およびそれをサポートできる送信アンテナの数を含む。
もう一つの実施例では、送信機が意図した受信機でみたチャネルを、その意図した受信機からの特別のMIMO ACKにより推算する。相反性を確保するために、この意図した受信機は自分が受信に用いている全アンテナによりACKを送る。このACKは、データシンボルなしでレガシープリアンプルおよびMIMOプリアンプルだけを含む。送信機はデータ速度適応パラメータ更新の必要があるときはその特別のACKを請求する(なお、喪失パケットの統計データをデータ速度の低速適応のための補助的手段として用いることもできる)。
データ速度適応化情報は、特に明示的データ速度の形式の場合は、時効化して、チャネル状態変動に起因する多重受信喪失の場合にデータ速度の低下を可能にしなければならない。
[集約、多重検査合計および部分ACK]
MIMOヘッダはパケットオーバーヘッドを著しく増大させる。一方、同じ情報バイト数を伝送するためには、MIMOパケットはより少数のデータシンボルを通常必要とする。したがって、MIMOパケットの総合効率は同じ大きさのレガシーパケットの効率よりもずっと低い。
一つの実施例では、MIMOデータ伝送システムのもたらす高データ速度の利点を確保するために、最小閾値以上の大きさのパケットだけをMIMOフォーマットで送信する。パケットサイズを大きくするには、パケット集約、すなわちいくつかのより小さいパケットを大きい「スーパー」パケットにまとめるパケット集約を用い得る。
802.11a/gでは、CRC検査合計をパケットの末尾に加え、物理レイヤに伝達する。受信機MACはビタービ復号器の出力におけるCRC誤りをチェックし、パケットが正しく受信されたかを否かを判定する。高データ速度MIMOシステムでは、パケットの中のデータバイト数は、上述のとおり効率を上げるために、通常ずっと大きくしてある。これら長パケットの誤り確率は通常高く、それら長パケットの再送信に伴うコストも同様に高い。
この問題を克服するために、各MIMOパケットに多重検査合計を次に述べる二つの方法のいずれかを用いて含める。第1の方法を用いて個々の検査合計を集約前パケットの各々について特定する。第2の方法を用いて、集約後のスーパーパケットを互いに等しい長さの区分に分割し、検査合計をそれら区分の各々につき算出して各区分のあとに挿入する。
受信機では(復号器の後段で)検査合計を各パケット/区分について調べて、そのパケット/区分が正しく受信されたか否かを(例えば、受信確認ビットベクトルを用いて)判定する。少なくとも一つのパケット/区分が正しく受信されている場合は、受信機は送信機に部分ACK、すなわちどのパケット/区分が正しく受信されたかを表示する部分ACKを送る。その場合、送信機は送信不達のパケット/区分だけを再送信すればよい。MAC複雑性を軽減するために、MACはパケットのいずれかが誤りに陥った場合は、サブパケット全部の再送信を選ぶことができる。なお、MACはデータ速度適応化のために、受信確認ビットベクトルの個々のビットを使うことができる。
図面を参照して例示用の実施例を上に述べてきたが、この発明がこれら特定の実施例に限定されないことを理解されたい。これら実施例は、網羅的に例示することを意図するものではなく、また、この発明をここに開示した形式に限定することを意図するものでもない。すなわち、多様な変形や改変が当業者には自明となるであろう。
例えば、図12はいくつかの送信/受信アンテナの構成についてデータ速度と相対距離との関係を表す一群のグラフ1200を示す。グラフ1200のうち、曲線1201は3アンテナ送信機/3アンテナ受信機(3×3)構成の特性を示し、曲線1202は2×3構成の特性を示し、曲線1203は2×2構成の特性を示す。選んだアンテナ構成がデータ速度最大値とシステム安定性との間の妥協の産物であることを理解されたい。すなわち一つの実施例では、曲線1202で特性が示される2×3構成を費用対効果の観点から選択することになろう。
なお、MIMO−SMおよびMIMO−AGには「ターボ」モードを加え得る。この「ターボ」モードはより広いチャネル帯域幅を意味し、2003年2月14日提出の米国特許出願第10/367,527号「複数変調タイプの信号のシンケンシングインタポーレータによる受信および送信」および2003年11月6日提出の米国特許出願第10/×××,×××号「データ伝送におけるマルチチャネルバインディング」に記載してある。これら出願をここに参照してその内容をこの明細書に組み入れる。概括的にいうと、ターボモードは、(1)ダブルクロッキングまたは(2)チャネルボンディング、すなわち二つの20MHzチャネル(両者間の間隙を潜在的に利用)を併せて用いることにより達成する。ダブルクロッキングにより正常モードと同じ副搬送波構成に達するが、各副搬送波の帯域幅は2倍になる。チャネルボンディングは各副搬送波の帯域幅を維持するが、副搬送波の数を増加させる。チャネルボンディングの一つの特定の例では、−58から−2、および+2から+58の114のトーンを用いる(DC近傍の三つのトーン、すなわち(−1、0、+1)は用いない)。
上述のMIMOシステムの実施例はいずれもターボモードに適合する。
図13はいくつかのターボアンテナ構成および非ターボアンテナ構成についてのデータ速度と相対距離との関係を表す一組のグラフ1300を示す。グラフ1300に示されるとおり、ターボMIMO−SMはデータ速度を216Mbpsまで処理できる。しかし、60Mbps以下ではターボMIMO−AGがMIMO−SMの性能を上まわる。
したがって、この発明の範囲は添付の特許請求の範囲およびそれらの均等物によって画定されることを意図するものである。
無線LANの利用分野の拡大に寄与できる。
単一入力アンテナ単一出力アンテナ構成を備える単純化したシステムの図解。 切換ダイバーシティアンテナ構成を備える単純化したシステムの図解。 複数のアンテナ経由の同時送信および複数のアンテナ経由の同時受信ができる単純化した多入力多出力(MIMO)システムの図解。 種々のアンテナ構成についてのデータ伝送速度対相対距離特性図。 種々のアンテナ構成についてのSNR対周波数ビン特性図。 レガシーヘッダを含むMIMOパケットの時分割トレーニングパターンの例。 受信機利得制御の改良を容易にするための分割短シンボルおよび長シンボルを含むMIMOパケットのパターンの例。 三つのデータストリームについての分割短シンボルおよび長シンボルの図解。 MIMOパケットおよび送信データストリーム数の表示に設定できるレガシーSIGNALシンボルの中のビットのセット。 二つの空間ストリームに対する共用符号化システムの例。 二つの空間ストリームに対する共用符号化システムのもう一つの例。 二つの空間ストリームに対する個別符号化システムの例。 複数の受信機チェーンについてチャネル補正を改変できる受信機の例の一部。 いくつかの送信機/受信機アンテナ構成についての伝送データ速度対相対距離特性図。 種々のターボアンテナ構成および非ターボアンテナ構成についての伝送データ速度対相対距離特性図。
100,200 送受信システム
101,301 送信機
102,304 受信機
201A,201B,202A,202B,302A,302B,305A,305B アンテナ
203,204 スイッチ
303A,303B 送信機チェーン
306A,306B 受信機チェーン
800,900 共同符号化システム
1000 個別符号化システム
1100 受信機

Claims (5)

  1. レガシーデバイス環境において多入力多出力(MIMO)パケットを送信する方法であって、
    レガシーSIGNALシンボルの中のビット組を予め定めた値に設定する過程であって、それによって多入力多出力信号が送信中であることを表示する過程を含み、前記ビットの組が前記レガシーSIGNALシンボルの長さフィールドの最下位の複数のビットを含む、方法。
  2. レガシーデバイス環境において多入力多出力(MIMO)パケットを送信する方法であって、
    レガシーSIGNALシンボルの中のビットのひと組を前記MIMOパケットに関連する情報の表示に用いる過程を含み、前記ビットの組が前記レガシーSIGNALシンボルの長さフィールドの最下位の複数のビットを含む、方法。
  3. 前記情報が前記MIMOパケットと関連づけられたストリームを含む請求項2記載の方法。
  4. レガシーデバイス環境において多入力多出力(MIMO)パケットを送信する方法であって、
    前記MIMOパケットと関連づけられた情報を表示するようにレガシーSIGNALシンボルの中のひと組のビットについて「モジュロ」動作を行う過程を含む方法。
  5. 前記情報がストリームを含む請求項4記載の方法。
JP2010260337A 2003-11-04 2010-11-22 多入力多出力システムおよび方法 Expired - Fee Related JP5461369B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51744503P 2003-11-04 2003-11-04
US60/517,445 2003-11-04
US10/981,145 2004-11-03
US10/981,145 US7616698B2 (en) 2003-11-04 2004-11-03 Multiple-input multiple output system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006538499A Division JP4783737B2 (ja) 2003-11-04 2004-11-04 多入力多出力システムおよび方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013021280A Division JP5813677B2 (ja) 2003-11-04 2013-02-06 多入力多出力システムおよび方法

Publications (2)

Publication Number Publication Date
JP2011124996A JP2011124996A (ja) 2011-06-23
JP5461369B2 true JP5461369B2 (ja) 2014-04-02

Family

ID=34576797

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2006538499A Expired - Fee Related JP4783737B2 (ja) 2003-11-04 2004-11-04 多入力多出力システムおよび方法
JP2010260337A Expired - Fee Related JP5461369B2 (ja) 2003-11-04 2010-11-22 多入力多出力システムおよび方法
JP2011075944A Expired - Fee Related JP5490746B2 (ja) 2003-11-04 2011-03-30 多入力多出力システムおよび方法
JP2013021280A Expired - Fee Related JP5813677B2 (ja) 2003-11-04 2013-02-06 多入力多出力システムおよび方法
JP2013118247A Expired - Fee Related JP5972221B2 (ja) 2003-11-04 2013-06-04 多入力多出力システムおよび方法
JP2015127011A Expired - Fee Related JP6025924B2 (ja) 2003-11-04 2015-06-24 多入力多出力システムおよび方法
JP2015138926A Withdrawn JP2015195603A (ja) 2003-11-04 2015-07-10 多入力多出力システムおよび方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006538499A Expired - Fee Related JP4783737B2 (ja) 2003-11-04 2004-11-04 多入力多出力システムおよび方法

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2011075944A Expired - Fee Related JP5490746B2 (ja) 2003-11-04 2011-03-30 多入力多出力システムおよび方法
JP2013021280A Expired - Fee Related JP5813677B2 (ja) 2003-11-04 2013-02-06 多入力多出力システムおよび方法
JP2013118247A Expired - Fee Related JP5972221B2 (ja) 2003-11-04 2013-06-04 多入力多出力システムおよび方法
JP2015127011A Expired - Fee Related JP6025924B2 (ja) 2003-11-04 2015-06-24 多入力多出力システムおよび方法
JP2015138926A Withdrawn JP2015195603A (ja) 2003-11-04 2015-07-10 多入力多出力システムおよび方法

Country Status (7)

Country Link
US (4) US7616698B2 (ja)
EP (1) EP1680899A4 (ja)
JP (7) JP4783737B2 (ja)
CN (2) CN101053172B (ja)
CA (2) CA2821439A1 (ja)
TW (2) TWI372528B (ja)
WO (1) WO2005046113A2 (ja)

Families Citing this family (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7916803B2 (en) 2003-04-10 2011-03-29 Qualcomm Incorporated Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices
US7599332B2 (en) * 2004-04-05 2009-10-06 Qualcomm Incorporated Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices
US8743837B2 (en) * 2003-04-10 2014-06-03 Qualcomm Incorporated Modified preamble structure for IEEE 802.11A extensions to allow for coexistence and interoperability between 802.11A devices and higher data rate, MIMO or otherwise extended devices
US7483675B2 (en) * 2004-10-06 2009-01-27 Broadcom Corporation Method and system for weight determination in a spatial multiplexing MIMO system for WCDMA/HSDPA
JP2008109716A (ja) * 2003-08-07 2008-05-08 Matsushita Electric Ind Co Ltd 無線送信方法及び無線送信装置
JP4323985B2 (ja) 2003-08-07 2009-09-02 パナソニック株式会社 無線送信装置及び無線送信方法
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8472473B2 (en) * 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7944882B2 (en) * 2003-12-17 2011-05-17 Intel Corporation Channel access apparatus, systems, and methods
CN101594671B (zh) * 2003-12-26 2011-12-14 株式会社东芝 无线发送和接收设备及方法
JP4212548B2 (ja) 2003-12-26 2009-01-21 株式会社東芝 無線送信装置、無線受信装置、無線送信方法及び無線受信方法
US20050141459A1 (en) * 2003-12-29 2005-06-30 Intel Corporation Apparatus and associated methods to reduce management overhead in a wireless communication system
US20050141657A1 (en) * 2003-12-30 2005-06-30 Maltsev Alexander A. Adaptive channel equalizer for wireless system
JP4005974B2 (ja) 2004-01-09 2007-11-14 株式会社東芝 通信装置、通信方法、および通信システム
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
US7742533B2 (en) 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
US8315271B2 (en) 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US7408909B2 (en) * 2004-04-28 2008-08-05 Intel Corporation Method and apparatus to enable multiple receivers
US7564814B2 (en) 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US8401018B2 (en) * 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
US7817730B2 (en) * 2004-06-09 2010-10-19 Marvell World Trade Ltd. Training sequence for symbol boundary detection in a multicarrier data transmission system
US7697619B2 (en) * 2004-06-09 2010-04-13 Marvell World Trade Ltd. Training sequence for channel estimation in a data transmission system
US8619907B2 (en) * 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
JP2006014321A (ja) * 2004-06-21 2006-01-12 Samsung Electronics Co Ltd 広帯域無線接続通信システムにおける動作モード情報を送受信する方法
US20050281239A1 (en) * 2004-06-22 2005-12-22 Texas Instruments Incorporated System and method for signaling modes
EP1768294B1 (en) * 2004-06-28 2015-02-18 Hera Wireless S.A. Apparatus for transmitting signals
JP2006050573A (ja) * 2004-06-28 2006-02-16 Sanyo Electric Co Ltd 送信方法および装置ならびに受信方法および装置
EP1622288B1 (en) * 2004-07-27 2012-10-24 Broadcom Corporation Pilot symbol transmission for multiple-transmit communication systems
US20060023801A1 (en) * 2004-07-28 2006-02-02 Taarud Jeffrey E Versatile system for optimizing transmit diversity in wireless communications
DE102004038834B4 (de) * 2004-08-10 2006-11-02 Siemens Ag Verfahren zum Erzeugen von Präambel- und Signalisierungsstrukturen in einem MIMO-OFDM-Übertragungssystem
US8040788B2 (en) * 2004-08-13 2011-10-18 Broadcom Corporation Multi-dimensional network resource allocation
SG155203A1 (en) * 2004-08-13 2009-09-30 Agency Science Tech & Res Method for determining a residual frequency offset, communication system, method for transmitting a message, transmitter, method for processing a message and receiver
US8995921B2 (en) * 2004-09-10 2015-03-31 Interdigital Technology Corporation Measurement support for a smart antenna in a wireless communication system
JP3754441B1 (ja) * 2004-09-10 2006-03-15 三洋電機株式会社 受信方法ならびに装置およびそれを利用した通信システム
US20060072681A1 (en) * 2004-10-01 2006-04-06 Texas Instruments Incorporated Scalable gain retraining generator, method of gain retraining and multiple-input, multiple-output communications system employing the generator or method
US7826547B2 (en) * 2004-10-26 2010-11-02 Broadcom Corporation Mixed mode preamble for MIMO wireless communications
JP4065276B2 (ja) 2004-11-12 2008-03-19 三洋電機株式会社 送信方法およびそれを利用した無線装置
US7644191B2 (en) * 2004-11-12 2010-01-05 Emulex Design & Manufacturing Corporation Legacy-compatible extended command input-output control block
US7596355B2 (en) * 2004-11-29 2009-09-29 Intel Corporation System and method capable of closed loop MIMO calibration
US7668102B2 (en) * 2004-12-13 2010-02-23 Intel Corporation Techniques to manage retransmissions in a wireless network
US7411995B2 (en) * 2004-12-17 2008-08-12 Intel Corporation Apparatus and related methods to aid in system identification in a heterogeneous communication system environment
US7852822B2 (en) * 2004-12-22 2010-12-14 Qualcomm Incorporated Wide area and local network ID transmission for communication systems
US7668251B2 (en) * 2005-01-04 2010-02-23 Texas Instruments Incorporated Scalable post-channel estimate phase corrector, method of correction and MIMO communication system employing the corrector and method
US7561627B2 (en) 2005-01-06 2009-07-14 Marvell World Trade Ltd. Method and system for channel equalization and crosstalk estimation in a multicarrier data transmission system
US8068550B2 (en) * 2005-01-28 2011-11-29 Broadcom Corporation Initiation of a MIMO communication
KR100677568B1 (ko) * 2005-02-07 2007-02-02 삼성전자주식회사 무선랜 상의 데이터 수신에 대한 제어 응답 프레임의 전송속도 결정 방법
WO2006086584A2 (en) * 2005-02-08 2006-08-17 Airgo Networks, Inc. Wireless messaging preambles allowing for beamforming and legacy device coexistence
KR101227212B1 (ko) * 2005-02-09 2013-01-28 에이저 시스템즈 엘엘시 다중 안테나 통신 시스템에서 단축된 롱 트래이닝 필드를 갖는 프리앰블 트레이닝을 위한 방법 및 장치
US20060193410A1 (en) * 2005-02-28 2006-08-31 Moorti R T Gain estimation for multiple receiver systems
US7792227B2 (en) * 2005-03-02 2010-09-07 Broadcom Corporation Carrier detection for multiple receiver systems
JP4610388B2 (ja) * 2005-03-24 2011-01-12 三洋電機株式会社 無線装置
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7609789B2 (en) * 2005-05-19 2009-10-27 MetaLink, Ltd. Phase noise compensation for MIMO WLAN systems
US8842693B2 (en) * 2005-05-31 2014-09-23 Qualcomm Incorporated Rank step-down for MIMO SCW design employing HARQ
TW200644537A (en) * 2005-06-09 2006-12-16 Samsung Electronics Co Ltd Method and apparatus for receiving data with down compatibility in high throughput wireless network
TWI339540B (en) * 2005-06-09 2011-03-21 Samsung Electronics Co Ltd Method and apparatus for transmitting data with down compatibility in high throughput wireless network
KR100643299B1 (ko) * 2005-06-09 2006-11-10 삼성전자주식회사 고속 무선 네트워크에서 레거시 방식의 데이터를송수신하는 방법 및 장치
TW200705901A (en) * 2005-06-09 2007-02-01 Samsung Electronics Co Ltd Method and apparatus for receiving data with down compatibility in high throughput wireless network
JP2008507233A (ja) * 2005-06-09 2008-03-06 サムスン エレクトロニクス カンパニー リミテッド 高速無線ネットワークでレガシー方式のデータを送受信する方法及び装置
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US7856068B1 (en) * 2005-06-28 2010-12-21 Ralink Technology Corporation Nested preamble for multi input multi output orthogonal frequency division multiplexing
JP4841256B2 (ja) * 2005-06-28 2011-12-21 三洋電機株式会社 無線装置
WO2007004924A1 (en) * 2005-07-01 2007-01-11 Telefonaktiebolaget Lm Ericsson (Publ) A wireless telecommunications system with improved transmission capacity
EP1905251A4 (en) * 2005-07-15 2010-01-20 Mitsubishi Electric Res Lab ANTENNA SELECTION FOR MULTIPLE INPUT-OUTPUT SYSTEM
US20090080547A1 (en) * 2005-08-22 2009-03-26 Matsushita Electric Industrial Co., Ltd. Base station apparatus and mobile station apparatus
EP2790331B1 (en) 2005-08-24 2019-01-09 Wi-Fi One, LLC MIMO-OFDM transmission device and MIMO-OFDM transmission method
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
JP3989512B2 (ja) 2005-09-15 2007-10-10 三洋電機株式会社 無線装置
JP4841333B2 (ja) * 2005-09-19 2011-12-21 三洋電機株式会社 無線装置およびそれを利用した通信システム
US8351518B2 (en) * 2005-09-30 2013-01-08 Sharp Kabushiki Kaisha Wireless transmitting apparatus, wireless receiving apparatus, wireless communication system, wireless transmitting method and wireless receiving method
US7518524B1 (en) 2005-10-06 2009-04-14 Staccato Communications, Inc. Announcements to facilitate detection of wireless devices
US7589627B2 (en) * 2005-10-06 2009-09-15 Staccato Communications, Inc. Creation of environments to detect wireless devices
US20070082633A1 (en) * 2005-10-06 2007-04-12 Staccato Communications, Inc. Avoidance of wireless devices
JP4593435B2 (ja) * 2005-10-17 2010-12-08 三洋電機株式会社 送信方法および装置ならびにそれを利用した通信システム
US8306003B2 (en) * 2005-11-09 2012-11-06 Texas Instruments Incorporated Throughput performance in the presence of in-band interference in a CSMA based network
WO2007064709A2 (en) * 2005-11-29 2007-06-07 Staccato Communications, Inc. Detecting wireless devices to inform about a quiet period
US20070165586A1 (en) * 2005-11-29 2007-07-19 Staccato Communications, Inc. Quiet periods for detecting wireless devices
US9794801B1 (en) 2005-12-05 2017-10-17 Fortinet, Inc. Multicast and unicast messages in a virtual cell communication system
US8344953B1 (en) 2008-05-13 2013-01-01 Meru Networks Omni-directional flexible antenna support panel
US9025581B2 (en) 2005-12-05 2015-05-05 Meru Networks Hybrid virtual cell and virtual port wireless network architecture
US9730125B2 (en) 2005-12-05 2017-08-08 Fortinet, Inc. Aggregated beacons for per station control of multiple stations across multiple access points in a wireless communication network
US8472359B2 (en) 2009-12-09 2013-06-25 Meru Networks Seamless mobility in wireless networks
US9142873B1 (en) 2005-12-05 2015-09-22 Meru Networks Wireless communication antennae for concurrent communication in an access point
US8064601B1 (en) 2006-03-31 2011-11-22 Meru Networks Security in wireless communication systems
US9215745B1 (en) 2005-12-09 2015-12-15 Meru Networks Network-based control of stations in a wireless communication network
US8160664B1 (en) 2005-12-05 2012-04-17 Meru Networks Omni-directional antenna supporting simultaneous transmission and reception of multiple radios with narrow frequency separation
US9185618B1 (en) 2005-12-05 2015-11-10 Meru Networks Seamless roaming in wireless networks
US9215754B2 (en) 2007-03-07 2015-12-15 Menu Networks Wi-Fi virtual port uplink medium access control
US20070297366A1 (en) * 2006-01-05 2007-12-27 Robert Osann Synchronized wireless mesh network
US8102868B2 (en) * 2006-01-05 2012-01-24 Folusha Forte B.V., Llc Interleaved and directional wireless mesh network
US20070183439A1 (en) * 2006-01-05 2007-08-09 Osann Robert Jr Combined directional and mobile interleaved wireless mesh network
US20070160020A1 (en) * 2006-01-05 2007-07-12 Robert Osann Interleaved wireless mesh network
US7817735B2 (en) * 2006-01-11 2010-10-19 Amicus Wireless Technology Ltd. Device and method of performing channel estimation for OFDM-based wireless communication system
JP2007228029A (ja) * 2006-02-21 2007-09-06 Fujitsu Ltd 無線通信システム及び受信装置
WO2007109341A2 (en) * 2006-03-21 2007-09-27 Staccato Communications, Inc. Exchange of detection and avoidance information
EP1999863B1 (en) * 2006-03-24 2016-08-03 LG Electronics Inc. A method of reducing overhead for multi-input, multi-output transmission system
US7822069B2 (en) * 2006-05-22 2010-10-26 Qualcomm Incorporated Phase correction for OFDM and MIMO transmissions
US7995665B2 (en) * 2006-06-26 2011-08-09 Ralink Technology (Singapore) Corporation Pte. Ltd. Method and apparatus for reception in a multi-input-multi-output (MIMO) orthogonal frequency domain modulation (OFDM) wireless communication system
JP4904963B2 (ja) * 2006-07-21 2012-03-28 富士通株式会社 通信システム及び通信方法並びに送信機及び受信機
KR101356254B1 (ko) * 2006-08-08 2014-02-05 엘지전자 주식회사 다중 안테나를 이용한 전송기 및 전송 방법
JP4405491B2 (ja) * 2006-09-12 2010-01-27 株式会社東芝 Ofdm信号の受信方法及び受信機
US7808908B1 (en) 2006-09-20 2010-10-05 Meru Networks Wireless rate adaptation
US7864738B2 (en) 2006-10-02 2011-01-04 Nokia Corporation Apparatus, method and computer program product providing hybrid ARQ feedback for HSDPA MIMO
TR201907743T4 (tr) 2006-10-31 2019-06-21 Ericsson Telefon Ab L M Telekomünikasyon sistemi ve böyle bir sistemde hata kontrolü.
US7646704B2 (en) * 2006-10-31 2010-01-12 Motorola, Inc. Method and apparatus for spur cancellation in an orthogonal frequency division multiplexing communication system
EP2078399A2 (en) * 2006-11-02 2009-07-15 Telefonaktiebolaget LM Ericsson (PUBL) Method and arrangement in a telecommunication system
CN101536389B (zh) * 2006-11-22 2013-01-16 富士通株式会社 Mimo-ofdm通信系统和mimo-ofdm通信方法
US8374276B2 (en) * 2006-12-28 2013-02-12 Panasonic Corporation Radio communication apparatus and resending controlling method
JP4445976B2 (ja) * 2007-02-22 2010-04-07 Necアクセステクニカ株式会社 無線通信装置、無線通信システム、及びプログラム
US9344897B2 (en) * 2007-03-13 2016-05-17 Qualcomm Incorporated Estimating timing and frequency information for multiple channel wireless communication systems
WO2008121405A1 (en) * 2007-03-29 2008-10-09 Staccato Communications, Inc. Daa concept with uplink detection: frequency domain quiet periods
KR101531053B1 (ko) * 2007-08-10 2015-06-25 한국전자통신연구원 다중 안테나 선택 기법을 이용한 적응 변조 장치 및 방법
US8799648B1 (en) 2007-08-15 2014-08-05 Meru Networks Wireless network controller certification authority
US8522353B1 (en) 2007-08-15 2013-08-27 Meru Networks Blocking IEEE 802.11 wireless access
US8913677B2 (en) * 2007-08-20 2014-12-16 The Regents Of The University Of California Symbol timing relative offset multi antenna system and method
US8081589B1 (en) 2007-08-28 2011-12-20 Meru Networks Access points using power over ethernet
US7894436B1 (en) 2007-09-07 2011-02-22 Meru Networks Flow inspection
TW200929917A (en) * 2007-09-19 2009-07-01 Agency Science Tech & Res A method of transmitting data to a receiver
US8145136B1 (en) 2007-09-25 2012-03-27 Meru Networks Wireless diagnostics
DE102007053828B4 (de) 2007-11-12 2009-06-18 Infineon Technologies Ag Übertragung kodierter Daten
KR101343913B1 (ko) * 2007-11-21 2013-12-20 삼성전자주식회사 공간 다중화를 지원하는 다중 입출력 시스템에서 병렬 심볼제거 방법 및 장치
US9253742B1 (en) * 2007-11-29 2016-02-02 Qualcomm Incorporated Fine timing for high throughput packets
US20090147678A1 (en) * 2007-12-05 2009-06-11 Texas Instruments Incorporated Systems and methods for traffic flow based rate adaptation in packet-based networks
US8855630B2 (en) * 2008-02-08 2014-10-07 Qualcomm Incorporated Enhanced multiplexing system and technique for uplink control channels
US9130712B2 (en) * 2008-02-29 2015-09-08 Google Technology Holdings LLC Physical channel segmentation in wireless communication system
US8284191B1 (en) 2008-04-04 2012-10-09 Meru Networks Three-dimensional wireless virtual reality presentation
US8893252B1 (en) 2008-04-16 2014-11-18 Meru Networks Wireless communication selective barrier
US20090262843A1 (en) * 2008-04-18 2009-10-22 Leonid Krasny MIMO Slow Precoding Method and Apparatus
US7756059B1 (en) 2008-05-19 2010-07-13 Meru Networks Differential signal-to-noise ratio based rate adaptation
US8325753B1 (en) 2008-06-10 2012-12-04 Meru Networks Selective suppression of 802.11 ACK frames
US8369794B1 (en) 2008-06-18 2013-02-05 Meru Networks Adaptive carrier sensing and power control
US20090323872A1 (en) * 2008-06-30 2009-12-31 Sirius Xm Radio Inc. Interface between a switched diversity antenna system and digital radio receiver
US8238834B1 (en) 2008-09-11 2012-08-07 Meru Networks Diagnostic structure for wireless networks
US8218690B1 (en) 2008-09-29 2012-07-10 Qualcomm Atheros, Inc. Timing offset compensation for high throughput channel estimation
US8599734B1 (en) 2008-09-30 2013-12-03 Meru Networks TCP proxy acknowledgements
JP2010130118A (ja) * 2008-11-25 2010-06-10 Sony Corp 送信装置、受信装置、通信システム、および、受信装置における処理方法
US20100211830A1 (en) * 2009-02-13 2010-08-19 Seagate Technology Llc Multi-input multi-output read-channel architecture for recording systems
JP2010199814A (ja) * 2009-02-24 2010-09-09 Kyocera Corp 通信装置及び通信品質推定方法
US8830918B2 (en) * 2009-03-16 2014-09-09 Interdigital Patent Holdings, Inc. Method and apparatus for performing uplink transmit diversity
JP5316208B2 (ja) 2009-05-08 2013-10-16 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US8520753B2 (en) 2009-06-19 2013-08-27 Acer Incorporated Systems and methods for code sequence extension over transmission in wireless communication environments
US8559887B2 (en) * 2009-07-09 2013-10-15 Cisco Technology, Inc. Coherence time estimation and mobility detection for wireless channel
US8531485B2 (en) 2009-10-29 2013-09-10 Immersion Corporation Systems and methods for compensating for visual distortion caused by surface features on a display
US8434336B2 (en) 2009-11-14 2013-05-07 Qualcomm Incorporated Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
US20110150119A1 (en) * 2009-12-18 2011-06-23 Mark Kent Method and system for channel estimation in an ofdm based mimo system
US8325833B2 (en) * 2009-12-21 2012-12-04 Intel Corporation Interlaced symbol constellation mapping for wireless communication
US9197482B1 (en) 2009-12-29 2015-11-24 Meru Networks Optimizing quality of service in wireless networks
US8811513B2 (en) * 2010-02-05 2014-08-19 Qualcomm Incorporated Antenna switching in a closed loop transmit diversity system
TW201218699A (en) * 2010-02-25 2012-05-01 Sony Corp Mapping apparatus and method for transmission of data in a multi-carrier broadcast system
US8942199B2 (en) * 2010-05-06 2015-01-27 Panasonic Intellectual Property Corporation Of America Terminal apparatus and response signal mappiing method
CN102299881A (zh) * 2010-06-22 2011-12-28 宏碁股份有限公司 传输方法
WO2012001692A2 (en) * 2010-06-29 2012-01-05 Go Net Systems Ltd. Methods circuits apparatus and systems for wireless data communication
TWI441486B (zh) * 2010-07-02 2014-06-11 Mediatek Inc 訊號空間分割及分配之方法及裝置
US8520576B2 (en) * 2010-08-04 2013-08-27 Broadcom Corporation Explicit feedback format within single user, multiple user, multiple access, and/or MIMO wireless communications
US8625695B2 (en) * 2010-08-13 2014-01-07 Nec Laboratories America, Inc. Feed-forward control signaling and decoding schemes
AU2015201185B2 (en) * 2010-08-26 2016-06-23 Qualcomm Incorporated Single stream phase tracking during channel estimation in a very high throughput wireless mimo communication system
US8494075B2 (en) * 2010-08-26 2013-07-23 Qualcomm Incorporated Single stream phase tracking during channel estimation in a very high throughput wireless MIMO communication system
PE20131090A1 (es) 2010-12-10 2013-10-16 Panasonic Ip Corp America Metodo y dispositivo de generacion de senales
US8730989B2 (en) 2011-02-11 2014-05-20 Interdigital Patent Holdings, Inc. Method and apparatus for closed loop transmit diversity transmission initial access
BR112013002605B1 (pt) 2011-02-18 2022-08-23 Sun Patent Trust Método de transmissão, aparelho de transmissão, método de recepção e aparelho de recepção
US8941539B1 (en) 2011-02-23 2015-01-27 Meru Networks Dual-stack dual-band MIMO antenna
US8478335B2 (en) 2011-03-23 2013-07-02 United States Of America As Represented By The Secretary Of The Navy System and method for radio communication
US8666254B2 (en) * 2011-04-26 2014-03-04 The Boeing Company System and method of wireless optical communication
US20130177115A1 (en) * 2011-07-05 2013-07-11 Qualcomm Incorporated Systems and methods for addressing doppler effect in wireless communications systems
CN105471774A (zh) * 2011-11-17 2016-04-06 中兴通讯股份有限公司 一种相位噪声的估计方法、估计装置、接收机及通信设备
US9236920B2 (en) * 2012-01-30 2016-01-12 Nokia Solutions And Networks Oy Usage of multiflow and multiple input multiple output in cellular communication systems
US8693561B2 (en) * 2012-03-16 2014-04-08 Posedge Inc. Receive signal detection of multi-carrier signals
US9954643B2 (en) * 2012-06-22 2018-04-24 Samsung Electronics Co., Ltd. Communication system with repeat-response combining mechanism and method of operation thereof
US8737929B2 (en) * 2012-06-27 2014-05-27 Intel Corporation Device, system and method of estimating a phase between radio-frequency chains
US9461855B2 (en) * 2012-07-05 2016-10-04 Intel Corporation Methods and arrangements for selecting channel updates in wireless networks
US9209873B1 (en) * 2012-09-27 2015-12-08 Marvell International Ltd. Method and apparatus for estimating noise and providing linear equalizers for multi-user MIMO (MU-MIMO) wireless communication systems
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
CN104144487B (zh) * 2013-05-06 2018-06-19 大唐电信科技产业控股有限公司 一种接收通道增益自动控制方法和设备
CN104168241B (zh) * 2013-05-16 2017-10-17 华为技术有限公司 多输入输出正交频分复用通信系统及信号补偿方法
EP3043487B1 (en) * 2013-10-14 2018-08-08 Huawei Technologies Co., Ltd. Method, apparatus and system for signal processing
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9960890B2 (en) * 2015-02-20 2018-05-01 Qualcomm Incorporated Superposition coding based preamble designs for co-existing radio access technologies
CN107531317A (zh) 2015-03-03 2018-01-02 麻省理工学院 水下航行器设计和控制方法
US9876604B2 (en) * 2015-05-06 2018-01-23 Qualcomm, Incorporated Channel bonding signaling to in-range devices
CN108029041B (zh) * 2015-11-04 2021-03-23 松下知识产权经营株式会社 无线通信装置和无线通信方法
US11196462B2 (en) * 2016-02-22 2021-12-07 Qualcomm Incorporated Multi-layer beamforming in millimeter-wave multiple-input/multiple-output systems
US20170290058A1 (en) * 2016-04-01 2017-10-05 Sarabjot Singh Systems and methods for avoiding hidden node collisions
JP2017204676A (ja) * 2016-05-09 2017-11-16 日本放送協会 アンテナ特性測定装置及びプログラム
CA3043347A1 (en) * 2016-06-17 2017-12-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for data transmission
CN107634824B (zh) 2016-07-19 2021-02-12 华为技术有限公司 传输信号的方法和装置
EP3510824B1 (en) * 2016-09-08 2023-02-22 Interdigital Patent Holdings, Inc. Multiple channel transmission in mmw wlan systems
CN108075802B (zh) * 2016-11-16 2020-01-03 华为技术有限公司 一种天线切换方法及网络设备
US10312953B2 (en) 2016-12-26 2019-06-04 Industrial Technology Research Institute Orthogonal frequency division multiplexing receiver with low-resolution analog to digital converter and electronic device thereof
TWI644529B (zh) * 2017-07-12 2018-12-11 泓博無線通訊技術有限公司 無線傳輸效能估計設備及方法
CN110112571B (zh) * 2019-04-10 2020-09-25 电子科技大学 一种基于神经网络逆建模的天线设计方法

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931388B1 (en) 1996-08-29 2003-11-05 Cisco Technology, Inc. Spatio-temporal processing for communication
FR2754125B1 (fr) 1996-09-30 2004-07-09 Sc Reprosol Dispositif et procede d'egalisation vectorielle d'un signal ofdm
US5943331A (en) * 1997-02-28 1999-08-24 Interdigital Technology Corporation Orthogonal code synchronization system and method for spread spectrum CDMA communications
US6219341B1 (en) 1997-03-20 2001-04-17 University Technology Corporation Method for bandwidth efficient multiple access wireless communication
US6314147B1 (en) 1997-11-04 2001-11-06 The Board Of Trustees Of The Leland Stanford Junior University Two-stage CCI/ISI reduction with space-time processing in TDMA cellular networks
US6493399B1 (en) 1998-03-05 2002-12-10 University Of Delaware Digital wireless communications systems that eliminates intersymbol interference (ISI) and multipath cancellation using a plurality of optimal ambiguity resistant precoders
US6181754B1 (en) 1998-06-12 2001-01-30 Cadence Design Systems, Inc. System and method for modeling mixed signal RF circuits in a digital signal environment
US6396885B1 (en) 1998-12-02 2002-05-28 Nortel Networks Limited Co-channel interference reduction in wireless communications systems
AU4077200A (en) 1999-04-07 2000-10-23 Cadence Design Systems, Inc. Method and system for modeling time-varying systems and non-linear systems
US6463099B1 (en) 1999-05-18 2002-10-08 The Hong Kong University Of Science And Technology Blind channel equalizers and methods of blind channel equalization
US7110434B2 (en) 1999-08-31 2006-09-19 Broadcom Corporation Cancellation of interference in a communication system with application to S-CDMA
US7106810B2 (en) * 1999-10-07 2006-09-12 Matthew James Collins Method and apparatus for a demodulator circuit
AU1034700A (en) * 1999-10-11 2001-04-23 Nokia Networks Oy A method for identifying bad frames
US7406261B2 (en) 1999-11-02 2008-07-29 Lot 41 Acquisition Foundation, Llc Unified multi-carrier framework for multiple-access technologies
US6377636B1 (en) 1999-11-02 2002-04-23 Iospan Wirless, Inc. Method and wireless communications system using coordinated transmission and training for interference mitigation
US6922445B1 (en) 1999-12-15 2005-07-26 Intel Corporation Method and system for mode adaptation in wireless communication
US6996195B2 (en) 1999-12-22 2006-02-07 Nokia Mobile Phones Ltd. Channel estimation in a communication system
US6975666B2 (en) 1999-12-23 2005-12-13 Institut National De La Recherche Scientifique Interference suppression in CDMA systems
US20010033622A1 (en) 2000-03-14 2001-10-25 Joengren George Robust utilization of feedback information in space-time coding
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6493331B1 (en) 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
FI20000853A (fi) 2000-04-10 2001-10-11 Nokia Networks Oy Tiedonsiirtomenetelmä
AU2001259767A1 (en) 2000-05-15 2001-11-26 Virginia Tech Intellectual Properties, Inc. Method and system for overloaded array processing
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US20020027985A1 (en) 2000-06-12 2002-03-07 Farrokh Rashid-Farrokhi Parallel processing for multiple-input, multiple-output, DSL systems
US6504506B1 (en) 2000-06-30 2003-01-07 Motorola, Inc. Method and device for fixed in time adaptive antenna combining weights
US6362781B1 (en) 2000-06-30 2002-03-26 Motorola, Inc. Method and device for adaptive antenna combining weights
DE60141613D1 (de) * 2000-08-03 2010-04-29 Infineon Technologies Ag Konfigurierbarer Modulator
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US7009931B2 (en) * 2000-09-01 2006-03-07 Nortel Networks Limited Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
US6850481B2 (en) * 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6760882B1 (en) * 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6556173B1 (en) 2000-09-29 2003-04-29 Agere Systems Inc. Integrated multiport antenna for achieving high information throughput in wireless communication systems
US7006579B2 (en) * 2000-09-29 2006-02-28 Nokia Corporation ISI-robust slot formats for non-orthogonal-based space-time block codes
KR100380278B1 (ko) 2000-09-29 2003-04-16 주식회사 하이닉스반도체 반도체장치 및 그 제조방법
US7079480B2 (en) * 2000-10-28 2006-07-18 Agee Brian G Enhancing security and efficiency of wireless communications through structural embedding
US7042956B2 (en) * 2000-11-06 2006-05-09 Hesham El-Gamal Method and system for utilizing space-time codes for block fading channels
US7010053B2 (en) * 2000-11-06 2006-03-07 Hesham El-Gamal Method and system for utilizing space-time and space-frequency codes for multi-input multi-output frequency selective fading channels
US7177365B2 (en) * 2000-11-06 2007-02-13 The Directv Group, Inc. Space-time trellis code for orthogonal frequency division multiplexing (OFDM)
US7342875B2 (en) 2000-11-06 2008-03-11 The Directv Group, Inc. Space-time coded OFDM system for MMDS applications
US7010054B2 (en) * 2000-11-17 2006-03-07 The Directv Group, Inc. Method and system for utilizing space-time overlays for convolutionally coded systems
US20020097686A1 (en) * 2000-11-20 2002-07-25 Qiu Robert C. Long-range prediction of fading signals for WCDMA high speed downlink packet access (HSDPA)
US8019068B2 (en) 2000-12-01 2011-09-13 Alcatel Lucent Method of allocating power for the simultaneous downlink conveyance of information between multiple antennas and multiple destinations
US6751480B2 (en) * 2000-12-01 2004-06-15 Lucent Technologies Inc. Method for simultaneously conveying information to multiple mobiles with multiple antennas
GB0029424D0 (en) * 2000-12-02 2001-01-17 Koninkl Philips Electronics Nv Radio communication system
US6930981B2 (en) * 2000-12-06 2005-08-16 Lucent Technologies Inc. Method for data rate selection in a wireless communication system
US20020111142A1 (en) * 2000-12-18 2002-08-15 Klimovitch Gleb V. System, apparatus, and method of estimating multiple-input multiple-output wireless channel with compensation for phase noise and frequency offset
US6870515B2 (en) * 2000-12-28 2005-03-22 Nortel Networks Limited MIMO wireless communication system
EP1220477A1 (fr) * 2000-12-28 2002-07-03 Koninklijke Philips Electronics N.V. Procédé et appareil pour relayer des données dans un système de télécommunication
US6987819B2 (en) * 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US6731668B2 (en) 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
US6380910B1 (en) 2001-01-10 2002-04-30 Lucent Technologies Inc. Wireless communications device having a compact antenna cluster
TW520587B (en) * 2001-01-13 2003-02-11 Koninkl Philips Electronics Nv Radio communication system
US6801790B2 (en) * 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US6426723B1 (en) 2001-01-19 2002-07-30 Nortel Networks Limited Antenna arrangement for multiple input multiple output communications systems
US7164669B2 (en) 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US6917820B2 (en) * 2001-01-26 2005-07-12 Stanford University Method and apparatus for selection and use of optimal antennas in wireless systems
GB0102316D0 (en) * 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
US7230910B2 (en) * 2001-01-30 2007-06-12 Lucent Technologies Inc. Optimal channel sounding system
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
FR2820580B1 (fr) 2001-02-02 2004-06-04 Thomson Csf Procede pour estimer les parametres d'un canal de propagation
JP3714910B2 (ja) 2001-02-20 2005-11-09 株式会社エヌ・ティ・ティ・ドコモ ターボ受信方法及びその受信機
GB0104610D0 (en) * 2001-02-23 2001-04-11 Koninkl Philips Electronics Nv Radio communication system
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
US8290098B2 (en) 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
KR100510434B1 (ko) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
US7929631B2 (en) 2001-04-23 2011-04-19 Texas Instruments Incorporated Multiple space time transmit diversity communication system with selected complex conjugate inputs
US7310304B2 (en) 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US7088782B2 (en) 2001-04-24 2006-08-08 Georgia Tech Research Corporation Time and frequency synchronization in multi-input, multi-output (MIMO) systems
ATE387759T1 (de) 2001-04-25 2008-03-15 Koninkl Philips Electronics Nv Funkkommunikationssystem
GB0110125D0 (en) 2001-04-25 2001-06-20 Koninkl Philips Electronics Nv Radio communication system
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7133459B2 (en) 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
US7778355B2 (en) 2001-05-01 2010-08-17 Texas Instruments Incorporated Space-time transmit diversity
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7047473B2 (en) 2001-05-14 2006-05-16 Lg Electronics Inc. Method for controlling data transmission in a radio communications system
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US7103115B2 (en) * 2001-05-21 2006-09-05 At&T Corp. Optimum training sequences for wireless systems
CN100414861C (zh) 2001-05-25 2008-08-27 明尼苏达大学董事会 无线通信网中的空时编码传输
US20020183010A1 (en) 2001-06-05 2002-12-05 Catreux Severine E. Wireless communication systems with adaptive channelization and link adaptation
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US7933342B2 (en) 2001-06-15 2011-04-26 Texas Instruments Incorporated Multipath equalization for MIMO multiuser systems
US7218692B2 (en) 2001-06-15 2007-05-15 Texas Instruments Incorporated Multi-path interference cancellation for transmit diversity
US7027523B2 (en) 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
ATE356474T1 (de) 2001-06-27 2007-03-15 Koninkl Philips Electronics Nv Frequenzverschiebungdiversitätsempfänger
GB0115937D0 (en) 2001-06-29 2001-08-22 Koninkl Philips Electronics Nv Radio communication system
US6754195B2 (en) 2001-07-06 2004-06-22 Intersil Americas Inc. Wireless communication system configured to communicate using a mixed waveform configuration
US7577118B2 (en) 2001-07-24 2009-08-18 Intel Corporation System and method of classifying remote users according to link quality, and scheduling wireless transmission of information to the to the users based upon the classifications
US7236536B2 (en) 2001-07-26 2007-06-26 Lucent Technologies Inc. Method and apparatus for detection and decoding of signals received from a linear propagation channel
US7197282B2 (en) 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
FR2828615B1 (fr) 2001-08-10 2005-12-02 Thales Sa Procede pour augmenter le debit dans un systeme de communication
KR100703295B1 (ko) 2001-08-18 2007-04-03 삼성전자주식회사 이동통신시스템에서 안테나 어레이를 이용한 데이터 송/수신 장치 및 방법
US7359466B2 (en) 2001-08-24 2008-04-15 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US7154959B2 (en) 2001-08-29 2006-12-26 Intel Corporation System and method for emulating a multiple input, multiple output transmission channel
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US6999538B2 (en) 2001-09-10 2006-02-14 Mitsubishi Electric Research Laboratories, Inc. Dynamic diversity combiner with associative memory model for recovering signals in communication systems
US7430191B2 (en) 2001-09-10 2008-09-30 Qualcomm Incorporated Method and apparatus for performing frequency tracking based on diversity transmitted pilots in a CDMA communication system
US20030050074A1 (en) 2001-09-12 2003-03-13 Kogiantis Achilles George Method for the simultaneous uplink and downlink conveyance of information between multiple mobiles and a base station equipped with multiple antennas
US7447967B2 (en) * 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
US7269224B2 (en) 2001-09-17 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Apparatus and methods for providing efficient space-time structures for preambles, pilots and data for multi-input, multi-output communications systems
US7263123B2 (en) 2001-09-18 2007-08-28 Broadcom Corporation Fast computation of coefficients for a variable delay decision feedback equalizer
US7113540B2 (en) 2001-09-18 2006-09-26 Broadcom Corporation Fast computation of multi-input-multi-output decision feedback equalizer coefficients
US6965788B1 (en) 2001-09-28 2005-11-15 Arraycomm, Inc. Method and apparatus for providing spatial processing in a remote unit
US20030066004A1 (en) 2001-09-28 2003-04-03 Rudrapatna Ashok N. Harq techniques for multiple antenna systems
US7269127B2 (en) * 2001-10-04 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Preamble structures for single-input, single-output (SISO) and multi-input, multi-output (MIMO) communication systems
US20030067890A1 (en) 2001-10-10 2003-04-10 Sandesh Goel System and method for providing automatic re-transmission of wirelessly transmitted information
US7218681B2 (en) 2001-10-11 2007-05-15 Agere Systems Inc. Method and apparatus for cross-talk mitigation through joint multiuser adaptive pre-coding
US6956907B2 (en) 2001-10-15 2005-10-18 Qualcomm, Incorporated Method and apparatus for determining power allocation in a MIMO communication system
US7289476B2 (en) 2001-10-16 2007-10-30 Nokia Corporation Method and system to increase QoS and range in a multicarrier system
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7116652B2 (en) 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
US7327798B2 (en) 2001-10-19 2008-02-05 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements
GB0125178D0 (en) 2001-10-19 2001-12-12 Koninkl Philips Electronics Nv Method of operating a wireless communication system
US8204504B2 (en) 2001-10-26 2012-06-19 Rockstar Bidco Llp Wireless communications system and method
US7164649B2 (en) 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US6954655B2 (en) 2001-11-16 2005-10-11 Lucent Technologies Inc. Encoding system for multi-antenna transmitter and decoding system for multi-antenna receiver
US7181167B2 (en) 2001-11-21 2007-02-20 Texas Instruments Incorporated High data rate closed loop MIMO scheme combining transmit diversity and data multiplexing
US8018903B2 (en) 2001-11-21 2011-09-13 Texas Instruments Incorporated Closed-loop transmit diversity scheme in frequency selective multipath channels
US7012883B2 (en) 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system
BR0214528A (pt) 2001-11-29 2004-12-28 Qualcomm Inc Método e equipamento para determinar a razão de log-verossimilhança com pré-codificação
CN100403596C (zh) 2001-11-29 2008-07-16 美商内数位科技公司 用于多路径衰减信道的有效多输入多输出系统
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7155171B2 (en) 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
US7085332B2 (en) 2001-12-14 2006-08-01 Ericsson, Inc. Method and apparatus for two-user joint demodulation in a system having transmit diversity
FI20012474A0 (fi) 2001-12-14 2001-12-14 Nokia Corp Lähetysvastaanottomenetelmä radiojärjestelmässä ja radiojärjestelmä
US7058134B2 (en) 2001-12-17 2006-06-06 Intel Corporation System and method for multiple signal carrier time domain channel estimation
US6700867B2 (en) 2001-12-20 2004-03-02 Motorola, Inc. Method and system for reduced memory hybrid automatic repeat request
JP4052835B2 (ja) 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
US6912195B2 (en) 2001-12-28 2005-06-28 Motorola, Inc. Frequency-domain MIMO processing method and system
US7573805B2 (en) 2001-12-28 2009-08-11 Motorola, Inc. Data transmission and reception method and apparatus
KR100463526B1 (ko) 2002-01-04 2004-12-29 엘지전자 주식회사 다중 입력 다중 출력 시스템에서의 전력 할당 방법
KR100747464B1 (ko) 2002-01-05 2007-08-09 엘지전자 주식회사 고속하향링크패킷접속(hsdpa)시스템을 위한타이머를 이용한 교착상황 회피방법
KR100840733B1 (ko) 2002-01-05 2008-06-24 엘지전자 주식회사 통신 시스템에서 패킷 데이터 처리하는 방법 그 시스템 및 그 수신 장치
KR100810350B1 (ko) 2002-01-07 2008-03-07 삼성전자주식회사 안테나 어레이를 포함하는 부호분할다중접속 이동통신시스템에서 다양한 채널상태에 따른 데이터 송/수신 장치 및 방법
JP2003204314A (ja) * 2002-01-08 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> 搬送波周波数誤差補正回路及び無線信号送受信装置
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
FI20020108A0 (fi) * 2002-01-21 2002-01-21 Nokia Corp Menetelmõ ja laite polkumetriikoiden muodostamiseksi trelliksessõ
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7092436B2 (en) 2002-01-25 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. Expectation-maximization-based channel estimation and signal detection for wireless communications systems
US7016657B2 (en) 2002-01-30 2006-03-21 Nokia Corporation Apparatus, and associated method, for communication system utilizing space-generated multilevel coding
EP1337082B1 (en) 2002-02-14 2005-10-26 Lucent Technologies Inc. Receiver and method for multi-input multi-output iterative detection using feedback of soft estimates
KR100879942B1 (ko) 2002-02-16 2009-01-22 엘지전자 주식회사 채널품질지시자 코딩을 위한 기저수열 생성방법
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7339897B2 (en) 2002-02-22 2008-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Cross-layer integrated collision free path routing
US20030161258A1 (en) 2002-02-22 2003-08-28 Jianzhong Zhang Apparatus, and associated method, for a multiple-input, multiple-output communications system
JP4078848B2 (ja) 2002-02-26 2008-04-23 Kddi株式会社 時空間ブロック符号を用いた適応符号化方法及び送信装置
US20030162519A1 (en) 2002-02-26 2003-08-28 Martin Smith Radio communications device
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US20030161410A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device with adaptive combination
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US7630403B2 (en) 2002-03-08 2009-12-08 Texas Instruments Incorporated MAC aggregation frame with MSDU and fragment of MSDU
SG120921A1 (en) 2002-03-13 2006-04-26 Ntt Docomo Inc Mimo receiver and method of reception therefor
US7114091B2 (en) 2002-03-18 2006-09-26 National Instruments Corporation Synchronization of distributed systems
KR100464014B1 (ko) 2002-03-21 2004-12-30 엘지전자 주식회사 다중 입출력 이동 통신 시스템에서의 폐루프 신호 처리 방법
KR100541284B1 (ko) 2002-03-21 2006-01-10 엘지전자 주식회사 다중 입출력 이동 통신 시스템에서의 신호 처리 방법
US7012978B2 (en) 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
US7593357B2 (en) 2002-03-28 2009-09-22 Interdigital Technology Corporation Transmit processing using receiver functions
US7085307B2 (en) 2002-03-29 2006-08-01 Nortel Networks Limited Methods and apparatus for transmitting data over a CDMA network
US20030186650A1 (en) 2002-03-29 2003-10-02 Jung-Tao Liu Closed loop multiple antenna system
US7224704B2 (en) * 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US6741587B2 (en) 2002-04-02 2004-05-25 Nokia Corporation Inter-frequency measurements with MIMO terminals
US6850741B2 (en) 2002-04-04 2005-02-01 Agency For Science, Technology And Research Method for selecting switched orthogonal beams for downlink diversity transmission
CN1572080B (zh) * 2002-04-09 2011-04-06 松下移动通信株式会社 正交频分多路复用通信方法与正交频分多路复用通信装置
US6801580B2 (en) 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
JP3796188B2 (ja) 2002-04-09 2006-07-12 パナソニック モバイルコミュニケーションズ株式会社 Ofdm通信方法およびofdm通信装置
JP3735080B2 (ja) 2002-04-09 2006-01-11 パナソニック モバイルコミュニケーションズ株式会社 Ofdm通信装置およびofdm通信方法
US6934320B2 (en) 2002-04-19 2005-08-23 Nokia Corporation Orthogonalized spatial multiplexing for wireless communication
KR100754721B1 (ko) * 2002-04-26 2007-09-03 삼성전자주식회사 직교주파수분할다중화 통신시스템에서 다중화 데이터 송수신 장치 및 방법
JP2004080110A (ja) * 2002-08-09 2004-03-11 Samsung Yokohama Research Institute Co Ltd 直交周波数分割多重通信システム、及び直交周波数分割多重無線機
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
JP4031350B2 (ja) * 2002-11-08 2008-01-09 日本放送協会 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置
US7352688B1 (en) 2002-12-31 2008-04-01 Cisco Technology, Inc. High data rate wireless bridging
US6898198B1 (en) 2003-02-14 2005-05-24 Cisco Systems Wireless Networking (Australia) Pty Limited Selecting the data rate of a wireless network link according to a measure of error vector magnitude
US7822140B2 (en) * 2003-03-17 2010-10-26 Broadcom Corporation Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
US7983355B2 (en) 2003-07-09 2011-07-19 Broadcom Corporation System and method for RF signal combining and adaptive bit loading for data rate maximization in multi-antenna communication systems
US7916803B2 (en) * 2003-04-10 2011-03-29 Qualcomm Incorporated Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices
US7359311B1 (en) * 2003-04-18 2008-04-15 Cisco Technology, Inc. Decoding method and apparatus using channel state information for use in a wireless network receiver
US7440012B2 (en) * 2003-04-30 2008-10-21 Micron Technology, Inc. Method and apparatus for optimizing image sensor noise and dynamic range
CN101350658A (zh) * 2003-05-16 2009-01-21 三菱电机株式会社 基站和无线终端
WO2005006638A2 (en) * 2003-06-18 2005-01-20 University Of Florida Wireless lan compatible multi-input multi-output system
US8014267B2 (en) * 2003-06-30 2011-09-06 Agere Systems Inc. Methods and apparatus for backwards compatible communication in a multiple input multiple output communication system with lower order receivers
WO2005006700A1 (en) * 2003-06-30 2005-01-20 Agere Systems Inc. Methods and apparatus for backwards compatible communication in a multiple antenna communication system using time orthogonal symbols
US9325532B2 (en) * 2003-06-30 2016-04-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for communicating symbols in a multiple input multiple output communication system using interleaved subcarriers across a plurality of antennas
WO2005006699A1 (en) * 2003-06-30 2005-01-20 Agere Systems Inc. Methods and apparatus for backwards compatible communication in a multiple antenna communication system using fdm-based preamble structures
US7352718B1 (en) * 2003-07-22 2008-04-01 Cisco Technology, Inc. Spatial division multiple access for wireless networks
US7515541B2 (en) 2003-08-08 2009-04-07 Intel Corporation Transmission of data with feedback to the transmitter in a wireless local area network or the like
US7382719B2 (en) * 2003-09-05 2008-06-03 Texas Instruments Incorporated Scalable and backwards compatible preamble for OFDM systems
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US20050169397A1 (en) * 2004-01-29 2005-08-04 Texas Instruments Incorporated Scalable data reception gain control for a multiple-input, multiple-output (MIMO) communications system
US7555053B2 (en) * 2004-04-14 2009-06-30 Broadcom Corporation Long training sequence for MIMO WLAN systems
US7382832B2 (en) * 2004-07-30 2008-06-03 Texas Instruments Incorporated Scalable time-switched preamble supplement generator, method of generating and multiple-input, multiple-output communication system employing the generator and method

Also Published As

Publication number Publication date
EP1680899A4 (en) 2012-03-21
JP2011188500A (ja) 2011-09-22
EP1680899A2 (en) 2006-07-19
CA2544850C (en) 2013-10-08
CN102780517A (zh) 2012-11-14
WO2005046113A2 (en) 2005-05-19
JP2013132064A (ja) 2013-07-04
TWI372528B (en) 2012-09-11
US8989294B2 (en) 2015-03-24
CA2821439A1 (en) 2005-05-19
TW201208285A (en) 2012-02-16
US20120039377A1 (en) 2012-02-16
CA2544850A1 (en) 2005-05-19
US20050152314A1 (en) 2005-07-14
JP2007515861A (ja) 2007-06-14
US8073072B2 (en) 2011-12-06
US20100014504A1 (en) 2010-01-21
JP5813677B2 (ja) 2015-11-17
JP4783737B2 (ja) 2011-09-28
CN101053172A (zh) 2007-10-10
JP5972221B2 (ja) 2016-08-17
JP6025924B2 (ja) 2016-11-16
JP2015195603A (ja) 2015-11-05
US7616698B2 (en) 2009-11-10
US8599953B2 (en) 2013-12-03
JP2013240058A (ja) 2013-11-28
WO2005046113A3 (en) 2007-02-22
JP5490746B2 (ja) 2014-05-14
TW200520431A (en) 2005-06-16
US20130177095A1 (en) 2013-07-11
JP2011124996A (ja) 2011-06-23
CN101053172B (zh) 2012-06-06
JP2015228658A (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6025924B2 (ja) 多入力多出力システムおよび方法
US7839819B2 (en) Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US8270432B2 (en) Method and system for rate selection algorithm to maximize throughput in close loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7400609B2 (en) Partitioning scheme for an OFDM transceiver
US7924943B2 (en) Method and system for optional closed loop mechanism with adaptive modulations for multiple input multiple output (MIMO) wireless local area network (WLAN) system
US8520769B2 (en) Transmission method, transmission apparatus, reception method, and reception apparatus
JP4008917B2 (ja) 直交周波数分割多重方式を使用する移動通信システムにおける副搬送波割り当てのための装置及び方法
US6687492B1 (en) System and method for antenna diversity using joint maximal ratio combining
US8077669B2 (en) Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US20050254461A1 (en) Apparatus and method for data transmission/reception using channel state information in wireless communication system
US20040151146A1 (en) Multi-branch OFDM transceiver
US6973134B1 (en) OFDM interference cancellation based on training symbol interference

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees