JP5411526B2 - Axle tool for surface treatment - Google Patents

Axle tool for surface treatment Download PDF

Info

Publication number
JP5411526B2
JP5411526B2 JP2009037638A JP2009037638A JP5411526B2 JP 5411526 B2 JP5411526 B2 JP 5411526B2 JP 2009037638 A JP2009037638 A JP 2009037638A JP 2009037638 A JP2009037638 A JP 2009037638A JP 5411526 B2 JP5411526 B2 JP 5411526B2
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
cover ring
surface treatment
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037638A
Other languages
Japanese (ja)
Other versions
JP2010188494A (en
Inventor
輝久 中村
敏隆 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2009037638A priority Critical patent/JP5411526B2/en
Publication of JP2010188494A publication Critical patent/JP2010188494A/en
Application granted granted Critical
Publication of JP5411526B2 publication Critical patent/JP5411526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面処理のための軸バイトに関するもので、より具体的には、対象物との狭間に磁気ペーストを存在させて微細な削り作用の表面処理を行うに際し、軸バイトの運動動作に連動する磁気ペーストの分散の改良に関する。   The present invention relates to an axial tool for surface treatment. More specifically, the present invention relates to the movement of an axial tool when performing surface treatment with a fine shaving action in the presence of a magnetic paste between the object and an object. The present invention relates to improvement of dispersion of interlocking magnetic paste.

この種の表面処理の技術として、いわゆる磁気研磨法と呼ばれる技術がよく知られている。これは、磁性流体(MF:Magnetic Fluid)や磁気粘性流体(MRF:Magneto Rheological Fluid)を研磨粒子と混合させ、磁界により混合液を運動させることで研磨を行っている。   As this type of surface treatment technique, a technique called a so-called magnetic polishing method is well known. This is performed by mixing a magnetic fluid (MF) or a magnetorheological fluid (MRF) with abrasive particles and moving the mixed liquid by a magnetic field.

例えば特許文献1などには、磁気研磨のための研磨バイトについて改良技術の提案がある。これは図1に示すように、研磨バイト(軸バイト)の先端に永久磁石1を備えて磁場の発生源とするものである。永久磁石1は、球体形状あるいは適宜な曲面を有した曲面体形状に形成し、円柱形状の支持体2の端面に埋め込み設けて略半分が露出する状態としている。そして、その支持体2から一体に延びる軸部3を駆動手段へ連係して回転等の運動動作を行わせている。   For example, Patent Document 1 proposes an improvement technique for a polishing tool for magnetic polishing. As shown in FIG. 1, a permanent magnet 1 is provided at the tip of a polishing tool (shaft tool) to serve as a magnetic field generation source. The permanent magnet 1 is formed in a spherical shape or a curved body shape having an appropriate curved surface, and is embedded in the end face of the cylindrical support body 2 so that substantially half is exposed. The shaft portion 3 extending integrally from the support 2 is linked to the driving means to perform a motion operation such as rotation.

軸バイトの周りに磁気研磨液(磁気ペースト6)を付着させると、磁気吸引力によりMFやMRF中の強磁性粒子(例えば鉄粒子),マグネタイト粒子が、多数凝集して磁気クラスタを形成する。この磁気クラスタは、磁束に沿うので対象物5に対立して針状に多数が立ち並ぶ態様を採る。これにより、磁気ペースト6が軸バイト(永久磁石1)に付着して磁気ブラシとなる。そして、磁気ブラシあるいは対象物5が回転動作することにより、両者間の相対運動のため磁気ブラシが対象物5の表面を接触した状態で移動する。その結果、対象物5の表面の凹凸は研磨粒子を伴う磁気ブラシが研磨し、より平滑な表面を得ることができ、非接触の流体研磨が行える。   When a magnetic polishing liquid (magnetic paste 6) is attached around the shaft tool, a large number of ferromagnetic particles (for example, iron particles) and magnetite particles in MF and MRF are aggregated by a magnetic attractive force to form a magnetic cluster. Since this magnetic cluster is along the magnetic flux, it takes a form in which a large number of needles stand in opposition to the object 5. Thereby, the magnetic paste 6 adheres to the axial cutting tool (permanent magnet 1) and becomes a magnetic brush. Then, when the magnetic brush or the object 5 rotates, the magnetic brush moves in contact with the surface of the object 5 due to the relative movement between them. As a result, the unevenness of the surface of the object 5 is polished by a magnetic brush with abrasive particles, a smoother surface can be obtained, and non-contact fluid polishing can be performed.

特開2007−313634号公報JP 2007-313634 A

しかしながら、図1に示すような研磨バイト(軸バイト)により表面処理を行う従来技術では、研磨力の低下が予想以上に早く進み、表面処理を安定に行えない問題が起きている。これは問題現象を検討したところ、対象物5に対して針状に多数が立ち並ぶはずの磁気クラスタが表面処理中に次第に永久磁石の露出側の磁極から押し出され、その一部が永久磁石の反対極側(非露出側)へ引き寄せられることにより、対象物5との狭間で磁気研磨ペーストが予想以上に早く不足してしまう現象が生じているようでもあると見ている。よって、従来技術は、対象物との狭間に必要十分な磁気ペーストを比較的長時間に渡り安定して存在し続けることが困難であるという課題がある。   However, in the conventional technique in which the surface treatment is performed using a polishing tool (shaft tool) as shown in FIG. 1, the reduction of the polishing force proceeds faster than expected, and there is a problem that the surface treatment cannot be performed stably. As a result of examining the problem phenomenon, magnetic clusters that should be arranged in a needle shape with respect to the object 5 are gradually pushed out from the magnetic pole on the exposed side of the permanent magnet during the surface treatment, and a part of the magnetic cluster is opposite to the permanent magnet. It is considered that the phenomenon that the magnetic polishing paste becomes insufficient more quickly than expected between the object 5 and the object 5 by being drawn toward the pole side (non-exposed side). Therefore, the conventional technique has a problem that it is difficult to stably and stably maintain a necessary and sufficient magnetic paste for a relatively long time between the object and the object.

上記の課題を解決するため、本発明に係る表面処理のための軸バイトは、対象物に対して非接触の状態を保ち、周辺に存在させた磁気ペーストを連動することにより微細な削り作用の表面処理を行う軸バイトであって、(1)球体形状あるいは先端側が適宜な曲面形状をなす永久磁石と、円柱形状であり永久磁石の取り付け部位を端部へ接合状態に保持する支持体と、支持体から一体に延びていて回転軸や振動軸等の駆動手段へ連係させる軸部と、支持体に嵌め合う環状形状であり非磁性体材料から形成するカバーリングとを備え、そのカバーリングは支持体へ嵌め合わせて永久磁石における磁極間の略中央よりも上側を少なくとも覆う位置に固定し、前記永久磁石の先端は前記カバーリングよりも外に突出するとともに、その突出した前記永久磁石の先端から出力される磁束のうち前記先端と対極側へ向かうものを前記カバーリングが遮るように構成する。 In order to solve the above-mentioned problems, the shaft tool for surface treatment according to the present invention maintains a non-contact state with respect to the object, and has a fine cutting action by interlocking with the magnetic paste present in the periphery. An axial cutting tool for performing surface treatment, (1) a permanent magnet having a spherical shape or an appropriate curved surface on the tip side, and a support that is cylindrical and holds the attachment portion of the permanent magnet in an end state; A shaft portion that extends integrally from the support and is linked to a driving means such as a rotation shaft and a vibration shaft, and a cover ring that is formed from a non-magnetic material and has an annular shape that fits the support, by fitting to a support fixed to at least cover position above the substantially central between the magnetic poles in the permanent magnet, the tip of the permanent magnet with protruding outer than the cover ring and the projecting above The covering those toward the distal end and the counter electrode side of the magnetic flux outputted from the tip of the permanent magnet is configured to block.

(2)カバーリングは、樹脂材料あるいはアルミ材料などの非磁性体材料から形成する構成にするとよい。(3)カバーリングは、下側周縁を角のない傾斜部位に形成する構成にするとよい。(4)カバーリングの周面にラジアル方向にねじ孔を設け、支持体に対してねじ止めにより連係させる構成にするとよい。(5)カバーリングは環状形状の一所を分断した略C字形状に形成するとともに、当該分断部位を貫く向きにねじ孔を設けてねじ止め連結し、支持体に対してねじ止め連結の締め付け力により連係させる構成にするとよい。(6)カバーリングは、支持体と一体に形成する構成にするとよい。   (2) The cover ring may be formed of a non-magnetic material such as a resin material or an aluminum material. (3) The cover ring may be configured such that the lower peripheral edge is formed in an inclined portion without a corner. (4) It is good to make it the structure which provides a screw hole in the radial direction in the surrounding surface of a cover ring, and is linked with a support body by screwing. (5) The cover ring is formed in a substantially C shape with one part of the annular shape divided, and a screw hole is provided in a direction penetrating the divided part to be screwed and connected to the support body. It is good to make it the structure linked by force. (6) The cover ring may be formed integrally with the support.

係る構成にすることにより本発明では、カバーリングが永久磁石を覆い、永久磁石の露出部分は、その磁極間の略中央よりも下側だけになる。磁気ペーストにおいて磁気クラスタは磁束に沿って立ち並ぶことから、永久磁石の反対極(非露出側)へ向かうものはカバーリングが遮り阻止する作用を行う。つまり、永久磁石の反対極(非露出側)へ向かう磁気クラスタは対象物の表面処理には寄与しない無駄になる成分であり、カバーリングが遮り阻止するので無駄になる磁気クラスタを低減できる。このため磁場の力(磁束密度)を、対象物の表面へ向かう磁気クラスタにだけ集中させることができ、磁気クラスタの分布状況を良好に改善できる。また、永久磁石の反対極(非露出側)へ向かう磁気クラスタをカバーリングが遮り阻止するので、磁気ペーストは散逸を抑えられて対象物との狭間に長く留まることになる。   With this configuration, in the present invention, the cover ring covers the permanent magnet, and the exposed portion of the permanent magnet is only below the approximate center between the magnetic poles. In the magnetic paste, the magnetic clusters are arranged along the magnetic flux, so that the covering toward the opposite pole (non-exposed side) of the permanent magnet acts to prevent the covering from blocking. That is, the magnetic cluster toward the opposite pole (non-exposed side) of the permanent magnet is a wasted component that does not contribute to the surface treatment of the object, and the covering is prevented from blocking, so that the wasted magnetic cluster can be reduced. For this reason, the force (magnetic flux density) of a magnetic field can be concentrated only on the magnetic cluster which goes to the surface of a target object, and the distribution situation of a magnetic cluster can be improved favorably. In addition, since the cover ring blocks and blocks the magnetic cluster toward the opposite pole (non-exposed side) of the permanent magnet, the magnetic paste can be prevented from dissipating and stay long between the object and the object.

本発明に係る表面処理のための軸バイトでは、磁気ペーストにおいて、永久磁石の反対極(非露出側)へ向かう磁気クラスタはカバーリングが遮り阻止する作用を行い、無駄になる磁気クラスタを低減できる。そして、磁場の力(磁束密度)を、対象物の表面へ向かう磁気クラスタにだけ集中させることができ、磁気クラスタの分布状況を良好に改善できる。また、無駄になる成分の磁気クラスタをカバーリングが遮り阻止するので、磁気ペーストは散逸を抑えられて対象物との狭間に長く留まり、対象物との狭間に磁気ペーストを必要十分に分散,確保することができる。その結果、表面処理を高い研磨力で安定に行うことができる。   In the axial cutting tool for surface treatment according to the present invention, in the magnetic paste, the magnetic cluster toward the opposite pole (non-exposed side) of the permanent magnet acts to prevent the covering from blocking, thereby reducing the magnetic cluster that is wasted. . And the force (magnetic flux density) of a magnetic field can be concentrated only on the magnetic cluster which goes to the surface of a target object, and the distribution situation of a magnetic cluster can be improved favorably. In addition, since the covering prevents and blocks the magnetic clusters of wasted components, the magnetic paste can be prevented from dissipating and stay long between the target and the magnetic paste is dispersed and secured between the target and the target. can do. As a result, the surface treatment can be stably performed with high polishing power.

軸バイトの従来の一例を示す側面図である。It is a side view which shows an example of the conventional shaft tool. 本発明に係る軸バイトの第1の実施形態を示す側面図であり、カバーリングを分離して示している。It is a side view which shows 1st Embodiment of the axial cutting tool which concerns on this invention, and has shown the cover ring isolate | separated. カバーリングを装着した状態を示し、(a)は側面図および(b)は上から見た平面図である。The state which attached the cover ring is shown, (a) is a side view, (b) is the top view seen from the top. 図2,3の軸バイトによる表面処理を説明する側面図であり、カバーリングの固定を、(a)は永久磁石における磁極間の略中央よりも上側を覆う位置とした装着状態を示し、(b)は永久磁石における磁極間の略中央よりも下側で当該以上を覆う位置とした装着状態を示している。FIGS. 2A and 2B are side views for explaining surface treatment by the shaft tool of FIGS. 2 and 3, and FIG. 2A shows a mounting state in which the cover ring is fixed at a position covering the upper side from the approximate center between the magnetic poles in the permanent magnet; b) shows a mounting state in which the upper part is positioned below the substantial center between the magnetic poles of the permanent magnet. 本発明に係る軸バイトの第2の実施形態を示す側面図であり、カバーリングを分離して示している。It is a side view which shows 2nd Embodiment of the axial cutting tool which concerns on this invention, and has shown the cover ring isolate | separated. 図5のカバーリングの装着状態を示し、(a)は側面図および(b)は上から見た平面図である。FIG. 5 shows a state in which the cover ring of FIG. 永久磁石と支持体との接合部位の他例であり、両者を分離して示す側面図である。It is another example of the junction part of a permanent magnet and a support body, and is a side view which isolate | separates and shows both. カバーリングの他例を適用した軸バイトの側面図である。It is a side view of the axis | shaft cutting tool to which the other example of a cover ring is applied. 評価試験に使用した軸バイトを示す側面図であり、(a)は図6の本発明に係る軸バイト、(b)は(a)からカバーリングを取り外した比較例1の軸バイト、(c)は永久磁石の露出量が相違した比較例2の軸バイトである。It is a side view which shows the axis | shaft bite used for the evaluation test, (a) is the axis bite which concerns on this invention of FIG. 6, (b) is the axis bite of the comparative example 1 which removed the cover ring from (a), (c ) Is an axial tool of Comparative Example 2 in which the exposure amount of the permanent magnet is different. 評価試験の条件を説明する平面図である。It is a top view explaining the conditions of an evaluation test. 評価試験の結果を示す表面粗さのグラフであり、(a)は図6の本発明に係る軸バイトの研磨結果、(b)は(a)からカバーリングを取り外した比較例1の軸バイトの研磨結果、(c)は永久磁石の露出量が相違した比較例2の軸バイトの研磨結果である。It is a graph of the surface roughness which shows the result of an evaluation test, (a) is the grinding | polishing result of the axial cutting tool based on this invention of FIG. 6, (b) is the axial cutting tool of the comparative example 1 which removed the cover ring from (a). (C) shows the polishing result of the axial cutting tool of Comparative Example 2 in which the exposure amount of the permanent magnet was different.

図2,図3は本発明の第1の実施形態を示している。本形態において軸バイトは、永久磁石1と、その永久磁石1を接合状態に保持する支持体2と、支持体2から一体に延びる軸部3と、支持体2に嵌め合うカバーリング4とを備えてている。そして、先端の永久磁石1を磁場の発生源とし、対象物に対して非接触の状態を保ち、周辺に存在させた磁気研磨液(磁気ペースト)を連動することにより微細な削り作用の表面処理を行う構成になっている。   2 and 3 show a first embodiment of the present invention. In this embodiment, the shaft tool includes a permanent magnet 1, a support body 2 that holds the permanent magnet 1 in a joined state, a shaft portion 3 that extends integrally from the support body 2, and a cover ring 4 that fits the support body 2. I have. Then, a surface treatment with a fine cutting action is performed by using the permanent magnet 1 at the tip as a magnetic field generation source, maintaining a non-contact state with respect to the object, and interlocking with a magnetic polishing liquid (magnetic paste) existing in the vicinity. It is the composition which performs.

永久磁石1は、球体形状に形成している。そして、支持体2は非磁性体材料から円柱形状に形成し、端部を所定曲率の凹所20に成形してあって、永久磁石1の取り付け部位をその凹所20へ嵌め合わせて固着させ、所定に埋め込ませた接合状態に保持している。本形態では、永久磁石1は側面から見て直径の略60%が露出する設定とし、略40%を端部へ埋め込ませるようにしている。永久磁石1は磁化の向きを軸心sに略一致させる設定で固着し、これはズレ位置で略平行となる関係にすることもよい。   The permanent magnet 1 is formed in a spherical shape. The support 2 is formed in a cylindrical shape from a non-magnetic material, and its end is formed in a recess 20 having a predetermined curvature, and the attachment site of the permanent magnet 1 is fitted into the recess 20 and fixed. , Held in a predetermined embedded state. In this embodiment, the permanent magnet 1 is set so that approximately 60% of the diameter is exposed when viewed from the side, and approximately 40% is embedded in the end portion. The permanent magnet 1 may be fixed so as to make the direction of magnetization substantially coincide with the axis s, and this may be in a relationship of being substantially parallel at the shift position.

カバーリング4は、樹脂材料あるいはアルミ材料などの非磁性体材料から環状形状に形成し、支持体2へ嵌め合わせて永久磁石1における磁極間の略中央よりも上側を少なくとも覆う位置に固定する。このカバーリング4は、本形態では図3(b)に示すように、環状形状の一所を分断した略C字形状に形成するとともに、当該分断部位を貫く向きにねじ孔を設けてねじ止め連結し、支持体2に対してねじ止め連結の締め付け力により連係させる構成にしている。そして後述するように、カバーリング4の固定位置は、表面処理の仕上げレベル等に応じて適宜に調整することができる。   The cover ring 4 is formed in a ring shape from a non-magnetic material such as a resin material or an aluminum material, and is fitted to the support 2 and fixed at a position covering at least the upper side of the substantial center between the magnetic poles of the permanent magnet 1. In this embodiment, as shown in FIG. 3 (b), the cover ring 4 is formed in a substantially C-shape in which one part of the annular shape is divided, and a screw hole is provided in a direction penetrating the divided part and screwed. It connects and it is made the structure linked with the support body 2 by the fastening force of a screwing connection. As will be described later, the fixing position of the cover ring 4 can be appropriately adjusted according to the finishing level of the surface treatment.

図4は、図2,図3の軸バイトによる表面処理を説明する側面図であり、カバーリング4の固定を、(a)は永久磁石1における磁極間の略中央よりも上側を覆う位置とした装着状態を示し、(b)は永久磁石1における磁極間の略中央よりもさらに下側で当該以上を覆う位置とした装着状態を示している。   FIG. 4 is a side view for explaining the surface treatment by the shaft tool of FIGS. 2 and 3, in which the cover ring 4 is fixed, and (a) is a position covering the upper side from the approximate center between the magnetic poles in the permanent magnet 1. (B) has shown the mounting state which made the position which covers the said further further from the approximate center between the magnetic poles in the permanent magnet 1 below.

表面処理において、軸部3は回転軸や振動軸等の駆動手段へ連係させる。そして、その駆動手段の駆動により所定の運動動作を行わせる。例えば駆動手段の駆動により回転動作を行わせるとともに、対象物5と対面した姿勢で移動動作を行わせることにより、対象物5の表面に対して走査動作が行える。軸バイトには単に回転動作を行わせるのではなく、例えば正転,逆転の動作を繰り返す反転動作や、当該軸方向に振動動作を行わせるなど、適宜な運動動作を行うようにしてもよい。駆動手段には例えばNC工作機を用いればよく、ボール盤,旋盤,NC旋盤,フライス盤などの回転軸(チャック部)に軸バイトの軸部3を取り付け、着脱を行うようにする。   In the surface treatment, the shaft portion 3 is linked to driving means such as a rotating shaft or a vibration shaft. Then, a predetermined motion is performed by driving the driving means. For example, a scanning operation can be performed on the surface of the object 5 by performing a rotation operation by driving the driving means and performing a moving operation in a posture facing the object 5. The shaft tool may not be simply rotated, but may be appropriately moved, for example, a reversing operation that repeats forward and reverse operations, or a vibrating operation in the axial direction. For example, an NC machine tool may be used as the drive means, and the shaft portion 3 of the shaft tool is attached to and detached from a rotation shaft (chuck portion) of a drilling machine, lathe, NC lathe, milling machine or the like.

対象物5に対して軸バイト(永久磁石1)の間隔は、例えば0.1mmから2.0mmの範囲とし、永久磁石1を所定に回転動作させる。軸バイトの回転動作では、先端の永久磁石1をむやみと高速回転させることは研磨が過剰になりムラに仕上がる等の不良を起こす問題があるため、平滑面を良好に得るには、当該回転における周速を所定範囲内とすることがよい。つまり、周速は磁気ペースト6が飛散を起こさない程度に上限値を設定し、所定の下限値から上限値の範囲内となる表面処理を行うことが好ましい。   The distance between the shaft tool (permanent magnet 1) relative to the object 5 is, for example, in the range of 0.1 mm to 2.0 mm, and the permanent magnet 1 is rotated in a predetermined manner. In the rotating operation of the shaft tool, since the permanent magnet 1 at the tip is rotated at a high speed, there is a problem that the polishing becomes excessive and the surface is unevenly finished. The peripheral speed is preferably within a predetermined range. That is, it is preferable to set the upper limit of the peripheral speed so that the magnetic paste 6 does not scatter and perform a surface treatment that falls within the range of the upper limit from the predetermined lower limit.

磁気ペースト6は、磁性粒子および溶媒との2成分を含む組成とし、溶媒には植物油脂などを用いる。この磁気ペースト6は対象物5と軸バイトとの狭間へ供給手段により供給する。   The magnetic paste 6 has a composition containing two components of magnetic particles and a solvent, and vegetable oil or the like is used as the solvent. This magnetic paste 6 is supplied by a supply means between the object 5 and the shaft tool.

磁性粒子には、フェライト粒子などの軟磁性焼結体や鉄粉等の金属粒子などを用いることができる。フェライト粒子は酸化鉄を主成分とするセラミックスであり大半が強磁性を示し、磁化を持つため磁界をかけることで当該粒子は磁気クラスタを形成する。鉄粉等の磁化し得る金属粒子でも同様であり、磁界をかけることで当該粒子は磁気クラスタを形成する。そして、フェライト粒子や鉄粉等の金属粒子は、対象物5に対しては十分に硬く、したがって研磨のための砥粒として機能させることができ、磁気クラスタそのものが、微細な削り作用による表面処理を行うための磁気ブラシとなる。   As the magnetic particles, soft magnetic sintered bodies such as ferrite particles, metal particles such as iron powder, and the like can be used. Ferrite particles are ceramics mainly composed of iron oxide, and most of them are ferromagnetic and have magnetization so that the particles form magnetic clusters by applying a magnetic field. The same applies to magnetizable metal particles such as iron powder. When a magnetic field is applied, the particles form magnetic clusters. The metal particles such as ferrite particles and iron powder are sufficiently hard for the object 5 and can therefore function as abrasive grains for polishing, and the magnetic cluster itself is a surface treatment by a fine cutting action. It becomes a magnetic brush for performing.

磁気ペースト6には樹脂粒子をさらに混在させることもよい。この場合、樹脂粒子は溶媒に溶解しない不溶解性で低融点の樹脂材料から形成する。また、樹脂粒子の形状は、例えば球形状とすればよく、あるいは繊維状等の非球形状に形成することでもよい。植物油脂に溶解しない樹脂材料では、例えばポリエチレン(PE),ポリスチレン(PS),ポリメチルメタクリレート(PMMA),ポリエチレンテレフタレート(PET),ポリ塩化ビニル(PVC)などが利用できる。この樹脂粒子の形状は、球形の他に繊維状等の非球形粒子でもよい。   The magnetic paste 6 may be further mixed with resin particles. In this case, the resin particles are formed from an insoluble and low melting point resin material that does not dissolve in the solvent. Moreover, the shape of the resin particles may be, for example, a spherical shape, or may be formed in a non-spherical shape such as a fibrous shape. Examples of resin materials that do not dissolve in vegetable oils include polyethylene (PE), polystyrene (PS), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The shape of the resin particles may be non-spherical particles such as fibers in addition to the spherical shape.

軸バイトの運動動作は上述したように、単なる回転動作や正転,逆転を繰り返す反転動作など、所定の運動動作を行わせ、そして、対面する対象物5に対しては表面を順次になぞっていく移動動作を行わせ、通常の一般的な走査動作を行う。このとき、軸バイト(永久磁石1)の近辺には磁気ペースト6を供給しておく。   As described above, the movement of the axis tool is caused to perform a predetermined movement such as a simple rotation operation, a reversal operation that repeats normal rotation, and reverse rotation, and the object 5 to be faced is sequentially traced on the surface. An ordinary general scanning operation is performed by performing a moving operation. At this time, the magnetic paste 6 is supplied in the vicinity of the shaft tool (permanent magnet 1).

軸バイトと対象物5との間には磁気ペースト6が存在し、当該磁気ペースト6はフェライト粒子や鉄粉など磁性粒子を含み、永久磁石1により磁気ペースト6に時間的に定常的あるいは変動的な磁界が加わると磁気クラスタが生成する。つまり、磁気研磨液中のフェライト粒子や鉄粉など磁性粒子が、磁気吸引力により多数凝集して磁気クラス夕となる。そして、フェライト粒子や鉄粉など磁性粒子は研磨のための砥粒として機能し、磁気クラスタそのものが、微細な削りを行う磁気ブラシとなる。磁気ブラシは、磁束に沿って対象物5に対立して針状に多数が立ち並び、砥粒作用を行うフェライト粒子が対象物5の表面に抑えつけられる。このとき、軸バイトは走査動作することから、フェライト粒子は対象物5の表面上を接触しつつ運動して微細な削りを行う。これにより、非接触の微細な削り作用による表面処理を行うことができる。   A magnetic paste 6 exists between the shaft bite and the object 5, and the magnetic paste 6 includes magnetic particles such as ferrite particles and iron powder. When a strong magnetic field is applied, a magnetic cluster is generated. That is, a large number of magnetic particles such as ferrite particles and iron powder in the magnetic polishing liquid are aggregated by the magnetic attractive force to form a magnetic class. Magnetic particles such as ferrite particles and iron powder function as abrasive grains for polishing, and the magnetic cluster itself becomes a magnetic brush that performs fine cutting. A large number of magnetic brushes line up in a needle-like manner against the object 5 along the magnetic flux, and ferrite particles that perform an abrasive action are suppressed on the surface of the object 5. At this time, since the axial cutting tool performs a scanning operation, the ferrite particles move while making contact with the surface of the object 5 to perform fine cutting. Thereby, the surface treatment by a non-contact fine cutting action can be performed.

この場合、カバーリング4が永久磁石1を覆い、永久磁石1の露出部分は、図4(a)に示すように、その磁極間の略中央よりも下側だけになる。あるいは図4(b)に示すように、磁極間の略中央よりもさらに下側だけに調整することもでき、例えば側面から見て直径の略25%程度だけが露出する設定もできる。   In this case, the cover ring 4 covers the permanent magnet 1, and the exposed portion of the permanent magnet 1 is only below the approximate center between the magnetic poles, as shown in FIG. Or as shown in FIG.4 (b), it can also adjust only in the further lower side rather than the approximate center between magnetic poles, for example, the setting which only about 25% of a diameter sees from a side surface can be exposed.

ここで、磁気ペースト6において磁気クラスタは磁束に沿って立ち並ぶことから、永久磁石1の反対極(非露出側)へ向かうものはカバーリング4が遮り阻止する作用を行う。つまり、永久磁石1の反対極(非露出側)へ向かう磁気クラスタは対象物5の表面処理には寄与しない無駄になる成分であり、カバーリング4が遮り阻止するので無駄になる磁気クラスタを低減できる。このため磁場の力(磁束密度)を、対象物5の表面へ向かう磁気クラスタにだけ集中させることができ、磁気クラスタの分布状況を良好に改善できる。また、永久磁石1の反対極(非露出側)へ向かう磁気クラスタをカバーリング4が遮り阻止するので、磁気ペースト6は散逸を抑えられて対象物5との狭間に長く留まることになる。したがって、対象物5との狭間に磁気ペースト6を必要十分に分散,確保することができ、その結果、表面処理を高い研磨力で安定に行うことができる。   Here, since the magnetic clusters are arranged along the magnetic flux in the magnetic paste 6, the cover ring 4 acts to prevent the permanent magnet 1 from moving toward the opposite pole (non-exposed side). That is, the magnetic cluster toward the opposite pole (non-exposed side) of the permanent magnet 1 is a useless component that does not contribute to the surface treatment of the object 5, and the cover ring 4 prevents the magnetic cluster from being blocked. it can. For this reason, the force (magnetic flux density) of a magnetic field can be concentrated only on the magnetic cluster which goes to the surface of the target object 5, and the distribution situation of a magnetic cluster can be improved favorably. Further, since the cover ring 4 blocks and blocks the magnetic cluster toward the opposite pole (non-exposed side) of the permanent magnet 1, the magnetic paste 6 can be prevented from dissipating and stay long between the object 5. Therefore, the magnetic paste 6 can be sufficiently and sufficiently dispersed and secured between the object 5 and the surface treatment can be stably performed with a high polishing force.

図4(b)に示すように、カバーリング4をさらに下側に装着する設定では、カバーリング4が対象物5側へより接近するので、磁気ペースト6は高さが低くより狭い領域に高密度に留めることができる。したがって、磁場の力(磁束密度)を対象物5の表面へ向かう磁気クラスタにだけ集中させる作用をより強力に得ることができる。そして、磁気ペースト6の散逸を抑えて対象物5との狭間に長く留める作用もより強力に得ることができる。その結果、表面処理をより高い研磨力でより安定に行うことができる。   As shown in FIG. 4B, in the setting where the cover ring 4 is further attached to the lower side, the cover ring 4 is closer to the object 5 side, so that the magnetic paste 6 is lower in height and higher in a narrower region. Can be kept in density. Therefore, the effect of concentrating the magnetic field force (magnetic flux density) only on the magnetic cluster toward the surface of the object 5 can be obtained more strongly. And the effect | action which suppresses dissipation of the magnetic paste 6 and is kept long between the objects 5 can also be acquired more strongly. As a result, the surface treatment can be more stably performed with a higher polishing force.

図5,図6は、本発明の第2の実施形態を示している。本形態において軸バイトは、基本的には第1の実施形態と同様であり、球体形状の永久磁石1を支持体2に保持させて磁場の発生源とする構成を採る。第1の実施形態と同様な構成には同一符号を付してあり、その説明を省略する。   5 and 6 show a second embodiment of the present invention. In this embodiment, the axial cutting tool is basically the same as that of the first embodiment, and adopts a configuration in which the spherical permanent magnet 1 is held by the support 2 and used as a magnetic field generation source. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本形態では、永久磁石1の取り付け状態および支持体2に嵌め合うカバーリング4の形状等を変更した構成にしている。つまり、永久磁石1の直径に対して支持体2の外径をやや細く設定し、そして支持体2の端部の凹所20も浅く成形している。これにより、永久磁石1は側面から見て直径の略86%が露出する設定とし、略14%を端部へ埋め込ませるようにしている。   In this embodiment, the mounting state of the permanent magnet 1 and the shape of the cover ring 4 fitted to the support 2 are changed. That is, the outer diameter of the support 2 is set to be slightly thinner than the diameter of the permanent magnet 1, and the recess 20 at the end of the support 2 is also shallowly formed. Thereby, the permanent magnet 1 is set so that approximately 86% of the diameter is exposed when viewed from the side, and approximately 14% is embedded in the end portion.

カバーリング4は環状形状に形成するが、下側周縁を角のない傾斜部位40に形成し、周面にはラジアル方向にねじ孔を設け、支持体2に対してねじ止めにより連係させる構成にしている。このカバーリング4は、下側端面を所定曲率の凹所41に成形してあって永久磁石1の対応部位と適合し、支持体2へ嵌め合わせた際は、永久磁石1における磁極間の略中央よりも上側を少なくとも覆う位置で固定できるようになっている。   Although the cover ring 4 is formed in an annular shape, the lower peripheral edge is formed in an inclined portion 40 having no corners, and a screw hole is provided in the circumferential direction in a radial direction so as to be linked to the support 2 by screwing. ing. The cover ring 4 has a lower end surface formed into a recess 41 having a predetermined curvature and is adapted to a corresponding portion of the permanent magnet 1. When the cover ring 4 is fitted to the support 2, the cover ring 4 has a substantial gap between the magnetic poles of the permanent magnet 1. It can be fixed at a position covering at least the upper side from the center.

永久磁石1の形状は球体形状に限らず適宜であるが、先端側が適宜な曲面形状をなす曲面体が好ましい。例えば図7に示すように、永久磁石1は、球体形状の一部を平坦にカットして当該平坦面を支持体2との取り付け部位10に形成することもできる。この場合、支持体2の端部は凹所に成形する必要がなく、平坦に仕上げた端部へ取り付け部位10を固着させる構成になり、永久磁石1を接合状態に保持できる。また、カバーリング4は図8に示すように、支持体2と一体に形成する構成にすることもよい。   The shape of the permanent magnet 1 is not limited to a spherical shape, but may be appropriate, but a curved body with an appropriate curved shape on the tip side is preferable. For example, as shown in FIG. 7, the permanent magnet 1 can also cut a part of a spherical shape into a flat shape and form the flat surface at an attachment site 10 with the support 2. In this case, the end portion of the support body 2 does not need to be formed into a recess, and the attachment portion 10 is fixed to the end portion that is finished flat, so that the permanent magnet 1 can be held in a joined state. Further, the cover ring 4 may be formed integrally with the support 2 as shown in FIG.

このように、カバーリング4について傾斜部位40を設ける構成であっても、作用は第1の実施形態と同様であり、磁気ペースト6において、永久磁石1の反対極(非露出側)へ向かう磁気クラスタはカバーリング4が遮り阻止する作用を行い、無駄になる磁気クラスタを低減できる。そして、磁場の力(磁束密度)を、対象物5の表面へ向かう磁気クラスタにだけ集中でき、磁気クラスタの分布状況を良好に改善できる。また、無駄になる成分の磁気クラスタをカバーリング4が遮り阻止するので、磁気ペースト6は散逸を抑えられて対象物5との狭間に長く留まり、対象物5との狭間に磁気ペースト6を必要十分に分散,確保することができる。その結果、表面処理を高い研磨力で安定に行うことができる。   Thus, even if it is the structure which provides the inclination part 40 about the cover ring 4, an effect | action is the same as that of 1st Embodiment, and in the magnetic paste 6, the magnetism which goes to the opposite pole (non-exposed side) of the permanent magnet 1 The cluster acts to prevent the cover ring 4 from blocking, and the magnetic clusters that are wasted can be reduced. And the force (magnetic flux density) of a magnetic field can be concentrated only on the magnetic cluster which goes to the surface of the target object 5, and the distribution condition of a magnetic cluster can be improved favorably. In addition, since the covering 4 blocks and blocks the magnetic cluster of wasted components, the magnetic paste 6 can be prevented from dissipating and stay long between the object 5 and the magnetic paste 6 is necessary between the object 5 and the object. It can be sufficiently dispersed and secured. As a result, the surface treatment can be stably performed with high polishing power.

本発明の効果を実証するため、図9に示す3種類の軸バイトを用いて試料の表面処理(研磨)を行った。評価試験に使用した軸バイトは、図9(a)の本発明に係る軸バイト、図9(b)の比較例1の軸バイト、図9(c)の比較例2の軸バイトである。そして、これらの軸バイトにより試料の表面処理(研磨)を行い、それら試料について表面粗さ(算術平均粗さRa,十点平均粗さRz)を評価した。   In order to demonstrate the effect of the present invention, the surface treatment (polishing) of the sample was performed using the three types of axial tools shown in FIG. The axis tool used in the evaluation test is the axis tool according to the present invention in FIG. 9A, the axis tool in Comparative Example 1 in FIG. 9B, and the axis tool in Comparative Example 2 in FIG. 9C. Then, the surface treatment (polishing) of the samples was performed using these axial tools, and the surface roughness (arithmetic average roughness Ra, ten-point average roughness Rz) of these samples was evaluated.

図9(a)の本発明に係る軸バイトは図6に示す構成であって、球体形状の永久磁石1は直径30mmとし、円柱形状の支持体2は直径20mmとし、傾斜部位40を設けたカバーリング4は永久磁石1における磁極間の略中央よりも上側を覆う位置に固定した。図9(b)の比較例1の軸バイトは、図9(a)からカバーリング4を取り外した構成であって、球体形状の永久磁石1は直径30mmとし、円柱形状の支持体2は直径20mmとし、永久磁石1は側面から見て直径の略86%が露出する設定とし、略14%を支持体2の端部へ埋め込ませた。図9(c)の比較例2の軸バイトは、永久磁石1の露出量が相違した構成であって、球体形状の永久磁石1は直径30mmとし、円柱形状の支持体2も直径30mmとし、永久磁石1は側面から見て直径の略60%が露出する設定とし、略40%を支持体2の端部へ埋め込ませた。   The axial cutting tool according to the present invention in FIG. 9A has the configuration shown in FIG. 6. The spherical permanent magnet 1 has a diameter of 30 mm, the cylindrical support 2 has a diameter of 20 mm, and an inclined portion 40 is provided. The cover ring 4 was fixed at a position covering the upper side of the substantial center between the magnetic poles of the permanent magnet 1. 9B is a configuration in which the cover ring 4 is removed from FIG. 9A, the spherical permanent magnet 1 has a diameter of 30 mm, and the cylindrical support 2 has a diameter. The permanent magnet 1 was set to expose approximately 86% of the diameter when viewed from the side, and approximately 14% was embedded in the end of the support 2. The shaft tool of Comparative Example 2 in FIG. 9 (c) has a configuration in which the exposure amount of the permanent magnet 1 is different, the spherical permanent magnet 1 has a diameter of 30 mm, and the cylindrical support body 2 has a diameter of 30 mm. The permanent magnet 1 was set to expose approximately 60% of the diameter when viewed from the side, and approximately 40% was embedded in the end of the support 2.

試料は厚さ5mmの銅板片(サイズ50×50mm)であり、図10に示すように6枚を並べて使用した。磁気ペースト6は磁性粉末75%,潤滑油(植物油脂)25%に調製したものとし、1回の表面処理につき30gを使用した。表面処理の条件は、軸バイト(永久磁石1)と対象物5との非接触の隙間を0.5mmとし、軸バイトの回転数は500rpmとし、走査動作は移動速度400mm/minで移動ピッチ0.2mmとし、研磨時間は試料の銅板片1枚につき0.5時間とし、図10に示すように6枚を連続して処理したので全体では3時間になった。   The sample was a copper plate piece (size 50 × 50 mm) having a thickness of 5 mm, and six sheets were used side by side as shown in FIG. The magnetic paste 6 was prepared to 75% magnetic powder and 25% lubricating oil (vegetable oil), and 30 g was used per surface treatment. The surface treatment conditions were as follows: the non-contact gap between the shaft tool (permanent magnet 1) and the object 5 was 0.5 mm, the shaft tool rotation speed was 500 rpm, and the scanning operation had a moving speed of 400 mm / min and a moving pitch of 0. The polishing time was 0.5 hour for each copper plate piece of the sample, and 6 pieces were processed continuously as shown in FIG.

上述した条件により表面処理を行い、それら試料について表面粗さを測定したところ、図11に示すグラフを得た。図11(a)は図6の本発明に係る軸バイトの研磨結果、図11(b)は図11(a)からカバーリングを取り外した比較例1の軸バイトの研磨結果、図11(c)は永久磁石1の露出量が相違した比較例2の軸バイトの研磨結果である。   When the surface treatment was performed under the above-described conditions and the surface roughness was measured for these samples, the graph shown in FIG. 11 was obtained. FIG. 11 (a) shows the result of polishing the shaft bit according to the present invention of FIG. 6, FIG. 11 (b) shows the result of polishing of the shaft bit of Comparative Example 1 with the cover ring removed from FIG. 11 (a), and FIG. ) Is a result of polishing the axial cutting tool of Comparative Example 2 in which the exposure amount of the permanent magnet 1 is different.

同図から明らかなように、(a)では良好な仕上げ面を得ることができており、(b)では研磨時間が20分程度から研磨力の低下があり、(c)でも研磨時間が60分程度から研磨力の低下があった。そして、本発明に係る軸バイト(a)にあっては、表面処理を高い研磨力で長時間安定に行えて適正な表面が得られることを確認した。これは、磁気クラスタの分布状況を良好に改善できており、対象物5との狭間に磁気ペースト6を必要十分に分散,確保できていることの結果であると言える。   As can be seen from FIG. 5, a good finished surface can be obtained in (a), the polishing power is reduced from about 20 minutes in (b), and the polishing time is 60 in (c). The polishing power decreased from about a minute. And in the axial tool | tool (a) which concerns on this invention, it confirmed that surface treatment could be performed stably for a long time with high polishing power, and an appropriate surface was obtained. This can be said to be a result of the fact that the distribution state of the magnetic clusters can be improved satisfactorily and the magnetic paste 6 is sufficiently and sufficiently dispersed and secured between the objects 5.

1 永久磁石
2 支持体
3 軸部
4 カバーリング
5 対象物
6 磁気ペースト
20,41 凹所
40 傾斜部位
s 軸心
DESCRIPTION OF SYMBOLS 1 Permanent magnet 2 Support body 3 Shaft part 4 Covering 5 Object 6 Magnetic paste 20, 41 Recess 40 Inclined part s Axis center

Claims (5)

対象物に対して非接触の状態を保ち、周辺に存在させた磁気ペーストを連動することにより微細な削り作用の表面処理を行う軸バイトであって、
球体形状あるいは先端側が適宜な曲面形状をなす永久磁石と、円柱形状であり前記永久磁石の取り付け部位を端部へ接合状態に保持する支持体と、前記支持体から一体に延びていて回転軸や振動軸等の駆動手段へ連係させる軸部と、前記支持体に嵌め合う環状形状であり非磁性体材料から形成するカバーリングとを備え、
前記カバーリングは前記支持体へ嵌め合わせて前記永久磁石における磁極間の略中央よりも上側を少なくとも覆う位置に固定し、前記永久磁石の先端は前記カバーリングよりも外に突出するとともに、その突出した前記永久磁石の先端から出力される磁束のうち前記先端と対極側へ向かうものを前記カバーリングが遮るように構成したことを特徴とする表面処理のための軸バイト。
An axial tool that performs a surface treatment of a fine cutting action by keeping a non-contact state with respect to an object and interlocking with a magnetic paste that exists in the periphery,
A permanent magnet having a spherical shape or an appropriately curved surface on the front end side, a columnar shape and a support body that holds the attachment portion of the permanent magnet in a joined state to the end portion, and a rotating shaft that extends integrally from the support body. A shaft portion linked to a driving means such as a vibration shaft, and a cover ring formed of a non-magnetic material that is an annular shape fitted to the support,
The cover ring is fitted to the support and fixed at a position covering at least the upper side of the substantially center between the magnetic poles of the permanent magnet, and the tip of the permanent magnet protrudes outside the cover ring, and the protrusion An axial cutting tool for surface treatment, wherein the cover ring blocks a magnetic flux output from the tip of the permanent magnet toward the tip and the counter electrode .
前記カバーリングは、樹脂材料あるいはアルミ材料などの非磁性体材料から形成することを特徴とする請求項1に記載の表面処理のための軸バイト。   2. The shaft tool for surface treatment according to claim 1, wherein the cover ring is made of a non-magnetic material such as a resin material or an aluminum material. 前記カバーリングは、下側周縁を角のない傾斜部位に形成することを特徴とする請求項1または2に記載の表面処理のための軸バイト。   The shaft tool for surface treatment according to claim 1, wherein the cover ring has a lower peripheral edge formed in an inclined portion having no corners. 前記カバーリングの周面にラジアル方向にねじ孔を設け、前記支持体に対してねじ止めにより連係させることを特徴とする請求項1から3の何れか1項に記載の表面処理のための軸バイト。   The shaft for surface treatment according to any one of claims 1 to 3, wherein a screw hole is provided in a radial direction on a peripheral surface of the cover ring and is linked to the support body by screwing. Part-Time Job. 前記カバーリングは環状形状の一所を分断した略C字形状に形成するとともに、当該分断部位を貫く向きにねじ孔を設けてねじ止め連結し、前記支持体に対して前記ねじ止め連結の締め付け力により連係させることを特徴とする請求項1から3の何れか1項に記載の表面処理のための軸バイト。   The cover ring is formed in a substantially C shape with one part of the annular shape divided, and a screw hole is provided in a direction penetrating the divided part and screwed and connected, and the screwed connection is tightened to the support. The shaft tool for surface treatment according to any one of claims 1 to 3, wherein the tool is linked by force.
JP2009037638A 2009-02-20 2009-02-20 Axle tool for surface treatment Expired - Fee Related JP5411526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037638A JP5411526B2 (en) 2009-02-20 2009-02-20 Axle tool for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037638A JP5411526B2 (en) 2009-02-20 2009-02-20 Axle tool for surface treatment

Publications (2)

Publication Number Publication Date
JP2010188494A JP2010188494A (en) 2010-09-02
JP5411526B2 true JP5411526B2 (en) 2014-02-12

Family

ID=42815111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037638A Expired - Fee Related JP5411526B2 (en) 2009-02-20 2009-02-20 Axle tool for surface treatment

Country Status (1)

Country Link
JP (1) JP5411526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886596B2 (en) * 2011-10-28 2016-03-16 Fdk株式会社 Polishing tool and surface treatment apparatus using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100713U (en) * 1989-01-27 1990-08-10
JPH1142559A (en) * 1997-07-26 1999-02-16 Yoshiaki Nagaura Manufacture of quartz oscillator
JP2008006521A (en) * 2006-06-28 2008-01-17 Fdk Corp Magnetic polishing method and device
JP2008264920A (en) * 2007-04-19 2008-11-06 Olympus Corp Grinding tool, magnetic grinding method, and magnetic grinding device

Also Published As

Publication number Publication date
JP2010188494A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP2007268689A (en) Magnetic abrasive finishing device, method therefor, and machining tool used therefor
JP2009072901A (en) Magnetic spiral polishing device
CN105458840A (en) Magnetostatic moving field magnetorheological polishing mechanism test device and processing method thereof
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
KR20070116333A (en) Abrasive blasting machine for cutting tool
JP2006224227A (en) Magnetic polishing method
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP5411526B2 (en) Axle tool for surface treatment
JPS59161262A (en) Magnetic attraction type method for abrasion
JP2007021661A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JPWO2006030854A1 (en) Polishing method and polishing apparatus for complex shapes
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP2007045878A (en) Magnetic abrasive grain
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
JP2008254106A (en) Paste material
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
JP2016137553A (en) Polishing apparatus and polishing method
JP5110678B2 (en) Magnetic polishing method
JP2007313634A (en) Polishing tool and mirror surface polishing method using it
JP2009166199A (en) Surface processing method using fine cutting action
JP2006088283A (en) Method and device for polishing and coating mirror surface
Wu et al. MCF (Magnetic Compound Fluid) Polishing Process for Free‐formed Resin Device using Robotic Arm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees