JP5458296B2 - 微細加工構造及びその加工方法並びに電子デバイス及びその製造方法 - Google Patents

微細加工構造及びその加工方法並びに電子デバイス及びその製造方法 Download PDF

Info

Publication number
JP5458296B2
JP5458296B2 JP2006292658A JP2006292658A JP5458296B2 JP 5458296 B2 JP5458296 B2 JP 5458296B2 JP 2006292658 A JP2006292658 A JP 2006292658A JP 2006292658 A JP2006292658 A JP 2006292658A JP 5458296 B2 JP5458296 B2 JP 5458296B2
Authority
JP
Japan
Prior art keywords
region
resist
substrate
film
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006292658A
Other languages
English (en)
Other versions
JP2008109039A (ja
Inventor
守 馬場
▼榮▲彬 叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2006292658A priority Critical patent/JP5458296B2/ja
Publication of JP2008109039A publication Critical patent/JP2008109039A/ja
Application granted granted Critical
Publication of JP5458296B2 publication Critical patent/JP5458296B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、リフトオフを用いた微細加工方法、及び、電子デバイスの製造方法に関する。
特開2005−32978号公報
(電子デバイスの製造方法)
基板上に微細な電子デバイスを製造する方法としては、一般的にフォトリソグラフィーとエッチングを組み合わせた方法が用いられている。例えば、特許文献1には、ソース、ドレインなどデバイスを構成する領域を「フォトリソグラフィーとエッチング処理により所望の形状にパターニングすることができる」との記載がある。
図7(a)乃至(c)は、従来の電子デバイスの製造方法の工程順断面図である。基板101上に、下から順に、ゲート電極102、ゲート絶縁膜103、半導体膜104、電極膜105が形成されている。さらに、電極膜105の上に、レジストパターン106が、フォトリソグラフィー法により形成されている(図7(a))。次に、ドライエッチング又はウェットエッチングなどの加工法を用いて、レジストパターン106をマスクにして、電極膜105をエッチングして、ソース電極107、ドレイン電極108を形成する(図7(b))。最後に、レジストパターン106を除去して、ソースコンタクト109とドレインコンタクト110を取り付けて、トランジスターを完成する(図7(c))。
従来の微細デバイスの加工方法では、図7(c)にLで示すチャネル長など線幅の加工精度がフォトリソグラフィーとエッチングの解像度に依存する。また、マスク合わせによる誤差に対してもマージンをとった設計をしなければならないため、十分に微細な加工を行うことができない。また、デバイスを構成する膜、又は、基板がエッチング工程においてダメージを受けるので、デバイス特性が劣化するという問題がある。
(従来のリフトオフ法)
エッチングによる微細加工方法の問題点を解決する方法のひとつとして、リフトオフ法が知られている。図8(a)乃至(e)は、従来のリフトオフによる微細加工方法の工程順断面図である。
図8に示すリフトオフ法においては、基板121上にレジスト膜122を形成後(図8(a))、必要とするパターンの反転パターンの部分に露光し(図8(b))、非露光レジスト123を現像液により除去する(図8(c))。次いで、被加工薄膜126を全面に堆積してからスライトエッチングを行った後(図8(d))、溶剤に浸漬することにより、露光レジスト124を溶かして、露光レジスト124上に付着した薄膜を浮かせ取り、基板121上に所望の薄膜パターン127a、127bを形成する(図8(e))。
このリフトオフ法を用いると、エッチングなどで基板121にダメージを与えることなく、基板121上に所望の薄膜パターン127a,127bを形成することができる。しかし、かかるリフトオフ法は次のような問題を有している。
現像工程(図8(c))と、スライトエッチング工程(図8(d))とが不可欠である。すなわち、プロセス工程が多く、製造コストが高くなるという問題がある。また、薄膜パターン127a,127bと基板1との密着性が悪いという問題がある。さらに、薄膜パターン127a,127bの端部に突起128a、128bが形成されるために、突起上に配線が形成された場合に、配線の段切れが発生しやすいという問題がある。
本発明は、少ない工程数で、エッチングダメージがなく、従来技術と比較し高い精度で微細な加工が可能な微細加工方法、及び、電子デバイスの製造方法を提供することを目的とする。
請求項1に係る発明は、透明基板上の所定の領域にソース電極を形成する工程と、
前記基板と前記ソース電極ジスルフィド基又はチオール基を持つ有機材料からなるネガ型レジスト膜を形成する工程と、
前記基板の裏面から前記ソース電極をマスクとして前記裏面に対し、露光レジスト領域の端面の傾きを形成するような斜め方向に光を照射し、
非露光レジスト領域と、露光レジスト領域とを形成する工程と、
前記レジスト膜上にドレイン電極を形成する工程と、
前記非露光レジスト領域及び前記非露光レジスト領域上のドレイン電極をリフトオフにより除
去する工程と、
を順次行うことを特徴とする微細加工方法である。
請求項2に係る発明は、基板上にソース電極を形成する工程と、
前記ソース電極上にジスルフィド基又はチオール基を持つ有機材料からなるレジスト膜を形成する工程と、
前記基板の表面から選択的に前記レジスト膜に対し、露光レジスト領域の端面の傾きを形成するような斜め方向に光を照射し、前記基板上に非露光レジスト領域と露光レジスト領域を形成する工程と、
前記非露光レジスト領域及び前記露光レジスト領域上にドレイン電極を形成する工程と
前記非露光レジスト領域及び前記非露光領域上の前記ドレイン電極をリフトオフにより除去して、前記露光レジスト領域上に前記ドレイン電極からなるドレイン領域を形成する工程を順次行うことを特徴とする微細加工方法である。
請求項に係る発明は、前記レジストの厚さは3nm以上であることを特徴とする請求項1又は2項記載の微細加工方法である。
請求項4に係る発明は、前記光の照射角θ(θは基板と垂直な線となす角度;0<θ≦45°)とレジストの厚さdは、d/cosθにより、前記ソース領域の端面とドレイン領域の端面との距離を5μm以下とすることを特徴とする請求項1〜3のいずれか1項記載の微細加工方法である。
請求項5に係る発明は、基板と、
前記基板上に形成されたソース領域と、
前記ソース領域側の端面が傾斜し、前記基板上に形成されたレジストパターンからなる絶縁領域と、
前記レジストパターン上に形成されたドレイン領域と、
を有し、
前記レジストパターンは、ジスルフィド基又はチオール基を持つ有機材料からなることを特徴とする微細加工構造である。
請求項に係る発明は、前記ソース領域ないしドレイン領域は金からなることを特徴とする請求項5記載の微細加工構造である。
請求項に係る発明は、前記ソース領域の端面はないしドレイン領域の端面は(111)面であることを特徴とする請求項5又は6に記載の微細加工構造である。
請求項に係る発明は、ソース領域の端面と、前記ドレイン領域の端面との距離は30nm以下であることを特徴とする請求項5〜のいずれか1項記載の微細加工構造である。
参考発明は、基板と、
前記基板上に形成されたソース領域と、
前記ソース領域の端面と端面が接している基板上に形成されたレジストパターンからなる絶縁領域と、
前記絶縁領域上に形成され、その端面が、前記ソース領域の端面の直上にドレイン領域と、
を有し、
前記レジストパターンは、ジスルフィド基又はチオール基を持つ有機材料からなることを特徴とする微細加工構造である。
請求項に係る発明は、請求項5〜のいずれか1項記載の微細加工構造を有する電子デバイスである。
(請求項1、請求項5)
1.レジスト膜に対する斜め照射露光とリフトオフを組み合わせることにより、段差部に微細領域を、高い加工精度、再現性で形成することができる。特に、有機半導体デバイス、或いは、無機半導体デバイスの微細加工に有用である。
2.エッチングではなく、リフトオフによりデバイス領域を形成するため、基板や薄膜に対するエッチングダメージが形成されず、デバイス特性の劣化を防止できる。
3.新規なリフトオフ法を用いているので、工程数を少なくすることができ、製造コスト低減に効果がある。また、薄膜と下地膜の密着性が低下しない。さらに、加工されたパターンの端部に突起ができないので、配線段切れなどの問題を防止できる。
4.電極パターンをマスクとして利用する裏面露光では、セルフアラインでソースとドレインを微小間隔離間させて形成することができる。マスク工程が不要であるため、工程数をさらに削減できる。また、電極間のオーバーラップがないので、寄生容量の低減にも効果がある。寄生容量を小さくできるので、特に、有機トランジスターの特性向上に大きな効果がある。
5.露光レジスト領域をデバイスの絶縁領域として利用することができ、基板とレジスト上に形成した薄膜との密着性の向上にも効果がある。
6.加工にエタノールなどの環境にやさしい現像液を使用できる。
(請求項2)
請求項1で述べた効果に加え、裏面からの照射に限らず、表面からの照射によって、第一の領域(例えばソース流域)と第二の領域(例えばドレイン領域)との間隔が極めて微細に加工することができる。
参考発明
請求項1で述べた効果に加え、基板と垂直な方向にチャネルを有するデバイスを容易に形成することができる。
(請求項4)
リーク電流が極めて少ないデバイスを形成することができる。
(請求項
SAMの形成が容易になされており、ひいては、優れた移動度を有するデバイスを得ることができる。
(請求項6、7、8)
SAMの形成がより一層良好になされた、より一層優れた移動度を有するデバイスを得
ることができる。
(請求項
チャネル長の短く、応答速度が速いデバイスを得ることができる。
以下、本発明の最良形態について説明する。
<第一の実施の形態>
(電子デバイス製造の第一の形態例)
図1に本発明の第一の実施の形態を示す。
この形態においては、透明基板1上の所定の領域に第一の膜2を形成する工程と、基板1と1第一の膜2上にレジスト膜3を形成する工程と、基板1の裏面から第一の膜2をマスクとしてレジスト3に対し斜め方向に光を照射し、非露光レジスト領域5と、露光レジスト領域4とを形成する工程と、レジスト膜上に第二の膜7を形成する工程と、非露光レジスト領域5及び非露光レジスト領域5上の第二の膜をリフトオフにより除去する工程と、を順次行っている。
また、その微細加工構造は、基板1と、基板1上に形成された第一の領域2と、第一の領域2側の端面4aが傾斜し、基板1上に形成されたレジストパターンからなる絶縁領域4と、絶縁領域4上に形成された第二の領域8と、を有する。
以下本実施の形態をより詳細に説明する。
本発明の電子デバイスの製造方法は、リフトオフ法を用い、さらに、電極パターンをマスクとして基板裏面から斜め露光することにより、電極パターンの段差部に線幅の狭い微細領域を形成することを特徴とする。
図1(a)乃至(e)は、本発明の電子デバイスの製造方法の第一の具体例の工程を工程の順番に示す断面図である。
最初に、基板1上にソース電極2を形成し、さらに、ネガ型レジスト膜3を形成する(図1(a))。
基板1は、露光工程において、照射光が透過するような材料を用いる。例えば、紫外線露光の場合は、紫外線を透過するガラスなどの材料を用いる。基板材料は、必ずしも、可視光に対して透明である必要はない。例えば、X線露光を用いる場合は、可視光に対して不透明な材料であってもX線透過性材料を用いればよい。
ソース電極2の材料は、電気伝導度が大きく、かつ、露光工程における照射光に対して不透明な材料を用いる。ソース電極2の形成は、例えば、蒸着やスパッターなどの方法で電極膜を堆積してから、フォトリソグラフィー、エッチングによりパターニングしてもよいし、印刷法で形成してもよい。
次に、基板1の裏面から光を照射し、レジスト膜3のソース電極2によりマスクされていない領域を露光し、露光レジストパターン4を形成する。ソース電極2の上に堆積したレジスト膜は、光が照射されず、非露光レジストパターン5になる(図1(b))。
光の照射方向を、図に示すように基板に対し斜め方向からの照射とすることにより、ソース電極2上に非露光レジスト領域が形成される。この基板1上の非露光レジスト領域の横方向の長さは、レジスト膜3の厚さと照射光の照射方向を制御することにより高い精度、再現性で制御することができる。
次に、レジスト膜を現像せずに、レジスト膜上にドレイン膜7を堆積する(図1(c))。
次に、リフトオフ法により、非露光レジスト5とその上のドレイン膜を剥離除去して、ドレイン電極8を形成する(図1(d))。マスク合わせをしなくても、ドレイン電極8は、ソース電極2に対しセルフアラインでパターニングされる。ドレイン電極8はレジスト4上に形成され、基板1上に形成されたソース電極2とレジスト4の段差を介してスペースができるが、このスペースを高い精度で制御することが可能である。
最後に、ソース電極2とドレイン電極8の上に半導体膜9、ゲート絶縁膜10、ゲート電極11を順に形成する。さらに、ソースコンタクト12、ゲートコンタクト13、ドレインコンタクト14を、それぞれ、ソース電極2、ゲート電極11、ドレイン電極8の上に形成して、電界効果トランジスターが完成する(図1(e))。トランジスターのチャネル長Lは、ソース電極2とドレイン電極8の間隔に相当し、極めて微細な寸法に高い精度で加工することが可能である。
また、図1に示すデバイス構造において、ソース電極をドレイン電極、ドレイン電極をソース電極として電子デバイスを製造した場合でも、図1に示すデバイス構造とした場合と同じように、チャネル長を高精度で微細化できるなどの効果が得られる。
本発明の微細加工方法の応用としては、電界効果トランジスターの製造だけでなく、バイポーラトランジスターなど他のデバイスにも適用できる。さらに、無機・有機の薄膜デバイスや、液晶や有機ELパネルを駆動するための有機薄膜トランジスター(O−TFT)などの微細加工において、主として金属微細配線の作製などに有用である。特に、廉価な多機能型有機センサーデバイスなどへの応用が期待できる。
なお、リフトオフ法と斜め露光を用いた本発明の微細加工方法は、電子デバイスの製造だけでなく、一般的な微細構造の加工に用いた場合でも、微小領域の高精度の加工が可能であることは言うまでもない。
(基板)
本発明においては、基板は、例えば、金属、セラミックス、半導体、木材、紙、樹脂などあらゆる固体材料が用いられる。また、支持体となる母材をこれら材料で形成し、その表面にこれらの材料から選ばれた他の材料からなる層が形成されているものであってもよい。より具体的には、鉄,鋳鉄,ステンレス,パーマロイ,銅,黄銅,リン青銅,ニッケル,キュブロニッケル,錫,鉛,コバルト,半田,チタン,アルミニウム,クロム,金,銀,白金,パラジウム,亜鉛等、金属酸化物、金属窒化物、金属炭化物、リン酸塩処理金属、クロム酸塩処理金属、シリコン、カーボン、化合物半導体、酸化アルミナセラミックス、陶器、ガラス、石英ガラス、超電導体セラミックス、木材、紙、プラスチックス、エンジニアリングプラスチックス、熱硬化性樹脂等が例としてあげられる。
微細加工を行って製造するデバイスによって材料を選択する。
例えば、TFTを製造する場合には、基板の母材として、高濃度ドープ半導体を用いればよい。また、半導体としては、シリコン、化合物半導体、有機半導体などを用いることができる。そして、母材の表面に例えば、SiO2等の絶縁層を形成して基板とすればよい。
(第一の膜)
所定の領域に形成する第一の膜は、例えば、該領域がドレインあるいはソース領域の場合は導電性材料により形成される。導電性材料としては、金属材料あるいは高分子導電性材料が用いられる。金属材料としては金が特に好ましい。金はトリアジンチオール(DA)との間でSAMを形成しやすい。
第一の膜の厚さは、100nm以下が好まく、50nm以下がより好ましく、30nm以下がさらに好ましい。
(リフトオフ法)
以下、前記リフトオフ法について詳細に説明する。
[レジスト膜堆積]
まず、基板上にレジスト膜を形成する。
(レジスト)
本発明においては、従来リフトオフに用いられたレジストを用いることができる。特に、チオール基(SH)を含むレジストが好ましい。チオール基を含むレジストの中でも特にトリアジンチオールあるいはその誘導体、トリアジンチオールの化合物が好ましい。トリアジンチオールは、[化1]に示すような一般式(RTDM)で示される。
Figure 0005458296
Rは、例えば、−SH,−N(C4 H9 )2 ,−N(C8H17)2 ,−NHC6H5 ,−N(CH2 −CH=CH)2である。また、Mは、例えば、H,Li,Na,K,N(C4 H9 )4 等である。これにより、活性化された樹脂の表面にトリアジンチオールの皮膜が形成される。また、トリアジンチオール化合物としては、例えば、[化2]に示されるものが用いられる。
Figure 0005458296
これらは、有機溶媒に溶解して使用される。上記有機溶媒としては、例えば、メタノール、エチレングリコールモノエチルエーテル、プロピレングリコール、メチルエチルケトン等が使用される。
皮膜の形成は、トリアジンチオールの水溶液または有機溶媒に溶解したトリアジンチオールの溶液に金属核が付与された非導電性物質を浸漬して行なう。処理温度は60℃以下で処理時間は数十秒〜数十分程度が望ましい。また、一般式[化3]で示されるトリアジンチオール誘導体の1種又は2種以上を用いてもよい。
Figure 0005458296
(式中、R1 ,R2 は、夫々H,CH3,C2H5,C4H9,C6 H13,C8 H17,C10H21,C12H25,C18H37,C20H41,C22H45,C24H49,CF3C6H4,C4F9C6H4,C6F13C6H4,C8F17C6H4,C10F21C6H4,C6F13C6H4,C9F19CH2,C10F21CH2,C4F9CH2,C6F13CH2CH2,C8F17CH2CH2,C10F21CH2CH2,CH2=CHCH2,CH2=CH(CH2)8,CH2=CH(CH2)9,C8H17CH=C8H16,C6H11,C6H5CH2,C6H5CH2CH2,CH2=CH(CH2)4COOCH2CH2,CH2=CH(CH2)8COOCH2CH2,CH2=CH(CH2)9COOCH2CH2,C4F9CH=CHCH2,C6F13CH=CHCH2,C8F17CH=CHCH2,C10F21CH=CHCH2,C4F9CH2CH(OH)CH2 ,C6F13CH2CH(OH)CH2,C8F17CH2CH(OH)CH2,C10F21CH2CH(OH)CH2,CH2=CH(CH2)4COO(CH2 CH2)2,CH2=CH(CH2)8COO(CH2CH2)2,CH2=CH(CH2)9COO(CH2CH2)2,C4F9COOCH2CH2,C6F13COOCH2CH2,C8F17COOCH2CH2,C10F21COOCH2CH2を示し、同じでも異なってもよい。Mは、Hまたはアルカリ金属を示す。)
このトリアジンチオール誘導体は、基板表面に設けるためには真空蒸着して形成してもよい。
(レジスト層の形成)
水溶液または有機溶媒に溶解したトリアジンチオールの溶液に金属核が付与された非導電性物質を浸漬してレジスト層の形成を行なう。処理温度は60℃以下で処理時間は数十秒〜数十分程度が望ましい。
一方、蒸着法による場合は、真空蒸着装置内を一定の真空度に調整後、蒸着源であるトリアジンチオール誘導体を気化あるいは昇華させる。蒸着源が気化あるいは昇華していることを確認した後、成膜速度を所定の値に調整して蒸着を開始する。目的の膜厚の膜が形成されたならば蒸着源の加熱を止める。真空蒸着装置内が充分に冷えたところで大気ベントをおこない薄膜が形成された基板を取り出す。具体的な、蒸着条件は例えば次の通りである。真空蒸着装置内の真空度は、一般に1.0Pa〜1.0×10−6Paであり、好ましくは1.0×10−1Pa〜1.0×10−4Paである。るつぼのヒータの温度は室温〜250℃、好ましくは50℃〜200℃であるが、トリアジンチオール誘導体の分子量および蒸着装置内の真空度との兼ね合いで最適な温度範囲が決められるため一義的に定めることはできない。真空蒸着中は、磁石が基板2に磁場を印加してもよい。磁場の印加条件は、0.05T(テスラ)以上であり、磁場形成部7の種類に応じて適宜選定される。また、2種以上のトリアジンチオール誘導体を同時にまたは別個に蒸着させる場合には、異なったトリアジンチオール誘導体が入った複数のるつぼを用いて行なう。
なお、レジストの厚さとしては、3nm〜100nmが好ましい。5nm〜50nmがより好ましく、10〜30nmがさらに好ましい。蒸着によるレジスト膜の形成の場合、3nm未満の場合、第1の膜の側端面にレジスト膜が十分な厚さで形成されないことがある。その場合、第一の膜の側端面と第二の膜の側端面との間に短絡が生ずるおそれがある。
第一の膜の端面と第二の膜の端面とを水平方向に対向させるためにはレジストは第一の膜の厚さより薄くする。一方、リフトオフにより第二の膜を十分除去するためには、第二の膜より厚くすることが好ましい。全体としては、第一の膜の厚さの1/3〜2/3が好ましい。
なお、レジスト膜の厚さと第二の膜の厚さとの和が第一の膜の厚さと同等とすれば全体が平坦な電子でデバイスとなる。
[露光工程]
レジスト膜を形成後、パターン露光を行う。
基板の表面上に形成された薄膜に光照射し、光重合を行なう。光重合においても、蒸着工程と同様に磁場の印加を行なうことができる。光重合で用いる光線は、X線,紫外線,赤外線等を用いることができ、中でも200nm〜450nmの波長を有する紫外線が好ましく、特に280nm〜450nmの紫外線がより好ましい。光源としては、キセノンランプや水銀灯を利用することができる。また、光線の照射時間は、0.01秒〜180分が好ましい。0.01秒未満では重合率が不十分になり、180分を超えると重合速度が遅くなり薄膜形成に時間を要してしまい実用的ではない。光重合の重合雰囲気は、薄膜表面の官能基が酸化可能であればよく、空気中や酸素を供給できる場であればよい。また、重合温度条件は、10℃〜50℃が好ましい。10℃未満及び50℃を超えると重合速度が遅くなり薄膜形成に時間を要してしまい実用的ではない。磁場の印加条件は、蒸着工程にて磁場を印加した場合と同様である。
照射角θ(θは基板と垂直な線となす角度)は0<θ<90°の範囲で適宜選択する。θにより露光レジスト領域の端面4aの傾きが決まる。一般的には0<θ≦45°である。レジストの厚さとθとの値を適宜選択することにより第1の領域の端面と第二の領域の端面との距離を選択することができる。d/cosθとして5μm以下とすることが好ましい。
[被加工薄膜(第二の膜)の形成]
本発明では、パターン露光の後、レジスト膜の表面に被加工薄膜を形成する。なお、第二の膜形成後に露光を行ってもよい。この被加工薄膜は第二の膜である。パターン露光の後、レジストの現像処理を行うことなく被加工薄膜を形成する。
現像処理を行っていないため、レジスト表面は平滑なベタ膜状態であり、その上に形成された被加工薄膜は、全面にわたり平坦性に優れた被加工薄膜の形成が可能となる。
被加工薄膜の材料は、目的とする素子構造により適宜選択する。
電子デバイスにおいては、導電性材料が一般的に用いられる。金属、合金、導電性高分子が用いられる。特に金(Au)が好ましい。金を単結晶とし、微細構造における第二の領域の端面が(111)面となるようにすることが好ましい。この場合、SAMの形成がよりよく行われる。
被加工薄膜の厚さは、1nm〜200nmが好ましい。この範囲の厚さとすることにより高解像度という利点が生ずる。なお、リフトオフを十分に行うためには第二の膜の厚さは、レジストの厚さよりも薄くすることが好ましい。かかる観点から1/2以下とすることが好ましい。
[リフトオフパターニング]
被加工薄膜形成後にリフトオフを行う。
従来のリフトオフにおいては、除去するのは露光レジスト及びその上の被加工薄膜である。それに対して本発明においては、除去するのは非露光レジスト及びその上の非加工薄膜である。そのため、リフトオフ用薬液には、酸性溶液あるいはアルカリ性溶液を用いる必要はない。リフトオフ用溶液としては、例えば、メタノール、エタノールなどのアルコール類、メチルエチルケトンなどのケトン類、酢酸エチルなどのエステル類などが挙げられ。また、圧力を加えた純水あるいは超純水を用いることも可能である。また、水とメタノール、エタノール、エチレングリコール、ジエチレングリコール、ジエチレングリコール、エチレングリコールモノエチルエーテル、ジメチルホルムアミド、メチルピロリドンの組合せも有効である。
リフトオフは、リフトオフ用溶液に基板を浸漬したり、溶液を基板に塗布することによって行われる。溶液に浸漬する場合において、前記水溶液または溶液の温度や浸漬時間は特に限定されるものではないが、通常、液温を10〜40℃に調整して、浸漬時間を1〜30分、好ましくは5〜10分に設定するのが好適である。
(微細加工構造)
リフトオフ後、薄膜パターン4aは露光レジスト2aを介して基板1上に形成されている。従来は、リフトオフ後は、薄膜パターン4aは基板1上に直接形成されており、そのために、薄膜パターン4aと基板1との密着性は良好ではなかった。それに対して、本形態においては、基体1と薄膜パターン4aとの間に露光レジスト2aが介在している。この露光レジスト2aは、基体1と薄膜パターン4aとの密着性を高める役割を果たしている。
なお、密着性をより高めるために、リフトオフ後にポストベークを行うことが好ましい。 ポストベークの温度としては、50℃ 〜 150℃が好ましく、時間としては5min 〜 30minが好ましい。この範囲の温度、時間とすることにより接着力の増大という効果が得られる。
上記リフトオフを行うと、非露光レジスト2bは溶液により溶解する。溶解したレジストを構成するモノマーは、パターン化された非加工薄膜パターン4aの全周囲を修飾してSAM(自己組織化膜)を形成する。特に、レジストとしてジスルフィド基(SS)あるいはチオール基(SH)を持つ有機分子を用い、被加工薄膜の材料として金(Au)を用いた場合にはSAMが容易に形成される。
このように、本発明の微細加工方法を用いると、SAMが全周にわたり形成されている薄膜パターンを容易に得ることができる。SAMの作用のため半導体層を薄膜パターン上に形成して半導体デバイスを作成すると、優れた移動度を有する半導体デバイスが得られる。
特に本発明においては、第一の領域(例えばソース)の端面と第二の領域(例えばドレイン)の端面との距離は極めて小さくすることが可能であるため、第一の領域の端面と第二の領域の端面との間はSAMにより結合される。特に、わざわざSAMの形成を行わなくともリフトオフ時にSAMが自動的に形成される。すなわち、非露光レジストを溶液により溶解すると、溶解したレジストを構成するモノマーは第一の領域及び第二の領域の全周囲を修飾してSAMを形成する。当然、第一の領域の端面と第二の領域の端面にも形成される。両端面の距離が小さいと両端面間はSAMにより結合される。かかる観点から、第一の領域の端面と第二の領域の端面との距離としては、30nm以下が好ましく、10nm以下がより好ましく、5nm以下がさらに好ましい。露光の照射角度の制御の困難性の観点から下限は0.1nm以上が好ましい。第一の領域の端面と第二の領域の端面との間がSAMにより結合されている場合には、その上に直接他の層(例えば、ゲート絶縁膜)を形成すればよい。あるいは、一旦、半導体層を形成し、その上からゲート絶縁膜を形成してもよい。
なお、第一の領域の端面と第二の領域の端面とが直接SAMにより結合されていない場合であっても、第一の領域と第二の領域の全表面にはSAMが形成されているので、その上に半導体層(特に有機半導体層)を形成すれば極めて密着性は良好となる。
[電子デバイス]
例えば、図4(f)に示す構造の電子デバイスへの加工を行う場合には、リフトオフ後に、能動層あるいは活性層を形成すればよい。
能動層、あるいは活性層は、例えば、半導体材料、強誘電体材料、生体材料により形成する。
SAMが全周にわたり形成されている薄膜パターン4a上に能動層を堆積することにより特性の優れた電子デバイスを得ることができる。
なお、半導体材料無機半導体(シリコン、ゲルマニウム、酸化亜鉛、化合物半導体)、有機半導体その他の半導体を用いることができる。特に、有機半導体が好ましい。
有機半導体としては、例えば、π共役系材料が挙げられる。π共役系材料としては、例えばポリピロール、ポリチオフェン、ポリベンゾチオフェン、ポリイソチアナフテン、ポリチェニレンビニレン、ポリ(p−フェニレンビニレン)、ポリアニリン、ポリアセチレン、ポリジアセチレン、ポリアズレン、ポリピレン、ポリカルバゾール、ポリセレノフェン、ポリフラン、ポリ(p−フェニレン)、ポリインドール、ポリピリダジン、ナフタセン、ペンタセン、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン、ピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセンなどが挙げられる。また、これらの一部をN、S、Oなどの原子、カルボニル基などの官能基に置換した各種の誘導体を用いることもできる。さらに、特開平11−195790号公報に記載された多環縮合体などを挙げることができる。
また、これらのポリマーと同じ繰返し単位を有する例えばチオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、スチリルベンゼン誘導体などのオリゴマーなどが挙げられる。
さらに銅フタロシアニンや特開平11−251601号公報に記載のフッ素置換銅フタロシアニンなどの金属フタロシアニン類、ナフタレン1,4,5,8−テトラカルボン酸ジイミド、N,N’−ビス(4−トリフルオロメチルベンジル)ナフタレン1,4,5,8−テトラカルボン酸ジイミドとともに、N,N’−ビス(1H,1H−ペルフルオロオクチル)、N,N’−ビス(1H,1H−ペルフルオロブチル)及びN,N’−ジオクチルナフタレン1,4,5,8−テトラカルボン酸ジイミド誘導体、ナフタレン2,3,6,7テトラカルボン酸ジイミドなどのナフタレンテトラカルボン酸ジイミド類、及びアントラセン2,3,6,7−テトラカルボン酸ジイミドなどのアントラセンテトラカルボン酸ジイミド類などの縮合環テトラカルボン酸ジイミド類、C60、C70、C76、C78、C84等フラーレン類、SWNTなどのカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類などの色素などが挙げられる。
これらのπ共役系材料のうちでも、チオフェン、チェニレンビニレン、フェニレンビニレン、p−フェニレン、及びこれらの置換体の少なくとも1種を繰返し単位とし、かつ該繰返し単位の数nが4〜10であるオリゴマー並びに該繰返し単位の数nが20以上であるポリマー;ペンタセンなどの縮合多環芳香族化合物;フラーレン類;縮合環テトラカルボン酸ジイミド類;並びに金属フタロシアニンよりなる群から選ばれた少なくとも1種が好ましい。
また、その他の有機半導体材料としては、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、BEDTTTF−ヨウ素錯体、TCNQ−ヨウ素錯体、などの有機分子錯体が挙げられる。さらにポリシラン、ポリゲルマンなどのσ共役系ポリマーや特開2000−260999号公報に記載の有機・無機混成材料が挙げられる。
上記した本発明の実施の形態によれば、従来よりも基板接着性、平坦性に優れたパターン薄膜を少ないプロセスで低コストで形成することが可能である。基板との密着性に優れているため基板に可とう性を有する基板を用いても密着性は確保される。
さらに、レジストの厚さ、被加工薄膜の厚さは従来よりも薄くすることが可能である。SAMを容易にパターン薄膜に形成することができ、優れた特性の半導体デバイスを作成することが可能となる。
<第二の実施の形態例>
本発明の電子デバイスの製造方法は、マスクを用いて基板表面から露光する場合でも、リフトオフ法を用い、斜め露光を行うことにより、段差部に線幅の狭い微細領域を形成することが可能である。
図2(a)乃至(e)は、本発明の電子デバイスの製造方法の第二の具体例の工程順断面図である。
本例に係る微細加工方法は、基板21上にソース電極22とレジスト膜23を順に形成する(図2(a))。次に、マスク26を用いて、基板表面から斜め露光を行う(図2(b))。レジスト膜には、露光レジストパターン24と非露光レジストパターン25が形成される。次に、レジストの現像を行わずに、レジスト膜上にドレイン膜28を堆積する(図2(c))。次に、リフトオフを行い、非露光レジストパターン25とその上のドレイン膜を除去して、露光レジストパターン24上にドレイン電極29を形成する(図2(d))。最後に、ソース電極22とドレイン電極29の上に半導体膜30、ゲート絶縁膜31、ゲート電極32を順に形成する。さらに、ソースコンタクト35、ゲートコンタクト34、ドレインコンタクト33を、それぞれ、ソース電極22、ゲート電極32、ドレイン電極29の上に形成して、電界効果トランジスターが完成する(図2(e))。トランジスターのチャネル長Lは、ソース電極22とドレイン電極29の間隔に相当し、極めて微細な寸法に高い精度で加工することが可能である。
なお、基板その他の点については第一の実施の形態で述べたものを適宜使用することができる。以下の実施の形態においても同様である。
<第三の実施の形態例>
マスクを用いて基板表面から露光する場合の別の具体例について説明する。図4(a)乃至(e)は、本発明の電子デバイスの製造方法の第三の具体例の工程順断面図である。第三の具体例と第二の具体例には、二つの相違点がある。
一つは、図3(b)に示す露光工程において、マスク46をレジスト45に密着させていることである。マスクをレジストに密着させることにより、図3(b)における隙間から入る光による加工精度の誤差を最小限にすることが可能である。
もう一つは、ソース電極のパターニングである。図2(e)に示す構造のトランジスターはソース電極22とドレイン電極29のオーバーラップが大きくなるので、寄生容量が大きくなるという欠点がある。第三の具体例では、予め、ソース電極42をパターニングしておくことにより、ソース電極42とドレイン電極48のオーバーラップを小さくすることが可能で、寄生容量の低減に効果がある。
<第四の実施の形態例>
図4に本形態例に係る微細加工方法及び微細加工構造を示す。
本例に係る微細加工方法では、透明基板1上の所定の領域に第一の膜2を形成する工程と、
基板1と第一の膜2上にレジスト膜3を形成する工程(a)と、
基板1の裏面から第一の膜2をマスクとして裏面に対し直角方向に光を照射し、非露光レジスト領域5と、露光レジスト領域4とを形成する工程(b)と、
レジスト膜4,5上に第二の膜7を形成する工程(c)と、
非露光レジスト領域5及び非露光レジスト領域5上の第二の膜7をリフトオフにより除去する工程(d)とを順次行っている。
本例に係る微細加工構造は、基板1と、基板1上に形成された第一の領域2と、第一の領域2の端面2aと端面4aが接している基板1上に形成されたレジストパターンからなる絶縁領域4と、絶縁領域4上に形成され、その端面8aが、第一の領域2の端面2aの直上にある。
本例における工程は図4の(a)〜(f)に示される通りである。図1に示す工程と本工程との相違は、露光工程(図4(b))において、光の照射方向が基板に対して垂直に行う点のみである。
ただ、光は垂直に入射しているため、露光レジスト4の端面は第一の領域2の端面と接することとなる。すなわち、第一の実施の形態においては斜め照射を行っている。斜め照射の場合は、図1に示すように露光レジスト領域4の端面4aは傾斜しており傾斜の一端における点においてのみ第一の領域2の端面に接しているだけである。従って、図1においては、端面4aと端面2aとの間には半導体層9が存在するのみであり、両者間のリークは問題とならない。
それに対して、本例においては、図4(f)に示すように、端面2aと第二の膜9とは露光レジスト領域4を介して接している。従って、両者間の絶縁性が問題となる。両者間の絶縁性は、露光レジスト領域4の厚さ、ひいては形成するレジスト膜3の厚さに影響する。本発明者は、レジスト膜3の厚さを3nm以上とすれば両者間のリークは減少することを見出した。特に、5nm以上が好ましく、10nm以上がより好ましい。
また、第一の膜の厚さt1と露光レジスト領域の厚さt2との比も絶縁特性に影響を与えることを見出した。両者の比が大きくなるとt2/t1は1/5以上が好ましく、1/3がより好ましく、1/2以上がさらに好ましい。両者の比が影響する理由は、両者の比が小さいと、第二の膜は基板側に近づき、露光レジスト領域を挟んで第一の膜の端面2aと対向する第二の膜の面積が大きくなるためではないかと考えられる。
図4(f)に示すドランジスタにおいては、ソース領域2の端面2aとドレイン領域8の端面8aとは垂直方向に同一平面上にある。チャネルは基板と垂直方向に形成されている。チャネル長はレジスト領域4の端面4aの高さである。従って、端面4aの高さは短いほど好ましい。特に、100nm以下とすることが好ましい。
以下、実施例を挙げて本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
図1に示すプロセスを用いて以下に述べる条件で、図1(d)に示すナノ電極の作成を行った。

(1)基体
基体は、透明プラスチックス基板(PET)を用いた。

(2)第一の膜形成(Au膜蒸着)
膜厚さ:〜40 nm
基板温度:室温
真空度:<2 x 10−2 Pa

(3) レジスト膜(DA蒸着)
基体上に次の条件でトリアジンチオール(DA)を真空蒸着した。
膜厚さ:〜20 nm
基板温度:室温
真空度:<2 x 10−3 Pa
成長速度:0.2 Å/s

(4) 露光
DA蒸着後露光を行った。
UV照射
UV Spot Light Source: Photocure 200 (Hamamatsu Photonics社製) )
照度:〜8fc
時間:〜15 min

(5) 第二の膜形成(Au膜蒸着)
膜厚さ:〜20 nm
基板温度:室温
真空度:<2 x 10−2 Pa
(6) リフトオフ
リフトオフ用溶液:Ethanol
超音波洗浄:1min

以上のプロセスにより図5に示すナノ構造の電極を作成した。作成したナノ電極の電気的特性を電流−電圧曲線の測定により評価した。その結果を図6に示す。測定装置は、R6425 2 Channel Current−Voltage Source/Monitorを用いた。
(a)乃至(e)は、第一の実施の形態例に係る電子デバイスの製造方法の工程順断面図である。 (a)乃至(e)は、第二の実施の形態例に係る電子デバイスの製造方法の工程順断面図である。 (a)乃至(e)は、第三の実施の形態例に係る電子デバイスの製造方法の工程順断面図である。 (a)乃至(f)は、第四の実施の形態例に係る電子デバイスの製造方法の工程順断面図である。 実施例において作成したナノ構造の電極のミクロ光学像である。 実施例において作成したナノ構造の電極の電流−電圧特性である。 (a)乃至(c)は、従来の電子デバイスの製造方法の工程順断面図である。 (a)乃至(e)は、従来のリフトオフによる微細加工方法の工程順断面図である。
符号の説明
1、21、41、101、121 基板
2、22、42、107 第一の膜(第一の領域、ソース電極)
2a 第一の膜の端面
4a 露光レジストパターンの端面
3、23、43、122 レジスト膜
4、24、44、123 露光レジストパターン(絶縁領域)
5、25、45、124 非露光レジストパターン
6、27、55、129 照射光
7、28、47 ドレイン膜
8、29、48、108 第二の膜(第二の領域:ドレイン電極)
8a 第二の膜の端面
9、30、49、104 半導体膜
10、31、50、103 ゲート絶縁膜
11、32、51、102 ゲート電極
12、35、54、109 ソースコンタクト
13、34、53 ゲートコンタクト
14、33、52、110 ドレインコンタクト
26、46、129 マスク
105 電極膜
106 レジストパターン
126 被加工薄膜
127a、127b 薄膜パターン
128a、128b 突起

Claims (9)

  1. 透明基板上の所定の領域にソース電極を形成する工程と、
    前記基板と前記ソース電極にジスルフィド基又はチオール基を持つ有機材料からなるネガ型レジスト膜を形成する工程と、
    前記基板の裏面から前記ソース電極をマスクとして前記裏面に対し、露光レジスト領域の端面の傾きを形成するような斜め方向に光を照射し、
    非露光レジスト領域と、露光レジスト領域とを形成する工程と、
    前記レジスト膜上にドレイン電極を形成する工程と、
    前記非露光レジスト領域及び前記非露光レジスト領域上のドレイン電極をリフトオフにより除
    去する工程と、
    を順次行うことを特徴とする微細加工方法。
  2. 基板上にソース電極を形成する工程と、
    前記ソース電極上にジスルフィド基又はチオール基を持つ有機材料からなるレジスト膜を形成する工程と、
    前記基板の表面から選択的に前記レジスト膜に対し、露光レジスト領域の端面の傾きを形成するような斜め方向に光を照射し、前記基板上に非露光レジスト領域と露光レジスト領域を形成する工程と、
    前記非露光レジスト領域及び前記露光レジスト領域上にドレイン電極を形成する工程と
    前記非露光レジスト領域及び前記非露光領域上の前記ドレイン電極をリフトオフにより除去して、前記露光レジスト領域上に前記ドレイン電極からなるドレイン領域を形成する工程を順次行うことを特徴とする微細加工方法。
  3. 前記レジストの厚さは3nm以上であることを特徴とする請求項1又は2に記載の微細加工方法。
  4. 前記光の照射角θ(θは基板と垂直な線となす角度;0<θ≦45°)とレジストの厚さdは、
    d/cosθにより、前記ソース領域の端面とドレイン領域の端面との距離を5μm以下とすることを特徴とする請求項1〜3のいずれか1項記載の微細加工方法。
  5. 基板と、
    前記基板上に形成されたソース領域と、
    前記ソース領域側の端面が傾斜し、前記基板上に形成されたレジストパターンからなる絶縁領域と、
    前記レジストパターン上に形成されたドレイン領域と、
    を有し、
    前記レジストパターンは、ジスルフィド基又はチオール基を持つ有機材料からなることを特徴とする微細加工構造。
  6. 前記ソース領域ないしドレイン領域は金からなることを特徴とする請求項5記載の微細加工構造。
  7. 前記ソース領域の端面はないしドレイン領域の端面は(111)面であることを特徴とする請求項5又は6に記載の微細加工構造。
  8. ソース領域の端面と、前記ドレイン領域の端面との距離は30nm以下であることを特徴とする請求項5〜7のいずれか1項記載の微細加工構造。
  9. 請求項5〜のいずれか1項記載の微細加工構造を有する電子デバイス。
JP2006292658A 2006-10-27 2006-10-27 微細加工構造及びその加工方法並びに電子デバイス及びその製造方法 Active JP5458296B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292658A JP5458296B2 (ja) 2006-10-27 2006-10-27 微細加工構造及びその加工方法並びに電子デバイス及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292658A JP5458296B2 (ja) 2006-10-27 2006-10-27 微細加工構造及びその加工方法並びに電子デバイス及びその製造方法

Publications (2)

Publication Number Publication Date
JP2008109039A JP2008109039A (ja) 2008-05-08
JP5458296B2 true JP5458296B2 (ja) 2014-04-02

Family

ID=39442122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292658A Active JP5458296B2 (ja) 2006-10-27 2006-10-27 微細加工構造及びその加工方法並びに電子デバイス及びその製造方法

Country Status (1)

Country Link
JP (1) JP5458296B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977151B2 (en) * 2009-04-21 2011-07-12 Cbrite Inc. Double self-aligned metal oxide TFT
JP5950743B2 (ja) * 2012-07-30 2016-07-13 東京応化工業株式会社 有機半導体素子及び有機半導体素子の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265117A (ja) * 1990-03-15 1991-11-26 Mitsubishi Electric Corp 半導体装置の製造方法
JPH04204830A (ja) * 1990-11-30 1992-07-27 Sanyo Electric Co Ltd 表示装置
JPH04252087A (ja) * 1991-01-28 1992-09-08 Shimadzu Corp ジョセフソン接合素子の製造方法
JP4247377B2 (ja) * 2001-12-28 2009-04-02 独立行政法人産業技術総合研究所 薄膜トランジスタ及びその製造方法
JP4715086B2 (ja) * 2003-11-20 2011-07-06 ブラザー工業株式会社 Sit型有機薄膜電界効果型トランジスタの製造方法
US6921679B2 (en) * 2003-12-19 2005-07-26 Palo Alto Research Center Incorporated Electronic device and methods for fabricating an electronic device
JP2006114817A (ja) * 2004-10-18 2006-04-27 Canon Inc 電界効果トランジスタの製造方法
JP4984416B2 (ja) * 2005-03-31 2012-07-25 凸版印刷株式会社 薄膜トランジスタの製造方法

Also Published As

Publication number Publication date
JP2008109039A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
DeFranco et al. Photolithographic patterning of organic electronic materials
US7700403B2 (en) Manufacturing method of semiconductor device
US7186634B2 (en) Method for forming metal single-layer film, method for forming wiring, and method for producing field effect transistors
JP5036219B2 (ja) 有機薄膜トランジスタを有する半導体装置の製造方法
US7226804B2 (en) Method for forming pattern of organic insulating film
US7932186B2 (en) Methods for fabricating an electronic device
JP2006128691A (ja) 薄膜トランジスタの製造方法及び表示素子
KR20040105251A (ko) 트랜지스터의 제조 방법
US20090114908A1 (en) Organic semiconductor thin film, organic thin film transistor and method of manufacturing organic thin film transistor
EP3547383B1 (en) Field effect transistor, method for producing same, wireless communication device using same and article tag
JP2008277469A (ja) 感光性sam膜の露光方法および半導体装置の製造方法
JP4572501B2 (ja) 有機薄膜トランジスタの製造方法
Zhao et al. High‐performance full‐photolithographic top‐contact conformable organic transistors for soft electronics
WO2009017530A2 (en) Methods and apparatus for fabricating carbon nanotubes and carbon nanotube devices
JP2007103947A (ja) 薄膜トランジスタおよび電子デバイスを製造するための方法
JPWO2007015364A1 (ja) 薄膜トランジスタの製造方法
JP5458296B2 (ja) 微細加工構造及びその加工方法並びに電子デバイス及びその製造方法
JP2006060113A (ja) 積層構造体、積層構造体を用いた電子素子、これらの製造方法、電子素子アレイ及び表示装置
US20100320463A1 (en) Method of Fabricating a Semiconductor Device
JP4396109B2 (ja) 薄膜トランジスタ素子の製造方法、薄膜トランジスタ素子及び薄膜トランジスタ素子シート
WO2021182545A1 (ja) パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路
JP2010205848A (ja) 平坦な導電性膜の製造方法及び半導体装置の製造方法並びに半導体装置
JP2010045369A (ja) ピンホールアンダーカット部を含む装置と工程
US20050191801A1 (en) Method for fabricating a field effect transistor
JP4940423B2 (ja) 微細加工方法及び電子デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150