JP5445076B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP5445076B2
JP5445076B2 JP2009270323A JP2009270323A JP5445076B2 JP 5445076 B2 JP5445076 B2 JP 5445076B2 JP 2009270323 A JP2009270323 A JP 2009270323A JP 2009270323 A JP2009270323 A JP 2009270323A JP 5445076 B2 JP5445076 B2 JP 5445076B2
Authority
JP
Japan
Prior art keywords
pixel
unit
photoelectric conversion
sub
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009270323A
Other languages
English (en)
Other versions
JP2011114680A (ja
Inventor
英明 計良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009270323A priority Critical patent/JP5445076B2/ja
Publication of JP2011114680A publication Critical patent/JP2011114680A/ja
Application granted granted Critical
Publication of JP5445076B2 publication Critical patent/JP5445076B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、撮像装置に関する。
近年、固体撮像素子を用いた撮像装置が広く普及している。一般的な固体撮像素子は、行方向および列方向にRGB各色の画素が規則的に配置されている。このため、撮像される画像の空間周波数に依存して偽色が発生するという問題があり、光学ローパスフィルタなどで高い周波数成分の画像をぼかしたり、画素間引きや加算などの処理を行って偽色を低減する技術が考えられている(例えば特許文献1参照)。
また、広いダイナミックレンジで撮像するための従来技術として、感度の異なる一対のフォトダイオードを同一座標に配置して合成処理する技術が考えられている(例えば特許文献2参照)。
特開2004−312140号公報 特許第4018820号公報
ところが、画素間引きや加算による偽色の低減方法は、色モアレは低減されるが逆に輝度モアレが出やすくなるなどの問題があった。また、感度の異なる一対のフォトダイオードを同一座標に配置して合成する方法は、大画素と小画素の面積比が固定なのでダイナミックレンジの拡大や拡大時のS/N比が制限されてしまうという問題があった。
このように、偽色低減とダイナミックレンジの拡大や拡大時のS/N比の向上などを実現できる技術が望まれている。
上記課題に鑑み、本発明の目的は、偽色低減とダイナミックレンジの拡大や拡大時のS/N比の向上などを実現できる撮像装置を提供することである。
本発明に係る撮像装置は、第1受光面積を有する第1光電変換部と前記第1受光面積よりも受光面積が小さい第2受光面積を有する複数の第2光電変換部とで構成される画素単位が色成分毎に行方向および列方向に規則的に繰り返し配置され、かつ複数の前記第2光電変換部のうち1つの前記第2光電変換部が他の画素単位を構成する複数の前記第2光電変換部によって囲まれて配置された撮像部と、予め設定された撮影モードに応じて前記撮像部の各画素単位を構成する前記第1光電変換部及び複数の前記第2光電変換部のうち少なくとも1つを選択して画素信号を読み出す選択部と、前記選択部により読み出された画像信号に対して撮影モードに応じた処理を行い、当該画素単位の画像信号として出力する処理部とを有することを特徴とする。
特に、前記撮像部は、複数の前記第2光電変換部のうち1つの前記第2光電変換部が他の画素単位を構成する複数の前記第2光電変換部と行方向及び列方向において隣接して配置されることを特徴とする。
また、前記撮像部の各画素単位を構成する前記第1光電変換部および複数の前記第2光電変換部のいずれか欠陥がある場合は、前記欠陥がある前記第1光電変換部および複数の前記第2光電変換部の出力を当該画素単位内の欠陥がない前記第1光電変換部および複数の前記第2光電変換部の出力で補正することを特徴とする。
特に、前記処理部は、前記第1光電変換部および複数の前記第2光電変換部の組合せによってダイナミックレンジまたは撮影感度を制御することを特徴とする。
また、前記処理部は、前記第1光電変換部および複数の前記第2光電変換部の少なくとも1つの光電変換部からなる大面積の組と、前記第1光電変換部および複数の前記第2光電変換部の少なくとも1つの光電変換部からなる小面積の組との出力信号の比率を可変して異なるダイナミックレンジの画像信号を出力することを特徴とする。
本発明に係る撮像装置は、偽色低減とダイナミックレンジの拡大や拡大時のS/N比の向上などを実現することができる。
撮像装置101のブロック図である。 撮像部104の画素単位の配置例を示す説明図である。 各画素単位におけるサブ画素の配置例を示す説明図である。 撮像部104の構成例を示す回路図である。 「広ダイナミックレンジモード」および「超広ダイナミックレンジモード」におけるサブ画素の組合せ例を示す説明図である。 「超々広ダイナミックレンジモード」および「通常感度撮影モード」におけるサブ画素の組合せ例を示す説明図である。 欠陥サブ画素の補正処理を説明するための説明図である。 ダイナミックレンジの拡張処理を説明するための説明図である。 「低感度撮影モード」および「超低感度撮影モード」におけるサブ画素の組合せ例を示す説明図である。 各画素単位におけるサブ画素のその他の配置例を示す説明図である。
以下、本発明に係る撮像装置の実施形態について、図面を用いて詳しく説明する。
[撮像装置101の構成]
図1は撮像装置101の構成を示すブロック図である。撮像装置101は、光学系102と、メカニカルシャッタ103と、撮像部104と、画像バッファ105と、画像処理部106と、制御部107と、表示部108と、メモリカードI/F109と、操作部材110と、メモリ111とで構成される。
図1において、光学系102に入射された被写体光は、メカニカルシャッタ105を介して撮像部104に結像され画像信号に変換される。そして、撮像部104から読み出された画像信号は画像バッファ105に取り込まれる。尚、撮像部104がアナログの画像信号を出力する場合は画像バッファ105に取り込む前にA/D変換部を設ける必要がある。また、撮像部104は、受光面積が異なる光電変換部(サブ画素)が少なくとも3個以上で構成される画素単位が行方向および列方向に規則的に繰り返し配置され、被写体光に応じた画像信号を出力する。撮像部104の構成については後で詳しく説明する。
画像処理部106は、画像バッファ105に取り込まれた画像データに対して、ベイヤー配列の画像データをRGB形式の画像データに変換したり、ホワイトバランス処理や階調処理或いは輪郭強調処理などを施す。
制御部107は、内部に予め記憶されているプログラムに従って動作し、操作部材110に設けられた各操作ボタンの操作に応じて、撮像装置101の各部を制御する。或いは、制御部107は、画像バッファ105に取り込まれた画像やメモリカードI/F109に装着されているメモリカード109aに保存されている撮影済みの画像を表示部108に表示する。特に、本実施形態に係る撮像装置101は、撮像部104から読み出された複数のサブ画素のデータを処理するために、サブ画素選択部151と、サブ画素処理部152とを有している。尚、操作部材110のレリーズボタン110bが押下されると、撮像部104で撮影され画像処理部107で画像処理された画像データはメモリカード109aに保存される。また、サブ画素選択部151およびサブ画素処理部152の処理については後で詳しく説明する。
メモリカードI/F109は、不揮発性のメモリカード109aを接続するためのインターフェースで、制御部107が出力する撮影画像をメモリカード109aに記憶する。逆にメモリカード109aに記憶された撮影済みの画像を制御部107が読み出して表示部108に表示する。
表示部108は、液晶モニタなどで構成され、制御部107が出力するライブビュー画像や撮影済みの画像、或いは撮像装置101の操作情報や動作モードなどを設定するためのメニュー画面などを表示する。
操作部材110は、先に説明したレリーズボタン110a以外に、撮影モード選択ダイヤル110bが設けられている。尚、電源ボタンやカーソルキーなどカメラ操作に必要なボタン類は図示していないが操作部材110に含まれている。ユーザーはこれらの操作部材110を用いて撮像装置101を操作し、操作情報は制御部107に出力される。そして、制御部107は、操作部材110から入力する操作情報に応じて、撮像装置101全体の動作を制御する。ここで、本実施形態に係る撮像装置101において、撮影モード選択ダイヤル110bは、広ダイナミックレンジモードと、超広ダイナミックレンジモードと、超々広ダイナミックレンジモードと、通常感度撮影モード(高SNモード,高速モード)と、低感度撮影モードと、超低感度撮影モードとを有する。
メモリ111は、撮像装置101の動作に必要なパラメータなどが記憶される。例えば選択された撮影モードや撮影する画像の解像度などが記憶される。特に本実施形態では、撮影モード選択ダイヤル110bで選択される撮影モードに応じたサブ画素の選択位置や組合せなどがテーブルとして記憶されている。
[画素単位とサブ画素の配置例]
次に、本実施形態に係る撮像装置101における画素単位とサブ画素の配置例について図2を用いて説明する。図2(a)は従来の画素単位の様子を示した図である。図2(a)は4行4列のベイヤー配列の画素単位を示す図である。ここで、Px(1,1)からPx(4,4)までの(x,y)の表記において、xは行をyは列をそれぞれ示している。例えばPx(1,2)は1行2列目の画素単位を表す。
図2(a)は従来の画素単位は、奇数行目にR(赤)画素とGr(緑)画素とが交互に配置され、偶数行目にGb(緑)画素とB(青)画素とが交互に配置されている。そして、1つの画素単位の形状は紙面右側に示すように四角形になっている。つまり、従来の固体撮像素子の受光面には、1つの光電変換部を有する画素単位は規則的な形状を為し、2次元マトリクス状に画素単位の境界が明確に分離されて配置されている。このため、折り返し歪みが特定の空間周波数に集中して現れることになり、偽色が目立ってしまうという問題があった。
これに対して本実施形態に係る撮像装置101の撮像部104は、図2(b)に示すように、1つの画素単位が複数の光電変換部(少なくとも3個以上のサブ画素)で構成され、画素単位Px(1,1)から画素単位Px(4,4)までの16個の画素単位において、各画素単位の領域は隣接する画素単位の領域と互いにオーバーラップして配置され、且つ各画素単位を構成する複数のサブ画素が互いに重ならないように配置される。例えば、図2(b)のRの画素単位Px(3,3)は、その周囲の8つの画素単位(Px(2,2),Px(2,3),Px(2,4),Px(3,2),Px(3,4),Px(4,2),Px(4,3),Px(4,4))と2次元上で互い入り組んで配置され、一部のサブ画素は飛び地のように隣接する画素単位の中に入り込んでいる。これにより、折り返し歪みが空間周波数上で分散されるため偽色が目立ちにくくなるという効果が得られる。
ここで、図2において、Rの画素単位,Grの画素単位,Gbの画素単位およびBの画素単位は、図3に示すように同じ形状になるように複数のサブ画素が配置される。また、本実施形態の説明では、R,Gr,GbおよびBの各色に共通の場合は、図3に示すようにSp(Sub pixelの略)と表記するものとする。例えば図3において、Rのサブ画素R1とBのサブ画素B1とGrのサブ画素Gr1とGbのサブ画素Gb1はサブ画素Sp1と表記する。Sp2からSp6についても同様である。
また、本実施形態に係る撮像装置101では、撮像部104の各画素単位は、最大受光面積の1つのサブ画素Sp1(1つの親光電変換部に相当)と、サブ画素Sp1よりも受光面積が小さい5つのサブ画素Sp2からSp6(複数の子光電変換部に相当)とで構成される。そして、サブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)の面積は同じものとし、サブ画素Sp1とサブ画素(Sp2からSp6)の面積比は4:1であるものとする。但し、上記のように2種類の面積ではなく、3種類の面積のサブ画素の組合せでも構わないし、全てのサブ画素の面積が異なっていても構わない。尚、本実施形態では各サブ画素は1つの光電変換部を有するものとするが、サブ画素に更に複数の光電変換部を設けても構わない。
[撮像部104の回路例]
図4は、撮像部104の回路例を示すブロック図である。図4に示した撮像部104は、2行2列の4つの画素単位しか描かれていないが、1000行1000列の100万画素で構成される場合も同様の回路が繰り返し配置されるだけである。尚、図4は、図3で説明した6つのサブ画素が1つの画素単位に配置される場合の回路例である。
撮像部104は、1行1列目に画素単位Px(1,1)が配置され、1行2列目に画素単位Px(1,2)が配置され、2行1列目に画素単位Px(2,1)が配置され、2行2列目に画素単位Px(2,2)が配置される。ここで、各画素単位は画素単位Px(1,1)と同じ回路で構成されるので、画素単位Px(1,1)の回路について説明する。
画素単位Px(1,1)は、6つのサブ画素(Sp1,Sp2,Sp3,Sp4,Sp5,Sp6)で構成される。
1つの大口径(大面積)のサブ画素Sp1は他のサブ画素とは異なり、フォトダイオードPD1と、転送トランジスタTrX1と、浮遊拡散領域FDと、リセットトランジスタTrRと、増幅トランジスタTrAと、選択トランジスタTrSとで構成される。例えば、サブ画素Sp1の転送トランジスタTrX1に転送タイミング信号φTX1(1)が入力されると、フォトダイオードPD1に蓄積された電荷がサブ画素Sp1の浮遊拡散領域FDに転送される。浮遊拡散領域FDに転送された電荷は、増幅トランジスタTrAで電圧信号に変換され、選択トランジスタTrSのゲートに選択タイミング信号φSEL(1)が入力されると定電流源PW(1)とソースフォロワを構成する垂直信号線VLINE(1)にサブ画素Sp1の画像信号が読み出される。尚、選択タイミング信号φSEL(1)が入力されると、同じ行の2列目の画素単位Px(1,2)のサブ画素Sp1からも同様に定電流源PW(2)とソースフォロワを構成する垂直信号線VLINE(2)に画像信号が読み出される。
また、5つの小口径(小面積)のサブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)は、フォトダイオード(PD2,PD3,PD4,PD5,PD6)と転送トランジスタ(TrX2,TrX3,TrX4,TrX5,TrX6)のみで構成され、各転送トランジスタの出力はサブ画素Sp1の浮遊拡散領域FDに接続される。そして、垂直走査回路VSCANから転送タイミング信号(φTX2(1),φTX3(1),φTX4(1),φTX5(1),φTX6(1))が各転送トランジスタのゲートにそれぞれ入力される。転送タイミング信号が各転送トランジスタのゲートに入力されると、各フォトダイオードに蓄積された電荷がサブ画素Sp1の浮遊拡散領域FDに転送される。例えば、サブ画素Sp2の転送トランジスタTrX2に転送タイミング信号φTX2(1)が入力されると、フォトダイオードPD2に蓄積された電荷がサブ画素Sp1の浮遊拡散領域FDに転送される。浮遊拡散領域FDに転送された電荷は、先に説明したサブ画素Sp1の場合と同様に、垂直信号線VLINE(1)に読み出される(サブ画素Sp2の画像信号)。
サブ画素Sp2以外のサブ画素(Sp3,Sp4,Sp5,Sp6)についても垂直走査回路VSCANから出力されるそれぞれの転送タイミング信号(φTX3(1),φTX4(1),φTX5(1),φTX6(1))に応じて、同様に垂直信号線VLINE(1)にサブ画素Sp2の画像信号が読み出される。また、画素単位Px(1,2),画素単位Px(2,1)および画素単位Px(2,2)についても同様に対応する各列の垂直信号線(VLINE(1),VLINE(2))に画像信号がそれぞれ読み出される。
各列の垂直信号線に読み出された画像信号は、各列の信号保持部(Sg(1),Sg(2))に保持される。尚、信号保持部(Sg(1),Sg(2))は、浮遊拡散領域FDの電荷をリセットした時に読み出すダーク信号と、各フォトダイオードの電荷を浮遊拡散領域FDに転送後に読み出す光信号とを一時的に保持する。例えば垂直信号線VLINE(1)にダーク信号が読み出されている時に、垂直走査回路VSCANのタイミング信号φTDがダーク信号用入力トランジスタTrDiのゲートに入力されるとダーク信号用コンデンサCdに一時的に保持される。同様に、垂直信号線VLINE(1)に光信号が読み出されている時に、垂直走査回路VSCANのタイミング信号φTSが光信号用入力トランジスタTrSiのゲートに入力されると光信号用コンデンサCsに一時的に保持される。
そして、水平走査回路HSCANから出力される水平出力タイミング信号(φH1,φH2)がダーク信号用出力トランジスタTrDoおよび光信号用出力トランジスタTrSoに入力されると、ダーク信号用コンデンサCdおよび光信号用コンデンサCsに保持されていた各信号が出力差動アンプDAMPに入力される。出力差動アンプDAMPは、回路のばらつきなどによるノイズ成分を除去するために光信号からダーク信号を減算して画像信号IMGoutを出力する。同様の動作を各行の画素単位で行われ、特に本実施形態に係る撮像装置101の場合は、各行の画素単位のサブ画素単位で画像信号が撮像部104から読み出される。尚、上記の説明では、撮像部104はアナログの画像信号を出力するものとしてが、撮像部104の回路内にA/D変換部を設けてデジタルの画像信号を出力するようにしても構わないし、撮像部104と画像バッファ105との間にA/D変換部を設けても構わない。
このように、本実施形態に係る撮像装置101は、1つの画素単位が複数のサブ画素で構成され、それぞれのサブ画素から画像信号を読み出すことができる。 [撮像装置101の撮影モードとサブ画像の選択および組合せ]
次に、本実施形態に係る撮像装置101の撮影モードとサブ画像の選択および組合せについて説明する。本実施形態に係る撮像装置101は、1つの画素単位が複数のサブ画素で構成されので、複数のサブ画素の選択や組合せによって、撮像部104で被写体を撮影する際のダイナミックレンジや感度を変えることができる。本実施形態に係る撮像装置101では、操作部材110の撮影モード選択ダイヤル110aによって、「広ダイナミックレンジモード」,「超広ダイナミックレンジモード」,「超々広ダイナミックレンジモード」,「通常感度撮影モード」,「高感度撮影モード」,「超高感度撮影モード」,「低感度撮影モード」,「超低感度撮影モード」など様々な種類のダイナミックレンジや感度に設定して撮影することができる。そして、操作部材110の撮影モード選択ダイヤル110aでこれらの撮影モードが選択されると、制御部107のサブ画素選択部151は、各撮影モードに応じたサブ画像を選択して、撮像部104から選択されたサブ画素の画像信号を読み出すよう制御する。選択されたサブ画素の情報はサブ画素処理部152にも出力される。そして、サブ画素処理部152は、画像バッファ105に取り込まれたサブ画素の画像データを各撮影モードに応じて処理する。
以下、サブ画素選択部151およびサブ画素処理部152によって実行される各撮影モードにおけるサブ画像の選択および組合せと処理方法について説明する。
「広ダイナミックレンジモード」
図5(a)の例は、操作部材110の撮影モードダイヤル110aで「広ダイナミックレンジモード」が選択された時の撮像部104から読み出すサブ画素の位置を示している。
図5(a)において、制御部107は撮像部104から大口径のサブ画素(Sp1)画素と小口径のサブ画素(Sp3,Sp4)の画像信号をそれぞれ読み出す。そして、サブ画素Sp3とSp4とを加算した出力信号と、サブ画素Sp1の出力信号とを組み合わせてダイナミックレンジを拡張した画像信号を生成する。尚、ダイナミックレンジの拡張処理については後で詳しく説明する。
「超広ダイナミックレンジモード」
図5(b)の例は、操作部材110の撮影モードダイヤル110aで「超広ダイナミックレンジモード」が選択された時の撮像部104から読み出すサブ画素の位置を示している。
図5(b)において、制御部107は撮像部104から大口径のサブ画素(Sp1)画素と小口径のサブ画素(Sp2)の画像信号をそれぞれ読み出す。そして、サブ画素Sp1と、サブ画素Sp2の出力信号とを組み合わせてダイナミックレンジを拡張した画像信号を生成する。
「超々広ダイナミックレンジモード」
図6(a)の例は、操作部材110の撮影モードダイヤル110aで「超々広ダイナミックレンジモード」が選択された時の撮像部104から読み出すサブ画素の位置を示している。
図6(a)において、制御部107は撮像部104から大口径のサブ画素(Sp1)画素と小口径の3つのサブ画素(Sp2,Sp3,Sp4)の画像信号を読み出す。そして、サブ画素Sp1とSp3とSp4とを加算した出力信号と、サブ画素Sp2の出力信号とを組み合わせてダイナミックレンジを拡張した画像信号を生成する。
[ダイナミックレンジの拡張処理]
ここで、ダイナミックレンジの拡張処理について簡単に説明する。図7(a)から図7(d)の4つの図は、横軸が時間で縦軸が画素の出力(量子化レベル)を示した図である。尚、ここでの説明では、撮像部104はアナログの画像信号を8ビット階調(256階調)で量子化するものとする。
図7(a)は、図5(b)のサブ画素の組合せに対応し、小面積画素と大面積画素の面積比が(1:4)の場合の時間と出力の関係を示している。図7(a)において、大面積画素は小面積画素よりも高感度であるため速く飽和する。つまり、高輝度被写体の場合、大面積画素は飽和してしまうが小面積画素は飽和しにくい。そこで、図7(b)に示すように、大面積画素の出力信号と小面積画素の出力信号とを組み合わせてダイナミックレンジを拡張する。ダイナミックレンジの拡張は、例えば小面積画素の特性を4倍して1023階調まで展開し、0階調から255階調までの範囲を大面積画素の出力信号を用い、256階調から1023階調までを小面積画素の出力信号を用いることで実現できる。これにより、暗い部分は大面積画素の出力信号を用いるのでSN比が向上し、高輝度被写体であっても小面積画素の出力信号を用いるので飽和して白飛びになることを防止できる。
尚、図7(a)の例では、小面積画素と大面積画素の面積比を(1:4)としたが、それほど高輝度ではないが大面積画素では飽和してしまう場合は図7(c)の例のように、小面積画素と大面積画素の面積比を(2:4(1:2))としても構わない。これにより、255階調以上の明るい部分の階調特性を図7(a)の場合より滑らかにすることができ、画質が向上する。尚、図7(c)は、図5(a)のサブ画素の組合せに対応する。
或いは、逆に、図7(d)の例のように、小面積画素と大面積画素の面積比を(1:6)としても構わない。これにより、図7(a)の場合よりさらに高輝度被写体であっても白飛びすることなく撮影が可能である。尚、図7(d)は、図6(a)のサブ画素の組合せに対応する。
尚、図6(a)の例では、サブ画素の組合せによる面積比が(1:6)になるように、1つのサブ画素(Sp2)と3つのサブ画素(Sp1,Sp3,Sp4)とを選択したが、本実施形態に係る撮像装置101の固体撮像素子の1つの画素単位は図3のように6つのサブ画素で構成されるので、例えば1つのサブ画素(Sp2)と5つのサブ画素(Sp1,Sp3,Sp4,Sp5,Sp6)とを選択して、サブ画素の組合せによる面積比が(1:8)にすることも可能である。また、この場合のサブ画素の組合せは、1つのサブ画素(Sp4)と5つのサブ画素(Sp1,Sp2,Sp3,Sp5,Sp6)としても構わないし、1つのサブ画素(Sp5)と5つのサブ画素(Sp1,Sp2,Sp3,Sp4,Sp6)としても構わない。さらに1つの画素単位が7つ以上のサブ画素で構成される場合でも、最小面積の1つのサブ画素とそれ以外の全サブ画素とを組み合わせることで最大の面積比を得ることができる。
このようにして、本実施形態に係る撮像装置101は、複数のサブ画素の選択および組合せによって、様々なダイナミックレンジの画像信号を生成することができので、被写体に応じた最適なダイナミックレンジで画像を撮影することができる。
以上、本実施形態に係る撮像装置101を利用して、ダイナミックレンジを広くする場合について説明したが、複数のサブ画素の選択方法によって、感度を変えることも可能である。以下の説明では、大口径のサブ画素(Sp1)の画像信号だけを利用する場合を通常感度と定義し、この場合に比較して低感度または高感度という表現を用いるものとする。
「通常感度撮影モード(高速モード)」
図6(b)の例は、操作部材110の撮影モードダイヤル110aで「通常感度撮影モード(高速モード)」が選択された時の撮像部104から読み出すサブ画素の位置を示している。
図6(b)において、制御部107は撮像部104から大口径のサブ画素(Sp1)の画像信号だけを読み出し、そのまま画像データとして利用する。この場合は、加算処理を行わずに最も大きなサブ画素Sp1の画像信号のみを読み出すので、特に加算処理をソフト的に行っている場合は高速化が可能である。
「高感度撮影モード」
先に説明した図5(a)のように3つのサブ画素(Sp1,Sp3,Sp4)を選択して、これらの3つのサブ画素(Sp1,Sp3,Sp4)の出力信号を加算して画像データとして利用する。この場合は、サブ画素Sp1だけを利用する場合に比べてサブ画素の面積が1.5倍になるので、「通常感度撮影モード」の1.5倍の高感度撮影が可能になる。
「超高感度撮影モード」
この場合は、例えば図3に示した1つ画素単位において、5つのサブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)を選択して、これらの5つのサブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)の出力信号を加算して画像データとして利用する。これにより、サブ画素Sp1だけを利用する場合に比べてサブ画素の面積が2.25倍になるので、「通常感度撮影モード」の2.25倍の超高感度撮影が可能になる。
尚、5つのサブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)の内、いずれか4つのサブ画素を選択して、選択した4つのサブ画素の出力信号を加算するようにしても構わない。この場合は、サブ画素Sp1だけを利用する場合に比べてサブ画素の面積が丁度2倍になるので、「通常感度撮影モード」の2倍の高感度撮影が可能になる。
「低感度撮影モード」
図8(a)の例は、操作部材110の撮影モードダイヤル110aで「低感度撮影モード」が選択された時の撮像部104から読み出すサブ画素の位置を示している。
図8(a)において、制御部107は撮像部104から小口径のサブ画素(Sp3,Sp4)の画像信号をそれぞれ読み出す。そして、サブ画素Sp3の出力信号とサブ画素Sp4の出力信号を加算して画像信号を生成する。この場合、サブ画素(Sp3)とサブ画素(Sp4)の面積の合計は、大口径のサブ画素(Sp1)の1/2になるので、感度もサブ画素(Sp1)の1/2となる。
(感度):(Sp3)+(Sp4)=(Sp1)/2
「超低感度撮影モード」
図8(b)の例は、操作部材110の撮影モードダイヤル110aで「超低感度撮影モード」が選択された時の撮像部104から読み出すサブ画素の位置を示している。
図8(b)において、制御部107は撮像部104から小口径のサブ画素(Sp6)の画像信号だけを読み出す。そして、サブ画素Sp6の出力信号をそのまま画像信号として用いる。この場合、サブ画素(Sp6)の面積は、大口径のサブ画素(Sp1)の1/4になるので、感度もサブ画素(Sp1)の1/4となる。
(感度):(Sp6)=(Sp1)/4
尚、サブ画素(Sp6)の代わりに同じ小口径のサブ画素(Sp2,Sp3,Sp4,Sp5)の4つのサブ画素のいずれか1つのサブ画素の出力信号を用いても構わない。
[ライブビュー画像や動画撮影への適用]
本実施形態に係る撮像装置101では、多様な感度調節が可能になるので静止画の撮影だけでなく、ライブビュー画像(スルー画像とも呼ぶ)や動画の撮影にも有効である。一般にライブビュー画像や動画の撮影は電子シャッターによって行われるので、シャッター速度の低速側はライブビュー画像や動画のフレームレートで制限される。例えばライブビュー画像または動画のフレームレートが30フレーム/秒の場合、画像の取り込みなどの他の処理を無視して単純に考えるとシャッター速度を1/30秒より遅くすることはできない。このため従来の撮像装置では、絞りが最小絞りになっている場合や被写界深度を変えたくない場合には対応することができない。これに対して本実施形態に係る撮像装置101では、先に説明したように、1つの画素単位を構成する複数のサブ画素の選択方法によって様々な低感度化が実現できるので多様な撮影が可能になる。尚、シャッター速度の高速側はライブビュー画像や動画の1フレーム撮影期間の垂直ブランキング期間を制御することで1/8000秒など超高速シャッターを実現可能である。
[サブ画素の画素欠陥補正]
先に説明した本実施形態に係る撮像装置101は、1つの画素単位が複数の光電変換部(複数のサブ画素)で構成され、これらのサブ画素の組合せによって広ダイナミックレンジ撮影や低感度撮影を実現するようになっている。ところが、複数のサブ画素のいずれかに欠陥画素がある場合に問題が生じる。ここでは、大口径のサブ画素や小口径のサブ画素に画素欠陥があった場合の補正方法について説明する。尚、画素欠陥があるか否かの判別方法は、本実施形態の主要部分ではないので詳細な説明は省略するが、例えば一様な光量の被写体をテスト撮影して、各サブ画素の出力信号が所定範囲内にあるか否かを試験すればよい。
(大口径のサブ画素の画素欠陥補正方法)
先ず、大口径のサブ画素に画素欠陥がある場合の補正例について説明する。例えば図9(a)の例では、大口径の青色(B)のサブ画素B1に画素欠陥があり、サブ画素B1の出力信号が利用できない場合を示している。この場合、図9(a)において、サブ画素B1に隣接する同じ青色の4つの小口径のサブ画素(B3,B4,B5,B6)の出力信号を加算する。この結果、図9(b)に示すような大口径の仮想画素Bmが4つのサブ画素(B3,B4,B5,B6)の中心位置に仮想的に合成されることになる。そして、この仮想画素Bmの出力信号(4つのサブ画素(B3,B4,B5,B6)の出力信号の加算値)を欠陥のあるサブ画素B1の出力信号として利用する。
このようにして、大口径のサブ画素に画素欠陥がある場合の補正を行うことができる。尚、図9(a)の例では、4つの小口径のサブ画素(B3,B4,B5,B6)を用いたが、図3で説明した5つの小口径のサブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)のいずれか4つのサブ画素を組み合わせても構わない。
(小口径のサブ画素の画素欠陥補正方法)
次に、小口径のサブ画素に画素欠陥がある場合の補正例について説明する。特に小口径のサブ画素が単独で1つ使用される図8(b)のような「超低感度撮影モード」の場合は当該画素の出力信号が全く得られないので大きな問題となり、画素欠陥補正が重要である。
例えば図9(c)の例では、小口径の赤色(R)のサブ画素R2に画素欠陥があり、サブ画素R2の出力信号が利用できない場合を示している。この場合、サブ画素R2の周辺の同じ赤色の小口径のサブ画素の出力信号をサブ画素R2の出力信号として利用する。例えば図9(c)において、実線矢印で示したように、小口径の赤色のサブ画素R4の出力信号をサブ画素R2の出力信号として利用する。或いは、点線矢印で示したように、同じ画素単位Px(1,1)内の他の小口径の赤色のサブ画素R3の出力信号をサブ画素R2の出力信号として利用しても構わない。または、一点鎖線の矢印で示したように、隣接する異なる画素単位Px(3,3)の小口径の赤色のサブ画素(R5,R6)のいずれかの出力信号をサブ画素R2の出力信号として利用しても構わない。
このようにして、小口径のサブ画素に画素欠陥がある場合の補正を行うことができる。尚、できるだけ図9(a)の例では、4つの小口径のサブ画素(B3,B4,B5,B6)を用いたが、図3で説明した5つの小口径のサブ画素(Sp2,Sp3,Sp4,Sp5,Sp6)のいずれか4つのサブ画素を組み合わせても構わない。
ここで、半導体の製造工程上、撮像部104の受光面の画素単位全てに亘って特定のサブ画素(例えばSp2)に画素欠陥が多く発生する場合が想定される。このような場合は、画素欠陥の多いサブ画素(例えばSp2)を上記のように補正するのではなく、特定のサブ画素(例えばSp2)の信号を読み出さず、代わりのサブ画素(例えばSp6など)の信号を読み出すように変更しても構わない。例えば図5(b)で説明した「超広ダイナミックレンジモード」でサブ画素(Sp2)に欠陥がある場合は、他の同じ口径のサブ画素(Sp3,Sp4,Sp5,Sp6)のいずれかの出力信号をサブ画素(Sp2)の出力信号の代わりに利用すればよい。これにより、画素欠陥補正を行わなければならないサブ画素の数を少なくすることができ、処理負担が軽減される。
(サブ画素配置の変形例)
先の実施形態では、図3で説明したように、1つの画素単位を構成する複数のサブ画素は、大口径のサブ画素Sp1を中心として紙面左上から右下方向に伸びた矢印状に配置されていたが、図3の形状である必要はない。ここでは、図3とは異なるサブ画素の配置例について説明する。
図10は、サブ画素配置の変形例を示す図である。図10において、赤色(R)の画素単位,青色(B)の画素単位,Rと同じ行の緑色(Gr)の画素単位およびBと同じ行の緑色(Gb)の画素単位は、紙面右側に斜線で示したように全て同じサブ画素の配置になっている。尚、大口径のサブ画素Sp1の配置および大きさは図2(b)および図3と同じである。本変形例では小口径の5つのサブ画素(Sp7,Sp8,Sp9,Sp10,Sp11)の配置が異なり、大口径のサブ画素Sp1の周囲に不規則に配置されている。
ここで、画素単位Px(1,1)から画素単位Px(4,4)までの16個の画素単位において、各画素単位の領域は隣接する画素単位の領域と互いにオーバーラップして配置され、且つ各画素単位を構成する複数のサブ画素(光電変換部)が互いに重ならないように配置される。これにより、図2(b)の場合と同様に、折り返し歪みが空間周波数上で分散されるため偽色が目立ちにくくなるという効果が得られる。また、偽色低減だけでなく、各画素単位を構成する複数のサブ画素の選択方法や組合せによってダイナミックレンジの拡大や拡大時のS/N比の向上或いは撮影感度の調整などを行うことができる。
尚、図2や図10で説明したサブ画素の数や配置は一例であり、各画素単位の領域は隣接する画素単位の領域と互いにオーバーラップして配置され、且つ各画素単位を構成する複数の光電変換部が互いに重ならないように配置されるという特徴を有していれば、本実施形態に係る撮像装置101と同様の効果が得られる。
また、上記の実施形態では、撮像部104から画像バッファ105に読み出されたサブ画素の画像データを制御部107のサブ画素選択部151およびサブ画素処理部152によってソフトウェアで処理するようにしたが、図4で説明した撮像部104の回路内の各垂直信号線VLINE毎に加算回路を設けてハードウェアで処理するようにしても構わない。
以上、本発明に係る撮像装置の実施形態について説明してきたが、その精神またはその主要な特徴から逸脱することなく他の多様な形で実施することができる。そのため、上述した実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明は、特許請求の範囲によって示されるものであって、本発明は明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内である。
101・・・撮像装置 102・・・光学系
103・・・メカニカルシャッタ 104・・・撮像部
105・・・画像バッファ 106・・・画像処理部
107・・・制御部 108・・・表示部
109・・・メモリカードI/F 110・・・操作部材
110a・・・撮影モード選択ダイヤル 110b・・・レリーズボタン
111・・・メモリ 151・・・サブ画素選択部
152・・・サブ画素処理部
Px(1,1)からPx(4,4)・・・画素単位
Sp1からSp6・・・サブ画素
PD1からPD6・・・フォトダイオード
TrX1からTrX6・・・転送トランジスタ
FD・・・浮遊拡散領域
TrR・・・リセットトランジスタ
TrA・・・増幅トランジスタ
TrS・・・選択トランジスタ
PW(1),PW(2)・・・定電流源
VLINE(1),VLINE(2)・・・垂直信号線
VSCAN・・・垂直走査回路
Sg(1),Sg(2)・・・信号保持部
HSCAN・・・水平走査回路

Claims (5)

  1. 第1受光面積を有する第1光電変換部と前記第1受光面積よりも受光面積が小さい第2受光面積を有する複数の第2光電変換部とで構成される画素単位が色成分毎に行方向および列方向に規則的に繰り返し配置され、かつ複数の前記第2光電変換部のうち1つの前記第2光電変換部が他の画素単位を構成する複数の前記第2光電変換部によって囲まれて配置された撮像部と、
    予め設定された撮影モードに応じて前記撮像部の各画素単位を構成する前記第1光電変換部及び複数の前記第2光電変換部のうち少なくとも1つを選択して画素信号を読み出す選択部と、
    前記選択部により読み出された画像信号に対して撮影モードに応じた処理を行い、当該画素単位の画像信号として出力する処理部と
    を有することを特徴とする撮像装置。
  2. 請求項1に記載の撮像装置において、
    前記撮像部は、複数の前記第2光電変換部のうち1つの前記第2光電変換部が他の画素単位を構成する複数の前記第2光電変換部と行方向及び列方向において隣接して配置される
    ことを特徴とする撮像装置。
  3. 請求項1または2に記載の撮像装置において、
    前記撮像部の各画素単位を構成する前記第1光電変換部および複数の前記第2光電変換部のいずれか欠陥がある場合は、前記欠陥がある前記第1光電変換部および複数の前記第2光電変換部の出力を当該画素単位内の欠陥がない前記第1光電変換部および複数の前記第2光電変換部の出力で補正する
    ことを特徴とする撮像装置。
  4. 請求項1からのいずれか一項に記載の撮像装置において、
    前記処理部は、前記第1光電変換部および複数の前記第2光電変換部の組合せによってダイナミックレンジまたは撮影感度を制御する
    ことを特徴とする撮像装置。
  5. 請求項に記載の撮像装置において、
    前記処理部は、前記第1光電変換部および複数の前記第2光電変換部の少なくとも1つの光電変換部からなる大面積の組と、前記第1光電変換部および複数の前記第2光電変換部の少なくとも1つの光電変換部からなる小面積の組との出力信号の比率を可変して異なるダイナミックレンジの画像信号を出力する
    ことを特徴とする撮像装置。
JP2009270323A 2009-11-27 2009-11-27 撮像装置 Active JP5445076B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270323A JP5445076B2 (ja) 2009-11-27 2009-11-27 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270323A JP5445076B2 (ja) 2009-11-27 2009-11-27 撮像装置

Publications (2)

Publication Number Publication Date
JP2011114680A JP2011114680A (ja) 2011-06-09
JP5445076B2 true JP5445076B2 (ja) 2014-03-19

Family

ID=44236677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270323A Active JP5445076B2 (ja) 2009-11-27 2009-11-27 撮像装置

Country Status (1)

Country Link
JP (1) JP5445076B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959320B1 (fr) * 2010-04-26 2013-01-04 Trixell Detecteur de rayonnement electromagnetique a selection de gamme de gain
JP6070301B2 (ja) * 2013-03-12 2017-02-01 株式会社ニコン 固体撮像素子及びこれを用いた撮像装置
CN103531603B (zh) * 2013-10-30 2018-10-16 上海集成电路研发中心有限公司 一种cmos图像传感器
CN103533267B (zh) * 2013-10-30 2019-01-18 上海集成电路研发中心有限公司 基于列级adc的像素分裂与合并图像传感器及数据传输方法
CN103681721B (zh) * 2013-12-30 2018-10-16 上海集成电路研发中心有限公司 具有高动态范围的图像传感器像素阵列
JP6891119B2 (ja) * 2015-09-24 2021-06-18 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子機器
US10666881B2 (en) 2015-09-24 2020-05-26 Sony Semiconductor Solutions Corporation Solid-state image sensor and electronic device
JP2020136813A (ja) * 2019-02-15 2020-08-31 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316168A (ja) * 1999-05-06 2000-11-14 Olympus Optical Co Ltd カラー撮像素子及びカラー撮像装置
JP2003189316A (ja) * 2001-12-19 2003-07-04 Minolta Co Ltd 撮像センサ
JP2004048445A (ja) * 2002-07-12 2004-02-12 Fuji Photo Film Co Ltd 画像合成方法及び装置
JP4264248B2 (ja) * 2002-11-19 2009-05-13 富士フイルム株式会社 カラー固体撮像装置
JP4264251B2 (ja) * 2002-12-09 2009-05-13 富士フイルム株式会社 固体撮像装置とその動作方法
JP4051701B2 (ja) * 2003-01-17 2008-02-27 富士フイルム株式会社 固体撮像素子の欠陥画素補正方法及び撮影装置
JP4387905B2 (ja) * 2004-09-17 2009-12-24 株式会社東芝 半導体光センサ装置及びこれを組込んだ情報機器
JP4738907B2 (ja) * 2004-11-19 2011-08-03 富士フイルム株式会社 固体撮像素子および固体撮像装置
US20070046807A1 (en) * 2005-08-23 2007-03-01 Eastman Kodak Company Capturing images under varying lighting conditions

Also Published As

Publication number Publication date
JP2011114680A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5445076B2 (ja) 撮像装置
US7978240B2 (en) Enhancing image quality imaging unit and image sensor
US9001244B2 (en) Image sensor, electronic apparatus, and driving method of electronic apparatus
KR101410184B1 (ko) 이미지 센서의 샘플링 및 판독
US11563041B2 (en) Multiplexed exposure sensor for HDR imaging
US8035709B2 (en) Image pickup apparatus provided with a solid-state image pickup device
US20080278591A1 (en) Method and apparatus for improving low-light performance for small pixel image sensors
US20130027575A1 (en) Method and apparatus for array camera pixel readout
JP4622790B2 (ja) 撮像素子および撮像装置
JP2003046876A (ja) 撮像装置
JP2010021697A (ja) 撮像素子、カメラ、撮像素子の制御方法、並びにプログラム
JP2003153291A (ja) 撮像装置及びシステム
JP4501350B2 (ja) 固体撮像装置および撮像装置
JP2007028339A (ja) 撮像装置及びその制御方法及びプログラム及び記憶媒体
JP5675996B2 (ja) 信号処理装置及び信号処理方法、固体撮像装置、電子情報機器、信号処理プログラム、並びにコンピュータ読み取り可能な記憶媒体
JP2011244309A (ja) 画像処理装置、画像処理方法及びプログラム
KR20120114161A (ko) 고체 촬상 소자 및 구동 방법, 및 전자 기기
JP2019161577A (ja) 撮像装置、画素補正処理回路、及び、画素補正処理方法
KR20110030328A (ko) 고체 촬상 장치 및 전자 기기
JP2019161612A (ja) 信号処理装置及び信号処理方法
JP6399871B2 (ja) 撮像装置及びその制御方法
JP6069857B2 (ja) 撮像装置
WO2016203966A1 (ja) 撮像装置、撮像方法、並びにプログラム
JP2013115470A (ja) 固体撮像素子の信号処理回路、固体撮像素子の信号処理方法、及び、電子機器
JP5629568B2 (ja) 撮像装置及びその画素加算方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5445076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250