JP5411493B2 - 車両用動力伝達装置の油圧制御装置 - Google Patents

車両用動力伝達装置の油圧制御装置 Download PDF

Info

Publication number
JP5411493B2
JP5411493B2 JP2008326726A JP2008326726A JP5411493B2 JP 5411493 B2 JP5411493 B2 JP 5411493B2 JP 2008326726 A JP2008326726 A JP 2008326726A JP 2008326726 A JP2008326726 A JP 2008326726A JP 5411493 B2 JP5411493 B2 JP 5411493B2
Authority
JP
Japan
Prior art keywords
power transmission
hydraulic
differential
predetermined
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008326726A
Other languages
English (en)
Other versions
JP2010149538A (ja
Inventor
淳 田端
亨 松原
昌記 吉田
雅一 貝吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP2008326726A priority Critical patent/JP5411493B2/ja
Publication of JP2010149538A publication Critical patent/JP2010149538A/ja
Application granted granted Critical
Publication of JP5411493B2 publication Critical patent/JP5411493B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、駆動ポジションと非駆動ポジションとに選択的に切り換えられる切換装置の操作に基づいて油圧式係合装置の係合と解放とを行うことにより動力伝達可能状態と動力伝達遮断状態とに切り換えられる車両用動力伝達装置の油圧制御装置に係り、特に、切換装置が非駆動ポジションとされているときに関するものである。
油圧式係合装置の係合と解放とを行うことにより動力伝達経路における動力伝達可能状態と動力伝達遮断状態とに切り換えられる車両用動力伝達装置が良く知られている。例えば、特許文献1〜3の車両がそれである。この特許文献1の車両では、油圧式係合装置の係合・解放を行う自動変速機を備え、エンジンに連れ回されて回転駆動される機械式オイルポンプが油圧源となり、各係合装置へ供給される油圧の元圧が発生させられる。このような機械式オイルポンプは、エンジンが回転停止状態であるときは所定の元圧を発生させられない。そこで、特許文献1には、エンジンの回転状態に拘わらず独立して回転駆動される電動オイルポンプを機械式オイルポンプとは別に備え、エンジンの回転停止状態ではこの電動オイルポンプが駆動されて機械式オイルポンプと同様に上記元圧が発生させられることが記載されている。
また、特許文献3には、動力伝達可能状態への切換えを選択する為の駆動ポジションと動力伝達遮断状態への切換えを選択する為の非駆動ポジションとに人為的操作により切り換えられる切換装置を備え、その切換装置における操作に基づいて油圧式係合装置の係合と解放とを行うことにより動力伝達可能状態と動力伝達遮断状態とを切り換えることが記載されている。例えば、切換装置が非駆動ポジションから駆動ポジションへ切り換えられる際に、動力伝達可能状態へ切り換える為のクラッチを係合することが記載されている。
ここで、例えば切換装置が非駆動ポジションから駆動ポジションへ切り換えられた時に、駆動力源が回転停止状態である場合や機械式オイルポンプだけでは油量が不足する場合には、油圧供給源として電動オイルポンプを用い、車両発進や車両加速等に備えて動力伝達可能状態へ切り換える為の油圧式係合装置を所定時間内に係合することが考えられる。
特開2003−172165号公報 特開2004−324876号公報 特開2006−17282号公報
ところで、車両用動力伝達装置の設計上、切換装置の非駆動ポジションから駆動ポジションへの切換え時に係合する必要がある油圧式係合装置の数が増える可能性がある。また、車両用動力伝達装置の小型化の為に油圧式係合装置の配置に制限を受け、例えば油圧式係合装置が装置内の外周側に配置されることでその油圧式係合装置のチャンバ(すなわち油室、ピストン油圧室)容積が大きくされる可能性がある。このようなとき、切換装置の非駆動ポジションから駆動ポジションへの切換え時に油圧式係合装置を所定時間内に係合させようとすると、必要な供給油量が多くなり、その切換装置の切換え時の応答性が確保し難くなる可能性がある。また、上記別の観点では、作動油温が低いと、作動油の粘性が高くなってオイルポンプの駆動トルクが大きくなったりまた容積効率が悪化するためにオイルポンプが作動油を汲み難くなり、切換装置の切換え時の応答性が確保し難くなる可能性がある。また、作動油温が高いと、作動油の粘性が低くなって油圧回路のバルブボディなどからの作動油の漏れ量が多くなるために必要な油圧供給量が多くなり、切換装置の切換え時の応答性が確保し難くなる可能性がある。そのため、切換装置の切換え時の応答性を確保するには、電動オイルポンプ用モータを高出力化して電動オイルポンプを大型化する必要が生じてくる。このような電動オイルポンプの大型化は、コストアップとなったり、車両搭載性が不利になったりすることから好ましいものではない。また、これとは別に、切換装置の切換え時の応答性を確保するには、瞬間的に大きな電力(負荷)が必要となるので効率が悪くなり燃費が悪化する可能性もある。尚、上述したような課題は未公知である。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、駆動ポジションと非駆動ポジションとに選択的に切り換えられる切換装置の操作に基づいて油圧式係合装置の係合と解放とを行うことにより動力伝達可能状態と動力伝達遮断状態とに切り換えられる車両用動力伝達装置において、燃費向上と切換装置の非駆動ポジションから駆動ポジションへの切換え時の応答性確保と電動オイルポンプの小型化とを両立することができる油圧制御装置を提供することにある。
前記目的を達成する為の本発明の要旨とするところは、(a) 駆動力源から駆動輪への動力伝達経路における動力伝達が可能な動力伝達可能状態への切換えを選択する為の駆動ポジションと前記動力伝達経路における動力伝達が遮断された動力伝達遮断状態への切換えを選択する為の非駆動ポジションとに人為的操作により切り換えられる切換装置を備え、その切換装置における操作に基づいて油圧式係合装置の係合と解放とを行うことにより動力伝達可能状態と動力伝達遮断状態とに切り換えられる車両用動力伝達装置の油圧制御装置において、(b) 前記駆動力源の回転状態に拘わらず前記油圧式係合装置へ供給する油圧を発生することが可能な電動オイルポンプを備え、(c) 前記非駆動ポジション時には、前記切換装置がその非駆動ポジションから前記駆動ポジションへ切換操作された時に動力伝達可能状態へ切り換える為に係合される所定の油圧式係合装置に対して、動力伝達遮断状態を維持しつつ前記電動オイルポンプにより予め油圧を供給することにある。
このようにすれば、非駆動ポジション時には、切換装置が非駆動ポジションから駆動ポジションへ切換操作された時に動力伝達可能状態へ切り換える為に係合される所定の油圧式係合装置に対して、動力伝達遮断状態が維持されつつ電動オイルポンプにより予め油圧が供給されるので、切換装置が非駆動ポジションから駆動ポジションへ切換操作された時例えばガレージシフト時には所定の油圧式係合装置を係合する為に必要な供給油量(油圧供給量)を少なくできそのガレージシフト時の応答性が確保し易くなる。また、例えばガレージシフト時の電動オイルポンプの負荷を下げ、電動オイルポンプ用モータの低出力化を図ることができる。よって、燃費向上と切換装置が非駆動ポジションから駆動ポジションへ切換操作された時(例えばガレージシフト時)の応答性確保と電動オイルポンプの小型化とを両立することができる。
ここで、好適には、作動油の油温が第1所定油温以下である場合、或いは作動油の油温が前記第1所定油温よりも高く設定された第2所定油温以上である場合に、前記電動オイルポンプにより予め油圧を供給する。このようにすれば、オイルポンプが作動油を汲み難くなって例えばガレージシフト時の応答性が確保し難くなるような第1所定油温以下の低油温時、或いは必要な油圧供給量が多くなって例えばガレージシフト時の応答性が確保し難くなるような第2所定油温以上の高油温時には、例えばガレージシフト時に所定の油圧式係合装置を係合する為に必要な供給油量が適切に少なくされる。
また、好適には、前記所定の油圧式係合装置のチャンバ容積が所定容量以上となる場合に、前記電動オイルポンプにより予め油圧を供給する。このようにすれば、必要な供給油量が多くなって例えばガレージシフト時の応答性が確保し難くなるようなチャンバ容積の所定容量以上時には、例えばガレージシフト時に所定の油圧式係合装置を係合する為に必要な供給油量が適切に少なくされる。
また、好適には、前記車両用動力伝達装置は、電気式差動部と変速部とにより前記動力伝達経路の一部が構成されており、前記非駆動ポジション時には、前記電気式差動部をその電気式差動部における動力伝達が電気的に遮断されるニュートラル状態とすると共に、前記所定の油圧式係合装置を係合して前記変速部を動力伝達可能状態とする。このようにすれば、例えばガレージシフト前では電気式差動部において動力伝達遮断状態が維持されていることから変速部において動力伝達可能状態とされても問題は生じず、例えばガレージシフト時には所定の油圧式係合装置を係合する為に必要な供給油量を可及的に少なくできる。よって、電気式差動部と変速部とにより構成された実用的な車両用動力伝達装置において、燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立することができる。
また、好適には、前記電気式差動部は、前記駆動力源に動力伝達可能に連結された差動機構とその差動機構に動力伝達可能に連結された差動用電動機とを有し、その差動用電動機の運転状態が制御されてその差動機構の差動状態が制御されることにより電気的な差動装置として作動するものであり、前記変速部は、前記油圧式係合装置の係合と解放とにより変速段が成立させられる有段式の自動変速機であり、前記非駆動ポジション時には、前記差動用電動機を無負荷状態とすることで前記電気式差動部をニュートラル状態とすると共に、前記所定の油圧式係合装置を係合して所定の変速段を成立させる。このようにすれば、電気式差動部を簡単にニュートラル状態とすることができる。また、例えばガレージシフト前では電気式差動部において動力伝達遮断状態が維持されていることから変速部において所定の変速段が成立させられても問題は生じず、例えばガレージシフト時には所定の変速段を成立させる為に所定の油圧式係合装置に供給する必要がある作動油量を可及的に少なくできる。
また、好適には、前記車両用動力伝達装置は、前記油圧式係合装置の係合と解放とにより所定の変速段が成立させられる有段式の自動変速機により前記動力伝達経路の一部が構成されており、前記非駆動ポジション時には、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給するか、或いは係合しても動力伝達しない係合要素に(例えば係合しても前記車両用動力伝達装置を動力伝達可能状態としない油圧式係合装置に)予め油圧を供給する。このようにすれば、例えばガレージシフト前では有段式の自動変速機において動力伝達遮断状態が確実に維持され、例えばガレージシフト時には所定の変速段を成立させる為に油圧式係合装置に供給する必要がある作動油量を可及的に少なくできる。よって、有段式の自動変速機により動力伝達経路の一部が構成された実用的な車両用動力伝達装置において、燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立することができる。
また、好適には、前記車両用動力伝達装置は、前記油圧式係合装置の係合と解放とにより前進用動力伝達経路と後進用動力伝達経路とを選択的に成立させることが可能な前後進切換装置と、変速比が連続的に変化させられる無段変速機とにより前記動力伝達経路の一部が構成されており、前記非駆動ポジション時には、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給する。このようにすれば、例えばガレージシフト前では前後進切換装置において動力伝達遮断状態が確実に維持され、例えばガレージシフト時には前進用動力伝達経路或いは後進用動力伝達経路を成立させる為に油圧式係合装置に供給する必要がある作動油量を可及的に少なくできる。よって、前後進切換装置と無段変速機とにより構成された実用的な車両用動力伝達装置において、燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立することができる。
また、好適には、前記所定の油圧式係合装置は、車両停止状態を含む前後進走行状態及び車速関連値に基づいて決定される。このようにすれば、例えばガレージシフトの際に係合する必要がある油圧式係合装置が適切に決定され、例えばガレージシフト前に油圧を供給する所定の油圧式係合装置が適切に決定される。例えば、車両停止時であれば、第1速ギヤ段や後進ギヤ段を成立させる為の油圧式係合装置、或いは前進用動力伝達経路や後進用動力伝達経路を成立させる為の油圧式係合装置等が所定の油圧式係合装置として決定される。また、前進走行時であれば、車速関連値に基づく変速段を成立させる為の油圧式係合装置、或いは前進用動力伝達経路を成立させる為の油圧式係合装置等が所定の油圧式係合装置として決定される。また、後進走行時であれば、後進ギヤ段を成立させる為の油圧式係合装置、或いは後進用動力伝達経路を成立させる為の油圧式係合装置等が所定の油圧式係合装置として決定される。
また、好適には、前記有段式の自動変速機は、複数組の遊星歯車装置の回転要素が摩擦係合装置によって選択的に連結されることにより複数のギヤ段(変速段)が択一的に達成(成立)される例えば前進4段、前進5段、前進6段、更にはそれ以上の変速段を有する等の種々の遊星歯車式多段変速機により構成される。この遊星歯車式多段変速機における摩擦係合装置としては、油圧アクチュエータによって係合させられる多板式、単板式のクラッチやブレーキ、或いはベルト式のブレーキ等の油圧式摩擦係合装置が広く用いられる。この油圧式摩擦係合装置を係合させる為の作動油を供給するオイルポンプは、例えば前記駆動力源により駆動されて作動油を吐出する機械式オイルポンプ、前記駆動力源とは別に配設された専用の電動モータなどで駆動される電動オイルポンプなどが用いられる。
また、好適には、上記油圧式摩擦係合装置を含む油圧制御回路は、例えばリニアソレノイドバルブの出力油圧を直接油圧式摩擦係合装置の油圧アクチュエータ(油圧シリンダ)にそれぞれ供給することが応答性の点で望ましいが、そのリニアソレノイドバルブの出力油圧をパイロット油圧として用いることによりシフトコントロールバルブを制御して、そのコントロールバルブから油圧アクチュエータに作動油を供給するように構成することもできる。
また、好適には、上記リニアソレノイドバルブは、例えば複数の油圧式摩擦係合装置の各々に対応して1つずつ設けられるが、同時に係合したり係合、解放制御したりすることがない複数の油圧式摩擦係合装置が存在する場合には、それ等に共通のリニアソレノイドバルブを設けることもできるなど、種々の態様が可能である。また、必ずしも全ての油圧式摩擦係合装置の油圧制御をリニアソレノイドバルブで行う必要はなく、一部乃至全ての油圧制御をON−OFFソレノイドバルブのデューティ制御など、リニアソレノイドバルブ以外の調圧手段で行っても良い。尚、この明細書で「油圧を供給する」という場合は、「油圧を作用させ」或いは「その油圧に制御された作動油を供給する」ことを意味する。
また、好適には、前記駆動力源としては、ガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジンが広く用いられる。さらに、補助的な走行用動力源として、電動機等がこのエンジンに加えて用いられても良い。或いは、走行用駆動力源として電動機のみが用いられても良い。
また、好適には、前記差動機構は、前記駆動力源に連結された第1回転要素と前記差動用電動機に連結された第2回転要素と前記走行用電動機に連結された第3回転要素との3つの回転要素を有する装置である。このようにすれば、前記差動機構が簡単に構成される。
また、好適には、前記差動機構はシングルピニオン型の遊星歯車装置であり、前記第1回転要素はその遊星歯車装置のキャリヤであり、前記第2回転要素はその遊星歯車装置のサンギヤであり、前記第3回転要素はその遊星歯車装置のリングギヤである。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つのシングルピニオン型遊星歯車装置によって簡単に構成される。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明の制御装置が適用される車両用動力伝達装置10(以下、動力伝達装置10と表す)を説明する骨子図であり、この動力伝達装置10はハイブリッド車両に好適に用いられる。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12と表す)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11と、その差動部11と駆動輪34(図7参照)との間の動力伝達経路で伝達部材18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この動力伝達装置10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪34との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32(図7参照)及び一対の車軸等を順次介して一対の駆動輪34へ伝達する。
このように、本実施例の動力伝達装置10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。尚、動力伝達装置10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。以下の各実施例についても同様である。
差動部11は、動力分配機構16と、動力分配機構16に動力伝達可能に連結されて動力分配機構16の差動状態を制御する為の差動用電動機として機能する第1電動機M1と、伝達部材18と一体的に回転するように動力伝達可能に連結されている第2電動機M2とを備える電気式差動部である。尚、伝達部材18は差動部11の出力側回転部材であるが自動変速部20の入力側回転部材にも相当するものである。
第1電動機M1及び第2電動機M2は、電気エネルギから機械的な駆動力を発生させる発動機としての機能及び機械的な駆動力から電気エネルギを発生させる発電機としての機能を有する所謂モータジェネレータである。換言すれば、動力伝達装置10において、電動機Mは主動力源であるエンジン8の代替として、或いはそのエンジン8と共に走行用の駆動力を発生させる動力源(副動力源)として機能し得る。また、他の動力源により発生させられた駆動力から回生により電気エネルギを発生させ、インバータ54(図7参照)を介して他の電動機Mに供給したり、その電気エネルギを蓄電装置56(図7参照)に蓄積する等の作動を行う。
第1電動機M1は反力を発生させる為のジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の第2駆動力源として駆動力を出力する走行用電動機として機能するためモータ(電動機)機能を少なくとも備える。また、好適には、第1電動機M1及び第2電動機M2は、何れもその発電機としての発電量を連続的に変更可能に構成されたものである。また、第1電動機M1及び第2電動機M2は、動力伝達装置10の筐体であるケース12内に備えられ、動力伝達装置10の作動流体である自動変速部20の作動油により冷却される。
動力分配機構16は、エンジン8に動力伝達可能に連結された差動機構であって、例えば「0.416」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24を主体として構成されており、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構である。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転及び公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。尚、差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。このように構成された動力分配機構16は、差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動可能状態(差動状態)とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されると共に、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。このように動力分配機構16が差動状態とされると、動力分配機構16(差動部11)に動力伝達可能に連結された第1電動機M1及び第2電動機M2の一方又は両方の運転状態(動作点)が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。
自動変速部20(変速部)は、エンジン8から駆動輪34への動力伝達経路の一部を構成しており、シングルピニオン型の第1遊星歯車装置26及びシングルピニオン型の第2遊星歯車装置28を備え、機械的に複数の変速比が段階的に設定される有段式の自動変速機として機能する遊星歯車式の多段変速機である。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転及び公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.488」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転及び公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.455」程度の所定のギヤ比ρ2を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2である。
自動変速部20では、第1サンギヤS1は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1と第2リングギヤR2とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2とが一体的に連結されて出力軸22に連結され、第2サンギヤS2が第1クラッチC1を介して伝達部材18に選択的に連結されている。更に第1キャリヤCA1と第2リングギヤR2とは一方向クラッチF1を介して非回転部材であるケース12に連結されてエンジン8と同方向の回転が許容され逆方向の回転が禁止されている。これにより、第1キャリヤCA1及び第2リングギヤR2は、逆回転不能な回転部材として機能する。
以上のように構成された自動変速部20では、解放側係合装置の解放と係合側係合装置の係合とにより例えばクラッチツウクラッチ変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1及び第2ブレーキB2の係合により(或いは第1クラッチC1の係合及び一方向クラッチFにより)変速比が「3.20」程度となる第1速ギヤ段が成立させられ、第1クラッチC1及び第1ブレーキB1の係合により変速比が「1.72」程度となる第2速ギヤ速段が成立させられ、第1クラッチC1及び第2クラッチC2の係合により変速比が「1.00」程度となる第3速ギヤ段が成立させられ、第2クラッチC2及び第1ブレーキB1の係合により変速比が「0.67」程度となる第4速ギヤ段が成立させられ、第3クラッチC3及び第2ブレーキB2の係合により変速比が「2.04」程度となる後進ギヤ段が成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。
このように、自動変速部20内の動力伝達経路は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の係合と解放との作動の組合せにより、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、動力伝達を遮断する動力伝達遮断状態との間で切り換えられる。つまり、第1速ギヤ段乃至第4速ギヤ段及び後進ギヤ段の何れかが成立させられることで上記動力伝達経路が動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで上記動力伝達経路が動力伝達遮断状態とされる。
前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本又は2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結する為のものである。
以上のように構成された動力伝達装置10において、無段変速機として機能する差動部11と自動変速部20とで無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度(以下、自動変速部20の入力回転速度)すなわち伝達部材18の回転速度(以下、伝達部材回転速度N18)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、動力伝達装置10の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、動力伝達装置10において無段変速機が構成される。この動力伝達装置10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される動力伝達装置10全体としてのトータル変速比γTである。例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、動力伝達装置10全体としてのトータル変速比γTが無段階に得られる。
また、差動部11の変速比が一定となるように制御され、且つクラッチC及びブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する動力伝達装置10のトータル変速比γTが各ギヤ段毎に得られる。したがって、動力伝達装置10において有段変速機と同等の状態が構成される。
図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示し、横線XG(X3)が伝達部材18の回転速度N18すなわち差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。更に、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応する第2サンギヤS2を、第5回転要素RE5(第5要素)に対応する相互に連結された第1リングギヤR1及び第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する相互に連結された第1キャリヤCA1及び第2リングギヤR2を、第7回転要素(第7要素)RE7に対応する第1サンギヤS1をそれぞれ表し、それらの間隔は第1、第2遊星歯車装置26、28のギヤ比ρ1、ρ2に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18及び第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される差動部リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度すなわちエンジン回転速度Nが上昇或いは下降させられる。また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転がエンジン回転速度Nと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で差動部リングギヤR0の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて伝達部材18が回転させられる。
また、自動変速部20において第4回転要素RE4は第1クラッチC1を介して伝達部材18に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6は第2クラッチC2を介して伝達部材18に選択的に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第7回転要素RE7は第3クラッチC3を介して伝達部材18に選択的に連結されると共に第1ブレーキB1を介してケース12に選択的に連結されている。
自動変速部20では、図3に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第1速(1st)の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第2速(2nd)の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第3速(3rd)の出力軸22の回転速度が示され、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L4と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第4速(4th)の出力軸22の回転速度が示される。
図4は、本実施例の動力伝達装置10を制御する為の制御装置(油圧制御装置)である電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8や各電動機Mに関するハイブリッド駆動制御、自動変速部20の変速制御等の各種制御を実行するものである。
電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン8の冷却流体の温度であるエンジン水温TEMPを表す信号、シフトレバー52(図5参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン8の回転速度であるエンジン回転速度Nを表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を表す信号、車速センサ70により検出された出力軸22の回転速度NOUTに対応する車速V及び車両の進行方向を表す信号、油温センサ72により検出された動力伝達装置10の作動油の温度である作動油温THOILを表す信号、サイドブレーキ操作を表す信号、車輪(駆動輪34、不図示の従動輪)にブレーキトルク(制動力)を付与する制動装置としての良く知られたフットブレーキ装置(ホイールブレーキ装置)の作動中(すなわちフットブレーキ操作中)を示すブレーキペダルの操作(オン)BONを表すブレーキ操作信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表すアクセル開度信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、レゾルバ等からなるM1回転速度センサ74により検出された第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」と表す)及びその回転方向を表す信号、レゾルバ等からなるM2回転速度センサ76により検出された第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」と表す)及びその回転方向を表す信号、各電動機M1,M2との間でインバータ54を介して充放電を行う蓄電装置56(図7参照)の充電容量(充電状態)SOCを表す信号などが、それぞれ供給される。
また、上記電子制御装置80からは、エンジン8の出力P(単位は例えば「kW」。以下、「エンジン出力P」と表す。)を制御するエンジン出力制御装置58(図7参照)への制御信号例えばエンジン8の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や燃料噴射装置66による吸気管60或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置68によるエンジン8の点火時期を指令する点火信号、過給圧を調整する為の過給圧調整信号、電動エアコンを作動させる為の電動エアコン駆動信号、電動機M1、M2の作動を指令する指令信号、シフトインジケータを作動させる為のシフトポジション(操作位置)表示信号、ギヤ比を表示させる為のギヤ比表示信号、スノーモードであることを表示させる為のスノーモード表示信号、ホイールブレーキ装置を作動させる為のホイールブレーキ作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路100(図6、7参照)に含まれる電磁弁(ソレノイドバルブ)等を作動させるバルブ指令信号、この油圧制御回路100に設けられたレギュレータバルブ(調圧弁)によりライン油圧Pを調圧する為の信号、そのライン油圧Pが調圧される為の元圧の油圧源である電動オイルポンプ102を作動させる為の駆動指令信号、電動ヒータを駆動する為の信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は、複数種類のシフトポジションPSHが人為的操作により切り換えられる切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。
そのシフトレバー52は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックする為の駐車ポジション「P(パーキング)」、後進走行の為の後進走行ポジション「R(リバース)」、動力伝達装置10内の動力伝達経路が遮断された中立状態とする為の中立ポジション「N(ニュートラル)」、動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、又は手動変速走行モード(手動モード)を成立させて上記自動変速制御における高速側の変速段を制限する所謂変速レンジを設定する為の前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路100が切り換えられる。
上記「P」乃至「M」ポジション(レンジ)に示す各シフトポジションPSHにおいて、「P」ポジション及び「N」ポジションは、車両を走行させないときに選択される非走行ポジション(レンジ)であって、動力伝達装置10内の動力伝達経路が遮断された車両を駆動不能とする動力伝達経路の動力伝達遮断状態への切換えを選択する為の非駆動ポジションである。また、「R」ポジション、「D」ポジション及び「M」ポジションは、車両を走行させるときに選択される走行ポジション(レンジ)であって、自動変速部20内の動力伝達経路が連結された車両を駆動可能とする動力伝達経路の動力伝達可能状態への切換えを選択する為の駆動ポジションでもある。
このように、シフトレバー52は、エンジン8から駆動輪34への動力伝達経路における動力伝達が可能な動力伝達可能状態への切換えを選択する為の駆動ポジションとその動力伝達経路における動力伝達が遮断された動力伝達遮断状態への切換えを選択する為の非駆動ポジションとに人為的操作により切り換えられる切換装置である。具体的には、シフトレバー52が「P」ポジションへ手動操作されることでクラッチCおよびブレーキBのいずれもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされると共に自動変速部20の出力軸22がロックされ、「N」ポジションへ手動操作されることでクラッチCおよびブレーキBの何れもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされ、「R」、「D」、及び「M」ポジションのいずれかへ手動操作されることで各ポジションに対応した何れかのギヤ段が成立させられて自動変速部20内の動力伝達経路が動力伝達可能状態とされる。
図6は、油圧制御回路100のうち主に自動変速部20の変速を制御する為のクラッチC及びブレーキBの係合と解放とを制御する要部構成を説明する回路図である。図6において、油圧制御回路100は、エンジン8によって回転駆動されることにより油圧制御回路100内の各部やクラッチC及びブレーキB等へ供給する油圧の元圧を発生することが可能な機械式オイルポンプ102と、その機械式オイルポンプ102とは並列に配置されてモータ104によって回転駆動されることによりエンジン8の回転状態に拘わらず上記元圧を発生することが可能な電動オイルポンプ106とを備えている。また、油圧制御回路100は、機械式オイルポンプ102及び電動オイルポンプ106のうちの少なくとも何れかのオイルポンプから出力(発生)される作動油圧を元圧としてライン油圧(第1ライン油圧)PL1を調圧する第1調圧弁(プライマリレギュレータバルブ)108、第1調圧弁108によるライン油圧PL1の調圧のために第1調圧弁108から排出される油圧を元圧としてライン油圧(第2ライン油圧)PL2を調圧する第2調圧弁(セカンダリレギュレータバルブ)110、ライン油圧PL1を元圧として一定値のモジュレータ油圧Pを調圧するモジュレータバルブ112、エンジン負荷等に応じたライン油圧PL1、PL2に調圧されるために第1調圧弁108及び第2調圧弁110へモジュレータ油圧Pを元圧として信号圧PSLTを供給するリニアソレノイドバルブSLT、シフトレバー52の操作に応じてライン油圧PL1をDレンジ圧P或いはリバース圧Pとして出力するマニュアル弁(マニュアルバルブ)114等を備えている。そして、油圧制御回路100は、ライン油圧PL1、PL2、モジュレータ油圧P、Dレンジ圧P、及びリバース圧Pを油圧制御回路100内の各部例えば油圧制御回路100が備えるリニアソレノイドバルブSLC1、SLC2、SLC3、SLB1、SLB2などへ供給する。
マニュアルバルブ114は、入力ポート114iにライン油圧PL1が入力されると共にケーブルやリンクなどを介して機械的に連結されるシフトレバー52の操作に応じてすなわち連動して弁子が切り換えられることによりシフトレバー52の「D」ポジションへの操作に従ってライン油圧PL1を前進走行用油圧すなわちDレンジ圧Pとして出力ポート114dから出力し或いは「R」ポジションへの操作に従ってライン油圧PL1を後進走行用油圧すなわちリバース圧Pとして出力ポート114rから出力するマニュアル弁である。また、リニアソレノイドバルブSLC1、SLC2、SLC3、SLB1、SLB2は、基本的には何れも同じ構成の電磁調圧弁であり、電子制御装置80により独立に励磁状態および非励磁状態が制御され、励磁状態(オン状態)においては開いた状態とされて連続的に変化する油圧を出力し、非励磁状態(オフ状態)においては閉じた状態とされて油圧を出力しない常閉型(ノーマルクローズ型、N/C型)のリニアソレノイドバルブ(電磁調圧弁)である。
また、油圧制御回路100は、Dレンジ圧Pを元圧とするリニアソレノイドバルブSLC1の出力油圧である制御圧PSLC1がクラッチC1のチャンバC1c(油室、ピストン油圧室)へ直接的に供給可能なように、Dレンジ圧Pを元圧とするリニアソレノイドバルブSLC2の出力油圧である制御圧PSLC2がクラッチC2のチャンバC2cへ直接的に供給可能なように、Dレンジ圧Pを元圧とするリニアソレノイドバルブSLB1の出力油圧である制御圧PSLB1がブレーキB1のチャンバB1cへ直接的に供給可能なように、ライン油圧PL1を元圧とするリニアソレノイドバルブSLC3の出力油圧である制御圧PSLC3がクラッチC3のチャンバC3cへ直接的に供給可能なように、及びライン油圧PL1を元圧とするリニアソレノイドバルブSLB2の出力油圧である制御圧PSLB2及びリバース圧Pのうちシャトル弁116を介して供給された何れか一方の油圧がブレーキB2のインナチャンバB2ci及びアウタチャンバB2coへ供給可能なように、それぞれ油路が構成されており、リニアソレノイドバルブSLC1、SLC2、SLC3、SLB1、SLB2によりそれぞれ独立にクラッチC及びブレーキBの係合と解放との作動が制御される。
尚、インナチャンバB2ci及びアウタチャンバB2coへは油圧が同時供給されても良いが、自動変速部20の変速段に応じて一方のみへ供給されても良い。例えば、自動変速部20の後進ギヤ段を成立させる場合にはインナチャンバB2ci及びアウタチャンバB2coへ油圧を供給し、自動変速部20の第1速ギヤ段を成立させる場合にはインナチャンバB2ciのみへ油圧を供給するようにしても良い。具体的には、油圧制御回路100は、シャトル弁116とアウタチャンバB2coとの間の油路を断接可能な切換弁118とライン油圧PL1を元圧とするON−OFFソレノイドバルブSBとから構成される作動切換装置120を備えても良い。この作動切換装置120においては、例えば第1速ギヤ段を成立させる際にON−OFFソレノイドバルブSBの出力油圧である制御圧PSBが切換弁118へ供給されず切換弁118がOFF側位置へ切り換えられると、シャトル弁116からの油圧がアウタチャンバB2coへは供給されない。一方、例えば後進ギヤ段を成立させる際にON−OFFソレノイドバルブSBの出力油圧である制御圧PSBが切換弁118へ供給されて切換弁118がON側位置へ切り換えられると、シャトル弁116からの油圧がアウタチャンバB2coへ供給される。
図7は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図7において、有段変速制御手段82は、自動変速部20の変速を行う変速制御手段として機能するものである。例えば、有段変速制御手段82は、図8に示すような車速Vと自動変速部20の出力トルクTOUT(或いはアクセル開度Acc等)とを変数として記憶手段84に予め記憶されたアップシフト線(実線)及びダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速V及びアクセル開度Acc等に対応する自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。
このとき、有段変速制御手段82は、例えば図2に示す係合表に従って変速段が達成(成立)されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合及び/又は解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することによりクラッチツウクラッチ変速を実行させる指令を油圧制御回路100へ出力する。油圧制御回路100は、その指令に従って、例えば解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路100内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
ハイブリッド制御手段86は、エンジン出力制御装置58を介してエンジン8の駆動を制御するエンジン駆動制御手段としての機能と、インバータ54を介して第1電動機M1及び第2電動機M2による駆動力源又は発電機としての作動を制御する電動機作動制御手段としての機能を含んでおり、それら制御機能によりエンジン8、第1電動機M1、及び第2電動機M2によるハイブリッド駆動制御等を実行する。
また、ハイブリッド制御手段86は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力(要求エンジン出力)PERを算出し、その目標エンジン出力PERが得られるエンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとなるようにエンジン8を制御すると共に各電動機Mの出力乃至発電を制御する。
以上のように、動力伝達装置10全体としての変速比である総合変速比γTは、有段変速制御手段82によって制御される自動変速部20の変速比γATと、ハイブリッド制御手段86によって制御される差動部11の変速比γ0とによって決定される。すなわち、ハイブリッド制御手段86及び有段変速制御手段82は、シフトポジションPSHに対応するシフトレンジの範囲内において、油圧制御回路100、エンジン出力制御装置58、第1電動機M1、及び第2電動機M2等を介して動力伝達装置10全体としての変速比である総合変速比γTを制御する変速制御手段として機能する。
例えば、ハイブリッド制御手段86は、動力性能や燃費向上などのために自動変速部20の変速段を考慮してエンジン8及び各電動機Mの制御を実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速V及び自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段86は、例えばエンジン回転速度NとエンジントルクTとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて記憶手段84に予め記憶された例えば図9の破線に示すようなエンジン8の動作曲線の一種である最適燃費率曲線(燃費マップ、関係)にエンジン8の動作点(以下、「エンジン動作点」と表す)が沿わされつつエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力Pを発生する為のエンジントルクTとエンジン回転速度Nとなるように、動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度N及びエンジントルクTなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。尚、本実施例では、燃費とは例えば単位燃料消費量当たりの走行距離であったり、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)等である。
このとき、ハイブリッド制御手段86は、例えば第1電動機M1により発電された電気エネルギをインバータ54を通して蓄電装置56や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は電動機Mの発電のために消費されてそこで電気エネルギに変換され、インバータ54を通してその電気エネルギが他の電動機Mへ供給され、電気エネルギによりその電動機Mから出力される駆動力が伝達部材18へ伝達される。この発電に係る電動機Mによる電気エネルギの発生から駆動に係る電動機Mで消費されるまでに関連する機器により、エンジン8の動力の一部が電気エネルギに変換され、その電気エネルギが機械的エネルギに変換されるまでの電気パスが構成される。
ここで、有段変速制御手段82により自動変速部20の変速制御が実行される場合には、その自動変速部20の変速比が段階的に変化させられることに伴ってその変速前後で動力伝達装置10のトータル変速比γTが段階的に変化させられる。このような制御では、トータル変速比γTを段階的に変化させることにより、すなわち変速比が連続的ではなく飛び飛びの値をとることにより、連続的なトータル変速比γTの変化に比較して速やかに駆動トルクを変化させることが可能となる。その反面、変速ショックが発生したり、最適燃費率曲線に沿うようにエンジン回転速度Nを制御できず燃費が悪化する可能性がある。そこで、ハイブリッド制御手段86は、そのトータル変速比γTの段階的変化が抑制されるように、自動変速部20の変速に同期してその自動変速部20の変速比の変化方向とは反対方向の変速比の変化となるように差動部11の変速を実行する。換言すれば、自動変速部20の変速前後で動力伝達装置10のトータル変速比γTが連続的に変化するように自動変速部20の変速制御に同期して差動部11の変速制御を実行する。例えば、自動変速部20の変速前後で過渡的に動力伝達装置10のトータル変速比γTが変化しないような所定のトータル変速比γTを形成するために自動変速部20の変速制御に同期して、その自動変速部20の変速比の段階的な変化に相当する変化分だけその変化方向とは反対方向に変速比を段階的に変化させるように差動部11の変速制御を実行する。
また、ハイブリッド制御手段86は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1及び/又は第2電動機回転速度NM2を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段86は、エンジン回転速度Nを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1及び/又は第2電動機回転速度NM2を任意の回転速度に回転制御することができる。
例えば、図3の共線図からもわかるようにハイブリッド制御手段86は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪34)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段86は自動変速部20の変速中にエンジン回転速度Nを略一定に維持する場合には、エンジン回転速度Nを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。
また、ハイブリッド制御手段86は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力Pを発生するようにエンジン8の出力制御を実行する。すなわち、エンジン8の駆動を制御するエンジン駆動制御手段として機能する。
例えば、ハイブリッド制御手段86は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ64を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、エンジン出力制御装置58は、ハイブリッド制御手段86による指令に従って、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御する他、燃料噴射制御のために燃料噴射装置66による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御するなどしてエンジントルク制御を実行する。
また、ハイブリッド制御手段86は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によって、例えばエンジン8を用いず第2電動機M2を走行用の駆動力源とするモータ走行(EVモード走行)をさせることができる。例えば、前記図8の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン8と電動機例えば第2電動機M2とで切り換える為の、言い換えればエンジン8を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換える為の、エンジン走行領域とモータ走行領域との境界線である。この図8に示すエンジン走行とモータ走行とを切り換える為の境界線(実線A)を有する予め記憶された関係は、車速Vと自動変速部20の出力トルクTOUTとを変数とする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図8中の実線及び一点鎖線に示す変速線図(変速マップ)と共に記憶手段84に予め記憶されている。
そして、ハイブリッド制御手段86は、例えば図8の駆動力源切換線図から実際の車速V及び自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、モータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段86によるモータ走行は、図8から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT(比較的低アクセル開度Acc)域すなわち低エンジントルクT域、或いは車速Vの比較的低車速時すなわち低負荷域で実行される。
また、ハイブリッド制御手段86は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、第1電動機回転速度NM1を負の回転速度で制御して例えば第1電動機M1を無負荷状態とすることにより空転させて、差動部11の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度Nを零乃至略零に維持する。
また、ハイブリッド制御手段86は、エンジン8を走行用の駆動力源とするエンジン走行を行うエンジン走行領域であっても、前述した電気パスによる第1電動機M1からの電気エネルギ及び/又は蓄電装置56からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪34にトルクを付与することにより、エンジン8の動力を補助する為の所謂トルクアシストが可能である。よって、本実施例のエンジン走行にはエンジン8を走行用の駆動力源とする場合と、エンジン8及び第2電動機M2の両方を走行用の駆動力源とする場合とがある。そして、本実施例のモータ走行とはエンジン8を停止して第2電動機M2を走行用の駆動力源とする走行である。
また、ハイブリッド制御手段86は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、差動部11がトルクの伝達を不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段86は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路の動力伝達が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
また、ハイブリッド制御手段86は、アクセルオフの惰性走行時(コースト走行時)やブレーキペダルの操作によるホイールブレーキ作動時などには、燃費を向上(燃料消費率を低減)させるためにエンジン8を非駆動状態にして、駆動輪34から伝達される車両の運動エネルギを差動部11で電気エネルギに変換する回生制御を実行する。具体的には、駆動輪34からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ54を介して蓄電装置56へ充電する回生制御を実行する。すなわち、ハイブリッド制御手段86は上記回生制御を実行する回生制御手段として機能する。
ここで、シフトレバー52が非駆動ポジション(「P」或いは「N」)から駆動ポジション(「D」或いは「R」)へ切換操作された時(例えばガレージシフト時。以下、シフトレバー52の非駆動ポジションから駆動ポジションへ切換操作をガレージシフトと表す)に、エンジン8が回転停止状態である場合や機械式オイルポンプだけでは作動油量が不足する場合には、油圧供給源として電動オイルポンプ106を用いて、動力伝達装置10を動力伝達可能状態へ切り換える為の所定の油圧式係合装置が所定時間内に係合される。この所定の油圧式係合装置は、ガレージシフトの際に車両発進や車両加速等に備えて動力伝達可能状態へ切り換える為に係合する必要があるクラッチCやブレーキBであって、例えば車両停止状態を含む前後進走行状態及び車速関連値(例えば車速V)に基づいて決定される。具体的には、車両停止時のN→Dガレージシフトであれば自動変速部20の第1速ギヤ段を成立させる為のクラッチC1及びブレーキB2であり、また車両停止時のN(P)→Rガレージシフトであれば自動変速部20の後進ギヤ段を成立させる為のクラッチC3及びブレーキB2である。また、前進走行中のN→Dガレージシフトであれば車速V及びアクセル開度Accに基づいて決定される自動変速部20の変速段を成立させる為のクラッチCやブレーキBであり、また後進走行中のN→Rガレージシフトであれば、後進ギヤ段を成立させる為のクラッチC3及びブレーキB2である。また、上記所定時間は、車両発進や車両加速等に備えて動力伝達遮断状態から動力伝達可能状態へ速やかに切り換えられてガレージシフト時の応答性が確保されたとすることができる為の予め実験的に求められた切換時間である。
このように、ガレージシフト時には複数のクラッチCやブレーキBを同時係合する必要がある。また、クラッチCやブレーキBの各チャンバ容積はケース12内の配置上などによりそれぞれ異なる場合があり、所定の油圧式係合装置によってつまり成立させる変速段によってガレージシフト時に必要な作動油量が異なる可能性がある。例えば、ケース12内における配置上制限を受け、ブレーキB2のようにケース内の外周側に配置されるとチャンバB2c容積が大きくなり、第1速ギヤ段や後進ギヤ段を成立させるときにはガレージシフト時に必要な作動油量が多くなる可能性がある。また、インナチャンバB2ci及びアウタチャンバB2coへ油圧を同時供給するか、或いはインナチャンバB2ciのみへ油圧を供給するかによっても、ガレージシフト時に必要な作動油量が異なる。そうすると、ガレージシフト時に必要な電動オイルポンプ106からの供給油量が多くなり、ガレージシフト時の応答性が確保し難くなる可能性がある。また、上記別の観点では、作動油温THOILが低いと、作動油の粘性が高くなってオイルポンプの駆動トルクが大きくなったりまた容積効率が悪化するためにオイルポンプが作動油を汲み難くなり、ガレージシフト時の応答性が確保し難くなる可能性がある。また、作動油温THOILが高いと、作動油の粘性が低くなって油圧制御回路100のバルブボディなどからの作動油の漏れ量が多くなるために必要な油圧供給量が多くなり、ガレージシフト時の応答性が確保し難くなる可能性がある。
そこで、本実施例では、ガレージシフト時の応答性が確保され易くなる為に、シフトレバー52が非駆動ポジションとされているときには、前記所定の油圧式係合装置に対して、動力伝達遮断状態を維持しつつ電動オイルポンプ106により予め油圧を供給する。つまり、ガレージシフト時に同時係合するクラッチCやブレーキBを減らすか、或いはガレージシフト時にクラッチCやブレーキBへ供給する作動油量を減らす。
具体的には、図7に戻り、走行状態判定手段88は、シフトポジションPSHに基づいてシフトレバー52が非駆動ポジションである「P」レンジ或いは「N」レンジであるか否かを判定する。また、走行状態判定手段88は、車両停止中であるか、前進走行中であるか、或いは後進走行中であるかを判定する。
所定条件成立判定手段90は、前記所定の油圧式係合装置に対して、動力伝達遮断状態を維持しつつ電動オイルポンプ106により予め油圧を供給する必要が生じる所定条件が成立したか否かを判定する。例えば、所定条件成立判定手段90は、作動油温THOILが第1所定油温THOIL1以下であるか否かを判定することで、所定条件が成立したか否かを判定する。また、所定条件成立判定手段90は、作動油温THOILが第1所定油温THOIL1よりも高く設定された第2所定油温以上THOIL2であるか否かを判定することで、所定条件が成立したか否かを判定する。この第1所定油温THOIL1は、ガレージシフト時の応答性が確保し難い程の極低油温であることが予め実験的に求められて記憶された極低油温判定値である。また、この第2所定油温THOIL2は、ガレージシフト時の応答性が確保し難い程の高油温であることが予め実験的に求められて記憶された高油温判定値である。見方を換えれば、第1所定油温THOIL1以下或いは第2所定油温THOIL2以上の作動油温THOILは、電動オイルポンプ106の出力を上昇する必要がある作動油温、つまり電動オイルポンプ106を大型化して対応する必要がある作動油温でもある。
また、所定条件成立判定手段90は、前記所定の油圧式係合装置のチャンバ容積が所定容量以上となるか否かを判定することで、所定条件が成立したか否かを判定する。例えば、第2速ギヤ段〜第4速ギヤ段の何れかのギヤ段に比較して第1速ギヤ段や後進ギヤ段を成立させる油圧式係合装置のチャンバ容積が大きくて所定容量以上となる場合には、所定条件成立判定手段90は、車両停止中であれば、所定の油圧式係合装置のチャンバ容積が所定容量以上となると判定する。これは、ガレージシフトにより第1速ギヤ段或いは後進ギヤ段が成立させられるからである。また、所定条件成立判定手段90は、前進走行中であれば、車両状態に基づいて第1速ギヤ段が判断される場合に所定の油圧式係合装置のチャンバ容積が所定容量以上となると判定する。これは、ガレージシフトにより第1速ギヤ段が成立させられるからである。また、所定条件成立判定手段90は、後進走行中であれば、所定の油圧式係合装置のチャンバ容積が所定容量以上となると判定する。これは、ガレージシフトにより後進ギヤ段が成立させられるからである。更に、例えば、後進ギヤ段を成立させる場合にはインナチャンバB2ci及びアウタチャンバB2coへ油圧が供給され、第1速ギヤ段を成立させる場合にはインナチャンバB2ciのみへ油圧が供給されて、後進ギヤ段を成立させるときのみ所定容量以上となる場合には、所定条件成立判定手段90は、後進走行中であれば、所定の油圧式係合装置のチャンバ容積が所定容量以上となると判定する。これは、ガレージシフトにより後進ギヤ段が成立させられるからである。尚、ここでは、第1速ギヤ段や後進ギヤ段を成立させる油圧式係合装置のチャンバ容積が所定容量以上となる場合を例示したが、他のギヤ段を成立させる油圧式係合装置のチャンバ容積が所定容量以上となる場合でも同様の考え方で前記所定の油圧式係合装置のチャンバ容積が所定容量以上となるか否かが判定される。また、この所定容量は、ガレージシフト時の応答性が確保し難い程の大きなチャンバ容積であることが予め実験的に求められて記憶された大チャンバ容積判定値である。
ガレージシフト前制御手段92は、走行状態判定手段88によりシフトレバー52が非駆動ポジションであると判定され、且つ所定条件成立判定手段90により所定条件が成立したと判定された場合には、電動オイルポンプ106を始動し、電動オイルポンプ106の制御を開始する。電動オイルポンプ106の制御としては、例えば作動油温THOILとモータ104駆動時の駆動デューティ比とで構成される二次元座標内において予め実験的に求められて記憶手段84に予め記憶された例えば図10に示すような関係(モータ駆動マップ)から実際の作動油温THOILに基づいて決定した駆動デューティ比でモータ104を駆動する。
更に、ガレージシフト前制御手段92は、非駆動ポジションである時に、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給するか、或いは係合しても動力伝達しない係合要素に(例えば係合しても動力伝達装置10を動力伝達可能状態としない油圧式係合装置に)予め油圧を供給する指令を有段変速制御手段82へ出力する。具体的には、第1速ギヤ段及び後進ギヤ段では何れもブレーキB2が係合され、またブレーキB2のみが係合されてもギヤ段としては成立させられず動力伝達遮断状態がそのまま維持されるので、例えば車両停止中や前進走行中の非駆動ポジション時であって第1速ギヤ段が判断されるときや後進走行中の非駆動ポジション時であれば、インナチャンバB2ci及びアウタチャンバB2coへ油圧を供給してブレーキB2を係合する。これにより、ガレージシフト時に供給する必要のある作動油量を減らすことができ、ガレージシフト時の応答性が確保され易くなる。また、ガレージシフト時にモータ104を駆動する為の電力(負荷)が小さくされて瞬間的な大きな電力も抑制され、燃費が向上する。また、ガレージシフト時の応答性を確保する為のモータ104を含めた電動オイルポンプ106の大型化が抑制される。この際、ブレーキB2を係合しないまでもインナチャンバB2ci及びアウタチャンバB2coへの所謂パック詰めでも、ガレージシフト時に供給する必要のある作動油量を減らす効果は得られる。
図11は、電子制御装置80の制御作動の要部すなわち燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立させる為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
図11において、先ず、走行状態判定手段88に対応するステップ(以下、ステップを省略する)SA10において、シフトポジションPSHに基づいてシフトレバー52が非駆動ポジションである「P」レンジ或いは「N」レンジであるか否かが判定される。このSA10の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は所定条件成立判定手段90に対応するSA20において、作動油温THOILが第1所定油温THOIL1以下であるか、作動油温THOILが第2所定油温以上THOIL2であるか否か、前記所定の油圧式係合装置のチャンバ容積が所定容量以上となるか否かなどの、ガレージシフト時の応答性が確保し難いと判断される所定条件が成立したか否かが判定される。
上記SA20の判断が肯定される場合はガレージシフト前制御手段92に対応するSA30において、電動オイルポンプ106が始動され、電動オイルポンプ106の制御が開始される。次いで、同じくガレージシフト前制御手段92に対応するSA40において、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給するか、或いは係合しても動力伝達しない係合要素に予め油圧を供給する指令が有段変速制御手段82へ出力される。例えば、車両停止中や前進走行中であって第1速ギヤ段が判断されるときや後進走行中であれば、リニアソレノイドバルブSLB2の作動によりインナチャンバB2ci及びアウタチャンバB2coへ油圧が供給されてブレーキB2が係合される。上記SA20の判断が否定される場合はSA50において、SA30、SA40におけるガレージシフト前制御以外のその他の制御が実行される。
上述のように、本実施例によれば、非駆動ポジション時には、ガレージシフト時に動力伝達可能状態へ切り換える為に係合される所定の油圧式係合装置に対して、動力伝達遮断状態が維持されつつ電動オイルポンプ106により予め油圧が供給されるので、ガレージシフト時には所定の油圧式係合装置を係合する為に必要な供給油量(油圧供給量)を少なくできガレージシフト時の応答性が確保し易くなる。また、ガレージシフト時の電動オイルポンプ106の負荷を下げ、電動オイルポンプ用モータ104の低出力化を図ることができる。よって、燃費向上とガレージシフト時の応答性確保と電動オイルポンプ106の小型化とを両立することができる。
また、本実施例によれば、作動油温THOILが第1所定油温THOIL1以下である場合、或いは作動油温THOILが第1所定油温THOIL1よりも高く設定された第2所定油温THOIL2以上である場合に、電動オイルポンプ106により予め油圧が供給されるので、オイルポンプが作動油を汲み難くなってガレージシフト時の応答性が確保し難くなるような第1所定油温THOIL1以下の低油温時、或いは必要な油圧供給量が多くなってガレージシフト時の応答性が確保し難くなるような第2所定油温THOIL2以上の高油温時には、ガレージシフト時に所定の油圧式係合装置を係合する為に必要な供給油量が適切に少なくされる。
また、本実施例によれば、前記所定の油圧式係合装置のチャンバ容積が所定容量以上となる場合に、電動オイルポンプ106により予め油圧が供給されるので、必要な供給油量が多くなってガレージシフト時の応答性が確保し難くなるようなチャンバ容積の所定容量以上時には、ガレージシフト時に所定の油圧式係合装置を係合する為に必要な供給油量が適切に少なくされる。
また、本実施例によれば、動力伝達装置10は油圧式係合装置の係合と解放とにより所定の変速段が成立させられる有段式の自動変速機である自動変速部20により動力伝達経路の一部が構成されており、非駆動ポジション時には、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧が供給されるか、或いは係合しても動力伝達しない係合要素に予め油圧が供給されるので、ガレージシフト前では自動変速部20において動力伝達遮断状態が確実に維持され、ガレージシフト時にはそのガレージシフト時に成立させられる所定の変速段を成立させる為に油圧式係合装置に供給する必要がある作動油量を可及的に少なくできる。よって、自動変速部20により動力伝達経路の一部が構成された実用的な動力伝達装置10において、燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立することができる。
また、本実施例によれば、前記所定の油圧式係合装置は、車両停止状態を含む前後進走行状態及び車速関連値に基づいて決定されるので、ガレージシフトの際に係合する必要がある油圧式係合装置が適切に決定され、ガレージシフト前に油圧を供給する所定の油圧式係合装置が適切に決定される。例えば、車両停止時であれば、第1速ギヤ段や後進ギヤ段を成立させる為の油圧式係合装置等が所定の油圧式係合装置として決定される。また、前進走行時であれば、車速関連値に基づく変速段を成立させる為の油圧式係合装置等が所定の油圧式係合装置として決定される。また、後進走行時であれば、後進ギヤ段を成立させる為の油圧式係合装置等が所定の油圧式係合装置として決定される。
次に、本発明の他の実施例を説明する。尚、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
前述の実施例では、ガレージシフト前制御手段92は、非駆動ポジションである時に、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給するか、或いは係合しても動力伝達しない係合要素に予め油圧を供給した。すなわち、自動変速部20において動力伝達遮断状態をそのまま維持するものであった。ここで、本実施例の動力伝達装置10では、差動部11をニュートラル状態とすることが可能であり、自動変速部20内が動力伝達可能状態とされても差動部11をニュートラル状態とすることにより動力伝達装置10として動力伝達遮断状態とすることが可能である。そこで、ガレージシフト前制御手段92は、前述の実施例に替えて、走行状態判定手段88によりシフトレバー52が非駆動ポジションであると判定され、且つ所定条件成立判定手段90により所定条件が成立したと判定された場合には、非駆動ポジションである時に、差動部11をニュートラル状態とすると共に、前記所定の油圧式係合装置を係合して自動変速部20を動力伝達可能状態とする。具体的には、ガレージシフト前制御手段92は、非駆動ポジション時には、第1電動機M1を無負荷状態とすることで差動部11をニュートラル状態とする指令をハイブリッド制御手段86へ出力すると共に、前記所定の油圧式係合装置を係合してガレージシフト時に成立させる所定の変速段を成立させる指令を有段変速制御手段82へ出力する。
ここでの、所定の変速段は、車両停止中には、第1速ギヤ段及び後進ギヤ段であるが、何れとなるかは非駆動ポジション時には確定しない。従って、車両停止中には、所定の油圧式係合装置としてブレーキB2のみが係合される。また、前進走行中の非駆動ポジション時であって第1速ギヤ段が判断されるときであれば、所定の変速段は第1速ギヤ段となるので、所定の油圧式係合装置として例えばクラッチC1及びブレーキB2が係合される。但し、図6に示した油圧制御回路100では、クラッチC1へはDレンジ圧Pを元圧とする制御圧PSLC1が供給されることから、非駆動ポジション時にクラッチC1を係合するにはライン油圧PL1を元圧とする必要がある。また、後進走行中の非駆動ポジション時であれば、所定の変速段は後進ギヤ段となるので、所定の油圧式係合装置として例えばクラッチC3及びブレーキB2が係合される。尚、ここでは、所定の油圧式係合装置を係合したが、係合しないまでもチャンバへの所謂パック詰めでも良い。また、所定の変速段が確定しても、その変速段を成立させる為の所定の油圧式係合装置の何れにも油圧を供給する必要はなく、一部に油圧を供給しても良い。このようにしても、ガレージシフト時に供給する必要のある作動油量を減らす一定の効果は得られる。
図12は、電子制御装置80の制御作動の要部すなわち燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立させる為の制御作動を説明するフローチャートであり、前記図11のフローチャートに対応する別の実施例である。
図12において、先ず、走行状態判定手段88に対応するSB10において、シフトポジションPSHに基づいてシフトレバー52が非駆動ポジションである「P」レンジ或いは「N」レンジであるか否かが判定される。このSB10の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は所定条件成立判定手段90に対応するSB20において、作動油温THOILが第1所定油温THOIL1以下であるか、作動油温THOILが第2所定油温以上THOIL2であるか否か、前記所定の油圧式係合装置のチャンバ容積が所定容量以上となるか否かなどの、ガレージシフト時の応答性が確保し難いと判断される所定条件が成立したか否かが判定される。
上記SB20の判断が肯定される場合はガレージシフト前制御手段92に対応するSB30において、第1電動機M1を無負荷状態とすることで差動部11をニュートラル状態とする指令がハイブリッド制御手段86へ出力される。次いで、同じくガレージシフト前制御手段92に対応するSB40において、電動オイルポンプ106が始動され、電動オイルポンプ106の制御が開始される。次いで、同じくガレージシフト前制御手段92に対応するSB50において、前記所定の油圧式係合装置を係合してガレージシフト時に成立させる所定の変速段を成立させる指令が有段変速制御手段82へ出力され、自動変速部20内が動力伝達可能状態とされる。例えば、車両停止中には、例えばブレーキB2のみが係合される。また、前進走行中であって第1速ギヤ段が判断されるときであれば、例えばクラッチC1及びブレーキB2が係合される。また、後進走行中であれば、例えばクラッチC3及びブレーキB2が係合される。上記SB20の判断が否定される場合はSB60において、SB30〜SB50におけるガレージシフト前制御以外のその他の制御が実行される。
上述のように、本実施例によれば、動力伝達装置10は差動部11と自動変速部20とにより動力伝達経路の一部が構成されており、非駆動ポジション時には差動部11がニュートラル状態とされると共に、前記所定の油圧式係合装置を係合して自動変速部20が動力伝達可能状態とされるので、ガレージシフト前では差動部11において動力伝達遮断状態が維持されていることから自動変速部20において動力伝達可能状態とされても問題は生じず、ガレージシフト時には所定の油圧式係合装置を係合する為に必要な供給油量を可及的に少なくできる。よって、差動部11と自動変速部20とにより構成された実用的な動力伝達装置10において、燃費向上とガレージシフト時の応答性確保と電動オイルポンプ106の小型化とを両立することができる。
また、本実施例によれば、差動部11は、エンジン8に動力伝達可能に連結された動力分配機構16とその動力分配機構16に動力伝達可能に連結された第1電動機M1とを有し、第1電動機M1の運転状態が制御されて動力分配機構16の差動状態が制御されることにより電気的な差動装置として作動するものであり、自動変速部20は、油圧式係合装置の係合と解放とにより変速段が成立させられる有段式の自動変速機であり、非駆動ポジション時には、第1電動機M1を無負荷状態とすることで差動部11がニュートラル状態とされると共に、前記所定の油圧式係合装置を係合して所定の変速段が成立させられるので、差動部11を簡単にニュートラル状態とすることができる。また、ガレージシフト前では差動部11において動力伝達遮断状態が維持されていることから自動変速部20において所定の変速段が成立させられても問題は生じず、ガレージシフト時には所定の変速段を成立させる為に所定の油圧式係合装置に供給する必要がある作動油量を可及的に少なくできる。
図13は、本発明が適用される他の動力伝達装置200の構成を説明する骨子図である。この動力伝達装置200は横置き型自動変速機であって、FF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものであり、走行用の動力源としてエンジン8を備えている。エンジン8の出力は、エンジン8のクランク軸、流体式伝動装置としてのトルクコンバータ210から前後進切換装置220、ベルト式の無段変速機(CVT)230、減速歯車装置240を介して差動歯車装置32に伝達され、左右の駆動輪34へ分配される。
前後進切換装置220は、前進用クラッチC1および後進用ブレーキB1とダブルピニオン型の遊星歯車装置220pとを主体として構成されており、トルクコンバータ210のタービン軸212はサンギヤ220sに一体的に連結され、無段変速機230の入力軸232はキャリア220cに一体的に連結されている一方、キャリア220cとサンギヤ220sは前進用クラッチC1を介して選択的に連結され、リングギヤ220rは後進用ブレーキB1を介してハウジング250に選択的に固定されるようになっている。前進用クラッチC1および後進用ブレーキB1は断続装置に相当するもので、何れも油圧シリンダによって摩擦係合させられる油圧式摩擦係合装置である。
そして、前進用クラッチC1が係合させられるとともに後進用ブレーキB1が解放されると、前後進切換装置220は一体回転状態とされることによりタービン軸212が入力軸232に直結され、前進用動力伝達経路が成立(達成)させられて、前進方向の駆動力が無段変速機230側へ伝達される。また、後進用ブレーキB1が係合させられるとともに前進用クラッチC1が解放されると、前後進切換装置220は後進用動力伝達経路が成立(達成)させられて、入力軸232はタービン軸212に対して逆方向へ回転させられるようになり、後進方向の駆動力が無段変速機230側へ伝達される。また、前進用クラッチC1および後進用ブレーキB1が共に解放されると、前後進切換装置220は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)になる。
無段変速機230は、入力軸232に設けられた入力側部材である有効径が可変の入力側可変プーリ(プライマリシーブ)234と、出力軸260に設けられた出力側部材である有効径が可変の出力側可変プーリ(セカンダリシーブ)236と、それ等の可変プーリ234、236に巻き掛けられた伝動ベルト238とを備えており、可変プーリ234、236と伝動ベルト238との間の摩擦力を介して動力伝達が行われる。
このように構成された動力伝達装置200において、非駆動ポジション時には、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧が供給される。ここでの、所定の油圧式係合装置は前進用クラッチC1或いは後進用ブレーキB1である。例えば、前進走行中の非駆動ポジション時には、前進用クラッチC1にトルク容量が生じないように予め油圧が供給される。また、後進走行中の非駆動ポジション時には、後進用ブレーキB1にトルク容量が生じないように予め油圧が供給される。これにより、ガレージシフト時には、所定の油圧式係合装置に供給する作動油量が少なくなる。
上述のように、本実施例によれば、動力伝達装置200は、前進用クラッチC1及び後進用ブレーキB1の係合と解放とにより前進用動力伝達経路と後進用動力伝達経路とを選択的に成立させることが可能な前後進切換装置230と、変速比が連続的に変化させられる無段変速機230とにより動力伝達経路の一部が構成されており、非駆動ポジション時には、前記所定の油圧式係合装置(前進用クラッチC1や後進用ブレーキB1)にトルク容量が生じないように予め油圧が供給されるので、ガレージシフト前では前後進切換装置220において動力伝達遮断状態が確実に維持され、ガレージシフト時には前進用動力伝達経路或いは後進用動力伝達経路を成立させる為に前進用クラッチC1或いは後進用ブレーキB1に供給する必要がある作動油量を可及的に少なくできる。よって、前後進切換装置220と無段変速機230とにより構成された実用的な動力伝達装置200において、燃費向上とガレージシフト時の応答性確保と電動オイルポンプ106の小型化とを両立することができる。
また、本実施例によれば、前記所定の油圧式係合装置は、車両停止状態を含む前後進走行状態及び車速関連値に基づいて決定されるので、ガレージシフトの際に係合する必要がある油圧式係合装置が適切に決定され、ガレージシフト前に油圧を供給する所定の油圧式係合装置が適切に決定される。例えば、前進走行時であれば、前進用動力伝達経路を成立させる為の前進用クラッチC1が所定の油圧式係合装置として決定される。また、後進走行時であれば、後進用動力伝達経路を成立させる為の後進用ブレーキB1が所定の油圧式係合装置として決定される。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例の車両用動力伝達装置10は、差動部11と自動変速部20とを備えていたが、少なくとも自動変速部20を備えておれば、本発明は適用され得る。
また、前述の実施例では、ガレージシフト時の応答性を確保し易くする為に、所定の油圧式係合装置を係合或いは所謂パック詰めをした。所定の油圧式係合装置を係合するか、或いは所定の油圧式係合装置(チャンバ)をパック詰めするかを、例えば作動油温THOILで切り分けても良い。例えば、ガレージシフト時の応答性がより確保し難くなる極低油温時には所定の油圧式係合装置を係合し、低油温時には所定の油圧式係合装置(チャンバ)をパック詰めするようにしても良い。また、極低油温時にはインナチャンバB2ci及びアウタチャンバB2coへ油圧を供給し、低油温時にはインナチャンバB2ciのみへ油圧を供給するようにしても良い。作動油温THOILの高温側も考え方は同様である。
また、前述の実施例では、ガレージシフト時の応答性が確保し難いと判断される所定条件が成立したか否かを判定し、その所定条件が成立したときにガレージシフト前制御手段92(SA30、SA40やSB30〜SB50)によるガレージシフト前制御を実行したが、所定条件の成立如何に拘わらずそのガレージシフト前制御を実行するようにしても良い。すなわち、シフトレバー52が非駆動ポジションとされているときには、常時そのガレージシフト前制御を実行するようにしても良い。このようにしても、同様の効果が得られる。
また、前述の実施例では、第1電動機M1の運転状態が制御されることにより、差動部11(動力分配機構16)はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、例えば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであってもよい。
また、前述の実施例の動力伝達装置10において、エンジン8と差動部11とは直結されているが、エンジン8が差動部11にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例の動力伝達装置10において、第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例では、エンジン8から駆動輪34への動力伝達経路において、差動部11の次に自動変速部20が連結されているが、自動変速部20の次に差動部11が連結されている順番でもよい。要するに、自動変速部20は、エンジン8から駆動輪34への動力伝達経路の一部を構成するように設けられて入力側回転部材に動力伝達可能に電動機及びエンジン8が連結されておればよい。
また、前述の実施例の図1によれば、差動部11と自動変速部20は直列に連結されているが、動力伝達装置10全体として電気的に差動状態を変更し得る電気式差動機能とその電気式差動機能による変速とは異なる原理で変速する機能とが備わっていれば、差動部11と自動変速部20とが機械的に独立していなくても本発明は適用される。
また、前述の実施例において、動力分配機構16はシングルプラネタリであるが、ダブルプラネタリであってもよい。
また、前述の実施例の差動機構として動力分配機構16は、例えばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1及び伝達部材18(第2電動機M2)に作動的に連結された差動歯車装置であってもよい。
また、前述の実施例においては、差動部遊星歯車装置24を構成する第1回転要素RE1にはエンジン8が動力伝達可能に連結され、第2回転要素RE2には第1電動機M1が動力伝達可能に連結され、第3回転要素RE3には駆動輪34への動力伝達経路が連結されているが、例えば、2以上の遊星歯車装置がそれを構成する一部の回転要素で相互に連結された構成において、その遊星歯車装置の回転要素にそれぞれエンジン、電動機、駆動輪が動力伝達可能に連結されており、その遊星歯車装置の回転要素に連結されたクラッチ又はブレーキの制御により有段変速と無段変速とに切換可能な構成にも本発明は適用される。
また、前述の実施例においては、第2電動機M2は伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。
また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちの何れと連結されていても差し支えない。
また、前述の実施例において、エンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前述の実施例では、第1電動機M1及び第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
また、前述の実施例において、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、例えば伝達部材18としてカウンタギヤ対、スプロケット及びチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
また、前述の実施例の動力分配機構16は1組の差動部遊星歯車装置24から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。
また、前述の実施例の第2電動機M2はエンジン8から駆動輪34までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする動力伝達装置10の構成であってもよい。
また、前述の実施例において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とはそれぞれ別個に動力伝達装置10に備えられていてもよい。
また、前述の実施例において、差動部11は、動力分配機構16に設けられて差動作用を制限することにより少なくとも前進2段の有段変速機としても作動させられる差動制限装置を備えたものであってもよい。
また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。例えば電磁クラッチであるような場合には、油圧制御回路100は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
また、前述した複数の実施例はそれぞれ、例えば優先順位を設けるなどして、相互に組み合わせて実施することができる。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
本発明の制御装置が適用される車両用動力伝達装置の構成を説明する骨子図である。 図1の車両用動力伝達装置に備えられた自動変速部の変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。 図1の車両用動力伝達装置における各ギヤ段の相対回転速度を説明する共線図である。 図1の車両用動力伝達装置に設けられた電子制御装置の入出力信号を説明する図である。 シフトレバーを備えた複数種類のシフトポジションを選択するために操作されるシフト操作装置の一例である。 油圧制御回路のうち主に自動変速部の変速を制御する為のクラッチ及びブレーキの係合と解放とを制御する要部構成を説明する回路図である。 図4の電子制御装置による制御機能の要部を説明する機能ブロック線図である。 図1の車両用動力伝達装置において、自動変速部の変速判断の基となる予め記憶された変速線図の一例と、エンジン走行とモータ走行とを切り換える為の予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。 図1のエンジンの最適燃費率曲線の一例を示す図である。 電動オイルポンプ用のモータの駆動制御に用いられるモータ駆動マップの一例である。 電子制御装置の制御作動の要部すなわち燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立させる為の制御作動を説明するフローチャートである。 電子制御装置の制御作動の要部すなわち燃費向上とガレージシフト時の応答性確保と電動オイルポンプの小型化とを両立させる為の制御作動を説明するフローチャートであり、図11のフローチャートに対応する別の実施例である。 本発明が適用される車両用動力伝達装置の別の構成を説明する骨子図である。
符号の説明
8:エンジン(駆動力源)
10:車両用動力伝達装置
11:差動部(電気式差動部)
16:動力分配機構(差動機構)
20:自動変速部(変速部)
34:駆動輪
50:シフト操作装置(切換装置)
80:電子制御装置(油圧制御装置)
106:電動オイルポンプ
220:前後進切換装置
230:無段変速機
M1:第1電動機(差動用電動機)

Claims (7)

  1. 駆動力源から駆動輪への動力伝達経路における動力伝達が可能な動力伝達可能状態への切換えを選択する為の駆動ポジションと前記動力伝達経路における動力伝達が遮断された動力伝達遮断状態への切換えを選択する為の非駆動ポジションとに人為的操作により切り換えられる切換装置を備え、該切換装置における操作に基づいて油圧式係合装置の係合と解放とを行うことにより動力伝達可能状態と動力伝達遮断状態とに切り換えられる車両用動力伝達装置の油圧制御装置において、
    前記駆動力源の回転状態に拘わらず前記油圧式係合装置へ供給する油圧を発生することが可能な電動オイルポンプを備え、
    前記非駆動ポジション時には、前記切換装置が該非駆動ポジションから前記駆動ポジションへ切換操作された時に動力伝達可能状態へ切り換える為に係合される所定の油圧式係合装置に対して、動力伝達遮断状態を維持しつつ前記電動オイルポンプにより予め油圧を供給するものであり、
    前記所定の油圧式係合装置のチャンバ容積が所定容量以上となる場合に、前記電動オイルポンプにより予め油圧を供給することを特徴とする車両用動力伝達装置の油圧制御装置。
  2. 作動油の油温が第1所定油温以下である場合、或いは作動油の油温が前記第1所定油温よりも高く設定された第2所定油温以上である場合に、前記電動オイルポンプにより予め油圧を供給することを特徴とする請求項1に記載の車両用動力伝達装置の油圧制御装置。
  3. 前記車両用動力伝達装置は、電気式差動部と変速部とにより前記動力伝達経路の一部が構成されており、
    前記非駆動ポジション時には、前記電気式差動部を該電気式差動部における動力伝達が電気的に遮断されるニュートラル状態とすると共に、前記所定の油圧式係合装置を係合して前記変速部を動力伝達可能状態とすることを特徴とする請求項1又は2に記載の車両用動力伝達装置の油圧制御装置。
  4. 前記電気式差動部は、前記駆動力源に動力伝達可能に連結された差動機構と該差動機構に動力伝達可能に連結された差動用電動機とを有し、該差動用電動機の運転状態が制御されて該差動機構の差動状態が制御されることにより電気的な差動装置として作動するものであり、
    前記変速部は、前記油圧式係合装置の係合と解放とにより変速段が成立させられる有段式の自動変速機であり、
    前記非駆動ポジション時には、前記差動用電動機を無負荷状態とすることで前記電気式差動部をニュートラル状態とすると共に、前記所定の油圧式係合装置を係合して所定の変速段を成立させることを特徴とする請求項に記載の車両用動力伝達装置の油圧制御装置。
  5. 前記車両用動力伝達装置は、前記油圧式係合装置の係合と解放とにより所定の変速段が成立させられる有段式の自動変速機により前記動力伝達経路の一部が構成されており、
    前記非駆動ポジション時には、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給するか、或いは係合しても動力伝達しない係合要素に予め油圧を供給することを特徴とする請求項1又は2に記載の車両用動力伝達装置の油圧制御装置。
  6. 前記車両用動力伝達装置は、前記油圧式係合装置の係合と解放とにより前進用動力伝達経路と後進用動力伝達経路とを選択的に成立させることが可能な前後進切換装置と、変速比が連続的に変化させられる無段変速機とにより前記動力伝達経路の一部が構成されており、
    前記非駆動ポジション時には、前記所定の油圧式係合装置にトルク容量が生じないように予め油圧を供給することを特徴とする請求項1又は2に記載の車両用動力伝達装置の油圧制御装置。
  7. 前記所定の油圧式係合装置は、車両停止状態を含む前後進走行状態及び車速関連値に基づいて決定されることを特徴とする請求項1乃至の何れか1項に記載の車両用動力伝達装置の油圧制御装置。
JP2008326726A 2008-12-23 2008-12-23 車両用動力伝達装置の油圧制御装置 Expired - Fee Related JP5411493B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326726A JP5411493B2 (ja) 2008-12-23 2008-12-23 車両用動力伝達装置の油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326726A JP5411493B2 (ja) 2008-12-23 2008-12-23 車両用動力伝達装置の油圧制御装置

Publications (2)

Publication Number Publication Date
JP2010149538A JP2010149538A (ja) 2010-07-08
JP5411493B2 true JP5411493B2 (ja) 2014-02-12

Family

ID=42569138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326726A Expired - Fee Related JP5411493B2 (ja) 2008-12-23 2008-12-23 車両用動力伝達装置の油圧制御装置

Country Status (1)

Country Link
JP (1) JP5411493B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095260A (ja) * 2011-10-31 2013-05-20 Aisin Aw Co Ltd ハイブリッド駆動装置
JP6181980B2 (ja) * 2013-05-30 2017-08-16 株式会社Subaru 車両用駆動装置
JP6386701B2 (ja) * 2013-05-30 2018-09-05 株式会社Subaru 車両用制御装置
JP6348340B2 (ja) 2014-05-21 2018-06-27 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP6359875B2 (ja) 2014-05-28 2018-07-18 トヨタ自動車株式会社 ハイブリッド自動車

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075210B2 (ja) * 1999-05-11 2008-04-16 トヨタ自動車株式会社 駆動装置
JP2003139230A (ja) * 2001-10-31 2003-05-14 Toyota Motor Corp オイルポンプの制御装置
JP3969299B2 (ja) * 2002-12-19 2007-09-05 トヨタ自動車株式会社 車両用動力伝達装置の油圧制御装置
JP4872580B2 (ja) * 2006-10-03 2012-02-08 株式会社デンソー 運転支援装置及びプログラム
JP5167701B2 (ja) * 2007-01-31 2013-03-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4973277B2 (ja) * 2007-03-28 2012-07-11 トヨタ自動車株式会社 車両の電動オイルポンプ制御装置

Also Published As

Publication number Publication date
JP2010149538A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4215092B2 (ja) ハイブリッド車両のエンジン起動装置
JP4997986B2 (ja) ハイブリッド車両の制御装置
JP4983453B2 (ja) 車両用駆動装置の制御装置
JP4840135B2 (ja) 車両用駆動装置の制御装置
JP4973165B2 (ja) 車両用駆動装置の制御装置
JP4462259B2 (ja) 車両用駆動装置の制御装置
JP5098402B2 (ja) 車両用駆動装置の制御装置
JP4333759B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP4858310B2 (ja) 車両用動力伝達装置の制御装置
JP4930261B2 (ja) 車両用動力伝達装置の制御装置
JP4470938B2 (ja) 車両用駆動装置の制御装置
JP2010070008A (ja) 車両用駆動装置の制御装置
JP2008121475A (ja) 車両用駆動装置の制御装置
JP2007290629A (ja) 車両用駆動装置の制御装置
JP4483879B2 (ja) 車両用駆動装置の制御装置
JP4998072B2 (ja) 車両用動力伝達装置の制御装置
JP5298539B2 (ja) 車両用駆動装置の制御装置
JP5411493B2 (ja) 車両用動力伝達装置の油圧制御装置
JP4561760B2 (ja) 車両用駆動装置の制御装置
JP4992454B2 (ja) 車両用駆動装置の制御装置
JP4967634B2 (ja) 車両用駆動装置の制御装置
JP2012046003A (ja) 車両用動力伝達装置の制御装置
JP2010115980A (ja) 車両用動力伝達装置の制御装置
JP2008201229A (ja) 車両用駆動装置の制御装置
JP2009137332A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R151 Written notification of patent or utility model registration

Ref document number: 5411493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees