JP4031350B2 - 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置 - Google Patents

直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置 Download PDF

Info

Publication number
JP4031350B2
JP4031350B2 JP2002325670A JP2002325670A JP4031350B2 JP 4031350 B2 JP4031350 B2 JP 4031350B2 JP 2002325670 A JP2002325670 A JP 2002325670A JP 2002325670 A JP2002325670 A JP 2002325670A JP 4031350 B2 JP4031350 B2 JP 4031350B2
Authority
JP
Japan
Prior art keywords
pilot carrier
transmission
phase
data
guard interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002325670A
Other languages
English (en)
Other versions
JP2004165720A (ja
Inventor
健二 中島
哲臣 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2002325670A priority Critical patent/JP4031350B2/ja
Publication of JP2004165720A publication Critical patent/JP2004165720A/ja
Application granted granted Critical
Publication of JP4031350B2 publication Critical patent/JP4031350B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置に関し、互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送を行う直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置に関する。
【0002】
【従来の技術】
現在、地上デジタル放送の伝送方法として、ISDB−T(Integrated Services Digital Broadcasting−Terrestrial)と呼ばれるOFDM(Orthogonal Frequency Division Mu1tip1exing)伝送方式が規格化され、実用化に向けた準備が進められている。この伝送方法は、マルチパスやゴーストに対する耐性に優れ、移動受信も可能な方法として注目されている。
【0003】
OFDM伝送方式は、周波数方向で互いに直交する多数のキャリア(搬送波)をデータで変調する伝送方法であり、各キャリアの変調方式には、DQPSK,QPSK,16QAM,64QAMなどが用いられる。時間方向には、有効シンボルとガードインターバルにより構成される伝送シンボルを単位として伝送される。
【0004】
有効シンボルは、実際にデータを伝送する期間であり、ガードインターバルはマルチパスによる影響を軽減するための期間である。ガードインターバルは、有効シンボルの信号波形の一部を巡回的に繰り返したものである。また、OFDM伝送方式では、復調の際の基準となるパイロットキャリアとデータで変調されたデータキャリアを伝送する。
【0005】
パイロットキャリアの伝送フォーマットについては、各種文献で説明されている(例えば、非特許文献1,特許文献1参照。)。
【0006】
図9は、従来の一般的なOFDM変調回路の一例のブロック構成図を示す。同図中、データフレーム同期部11は、入力データの複数パケットをフレーミングする。誤り訂正符号/インターリーブ部12は、伝送エラーの影響を軽減あるいは訂正するための信号処理を行う。マッピング部13は、データ値に応じて複素平面上の振幅と位相を決定する。OFDMフレーム化部14は、データキャリア及びパイロットキャリアを所定の位置に配置してフレーム構成を行う。IFFT部15はIFFT演算を行う。ガードインターバル付加部16はガードインターバルを挿入する。直交変調部17は、IFFT出力データを直交変調する。パイロットキャリア発生部18はパイロットキャリアのデータを発生する。上記の直交変調部17から出力されるOFDM信号は、図示しない高周波伝送処理装置に送られる。
【0007】
図10は、パイロットキャリア発生部18の一般的なブロック構成図を示す。同図中、パイロットキャリア発生部18は、パイロットキャリアの位相データを持つパイロットキャリア位相情報発生手段21と、パイロットキャリアの周波数データ即ちパイロットキャリアの位置を格納するパイロットキャリア周波数情報発生手段22から構成される。パイロットキャリア位相情報発生手段21とパイロットキャリア周波数情報発生手段22それぞれは、半導体メモリのような記憶手段で実現可能であり、外部からのデータ書き込みも考慮される。
【0008】
パイロットキャリアの位相データの例として、「テレビジョン放送番組素材伝送用可搬型OFDM方式デジタル無線伝送システム標準規格 ARIB STD−B33」では、図11に示すように0度あるいは180度を設定している。0度とするか180度とするかは、パイロットキャリアの周波数によって決定している。
【0009】
パイロットキャリアは、OFDM変調波を構成する複数キャリアの内の特定周波数に設定される。例えばパイロットキャリアの周波数は、図12に示すように、fn(1有効シンボル中にnサイクルのキャリア)に設定される。通常、パイロットキャリアは複数の周波数が設定され、前述の「ARIB STD−B33」のあるモードでは、8周波数おきに108周波数だけ設定されている。
【0010】
図13は、従来の一般的なOFDM復調回路の一例のブロック構成図を示す。同図中、図示しない高周波伝送処理装置からの入力信号は直交復調部37に供給される。ガードインターバル処理部36は、ガードインターバルを取り除いて有効シンボル部を抽出する。FFT部35はFFT演算を行う。OFDMフレーム処理部34はデータキャリアとパイロットキャリアを分離する。復調/データ判定部33は、復調処理及び各搬送波の変調方式に応じてデータ判定を行う。
【0011】
誤り訂正復号/デインターリーブ部32は、伝送エラーの影響を軽減あるいは訂正する。データフレーム同期部31はフレーミングされたデータから元のパケットデータを復元する。伝送路等化部38は、OFDMフレーム処理部34において抽出されるパイロットキャリアの振幅及び位相情報や、フレーム同期、キャリア番号といったOFDM変調に関する情報を基に、伝送路等化のための補償データを生成する。
【0012】
図14は、伝送路等化部38の一般的なブロック構成図を示す。同図中、伝送路等化部38は、パイロットキャリアの位相データを持つ既知パイロットキャリア位相情報発生手段44及びパイロットキャリアの周波数データを持つ既知パイロットキャリア周波数情報発生手段45、これらからの情報を用いて既知パイロットキャリアを発生する既知パイロット発生手段43、OFDMフレーム処理部34からの受信パイロットキャリアを既知パイロットキャリアで複素除算して伝送路補償値を得る複素除算手段42、及び得られた伝送路補償値をパイロットキャリア以外の搬送波に適用するための伝送路補償値内挿手段41から構成される。
【0013】
伝送路等化部38では既知パイロットの位相情報及び周波数情報として図9、図10、図11及び図12において説明したOFDM変調回路のパイロットキャリア発生部18のデータをOFDMフレーム処理部34からのフレーム同期やキャリア番号といったOFDM変調に関する情報に応じて発生させる。従って、受信したパイロットキャリアを、既知パイロット発生手段43で発生する既知パイロットキャリアで複素除算することにより、伝送路中の歪み、周波数や位相のずれを検出することができる。
【0014】
検出した周波数や位相のずれを伝送路補償値として用いることによって、伝送路等化が可能であるが、パイロットキャリア以外の周波数を持つキャリアに対しても伝送路補償値を得るために、伝送路補償値内挿手段41が用いられる。ここでは、デジタル内挿フィルタを用いて周波数方向の補間データを得る。多数のキャリアを使って、広帯域のデータを伝送するOFDM伝送技術において、伝送路等化処理は必須であり、パイロットキャリアは重要な役割を果たしている。
【0015】
従来回路では、図9に示すガードインターバル付加部16によって、ガードインターバルの挿入が行われるため、図15に示すように、伝送シンボルの開始点において位相が不連続になってしまう。なお、この例では、パイロットキャリアの位相は図11に示す0度とおいている。受信機のチューナ部において、パイロットキャリアを自動周波数制御に利用する場合には、このような位相が不連続な点が存在すると、PLLが誤動作するという問題があった。
【0016】
この不連続はガードインターバルが挿入されているために、見かけ上、伝送シンボルの開始点における位相が遅れてしまうために起こる現象である。しかし、受信機でパイロットキャリアを抽出して周波数同期を行うには、パイロットキャリアは連続位相になっていることが望ましい。
【0017】
従来は、ガードインターバル長を波長の整数倍、あるいは半波長の奇数倍に設定して、位相を連続にしている(例えば、特許文献2参照。)。連続位相とすることにより、回路構成を簡略化でき、また周波数同期の精度を向上させることが可能となる。
【0018】
図16は、上記の従来技術に示される方法を用いて、伝送シンボル間で連続位相となるパイロットキャリアの例を示している。ここでは、ガードインターバル長を波長の3倍となるように設定している。
【0019】
【非特許文献1】
テレビジョン放送番組素材伝送用可搬型OFDM方式デジタル無線伝送システム標準規格 ARIB STD−B33
【特許文献1】
特開2002−009724号公報
【特許文献2】
特許2874729号公報
【0020】
【発明が解決しようとする課題】
図16に示す従来方法では、ガードインターバル長の設定値に制約が生じる。言い換えれば、ガードインターバル長の設定によって、パイロットキャリアの周波数が一義的に決まってしまう。つまり、ガードインターバル長が波長の整数倍あるいは半波長の奇数倍になる周波数にしか、パイロットキャリアの周波数を選べない。
【0021】
しかしながら、OFDM伝送方式におけるガードインターバル長は、マルチパス反射波の遅延量に適した値に設定されることが望ましい。また、パイロットキャリアに用いる搬送波はデータを伝送できないため、伝送効率という視点からもパイロットキャリアの周波数間隔を任意に設定できるほうが好ましい。
【0022】
このように、ガードインターバル長とパイロットキャリアの周波数は、それぞれの目的に合った設定をされることが望ましく、自由度が無く、一方によって片方が一義的に決まってしまうと、システム設計が困難となってしまうという問題があった。
【0023】
本発明は、上記の点に鑑みなされたもので、パイロットキャリアの位相を連続にすると同時に、ガードインターバル長に関わらずパイロットキャリアの周波数を任意に設定できる直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置を提供することを目的とする。
【0024】
【課題を解決するための手段】
請求項1の発明は、互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送を行う直交周波数分割多重伝送方法において、
前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量と逆の位相回転量を前記パイロットキャリアに与え、前記ガードインターバルの付加によって生じるパイロットキャリ9アの位相回転量をΔθとしたとき、複数の伝送シンボルから構成される伝送フレームのシンボル数を2π/Δθの整数倍に設定したことにより、
複数の伝送シンボル間でパイロットキャリアの位相を連続にすると同時に、ガードインターバル長に関わらずパイロットキャリアの周波数を任意に設定することができ、伝送フレームの先頭でパイロットキャリアの位相が自動的にリセットされ、送受信間で位相のずれが蓄積することを防止できる。
【0026】
請求項に記載の発明は、互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送を行う送信装置において、
前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量と逆の位相回転量を前記パイロットキャリアに与えるパイロットキャリア位相補償量発生手段を有し、
前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量をΔθとしたとき、複数の伝送シンボルから構成される伝送フレームのシンボル数を2π/Δθの整数倍に設定したことにより、
複数の伝送シンボル間でパイロットキャリアの位相を連続にすると同時に、ガードインターバル長に関わらずパイロットキャリアの周波数を任意に設定することができ、伝送フレームの先頭でパイロットキャリアの位相が自動的にリセットされ、送受信間で位相のずれが蓄積することを防止できる。
【0027】
請求項に記載の発明は、請求項2記載の送信装置から送信された、互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送された信号を受信してデータ判定を行うと共に、受信信号から分離したパイロットキャリアを基に伝送路等化を行う受信装置において、
前記分離したパイロットキャリアを複素除算する既知パイロットキャリアに対し、前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量と逆の位相回転量を与える既知パイロットキャリア位相補償量発生手段を有することにより、
送信側と同一のパイロットキャリアである既知パイロットキャリアを得て、伝送路等化を行うことができる。
【0028】
【発明の実施の形態】
本発明の実施の形態について説明する。OFDM変調回路及び復調回路の構成は従来のものと同様であり、OFDM変調回路は大略、図9に示すとおりであるが、パイロットキャリア発生部18の代わりに、図1に示すパイロットキャリア発生部19を使用している。また、OFDM復調回路は大略、図13に示すとおりであるが、伝送路等化部38の代わりに、図8に示す伝送路等化部39を使用している。
【0029】
本発明では、ガードインターバル長の分だけシンボルが.長くなって生じた位相回転を、シンボルごとに、パイロットキャリアの位相情報を制御することによって、パイロットキャリアを連続位相にしている。
【0030】
図1は、本発明におけるパイロットキャリア発生部19の一実施例のブロック構成図を示す。パイロットキャリア発生部19は、パイロットキャリアの位相データを持つパイロットキャリア位相情報発生手段51と、パイロットキャリアの位相補償量を制御するパイロットキャリア位相補償量発生手段52と、パイロットキャリアの周波数データを持つパイロットキャリア周波数情報発生手段53とから構成される。パイロットキャリア位相情報発生手段51とパイロットキャリア位相補償量発生手段52とパイロットキャリア周波数情報発生手段53それぞれは半導体メモリのような記憶手段で実現可能であり、外部からのデータ書き込みも考慮される。
【0031】
図2を用いて、パイロット位相補償量発生手段52で発生する位相補償量制御の原理について説明する。図2においては、ガードインターバル長Tgは、パイロットキャリアの波長Tpの整数倍(この図では2倍)よりΔtだけ長い値が設定されている。これらのパラメータTg、Tp、Δtの関係を(1)式に示す。
Δt=Tg MOD Tp …(1)
そのため、伝送シンボルの先頭部では、有効シンボル期間の位相(0度に設定)に比べて、Δtに相当する分だけ位相が遅れている。ここで、Δtに相当する位相回転量Δθは、パイロットキャリアの1波長Tpあたりの位相が2πに相当することから、(2)式で表される。
【0032】
Δθ=2π×(Δt/Tp) …(2)
この関係を図3の位相平面上に示すと、伝送シンボルの先頭部の位相は、有効シンボルの先頭部の位相(Aの位置)から、Δθに相当する分だけ遅れた位相(Bの位置)にシフトしている。
【0033】
このように、ガードインターバルの挿入によって生じる位相回転量Δθによって、伝送シンボルの先頭部において位相が不連続となる。そこで本発明では、パイロット位相補償量発生手段52で、Δtに相当する位相回転量Δθを発生し、パイロットキャリア位相情報発生手段51で発生した各シンボルのパイロットキャリアの位相を、あらかじめΔθだけ進ませる。
【0034】
その結果、パイロット位相補償量発生手段52の出力では、パイロットキャリアの位相は図4に示す位相平面上においてCの位置となる。このように、Δθだけ位相を進ませたパイロットキャリアを発生させれば、図5の下段に示すように、伝送シンボルの先頭部における位相が連続となる。図5の上段には位相を補償しない伝送シンボルの波形を示している。
【0035】
なお、本発明における方法では、パイロットキャリアの位相がシンボル毎にΔθずつ進んで行く。この様子を図6に示す。伝送シンボル2の有効シンボルの先頭部(eの位置)は、伝送シンボル1の有効シンボルの先頭部(dの位置)に比べて、位相がΔθ分だけ進んでいる。また、伝送シンボル3の有効シンボルの先頭部(fの位置)は、さらにΔθ分だけ位相が進むので、伝送シンボル1の有効シンボルの先頭部(dの位置)に比べて、2Δθ分だけ位相が進む。
【0036】
発生させるパイロットキャリアの位相を位相平面上に示すと図7のようになる。この図は2π/Δθ=16と設定した例を示しており、位相点に付した番号は伝送シンボル番号を表している。パイロットキャリア位相補償量発生手段52はこの伝送シンボル番号に応じた位相補償量をシンボル毎に発生する。シンボル毎に発生する位相補償量を進ませる方法としては、伝送シンボル番号とΔθに相当する数値を乗算する方法や、ルックアップテーブルのROMにあらかじめ伝送シンボル番号に対応させて位相を進ませたデータを持っておき、順次データを読み出していく方法があり、限定されるものでは無い。
【0037】
OFDM復調回路では、伝送されてきた受信データからOFDMフレーム処理部で抽出されたパイロットキャリアを用いて伝送路等化を行う。OFDM復調回路の伝送路等化部39について説明する。
【0038】
図8は、本発明における伝送路等化部39の一実施例のブロック構成図を示す。伝送路等化部39は、パイロットキャリアの位相データを持つ既知パイロットキャリア位相情報発生手段64と、パイロットキャリアの周波数データを持つ既知パイロットキャリア周波数情報発生手段65と、既知パイロットキャリア位相補償量発生手段66と、これらからの情報を用いてパイロットキャリアを発生する既知パイロット発生手段63と、OFDMフレーム処理部34からの受信パイロットキャリアを既知パイロットキャリアで複素除算して伝送路補償値を得る複素除算手段62と、得られた伝送路補償値をパイロットキャリア以外の搬送波に適用するための伝送路補償値内挿手段61から構成される。
【0039】
伝送路等化部39は、既知パイロットキャリア位相補償量発生手段66が加わっている点が、図14に示す伝送路等化部38と異なる。既知パイロットキャリア位相情報発生手段64と既知パイロットキャリア周波数情報発生手段65と既知パイロットキャリア位相補償量発生手段66それぞれは半導体メモリのような記憶手段で実現可能であり、外部からのデータ書き込みも考慮される。
【0040】
既知パイロットキャリア位相補償量発生手段66では、OFDM変調回路のパイロット位相補償量発生手段52で発生した位相補償量と同じ位相補償量即ち伝送シンボル番号に応じた位相補償量をシンボル毎に発生する。この既知パイロットキャリア位相補償量発生手段66によって、送信側と同一のパイロットキャリアである既知パイロットキャリアを得ることができ、従来通りの伝送路等化が可能となる。
【0041】
また、伝送エラー等の影響で、送信側のパイロット位相補償量発生手段52で発生する位相補償量と受信側の既知パイロットキャリア位相補償量発生手段66で発生する位相補償量とが異なってしまい、送受信間で位相のずれが蓄積することを防ぐために、一定期間毎にパイロットキャリアの位相をリセットさせる。リセットさせる期間については特に定まるものではないが、例として、伝送シンボルを複数個(一般に数十から数百個)集めて伝送フレームを構成し、伝送フレームの先頭でリセットすることが考えられる。つまり、この場合には、OFDMフレーム処理部34からのフレーム同期やキャリア番号をもとに、既知パイロットキャリア位相情報発生手段64に対して、全ての伝送フレームの最初の伝送シンボルに応じた位相補償量について、任意に設定できる一定の値、例えば0度にセットするように制御が行われる。これにより、伝送エラー等の影響により蓄積した送受信間の位相のずれがある場合にも、位相のずれをリセットすることができる。
【0042】
この場合、伝送フレームの伝送シンボル数によってはリセットを行うタイミングで位相が不連続となるが、1伝送フレームあたりのシンボル数を(2π/Δθ)の整数倍とすることにより、リセットタイミングの前後での位相は連続となる。なお、図7を例にとると、2π/Δθ=16と設定し、1伝送フレーム当たりのシンボル数を16に設定した場合は、特にリセットについて意識する必要はなく、伝送フレームの先頭で自動的にリセットされることになる。つまり、全ての伝送フレームの最初の伝送シンボルに応じた位相補償量が、図7に示す伝送シンボル1に応じた位相補償量Δθで一致する。
【0043】
また、パイロットキャリアを複数の周波数で伝送する場合には、それぞれの周波数に対して補償量を独立に生成することにより対応が可能である。
【0044】
このようにして、パイロットキャリアの位相を連続にすると同時に、ガードインターバル長に関わらずパイロットキャリアの周波数を伝送システムの要求に即し任意に設定させることが可能となる。これによって、パイロットキャリアの周波数スペクトルは単一スペクトルとなり、受信機の自動周波数制御にも容易に利用できるようになる。また、連続位相となっていることから、自動周波数制御の回路構成を簡略化でき、さらに、周波数同期の精度を向上させることが可能となる。
【0045】
【発明の効果】
上述の如く、請求項1に記載の発明によれば、複数の伝送シンボル間でパイロットキャリアの位相を連続にすると同時に、ガードインターバル長に関わらずパイロットキャリアの周波数を任意に設定することができ、伝送フレームの先頭でパイロットキャリアの位相が自動的にリセットされ、送受信間で位相のずれが蓄積することを防止できる。
【0047】
また、請求項に記載の送信装置の発明によれば、複数の伝送シンボル間でパイロットキャリアの位相を連続にすると同時に、ガードインターバル長に関わらずパイロットキャリアの周波数を任意に設定することができ、伝送フレームの先頭でパイロットキャリアの位相が自動的にリセットされ、送受信間で位相のずれが蓄積することを防止できる。
【0048】
また、請求項に記載の受信装置の発明によれば、送信側と同一のパイロットキャリアである既知パイロットキャリアを得て、伝送路等化を行うことができる。
【図面の簡単な説明】
【図1】本発明におけるパイロットキャリア発生部19の一実施例のブロック構成図である。
【図2】パイロットキャリアの時間軸波形を示す図である。
【図3】パイロットキャリアの位相回転を示す図である。
【図4】パイロットキャリアの位相回転を示す図である。
【図5】パイロットキャリアの時間軸波形を示す図である。
【図6】パイロットキャリアの位相がシンボル毎に進む様子を示す時間軸波形図である。
【図7】パイロットキャリアの位相を位相平面上に示す図である。
【図8】本発明における伝送路等化部39の一実施例のブロック構成図である。
【図9】従来の一般的なOFDM変調回路の一例のブロック構成図である。
【図10】パイロットキャリア発生部18の一般的なブロック構成図である。
【図11】パイロットキャリアの位相データの例を示す図である。
【図12】パイロットキャリアの周波数の設定を説明するための図である。
【図13】従来の一般的なOFDM復調回路の一例のブロック構成図である。
【図14】伝送路等化部38の一般的なブロック構成図である。
【図15】伝送シンボルの開始点において位相が不連続になった例を示す図である。
【図16】従来技術に示される方法を用いて、伝送シンボル間で連続位相となるパイロットキャリアの例を示す図である。
【符号の説明】
11 データフレーム同期部
12 誤り訂正符号/インターリーブ部
13 マッピング部
14 OFDMフレーム化部
15 IFFT部
16 ガードインターバル付加部
17 直交変調部
18 従来の技術に係るパイロットキャリア発生部
19 パイロットキャリア発生部
21 従来の技術に係るパイロットキャリア位相補償量発生手段
22 従来の技術に係るパイロットキャリア周波数情報発生手段
31 データフレーム同期部
32 誤り訂正復号/テインターリーブ部
33 復調/データ判定部
34 OFDMフレーム処理部
35 FFT部
36 ガードインターバル処理部
37 直交復調部
39 伝送路等化部
41 従来の技術に係る伝送路補償値内挿手段
42 従来の技術に係る複素除算手段
43 従来の技術に係る既知パイロット発生手段
44 従来の技術に係る既知パイロット位相情報発生手段
45 従来の技術に係る既知パイロット周波数情報発生手段
51 パイロットキャリア位相情報発生手段
52 パイロットキャリア位相補償量発生手段
53 パイロットキャリア周波数情報発生手段
61 伝送路補償値内挿手段
62 複素除算手段
63 既知パイロット発生手段
64 既知パイロットキャリア位相情報発生手段
65 既知パイロットキャリア周波数情報発生手段
66 既知パイロットキャリア位相補償量発生手段

Claims (3)

  1. 互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送を行う直交周波数分割多重伝送方法において、
    前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量と逆の位相回転量を前記パイロットキャリアに与え
    前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量をΔθとしたとき、複数の伝送シンボルから構成される伝送フレームのシンボル数を2π/Δθの整数倍に設定したことを特徴とする直交周波数分割多重伝送方法。
    ることを特徴とする直交周波数分割多重伝送方法。
  2. 互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送を行う送信装置において、
    前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量と逆の位相回転量を前記パイロットキャリアに与えるパイロットキャリア位相補償量発生手段を有し、
    前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量をΔθとしたとき、複数の伝送シンボルから構成される伝送フレームのシンボル数を2π/Δθの整数倍に設定したことを特徴とする送信装置
  3. 請求項2記載の送信装置から送信された、互いに直交する複数のキャリアをパイロットキャリアとデータキャリアで構成し、かつ、有効シンボルにガードインターバルを付加した伝送シンボルでデータ伝送された信号を受信してデータ判定を行うと共に、受信信号から分離したパイロットキャリアを基に伝送路等化を行う受信装置において、
    前記分離したパイロットキャリアを複素除算する既知パイロットキャリアに対し、前記ガードインターバルの付加によって生じるパイロットキャリアの位相回転量と逆の位相回転量を与える既知パイロットキャリア位相補償量発生手段を
    有することを特徴とする受信装置。
JP2002325670A 2002-11-08 2002-11-08 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置 Expired - Fee Related JP4031350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325670A JP4031350B2 (ja) 2002-11-08 2002-11-08 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325670A JP4031350B2 (ja) 2002-11-08 2002-11-08 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置

Publications (2)

Publication Number Publication Date
JP2004165720A JP2004165720A (ja) 2004-06-10
JP4031350B2 true JP4031350B2 (ja) 2008-01-09

Family

ID=32804821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325670A Expired - Fee Related JP4031350B2 (ja) 2002-11-08 2002-11-08 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置

Country Status (1)

Country Link
JP (1) JP4031350B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
JP4831322B2 (ja) * 2006-06-12 2011-12-07 日本電気株式会社 移動通信システム及び受信装置
WO2008038769A1 (fr) * 2006-09-29 2008-04-03 Ntt Docomo, Inc. dispositif de transmission et procédé de configuration de trame de transmission
JP5032186B2 (ja) * 2007-04-16 2012-09-26 日本無線株式会社 無線通信システム、無線通信方法、及び通信装置
CN108259395B (zh) 2016-12-29 2021-01-22 大唐移动通信设备有限公司 一种信道估计方法及装置
EP3886387B1 (en) * 2018-12-28 2023-01-25 Mitsubishi Electric Corporation Wireless transmission device, wireless reception device and wireless communication method

Also Published As

Publication number Publication date
JP2004165720A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
US7403472B2 (en) OFDM receiving device and OFDM receiving method
US6856590B2 (en) OFDM transmission device and OFDM transmission method
JP4944942B2 (ja) Ofdm信号の送信方法及び送信装置
EP1744513B1 (en) Doppler frequency calculating apparatus and method
TW201029405A (en) New frame and data pattern structure for multi-carrier systems
US7577216B2 (en) Guard interval and FFT mode detector in DVB-T receiver
KR101514099B1 (ko) 신호 발견을 위한 방법 및 장치
JP2019522929A (ja) 受信装置及び受信方法
JP7464071B2 (ja) 受信装置、受信方法、送信装置及び送信方法
JP4031350B2 (ja) 直交周波数分割多重伝送方法及びそれを用いた送信装置及び受信装置
JP2001292124A (ja) 受信装置
JP3514811B2 (ja) Ofdm伝送方法、ofdm送信装置及びofdm受信装置
JP2001313628A (ja) Ofdm受信装置及び方法
JP5075734B2 (ja) Ip放送システムとそのip放送送信装置及びip放送端末装置
JP3917633B1 (ja) デジタル復調装置、その制御方法、デジタル復調装置用プログラム、デジタル復調装置用プログラムを記録した記録媒体及びデジタル受信装置
JP2008042575A (ja) 受信装置
JP3688697B2 (ja) Ofdm伝送方法、ofdm送信装置及びofdm受信装置
JP2001313627A (ja) Ofdm送信装置及び方法
JP4459878B2 (ja) ガードインターバルを含む信号を復調するチューナ、デジタル復調装置、チューナ制御方法、デジタル復調装置制御方法、チューナ制御用プログラム、デジタル復調装置制御用プログラム及びこれらのプログラムを記録した記録媒体
JP2005064741A (ja) 伝送データ再生装置及び方法
JP5543033B2 (ja) 受信装置および受信方法
JP2005064740A (ja) 伝送データ再生装置及び方法
JP2004214959A (ja) 復調装置及び復調方法
JP2009005306A (ja) 情報処理装置および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141026

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees