JP5407351B2 - トナー及び現像剤 - Google Patents

トナー及び現像剤 Download PDF

Info

Publication number
JP5407351B2
JP5407351B2 JP2009007877A JP2009007877A JP5407351B2 JP 5407351 B2 JP5407351 B2 JP 5407351B2 JP 2009007877 A JP2009007877 A JP 2009007877A JP 2009007877 A JP2009007877 A JP 2009007877A JP 5407351 B2 JP5407351 B2 JP 5407351B2
Authority
JP
Japan
Prior art keywords
toner
vibration
mass
thin film
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009007877A
Other languages
English (en)
Other versions
JP2010033000A (ja
Inventor
陽一郎 渡辺
一己 鈴木
隆浩 本多
伸二 大谷
義浩 法兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009007877A priority Critical patent/JP5407351B2/ja
Publication of JP2010033000A publication Critical patent/JP2010033000A/ja
Application granted granted Critical
Publication of JP5407351B2 publication Critical patent/JP5407351B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真、静電記録、静電印刷等に於ける静電荷像を現像する為のトナー及び現像剤に関する。
電子写真、静電記録、静電印刷等に於いて使用される現像剤は、その現像工程において、例えば、静電荷像が形成されている静電潜像担持体等の像担持体に一旦付着され、次に転写工程において静電潜像担持体から転写紙等の転写媒体に転写された後、定着工程において紙面に定着される。現像方式としては、潜像保持面上に形成される静電荷像を現像する為の現像剤として、キャリアとトナーから成る二成分系現像剤を用いた二成分現像方式及び、キャリアを必要としない一成分系現像剤(磁性トナー、非磁性トナー)を用いた一成分現像方式が知られている。
いずれの現像剤においても、帯電したトナーを静電気力を用いて現像及び転写を行うことが一般に行われている。トナーの帯電量は、トナーの粒径や現像・転写方式により適正値があるため、適正な帯電量が得られることはもちろんであるが、すばやく帯電でき、温度や湿度といった環境条件に影響されずに安定した帯電量を維持できることが、安定した画像形成を行う上で重要となる。さらに、帯電量の平均値が適正値であるだけでなく、個々のトナー粒子それぞれが適正帯電量であり帯電量の分布が狭く、ひとつのトナー粒子内でも帯電サイトの分布が均一であることが高画質を得るために重要となる。
これらの帯電特性を向上させるため従来からさまざまな帯電制御剤が提案され、一部実用化されているが、これら全ての帯電特性を充分に満足させる帯電制御剤は見出されていない。
例えば、負帯電制御剤としてモノアゾ染料の金属錯体やサリチル酸と各種金属の化合物が多く用いられている。これらに対して帯電特性の更なる向上を狙い、フッ素を含有する化合物を帯電制御剤として用いることが提案されているが、全ての帯電特性を充分に満足させる帯電制御剤は見出されていない(特許文献1〜4参照)。
従来、電子写真、静電記録、静電印刷などに用いられる乾式トナーとしては、スチレン系樹脂、ポリエステル系樹脂などのトナーバインダーを着色剤などと共に溶融混練し、微粉砕したもの、いわゆる粉砕型トナーが広く用いられている。粉砕型トナーでは粉砕のために多大なエネルギーを消費するばかりでなく、粉砕後の粒度分布が広いため分級という適正粒径の粒子を選択するといった工程が設けられ、さらに生産性を低下させてしまう。
また、粉砕型トナーは結着樹脂に、着色剤、帯電制御剤、離型剤といった内添剤を溶融混練して分散させているが、粉砕時には内添剤と結着樹脂の界面で粉砕されやすく、個々のトナー粒子間及び、ひとつのトナー粒子表面での均一性が得られづらく、トナーの品質面でも問題を起こしやすいという欠点がある。さらに、分級を行っても、トナーの粒度分布が広いため、現像を繰り返すことにより画像品質が変化してしまう。これは、現像工程において現像され易いトナー粒径が存在するためで、キャリアを用いる二成分現像では大きいトナーが現像され易いため現像を繰り返すと現像剤中のトナーが小さくなって画像濃度が低下する傾向となる。一成分現像では小さいトナーが現像され易いため、現像を繰り返すと現像剤中のトナーが大きくなってドット再現性や階調性が低下する傾向となる。
これらの欠点の改良とともに、近年の環境負荷低減の要求から、トナーの粒度分布が狭く、トナー粒子表面の均一性が得られ、省エネルギーで環境汚染の少ない製造方法が求められている。
近年、懸濁重合法、乳化重合凝集法、ポリマー溶解懸濁重合法といった、いわゆる重合型トナーが検討されている。
これらの重合型トナーは粉砕法トナーに比べて、トナー粒子表面の均一性が得られ易く、粒度分布も狭くできると言った利点があるものの、水系媒体中で分散剤を使用するために、トナーの帯電特性を損なう分散剤がトナー表面に残存して帯電量の環境安定性が損なわれるという問題が発生しやすく、この分散剤をできるだけ除去するために非常に大量の洗浄水を必要とすることが知られており、環境負荷の面から必ずしも満足のいく製法とは言えない。
これに代わるトナーの製造方法として、水を使わずにトナー組成液を気相中で液滴化した後に固化する、いわゆるスプレードライ法も提案されているが、粒度分布が広いといった欠点がある。
トナー組成液を気相中で液滴化し粒度分布を狭くする試みとして、圧電パルスを利用して微小液滴を形成し、さらにこれを乾燥固化してトナー化する工法が提案されている(特許文献5参照)。更に、ノズル内の熱膨張を利用し、やはり微小液滴を形成し、さらにこれを乾燥固化してトナー化する工法が提案されている(特許文献6参照)。更には、音響レンズを利用し、同様の処理をする方法が提案されている(特許文献7参照)。しかしながら、これらの方法では、一つのノズルから単位時間あたりに吐出できる液滴数が少なく、生産性が悪いという問題があると同時に、液滴同士の合一による粒度分布の広がりが避けられず、単一分散性という点においても満足のいくものではなかった。
本発明は、かかる現状に鑑みてなされたものであり、従来のトナーより帯電の立ち上がり性や耐環境変動性が非常に優れ、高品質の画像を安定して得ることができるトナー及び現像剤を提供することを目的とする。さらに、トナー粒子表面の帯電均一性が得られ、トナーの粒度分布が非常にシャープとすることによりその効果をより向上させることを目的とする。
本発明のトナーにおいては、帯電制御剤として、付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体を用いることにより上記課題を達成できることを見出した。
特に、付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体を含むトナー組成物を有機溶剤に溶解ないしは分散したトナー組成液を、気相中で液滴化し、次いで該液滴を固化する製造方法によりトナー粒子表面の帯電均一性が得られ、トナー組成液を、微小な開口径の複数のノズルから機械的振動手段により周期的に放出し、気相中で液滴化することによりトナーの粒度分布が非常にシャープとすることにより現像を繰り返しても安定した画像を得ることができることを見出した。具体的な手段を以下に示した。
(1)少なくとも結着樹脂、着色剤、及び帯電制御剤を含有するトナー組成物を有機溶剤に溶解ないしは分散したトナー組成液を、気相中で液滴化し、次いで該液滴を固化することによって製造されたトナーであって、前記帯電制御剤が付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなるガラス転移点が50〜95℃の共重合体であることを特徴とするトナー。
(2)前記液滴化が前記トナー組成液を、同じ開口径の複数のノズルを有する薄膜を機械的振動手段によって振動させることにより周期的に放出することによって行われたことを特徴とする(1)に記載のトナー。
(3)前記機械的振動手段が、前記薄膜のノズルを設けた領域の周囲に円環状に形成された振動発生手段であることを特徴とする(2)に記載のトナー。
(4)前記機械的振動手段は、前記薄膜に対して平行な振動面を有し、該振動面が垂直方向に縦振動する振動手段であることを特徴とする(2)に記載のトナー。
(5)前記機械的振動手段は、前記薄膜に対して平行な振動面を有し、該振動面が垂直方向に縦振動する振動手段であり、液の共振現象を利用してトナー組成液を前記薄膜に設けた複数のノズルから周期的に液滴化して放出させたことを特徴とする請求項3に記載のトナー。
(6)前記機械的振動手段がホーン型振動子であることを特徴とする(4)又は(5)に記載のトナー。
(7)前記付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体におけるフッ素の含有量が7〜30質量%であることを特徴とする(1)〜(6)のいずれかに記載のトナー。
(8)前記付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体の重量平均分子量が5000〜100000であることを特徴とする(1)〜(7)のいずれかに記載のトナー。
)前記付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体の含有量が、トナー組成物100質量部に対して0.05〜5質量部であることを特徴とする(1)〜()のいずれかに記載のトナー。
10)前記トナー組成液の固形分が5〜40質量%であることを特徴とする(1)〜()のいずれかに記載のトナー。
11)重量平均粒径が1〜15μmであり、粒度分布(重量平均粒径/個数平均粒径)が、1.00〜1.15の範囲にあることを特徴とする(1)〜(10)のいずれかに記載のトナー。
12)少なくとも(1)〜(11)のいずれかに記載のトナーと磁性粒子を含むキャリアを含有することを特徴とする二成分系の現像剤。
本発明のトナーは、トナーの粒度分布が非常にシャープであり、従来のトナーに比べて帯電の立ち上がり性、トナー粒子表面の帯電均一性及び耐環境変動性に優れている。このため、本発明のトナーを用いることにより高品質の画像を安定して得ることができる。
本発明に係るトナーの製造装置の一例を示す概略構成図である。 同トナーの製造装置の液滴噴射ユニットの説明に供する拡大説明図である。 図2を下側から見た底面説明図である。 同液滴噴射ユニットの振動発生手段を構成するステップ型のホーン型振動子の例を示す模式的説明図である。 同液滴噴射ユニットの振動発生手段を構成するエクスポネンシャル型のホーン型振動子の例を示す模式的説明図である。 同液滴噴射ユニットの振動発生手段を構成するコニカル型のホーン型振動子の例を示す模式的説明図である。 同トナーの製造装置の液滴噴射ユニットの他の例の説明に供する拡大説明図である。 同トナーの製造装置の液滴噴射ユニットの更に他の例の説明に供する拡大説明図である。 同トナーの製造装置の液滴噴射ユニットの更にまた他の例の説明に供する拡大説明図である。 図9の液滴噴射ユニットを複数個配置した例の説明に供する説明図である。 本発明に係るトナーの製造装置の一実施形態を示す概略構成図である。 同トナーの製造装置の液滴噴射ユニットの説明に供する拡大説明図である。 図12を下側から見た底面説明図である。 同液滴噴射ユニットの液滴化手段の拡大断面説明図である。 比較例構成に係る液滴化手段の拡大断面説明図である。 同トナーの製造装置の具体的適用の説明に供する要部説明図である。 同液滴噴射ユニットによる液滴化の動作原理の説明に供する薄膜の模式的説明図である。 同じく基本振動モードの説明に供する説明図である。 同じく2次振動モードの説明に供する説明図である。 同じく3次振動モードの説明に供する説明図である。 同じく薄膜の中央部に凸部を形成した場合の説明図である。 本発明に係る液共振方式のトナーの製造装置の一例を示す概略構成図である。 図22のトナーの製造装置の液滴噴射ユニットの説明に供する拡大説明図である。 本発明に係る液共振方式のトナーの製造装置におけるノズルの断面形状を2段型とする方法の説明図である。
本発明のトナーは、少なくとも結着樹脂、着色剤、及び帯電制御剤を含有するトナー組成物を有機溶剤に溶解ないしは分散したトナー組成液を、気相中で液滴化し、次いで該液滴を固化することによって製造され、帯電制御剤として付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体を用いたことにより優れた帯電性が得られ高画質を安定して提供することができる点が最大の特徴である。
本発明のトナーを構成するトナー組成物としては、結着樹脂、着色剤、帯電制御剤としての付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体を必須成分として、必要に応じて定着でのオフセット防止のため離型剤、磁性トナーとする場合は磁性体微粒子が用いられる。さらに必要に応じて乾燥して得られたトナー母体粒子に、流動性向上剤やクリーニング性向上剤といった機能性微粒子を外添することが行われる。
以下にこれらのトナー用材料の詳細について述べる。
(帯電制御剤)
本発明のトナーは、帯電制御剤として少なくとも付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体である。
<付加重合性官能基を含むフルオロシルセスキオキサン(b1)>
前記の付加重合性官能基を含むフルオロシルセスキオキサン(b1)(以下、単にフルオロシルセスキオキサン(b1)と略記する)は、その分子構造にシルセスキオキサン骨格を有する。シルセスキオキサンとは、[(R-SiO1.5]で示される(Rは任意の置換基である)ポリシロキサンの総称である。このシルセスキオキサンの構造は、そのSi-O-Si骨格に応じて、一般的にランダム構造、ラダー構造、カゴ構造に分類される。さらに、カゴ構造はT8、T10、T12型などに分類される。その中で、本発明に使用されるフルオロシルセスキオキサン(b1)は、好ましくはT8型[(R-SiO1.58]のカゴ構造を有する。
上記のフルオロシルセスキオキサン(b1)は、1つの付加重合性官能基を有することを特徴とする。すなわち、下記(1)式で示したシルセスキオキサン[(R−SiO1.58]のRのうちの1つが付加重合性官能基である。
Figure 0005407351
上記の付加重合性官能基の例としては、末端オレフィン型または内部オレフィン型のラジカル重合性官能基を含む基;ビニルエーテル、プロペニルエーテルなどのカチオン重合性官能基を含む基;およびビニルカルボキシル、シアノアクリロイルなどのアニオン重合性官能基を含む基が含まれるが、好ましくはラジカル重合性官能基が挙げられる。
上記のラジカル重合性官能基には、ラジカル重合する基であれば特に制限はなく、例えばメタクリロイル、アクリロイル、アリル、スチリル、α-メチルスチリル、ビニル、ビニルエーテル、ビニルエステル、アクリルアミド、メタクリルアミド、N-ビニルアミド、マレイン酸エステル、フマル酸エステル、N-置換マレイミドなどが含まれ、中でも(メタ)アクリルまたはスチリルを含む基が好ましい。ここに(メタ)アクリルとは、アクリルおよびメタクリルの総称であり、アクリル及び/又はメタクリルを意味する。以下、同様とする。
前記のフルオロシルセスキオキサン(b1)は、少なくとも1つのフルオロアルキル、フ
ルオロアリールアルキル、又はフルオロアリールを有することを特徴とする。すなわち、シルセスキオキサン(R−SiO1.5nのRの1つ以上、好ましくは前記の付加重合性官能基以外のRがすべてフルオロアルキル、フルオロアリールアルキル及び/又はフルオロアリールである。
上記のフルオロアルキルは、直鎖状または分岐鎖状のいずれでもよい。このフルオロアルキルの炭素数は1〜20であり、好ましくは3〜14である。さらに、このフルオロアルキルの任意のメチレンが酸素で置き換えられていてもよい。ここでメチレンとは、−CH−、−CFH−または−CF−を含む。つまり、「任意のメチレンが酸素で置き換えられてもよい」とは、−CH−、−CFH−または−CF−が−O−で置き換えられてもよいことを意味する。ただし、フルオロアルキルにおいて、2つの酸素が結合(−O−O−)していることはない。すなわちフルオロアルキルはエーテル結合を有していてもよい。また、好ましいフルオロアルキルにおいては、Siに隣接するメチレンは酸素で置き換えられることはなく、Siとは反対側の末端はCF3である。さらに、−CH2−または−CFH−が酸素で置き換えられるよりは、−CF2−が酸素で置き換えられる方が好ましい。
かかるフルオロアルキルの好ましい具体例には、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロドデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピルなどが含まれる。中でも、パーフルオロアルキルエチルが好ましく例示されるが、−CH−CH−を介してフルオロアルキル基が結合した基であってもよいし、−CH−を介してフルオロアルキル基が結合した基であってもよい。
前記のフルオロアリールアルキルは、フッ素を含有するアリールを含むアルキルであって、その炭素数が7〜20であるのが好ましく、さらに7〜10がより好ましい。含まれるフッ素はアリール中の任意の1または2以上の水素が、フッ素またはトリフルオロメチルとして置き換えられたものが好ましい。アリール部分の例にはフェニル、ナフチルなどのほか、ヘテロアリールも含まれ、アルキル部分の例には、メチル、エチルおよびプロピルなどが含まれる。
また、前記のフルオロアリールは、アリール中の任意の1または2以上の水素が、フッ素またはトリフルオロメチルで置き換えられているものであり、その炭素数は6〜20であることが好ましく、より好ましくは6である。かかるアリールの例にはフェニル、ナフチルなどのほか、ヘテロアリールも含まれる。具体的にはペンタフルオロフェニルなどのフルオロフェニルや、トリフルオロメチルフェニルが挙げられる。
フルオロシルセスキオキサン(b1)に含まれる前記のフルオロアルキル、フルオロアリールアルキル、またはフルオロアリールのうち、好ましい基はフルオロアルキルであり、より好ましくはパーフルオロアルキルエチルであり、さらに好ましくは3,3,3-トリフルオロプロピルまたは3,3,4,4,5,5,6,6,6-ノナフルオロヘキシルである。
<付加重合性単量体(b2)>
本発明の共重合体においては、前記のフルオロシルセスキオキサン(b1)に加え、必要に応じて前記付加重合性単量体(b2)も併用することができる。
前記付加重合性単量体(b2)としては、1つの付加重合性二重結合を有する(メタ)アクリル酸誘導体及び1つの付加重合性二重結合を有するスチレン誘導体が挙げられる。
かかる(メタ)アクリル酸誘導体の具体例には、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n−ヘプチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート;フェニル(メタ)アクリレート、トルイル(メタ)アクリレートなどのアリール(メタ)アクリレート;ベンジル(メタ)アクリレートなどのアリールアルキル(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート;(メタ)アクリル酸のエチレンオキサイド付加物;などが含まれる。
上記の1つの付加重合性二重結合を有する(メタ)アクリル酸誘導体の具体例には、さらに、トリフルオロメチルメチル(メタ)アクリレート、2-トリフルオロメチルエチル(メタ)アクリレート、2-パーフルオロエチルエチル(メタ)アクリレート、2-パーフルオロエチル-2-パーフルオロブチルエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、トリフルオロメチル(メタ)アクリレート、ジパーフルオロメチルメチル(メタ)アクリレート、2-パーフルオロメチル-2-パーフルオロエチルエチル(メタ)アクリレート、2-パーフルオロヘキシルエチル(メタ)アクリレート、2-パーフルオロデシルエチル(メタ)アクリレート、および2-パーフルオロヘキサデシルエチル(メタ)アクリレートなどのフルオロアルキル(メタ)アクリレートなどが含まれる。
さらに、1つの付加重合性二重結合を有する(メタ)アクリル酸誘導体の例には、シルセスキオキサン骨格を有する(メタ)アクリル酸誘導体がある。かかるシルセスキオキサン骨格を有する(メタ)アクリル酸誘導体の具体例には、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソブチル-ペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレートなどが含まれる。
スチレン誘導体の例として、1つの付加重合性二重結合を有するスチレン誘導体がある。かかる1つの付加重合性二重結合を有するスチレン誘導体の具体例には、スチレン、ビニルトルエン、α-メチルスチレン、p-クロルスチレン;などが含まれる。
上記の1つの付加重合性二重結合を有するスチレン誘導体の例としては、さらに、シルセスキオキサンを含むスチレン誘導体が含まれる。かかるシルセスキオキサンを含むスチレン誘導例には、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、および1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサンなどの、4-ビニルフェニル基を含むオクタシロキサン(T8型シルセスキオキサン);および、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタオクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、および3-((3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレンなどの、4-ビニルフェニルエチル基を含むオクタシロキサン(T8型シルセスキオキサン);などが
含まれる。
さらに、前記付加重合性単量体(b2)として、スチレン、(メタ)アクリル酸エステル、シロキサン、及びアルキレンオキサイド、例えばエチレンオキサイド、プロピレンオキサイドなどから誘導された主鎖を有し、一つの重合性二重結合を有するマクロ単量体も例示される。
本発明で好ましく用いられる付加重合性単量体(b2)の例には、サイラプレーン FM0711(チッソ株式会社製)、サイラプレーン FM0721(チッソ株式会社製)、サイラプレーン FM0725 (チッソ株式会社製)などオルガノポリシロキサンも含まれる。
なお、上記付加重合性単量体(b2)は1種類を単独で用いてもよく、複数種を組み合わせて用いてもよい。複数種を組み合わせて用いる場合には、目的とする共重合体の特定に応じて各種の組成比を適宜調整して用いることができる。
付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体における、珪素の含有量が5〜20質量%、フッ素の含有量が7〜30質量%であることが帯電性の面から好ましい。
付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体の重量平均分子量は、フルオロシルセスキオキサン(b1)
由来の構造単位の含有率などによって異なるが、5000〜10万であることが帯電性の
面から好ましい。一方、上記の付加共重合体の分子量分布(Mw/Mn)は、目安として
1.01〜2.5程度である。
<重合方法>
付加重合は、重合開始剤を用いて行うことができる。
用いられる重合開始剤の例には、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-ブチロニトリル)、ジメチル-2,2'-アゾビスイソブチレート、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)などのアゾ化合物;ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシネオデカノエートなどの過酸化物;およびテトラエチルチウラムジスルフィドなどのジチオカルバメート;などのラジカル重合開始剤が含まれる。
さらに重合反応の例には、リビングラジカル重合、および活性エネルギー線重合などが含まれる。
リビングラジカル重合は、原子移動ラジカル重合;可逆的付加開裂連鎖移動;ヨウ素移動重合;イニファータ重合に代表され、以下の引用文献A〜Cに記載されている重合開始剤を用いて行うことができる。
・引用文献A: 蒲池幹治、遠藤剛監修、ラジカル重合ハンドブック、1999年8月10日発行、エヌティーエス発行)。
・引用文献B: HANDBOOK OF RADICAL POLYMERIZATION, K. Matyjaszewski, T. P. Davis, Eds., John Wiley and Sons, Canada 2002
・引用文献C: 特開2005-105265
活性エネルギー線重合は、引用文献Dに記載の化合物を活性エネルギー線重合開始剤として用いて行うことができる。
・引用文献D: フォトポリマー懇話会編、感光材料リストブック、1996年3月31日、ぶんしん出版発行)
本発明において、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線をいう。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線、電子線などの光エネルギー線が挙げら
れる。
用いられる活性エネルギー線重合開始剤の具体例としては、紫外線や可視光線の照射によりラジカルを発生する化合物であれば特に限定しない。活性エネルギー線重合開始剤として用いられる化合物としては、ベンゾフェノン、ミヒラーズケトン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4′-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4′-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4′-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2′-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4′-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3′-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2-クロロフェニル)-4,4′,5,5′-テトラキス(4-エトキシカルボニルフェニル)-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジブロモフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4,6-トリクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、などである。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することも有効である。3,3′,4,4′-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3′,4,4′-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3′-ジ(メトキシカルボニル)-4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4′-ジ(メトキシカルボニル)-4,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4′-ジ(メトキシカルボニル)-3,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノンなどが好ましい。
上記の付加共重合において用いられる重合開始剤の量は、単量体の総モル数に対して0.01〜10mol%とすればよい。
また前記の付加共重合において、連鎖移動剤を用いてもよい。連鎖移動剤を用いることで、分子量を適切に制御することができる。かかる連鎖移動剤の例には、チオ-β-ナフト
ール、チオフェノール、n-ブチルメルカプタン、エチルチオグリコレート、メルカプトエタノール、メルカプト酢酸、イソプロピルメルカプタン、t-ブチルメルカプタン、ドデカンチオール、チオリンゴ酸、ペンタエリスリトールテトラ(3-メルカプトプロピオネート)、ペンタエリスリトールテトラ(3-メルカプトアセテート)などのメルカプタン類;ジフェニルジサルファイド、ジエチルジチオグリコレート、ジエチルジサルファイドなどのジサルファイド類;などのほか、トルエン、メチルイソブチレート、四塩化炭素、イソプロピルベンゼン、ジエチルケトン、クロロホルム、エチルベンゼン、塩化ブチル、s-ブチルアルコール、メチルエチルケトン、メチルイソブチルケトン、塩化プロピレン、メチルクロロホルム、t-ブチルベンゼン、n-ブチルアルコール、イソブチルアルコール、酢酸、酢酸エチル、アセトン、ジオキサン、四塩化エタン、クロロベンゼン、メチルシクロヘキサン、t−ブチルアルコール、ベンゼンなどが含まれ、好ましくはメルカプタン類である。特にメルカプト酢酸は、共重合体の分子量を下げて、分子量分布を均一にさせ得る。連鎖移動剤は単独でも、または2種以上を混合しても使用することができる。
上記の共重合体の具体的な製造方法は、通常の付加重合体の製造方法と同様にすればよく、例えば、溶液重合法、乳化重合法、懸濁重合法、塊状重合法、塊状−懸濁重合法、分散重合法、ソープフリー乳化重合法、シード乳化重合法、マイクロエマルション重合法、ミニエマルション重合法、超臨界CO2等を用いた重合法を用いることができる。
上記の溶液重合法による場合には、適切な溶剤中に、フルオロシルセスキオキサン(b1)、ならびに付加重合性単量体 (b2)、さらに重合開始剤、および連鎖移動剤などを溶
解して、加熱または活性エネルギー線を照射して付加重合反応させればよい。
上記の重合反応に用いられる溶剤の例には、炭化水素系溶剤(ベンゼン、トルエンなど)、エーテル系溶剤(ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼンなど)、ハロゲン化炭化水素系溶剤(塩化メチレン、クロロホルム、クロロベンゼンなど)、ケトン系溶剤(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、アルコール系溶剤(メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、t-ブチルアルコールなど)、ニトリル系溶剤(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、エステル系溶剤(酢酸エチル、酢酸ブチルなど)、カーボネート系溶剤(エチレンカーボネート、プロピレンカーボネートなど)、アミド系溶剤(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド)、ハイドロクロロフルオロカーボン系溶剤(HCFC−141b、HCFC−225)、ハイドロフルオロカーボン(HFCs)系溶剤(炭素数2〜4、5および6以上のHFCs)、パーフルオロカーボン系溶剤(パーフルオロペンタン、パーフルオロヘキサン)、脂環式ハイドロフルオロカーボン系溶剤(フルオロシクロペンタン、フルオロシクロブタン)、酸素含有フッ素系溶剤(フルオロエーテル、フルオロポリエーテル、フルオロケトン、フルオロアルコール)、芳香族系フッ素溶剤(α,α,α-トリフルオロトルエン、ヘキサフルオロベンゼン)、水が含まれる。これらを単独で使用してもよく、二種以上を併用してもよい。
上記の溶媒の使用量は、単量体濃度を10〜80質量%とする量であればよい。また、反応温度は特に制限されず、目安として0〜200℃であればよく、室温〜150℃が好ましい。重合反応は、単量体の種類や、溶剤の種類に応じて、減圧、常圧または加圧下で行うことができる。
重合反応は、窒素、アルゴンなどの不活性ガス雰囲気下で行われることが好ましい。発生したラジカルが酸素と接触して失活し、重合速度が低下するのを抑制し、分子量が適切に制御された重合体を得るためである。さらに重合反応は、減圧下で溶存酸素を除去された重合系内で行われることが好ましい(減圧下で溶存酸素を除去した後、そのまま減圧下において重合反応を行ってもよい)。
溶液中に得られた共重合体は、常法により精製または単離されてもよく、その溶液のまま用いられてもよい。
これらの付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体は、トナー組成物100質量部に対して0.05〜5質量部含有させることにより優れた帯電性を得ることができる。含有量が5質量部より多いと定着性が低下する場合がある。
なお、必要に応じて従来公知の帯電制御剤を併用してもよい。
例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、第四級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のEー82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRAー901、ホウ素錯体であるLR−147(日本カ一リット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。
(結着樹脂)
結着樹脂としては従来公知のトナー用結着樹脂が用いられるが、溶剤に溶解する場合は架橋構造をもたないものが好ましい。
例えば、スチレン系単量体、アクリル系単量体、メタクリル系単量体等のビニル重合体、これらの単量体又は2種類以上からなる共重合体、ポリエステル系樹脂、ポリオール樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアミド樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂、などが挙げられる。
これらのうち、ポリエステル系樹脂やスチレン系単量体と(メタ)アクリル系単量体の共重合体樹脂が好ましく用いられる。
ポリエステル系重合体を構成するモノマーとしては、以下のものが挙げられる。
2価のアルコール成分としては、例えば、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノールA、又は、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオール、などが挙げられる。
ポリエステル系重合体を形成する酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物、コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物、などがあげられる。また、3価以上の多価カルボン酸成分としては、トリメット酸、ピロメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステル、などが挙げられるが架橋構造をもたせないためには少量の使用にとどめねばならない。
前記スチレン系単量体としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−フエニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−アミルスチレン、p−tert−ブチルスチレン、p−n−へキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−クロルスチレン、3,4−ジクロロスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレン等のスチレン、又はその誘導体、などが挙げられる。
前記アクリル系単量体としては、例えば、アクリル酸、あるいはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸n−ドデシル、アクリル酸2−エチルへキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル等のアクリル酸、又はそのエステル類、などが挙げられる。
前記メタクリル系単量体としては、例えば、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸n−ドデシル、メタクリル酸2−エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸又はそのエステル類、などが挙げられる。
本発明のビニル重合体又は共重合体の製造に用いられる重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、1,1’−アゾビス(1−シクロへキサンカルボニトリル)、2−(カルバモイルアゾ)−イソブチロニトリル、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2−フェニルアゾ−2’,4’−ジメチル−4’−メトキシバレロニトリル、2,2’−アゾビス(2−メチルプロパン)、メチルエチルケトンパ−オキサイド、アセチルアセトンパーオキサイド、シクロへキサノンパーオキサイド等のケトンパーオキサイド類、2,2−ビス(tert−ブチルパーオキシ)ブタン、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルクミルパーオキサイド、ジークミルパーオキサイド、α−(tert−ブチルパーオキシ)イソプロピルべンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m−トリルパーオキサイド、ジ−イソプロピルパーオキシジカーボネート、ジ−2−エチルへキシルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシカーボネート、ジ−エトキシイソプロピルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシカーボネート、アセチルシクロへキシルスルホニルパーオキサイド、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシイソブチレート、tert−ブチルパーオキシ−2−エチルへキサレート、tert−ブチルパーオキシラウレート、tert−ブチル−オキシベンゾエ−ト、tert−ブチルパーオキシイソプロピルカーボネート、ジ−tert−ブチルパーオキシイソフタレート、tert−ブチルパーオキアリルカーボネート、イソアミルパーオキシ−2−エチルへキサノエート、ジ−tert−ブチルパーオキシへキサハイドロテレフタレート、tert−ブチルパーオキシアゼレート、などが挙げられる。
これらの結着樹脂は、トナー保存性の観点から、ガラス転移温度(Tg)が35〜80℃であるのが好ましく、40〜75℃であるのがより好ましい。Tgが35℃より低いと
高温雰囲気下でトナーが劣化しやすく、Tgが80℃を超えると、定着性が低下することがある。
(着色剤)
前記着色剤としては、特に制限はなく、通常使用される着色剤を適宜選択して使用することができるが、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミウムレッド、カドミウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びこれらの混合物、などが挙げられる。
前記着色剤の含有量としては、トナーに対して1〜15質量%が好ましく、3〜10質量%がより好ましい。
本発明で用いる着色剤は、樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチとともに混練されるバインダー樹脂としては、ポリエステル樹脂やポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックス、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記マスターバッチは、マスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練して得る事ができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。また、いわゆるフラッシング法と呼ばれる着色剤の、水を含んだ水性ペーストを、樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も、着色剤のウエットケーキをそのまま用いる事ができるため、乾燥する必要がなく、好適に使用される。混合混練するには、3本ロールミル等の高せん断分散装置が好適に使用される。
前記マスターバッチの使用量としては、結着樹脂100質量部に対して、2〜30質量部が好ましい。
また、前記マスターバッチ用の樹脂は、酸価が30mgKOH/g以下、アミン価が1〜100で、着色剤を分散させて使用することが好ましく、酸価が20mgKOH/g以下、アミン価が10〜50で、着色剤を分散させて使用することがより好ましい。酸価が30mgKOH/gを超えると、高湿下での帯電性が低下し、顔料分散性も不十分となることがある。また、アミン価が1未満であるとき、及び、アミン価が100を超えるときにも、顔料分散性が不十分となることがある。なお、酸価はJIS K0070に記載の方法により測定することができ、アミン価はJIS K7237に記載の方法により測定することができる。
また、分散剤は、顔料分散性の点で、結着樹脂との相溶性が高いことが好ましく、具体的な市販品としては、「アジスパーPB821」、「アジスパーPB822」(味の素ファインテクノ社製)、「Disperbyk−2001」(ビックケミー社製)、「EFKA−4010」(EFKA社製)、などが挙げられる。
前記分散剤の質量平均分子量は、ゲルパーミエーションクロマトグラフィーにおけるスチレン換算質量での、メインピークの極大値の分子量で、500〜100,000が好ましく、顔料分散性の観点から、3,000〜100,000がより好ましい。特に、5,000〜50,000が好ましく、5,000〜30,000が最も好ましい。分子量が500未満であると、極性が高くなり、着色剤の分散性が低下することがあり、分子量が100,000を超えると、溶剤との親和性が高くなり、着色剤の分散性が低下することがある。
前記分散剤の添加量は、着色剤100質量部に対して1〜50質量部であることが好ましく、5〜30質量部であることがより好ましい。1質量部未満であると分散能が低くなることがあり、50質量部を超えると帯電性が低下することがある。
(離型剤)
本発明では、定着時のオフセット防止を目的として離型剤としてワックス類を含有させることができる。
ワックス類としては、特に制限はなく、通常トナー用離型剤として使用されるものを適宜選択して使用することができるが、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックス等の脂肪族炭化水素系ワックス、酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物又はそれらのブロック共重合体、キャンデリラワックス、カルナバワックス、木ろう、ホホバろう等の植物系ワックス、みつろう、ラノリン、鯨ろう等の動物系ワックス、オゾケライト、セレシン、ペテロラタム等の鉱物系ワックス、モンタン酸エステルワックス、カスターワックスの等の脂肪酸エステルを主成分とするワックス類。脱酸カルナバワックスの等の脂肪酸エステルを一部又は全部を脱酸化したもの、などが挙げられる。
前記ワックス類の例としては、更に、パルミチン酸、ステアリン酸、モンタン酸、あるいは更に直鎖のアルキル基を有する直鎖アルキルカルボン酸類等の飽和直鎖脂肪酸、プランジン酸、エレオステアリン酸、バリナリン酸等の不飽和脂肪酸、ステアリルアルコール、エイコシルアルコール、ベヘニルアルコール、カルナウピルアルコール、セリルアルコール、メシリルアルコール、あるいは長鎖アルキルアルコール等の飽和アルコール、ソルビトール等の多価アルコール、リノール酸アミド、オレフィン酸アミド、ラウリン酸アミド等の脂肪酸アミド、メチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N’−ジオレイルセパシン酸アミド等の不飽和脂肪酸アミド類、m−キシレンビスステアリン酸アミド、N,N−ジステアリルイソフタル酸アミド等の芳香族系ビスアミド、ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪酸金属塩、脂肪族炭化水素系ワックスにスチレンやアクリル酸等のビニル系モノマーを用いてグラフト化させたワックス、ベヘニン酸モノグリセリド等の脂肪酸と多価アルコールの部分エステル化合物、植物性油脂を水素添加することによって得られるヒドロキシル基を有するメチルエステル化合物が挙げられる。
より好適な例としては、オレフィンを高圧下でラジカル重合したポリオレフィン、高分子量ポリオレフィン重合時に得られる低分子量副生成物を精製したポリオレフィン、低圧下でチーグラー触媒、メタロセン触媒の如き触媒を用いて重合したポリオレフィン、放射線、電磁波又は光を利用して重合したポリオレフィン、高分子量ポリオレフィンを熱分解して得られる低分子量ポリオレフィン、パラフィンワックス、マイクロクリスタリンワックス、フィツシャートロプシュワックス、ジントール法、ヒドロコール法、アーゲ法等により合成される合成炭化水素ワックス、炭素数1個の化合物をモノマーとする合成ワックス、水酸基又はカルボキシル基の如き官能基を有する炭化水素系ワックス、炭化水素系ワックスと官能基を有する炭化水素系ワックスとの混合物、これらのワックスを母体としてスチレン、マレイン酸エステル、アクリレート、メタクリレート、無水マレイン酸の如きビニルモノマーでグラフト変性したワックスが挙げられる。
また、これらのワックスを、プレス発汗法、溶剤法、再結晶法、真空蒸留法、超臨界ガス抽出法又は溶液晶析法を用いて分子量分布をシャープにしたものや、低分子量固形脂肪酸、低分子量固形アルコール、低分子量固形化合物、その他の不純物を除去したものも好ましく用いられる。
前記ワックスの融点としては、耐ブロッキング性と耐オフセット性のバランスを取るために、60〜140℃であることが好ましく、70〜120℃であることがより好ましい。60℃未満では耐ブロッキング性が低下することがあり、140℃を超えると耐オフセット効果が発現しにくくなることがある。
本発明では、DSCにおいて測定されるワックスの吸熱ピークの最大ピークのピークトップの温度をもってワックスの融点とする。
前記ワックス又はトナーのDSC測定機器としては、高精度の内熱式入力補償型の示差走査熱量計で測定することが好ましい。測定方法としては、ASTM D3418−82に準じて行う。本発明に用いられるDSC曲線は、1回昇温、降温させ前履歴を取った後、温度速度10℃/minで、昇温させた時に測定されるものを用いる。
本発明においては、離型剤の添加量がトナーに対して1〜30質量%であることが好ましく、2〜20質量%であることがさらに好ましい。
(磁性体)
本発明のトナーは、必要に応じて磁性体を含有させて磁性トナーとすることができる。磁性体としては、例えば、(1)マグネタイト、マグヘマイト、フェライトの如き磁性酸化鉄、及び他の金属酸化物を含む酸化鉄、(2)鉄、コバルト、ニッケル等の金属、又は、これらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウム等の金属との合金、(3)及びこれらの混合物、などが用いられる。
磁性体として具体的に例示すると、Fe34、γ−Fe23、ZnFe24、Y3Fe512、CdFe24、Gd3Fe512、CuFe24、PbFe12O、NiFe24、NdFe2O、BaFe1219、MgFe24、MnFe24、LaFeO3、鉄粉、コバルト粉、ニッケル粉、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも特に、四三酸化鉄、γ−三二酸化鉄の微粉末が好適に挙げられる。
また、異種元素を含有するマグネタイト、マグヘマイト、フェライト等の磁性酸化鉄、又はその混合物も使用できる。異種元素を例示すると、例えば、リチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、ケイ素、リン、ゲルマニウム、ジルコニウム、錫、イオウ、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、などが挙げられる。好ましい異種元素としては、マグネシウム、アルミニウム、ケイ素、リン、又はジルコニウムから選択される。異種元素は、酸化鉄結晶格子の中に取り込まれていてもよいし、酸化物として酸化鉄中に取り込まれていてもよいし、又は表面に酸化物あるいは水酸化物として存在していてもよいが、酸化物として含有されているのが好ましい。
前記異種元素は、磁性体生成時にそれぞれの異種元素の塩を混在させ、pH調整により、粒子中に取り込むことができる。また、磁性体粒子生成後にpH調整、あるいは各々の元素の塩を添加しpH調整することにより、粒子表面に析出することができる。
前記磁性体の使用量としては、結着樹脂100質量部に対して、磁性体10〜200質量部が好ましく、20〜150質量部がより好ましい。これらの磁性体の個数平均粒径としては、0.1〜2μmが好ましく、0.1〜0.5μmがより好ましい。前記個数平均径は、透過電子顕微鏡により拡大撮影した写真をデジタイザー等で測定することにより求めることができる。
また、磁性体の磁気特性としては、10Kエルステッド印加での磁気特性がそれぞれ、抗磁力20〜150エルステッド、飽和磁化50〜200emu/g、残留磁化2〜20emu/gのものが好ましい。
前記磁性体は、着色剤としても使用することができる。
(トナー組成液及び溶剤)
結着樹脂、着色剤、帯電制御剤等のトナー組成物を有機溶剤に溶解乃至は分散することによりトナー組成液を得ることができる。トナー組成液を気相中で液滴化し乾燥してトナーを製造する場合に用いられ、結着樹脂を溶解し、分散体が安定に分散でき、容易に乾燥できる有機溶剤が選択される。
有機溶剤としては、例えば、エーテル類、ケトン類、エステル類、炭化水素類、アルコール類の溶剤が好ましく用いられ、特にテトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、トルエン、メタノール、エタノール等が好ましく用いられ、これらは単独でも混合して用いてもかまわない。
トナー組成液の調製には、ホモミキサーやビーズミルなどを用いて、着色剤や離型剤といった分散体がノズルの開口径に対して充分微細とすることがノズルの詰りを防止するために重要となる。
トナー組成液の固形分は5〜40質量%であることが好ましい。固形分が5質量%未満であると生産性が低下するだけでなく、着色剤や離型剤微粒子、磁性体といった分散体が沈降や凝集を起こしやすくなりためトナー粒子ごとの組成が不均一になりやすくトナー品質が低下する場合がある。固形分が40質量%を超えると小粒径のトナーが得られない場合がある。
<流動性向上剤>
本発明のトナーには、流動性向上剤を添加してもよい。該流動性向上剤は、トナー表面に添加することにより、トナーの流動性を改善(流動しやすくなる)するものである。
前記流動性向上剤としては、例えば、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末の如きフッ素系樹脂粉末、湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、微粉未酸化チタン、微粉未アルミナ、それらをシランカップリング剤、チタンカップリング剤若しくはシリコーンオイルにより表面処理を施した処理シリカ、処理酸化チタン、処理アルミナ、などが挙げられる。これらの中でも、微粉末シリカ、微粉未酸化チタン、微粉未アルミナが好ましく、また、これらをシランカップリング剤やシリコーンオイルにより表面処理を施した処理シリカが更に好ましい。
前記流動性向上剤の粒径としては、平均一次粒径として、0.001〜2μmであることが好ましく、0.002〜0.2μmであることがより好ましい。
前記微粉末シリカは、ケイ素ハロゲン化含物の気相酸化により生成された微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。
ケイ素ハロゲン化合物の気相酸化により生成された市販のシリカ微粉体としては、例えば、AEROSIL(日本アエロジル社商品名、以下同じ)−130、−300、−380、−TT600、−MOX170、−MOX80、−COK84:Ca−O−SiL(CABOT社商品名)−M−5、−MS−7、−MS−75、−HS−5、−EH−5、Wacker HDK(WACKER−CHEMIEGMBH社商品名)−N20 V15、−N20E、−T30、−T40:D−CFineSi1ica(ダウコーニング社商品名):Franso1(Fransi1社商品名)、などが挙げられる。
更には、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を疎水化処理した処理シリカ微粉体がより好ましい。処理シリカ微粉体において、メタノール滴定試験によって測定された疎水化度が好ましくは30〜80%の値を示すようにシリカ微粉体を処理したものが特に好ましい。疎水化は、シリカ微粉体と反応あるいは物理吸着する有機ケイ素化合物等で化学的あるいは物理的に処理することによって付与される。好ましい方法としては、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する方法がよい。
有機ケイ素化合物としては、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ジメチルビニルクロロシラン、ジビニルクロロシラン、γ−メタクリルオキシプロピルトリメトキシシラン、へキサメチルジシラン、トリメチルシラン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α−クロルエチルトリクロロシラン、β−クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフエニルテトラメチルジシロキサン及び1分子当り2から12個のシロキサン単位を有し、未端に位置する単位にそれぞれSiに結合した水酸基を0〜1個含有するジメチルポリシロキサン等がある。更に、ジメチルシリコーンオイルの如きシリコーンオイルが挙げられる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
流動性向上剤の個数平均粒径としては、5〜100nmになるものが好ましく、5〜50nmになるものがより好ましい。
BET法で測定した窒素吸着による比表面積としては、30m2/g以上が好ましく、60〜400m2/gがより好ましい。
表面処理された微粉体としては、20m2/g以上が好ましく、40〜300m2/gがより好ましい。
これらの微粉体の適用量としては、トナー粒子100質量部に対して0.03〜8質量部が好ましい。
<クリーニング性向上剤>
記録紙等にトナーを転写した後、静電潜像担持体や一次転写媒体に残存するトナの除去性を向上させるためのクリーニング性向上剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸等の脂肪酸金属塩、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等のソープフリー乳化重合によって製造されたポリマー微粒子、などを挙げることかできる。ポリマー微粒子は比較的粒度分布が狭く、体積平均粒径が0.01〜1μmのものが好ましい。
これらの流動性向上剤やクリーニング性向上剤等はトナーの表面に付着乃至は固定化させて用いられるため、外添剤とも呼ばれており、トナーに外添する方法としては各種の粉体混合機等が用いられる。例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサー、などが挙げられ、固定化も行う場合はハイブリタイザー、メカノフュージョン、Qミキサー等が挙げられる。
<トナー粒径及び粒度分布>
トナー粒径が小さいほど、ドットや細線の再現性が向上し、ざらつきがなくシャープで高品位な画像が得られるが、トナー粒径が小さすぎると見掛けの付着力が増加して現像性や転写性を低下させるため、重量平均粒径として1〜15μmが好ましく、2〜10μmがさらに好ましく、3〜8μmがさらに好ましい。
粒度分布は重量平均粒径(Dv)と個数平均粒径(Dn)の比Dv/Dnで表され、Dv/
Dn=1であれば均一な粒径を持った単分散のトナーであり、通常の粉砕トナーのDv/D
nは分級による生産性の低下を考慮して1.2〜1.4程度である。電子写真現像法は一成分現像方式と二成分現像方式に大別されるが、いずれの現像方式においても現像され易い粒径が存在するため、現像を繰り返すことにより現像装置内に残っているトナーの粒径や粒度分布が変化するため、画像品質が変化してしまうためできるだけ粒度分布が狭いことが望ましい。現像を繰り返しても非常に安定した画像を得るためにはDv/Dnは1.00〜1.15であることが好ましく、さらに好ましくは1.00〜1.10である。
[現像剤]
本発明のトナーは、キャリアと混合して二成分現像剤として使用することができる。前記キャリアとしては、通常のフェライト、マグネタイト等のキャリアも樹脂コートキャリアも使用することができる。
前記樹脂コートキャリアは、キャリアコア粒子とキャリアコア粒子表面を被覆(コート)する樹脂である被覆材からなる。
該被覆材に使用する樹脂としては、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体等のスチレン−アクリル系樹脂、アクリル酸エステル共重合体、メタクリル酸エステル共重合体等のアクリル系樹脂、ポリテトラフルオロエチレン、モノクロロトリフルオロエチレン重合体、ポリフッ化ビニリデン等のフッ素含有樹脂、シリコーン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルブチラール、アミノアクリレート樹脂が好適に挙げられる。この他にも、アイオモノマー樹脂、ポリフェニレンサルファイド樹脂等のキャリアの被覆(コート)材として使用できる樹脂が挙げられる。これらの樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
また、樹脂中に磁性粉が分散されたバインダー型のキャリアコアも用いることができる。
樹脂コートキャリアにおいて、キャリアコアの表面を少なくとも樹脂被覆剤で被覆する方法としては、樹脂を溶剤中に溶解若しくは懸濁せしめて塗布したキャリアコアに付着せしめる方法、あるいは単に粉体状態で混合する方法が適用できる。
前記樹脂コートキャリアに対する樹脂被覆材の割合としては、適宜決定すればよいが、樹脂コートキャリアに対し0.01〜5質量%が好ましく、0.1〜1質量%がより好ましい。
2種以上の混合物の被覆(コート)剤で磁性体を被覆する使用例としては、(1)酸化チタン微粉体100質量部に対してジメチルジクロロシランとジメチルシリコーンオイル(質量比1:5)の混合物12質量部で処理したもの、(2)シリカ微粉体100質量部に対してジメチルジクロロシランとジメチルシリコーンオイル(質量比1:5)の混合物20質量部で処理したものが挙げられる。
前記樹脂中、スチレン−メタクリル酸メチル共重合体、含フッ素樹脂とスチレン系共重合体との混合物、シリコーン樹脂が好適に使用され、特にシリコーン樹脂が好ましい。
含フッ素樹脂とスチレン系共重合体との混合物としては、例えば、ポリフッ化ビニリデンとスチレン−メタクリ酸メチル共重合体との混合物、ポリテトラフルオロエチレンとスチレン−メタクリル酸メチル共重合体との混合物、フッ化ビニリデン−テトラフルオロエチレン共重合(共重合体質量比10:90〜90:10)とスチレン−アクリル酸2−エチルヘキシル共重合体(共重合質量比10:90〜90:10)とスチレン−アクリル酸2−エチルヘキシル−メタクリル酸メチル共重合体(共重合体質量比20〜60:5〜30:10:50)との混合物が挙げられる。
シリコーン樹脂としては、含窒素シリコーン樹脂及び含窒素シランカップリング剤と、シリコーン樹脂とが反応することにより生成された、変性シリコーン樹脂が挙げられる。 キャリアコアの磁性材料としては、例えば、フェライト、鉄過剰型フェライト、マグネタイト、γ−酸化鉄等の酸化物や、鉄、コバルト、ニッケルのような金属、又はこれらの合金を用いることができる。
また、これらの磁性材料に含まれる元素としては、鉄、コバルト、ニッケル、アルミニウム、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムが挙げられる。これらの中でも特に、銅、亜鉛、及び鉄成分を主成分とする銅−亜鉛−鉄系フェライト、マンガン、マグネシウム及び鉄成分を主成分とするマンガン−マグネシウム−鉄系フェライトが好適に挙げられる。
前記キャリアの抵抗値としては、キャリアの表面の凹凸度合い、被覆する樹脂の量を調整して106〜1010Ω・cmにするのがよい。
前記キャリアの粒径としては、4〜200μmのものが使用できるが、10〜150μmが好ましく、20〜100μmがより好ましい。特に、樹脂コートキャリアは、50%粒径が20〜70μmであることが好ましい。
2成分系現像剤では、キャリア100質量部に対して、本発明のトナー1〜200質量部で使用することが好ましく、キャリア100質量部に対して、トナー2〜50質量部で使用するのがより好ましい。
また、本発明のトナーはキャリアを使用しない一成分系の磁性トナー、または非磁性トナーとしても用いることができる。
(トナー製造方法)
従来のトナーの製造方法である粉砕法と本発明の製造方法である噴霧法及び振動噴射法について説明する。
<粉砕法>
従来から行われている一般的なトナーの製造方法であり、トナー組成物を二本ロールや二軸押し出し機などにより溶融混練し、冷却後、粗粉砕、微粉砕、分級を行い、必要に応じてヘンシェルミキサーなどで流動化剤などの外添剤の混合を行う方法である。粗粉砕ではロートプレックスやパルペライザー、微粉砕ではジェットミルやターボミル、分級ではエルボジェットや各種の風力分級装置等の公知の製造装置を用いることができる。
液体を加圧してノズルから噴霧する一流体ノズル(加圧ノズル)噴霧機や液体と圧縮気体を混合して噴霧する多流体スプレーノズル噴霧機、回転する円盤を用いて液体を遠心力により液滴化する回転円盤型噴霧機等を用いて、トナー組成液を気相中で液滴化する方法である。噴霧と乾燥を同時に行うスプレードライシステムとして市販の装置を用いることができるが、十分な乾燥ができない場合は流動床乾燥等の二次乾燥を行い、必要に応じてヘンシェルミキサーなどで流動化剤などの外添剤の混合を行う方法である。
<振動噴射法>
同じ開口径の複数のノズルを有する薄膜を機械的に振動させることによって、該ノズルからトナー組成液を周期的に放出することにより均一粒径の液滴を生成し、乾燥してトナー粒子を得る方法である。機械的振動手段は、ノズルを有する膜に対して垂直方向に振動すればどのような配置でもよいが、本発明においては次の二通りの方式が好ましく用いられる。
一つは、複数のノズルを有する薄膜に対して平行な振動面を有し、垂直方向に縦振動する機械的手段(機械的縦振動手段)を用いる方式であり、他の一つは、複数のノズルを有する薄膜のノズルを設けた領域の周囲に円環状に形成された機械的振動手段(円環状機械的振動手段)を設ける方式である。
以下、各方式について説明する。
(機械的縦振動手段)
まず、機械的縦振動手段を設けたトナー製造装置の一例について図1の模式的構成図を参照して説明する。
トナーの製造装置1はトナー組成液を同じ開口径の複数のノズルから周期的に放出し、気相中で液滴化する周期的液滴化工程における液滴化手段としての液滴噴射ユニット2と、この液滴噴射ユニット2が上方に配置され、液滴噴射ユニット2から放出される液滴化されたトナー組成液の液滴を固化してトナー粒子Tを形成する粒子形成工程における粒子化手段としての粒子形成部3と、粒子形成部3で形成されたトナー粒子Tを捕集するトナー捕集部4と、トナー捕集部4で捕集されたトナー粒子Tがチューブ5を介して移送され、移送されたトナー粒子Tを貯留するトナー貯留手段としてのトナー貯留部6と、トナー組成液10を収容する原料収容部7と、この原料収容部7内から液滴噴射ユニット2に対してトナー組成液10を送液する配管(送液管)8と、稼動時などにトナー組成液10を圧送供給するためのポンプ9とを備えている。
また、原料収容部7からのトナー組成液10は、液滴噴射ユニット2による液滴化現象により自給的に液滴噴射ユニット2に供給されるが、装置稼働時等には上述したように補助的にポンプ9を用いて液供給を行う構成としている。
次に、液滴噴射ユニット2について図2、3に基づいて説明する。
図2は同液滴噴射ユニット2の概略断面説明図、図3は図2を下側から見た要部底面説明図である。
この液滴噴射ユニット2は、複数のノズル(吐出口)11が形成された薄膜12と、この薄膜12を振動させる機械的振動手段(以下「振動手段という)13と、薄膜12と振動手段13との間にトナー組成液10を供給する貯留部(液流路)14を形成する流路部材15とを備えている。
前記複数のノズル11を有する薄膜12は、前記振動手段13の振動面13aに対して平行に設置されており、薄膜12の一部がハンダまたはトナー組成液に溶解しない樹脂結着材料によって流路部材15に接合固定されており、振動手段13の振動方向とは実質的に垂直な位置関係となる。前記振動手段13の振動発生手段21の上下面に電圧信号が付与されるように、通信手段24が設けられており、駆動信号発生源23からの信号を機械的振動に変換することができる。電気信号を与える通信手段としては、表面を絶縁被覆されたリード線が適している。また、振動手段13は後述する各種ホーン型振動子、ボルト締めランジュバン型振動子など、振動振幅の大きな素子を用いることが、効率的かつ安定なトナー生産には好適である。
振動手段13は、振動を発生する振動発生手段21と、この振動発生手段21で発生した振動を増幅する振動増幅手段22とで構成され、駆動回路(駆動信号発生源)23から所要周波数の駆動電圧(駆動信号)が振動発生手段21の電極21a、21b間に印加されることによって、振動発生手段21に振動が励起され、この振動が振動増幅手段22で増幅され、薄膜12と平行に配置される振動面13aが周期的に振動し、この振動面13aの振動による周期的な圧力によって薄膜12が所要周波数で振動する。
この振動手段13としては、薄膜12に対して確実な縦振動を一定の周波数で与えることができるものであれば特に制限はなく、適宜選択して使用することができるが、薄膜12を振動させることから、振動発生手段21にはバイモルフ型のたわみ振動の励起される圧電体21Aが好ましい。圧電体21Aは、電気的エネルギーを機械的エネルギーに変換する機能を有する。具体的には、電圧を印加することにより、たわみ振動が励起され、薄膜12を振動させることが可能となる。
振動発生手段21を構成する圧電体21Aとしては、例えば、チタン酸ジルコン酸鉛(PZT)等の圧電セラミックスが挙げられるが、一般に変位量が小さい為、積層して使用されることが多い。この他にも、ポリフッ化ビニリデン(PVDF)等の圧電高分子や、水晶、LiNbO3、LiTaO3、KNbO3、等の単結晶、などが挙げられる。
振動手段13は、ノズル11を有する薄膜12に対して垂直方向の振動を与えるものであれば、どのような配置でもよいが、振動面13aと薄膜12とは平行に配置される。
図示した例では振動発生手段21と振動増幅手段22で構成される振動手段13としてホーン型振動子を用いており、このホーン型振動子は、圧電素子などの振動発生手段21の振幅を振動増幅手段22としてのホーン22Aで増幅することができるため、機械的振動を発生する振動発生手段21自体は小さな振動でよく、機械的負荷が軽減するために生産装置としての長寿命化につながる。
ホーン型振動子としては、公知の代表的なホーン形状でよく、例えば図4に示すようなステップ型、図5に示すようなエクスポネンシャル型、図6に示すようなコニカル型などを挙げることができる。これらのホーン型振動子は、ホーン22Aの面積の大きい面に圧電体21Aが配置され、圧電体21Aは縦振動を利用し、ホーン22Aの効率的な振動を誘起し、ホーン22Aに面積の小さい面を振動面13aとして、この振動面13aが最大振動面となるように設計されている。圧電体21の上方と下方にはリード線24が配置され、駆動回路23より交流電圧信号を与える。これらホーン振動子の最大振動面は、13aとなるように形状を設計されるものである。
また、振動手段13としては、特に高強度なボルト締めランジュバン型振動子を用いることもできる。このボルト締めランジュバン型振動子は圧電セラミックスが機械的に結合されており、高振幅励振時に破損することがない。
貯留部及び前記機械的振動手段、前記薄膜の構成を、図2の概略図を用いて詳細に説明する。貯留部14には、液供給チューブ18が少なくとも1箇所設けられており、一部断面図に示されるように、流路を通じて液貯留部に液を導入する。また、必要に応じて気泡排出チューブ19を設けることも可能である。この流路部材15に取り付けた図示しない支持部材によって液滴噴射ユニット2が粒子形成部3の天面部に設置保持されている。なお、ここでは、粒子形成部3の天面部に液滴噴射ユニット2を配置している例で説明しているが、粒子形成部3となる乾燥部側面壁又は底部に液滴噴射ユニット2を設置する構成とすることもできる。
機械的振動を発生する振動手段13の大きさは、発振振動数の減少に伴い大きくなることが一般的であり、必要な周波数に応じて、適宜振動手段に直接穴あけ加工を施し貯留部を設けることができる。また、貯留部全体を効率的に振動させることも可能である。
この場合、振動面とは、前記複数のノズルを有する薄膜が貼り合わされた面と定義される。
このような構成の液滴噴射ユニット2の異なる例について図7及び図8を参照して説明する。
図7に示す例は、振動手段80(13)として、振動発生部としての圧電体81及び振動増幅部としてのホーン82で構成されるホーン型振動子80を用いて、ホーン82の一部に貯留部(流路)14を形成したものである。この液滴噴射ユニット2は、ホーン型振動子80のホーン82に一体形成した固定部(フランジ部)83によって粒子形成部3(乾燥手段)の壁面に固定されていることが好ましい、振動の損失を防ぐ観点から、図示しない弾性体を用いて固定してもよい。
図8に示す例は、振動手段90(13)として、振動発生部としての圧電体91A、91B及びホーン92A、92Bがボルトで機械的に強固に固定されて構成されるボルト締めランジュバン型振動子90を用いて、ホーン92Aに貯留部(流路14)を形成したものである。周波数条件により、素子が大きくなる場合もあり、図示のように振動子の一部に流体導入/排出路及び貯留部を加工し、複数の薄膜を有する金属薄膜を貼り付けることができる。
なお、図1では、液滴噴射ユニット2が1個だけ粒子形成部3に取付けられている例を示しているが、複数個の液滴噴射ユニット2を粒子形成部3(乾燥塔)上部に並列にすることが、生産性向上の観点から好ましく、その個数は100〜1000個の範囲であることが、制御性の観点から好ましい。この場合、液滴噴射ユニット2の各貯留部14には配管8を介して原料収容部(共通液溜め)7に通じ、トナー組成液10が供給される構成とする。トナー組成液10は、液滴化に伴って自給的に供給される構成とすることもできるし、また、装置稼働時等、補助的にポンプ9を用いて液供給を行う構成とすることもできる。
液滴噴射ユニットの他の例について図9を参照して説明する。なお、図9は同液滴噴射ユニットの模式的断面説明図である。
この液滴噴射ユニット2は、前述した例と同様に、ホーン型振動子を振動手段13を用いて、この振動発生手段13の周囲を囲んでトナー組成液10を供給する流路部材15を配置し、振動発生手段13のホーン22に薄膜12と対向する部分に貯留部14を形成している。さらに、流路部材15の周囲に所要の間隔を置いて気流35を流す気流路37を形成する気流路形成部材36を配置している。なお、図示を簡略化するため、薄膜12のノズル11は1個で示しているが、前述したように複数個設けられている。
また、図10に示すように、複数、例えば制御性の観点からは100〜1,000個の液滴噴射ユニット2を、粒子形成部3を構成する乾燥塔の上部に並べて配置する。これにより、より生産性の向上を図ることができる。
(円環状機械的振動手段)
図11は図1に示す装置において液滴噴射ユニットをリング式のものに代えたものである。
リング式の液滴噴射ユニット2について図12〜図14を参照して説明する。なお、図12は同液滴噴射ユニット2の断面説明図、図13は図12を下側から見た要部底面説明図、図14は液滴化手段の概略断面説明図である。
この液滴噴射ユニット2は、少なくともトナー組成液10を液滴化して放出させる液滴化手段16と、この液滴化手段16にトナー組成液10を供給する貯留部(液流路)14を形成した流路部材15とを備えている。
液滴化手段16は、複数のノズル(吐出口)11が形成された薄膜12と、この薄膜12を振動させる円環状の振動発生手段(電気機械変換手段)17とで構成されている。ここで、薄膜12は、最外周部(図14の斜線を施して示す領域)をハンダ又はトナー組成液に溶解しない樹脂結着材料によって流路部材15に接合固定している。振動発生手段17は、この薄膜12の変形可能領域16A(流路部材15に固定されていない領域)内のノズルを設けた領域の周囲に配されている。図2に示すように、この振動発生手段17にはリード線24を通じて駆動回路(駆動信号発生源)23から所要周波数の駆動電圧(駆動信号)が印加されることで、例えば撓み振動を発生する。
液滴化手段16は、貯留部14に臨む複数のノズル11を有する薄膜12の変形可能領
域16A内のノズルを設けた領域の周囲に円環状の振動発生手段17が配されていること
によって、例えば図15に示す比較例構成のように振動発生手段17Aが薄膜12の周囲
を保持している構成に比べて、相対的に薄膜12の変位量が大きくなり、この大きな変位
量が得られる比較的大面積(φ1mm以上)の領域に複数のノズル11を配置することが
でき、これら複数のノズル11より一度に多くの液滴を安定的に形成して放出することが
できるようになる。
図11では、液滴噴射ユニット2が1個配置されている例で図示しているが、好ましく
は、図16に示すように、複数、例えば制御性の観点からは100〜1,000個(図1
6では4個のみ図示)の液滴噴射ユニット2を、粒子形成部3の天面部3Aに並べて配置
し、各液滴噴射ユニット2には配管8Aを原料収容部7(共通液溜め)に通じさせてトナ
ー組成液10を供給するようにする。これによって、一度により多くの液滴を放出させる
ことができて、生産効率の向上を図ることができる。
(液滴形成メカニズム)
次に、この液滴化手段としての液滴噴射ユニット2による液滴形成のメカニズムについ
て説明する。
上述したように液滴噴射ユニット2は、貯留部14に臨む複数のノズル11を有する薄
膜12に、機械的振動手段である振動手段13によって発生した振動を伝播させて、薄膜12を周期的に振動させ、比較的大面積(φ1mm以上)の領域に複数のノズル11を配置し、それら複数のノズル11より液滴を周期的に、安定に形成して放出することができるようになる。
図17に示すような単純円形膜12の周辺部12Aを固定した場合、基本振動は周辺が節になり、図18に示すように、薄膜の中心Oで変位ΔLが最大(ΔLmax)となる断面形状となり、振動方向に周期的に上下振動する。
また、図19、図20に示すような、より高次のモードが存在することが知られている。これらのモードは、円形膜内に、同心円状に節を1乃至複数持ち、実質的に軸対称な変形形状である。また、図21に示すように、中心部が凸形状12cとすることで液滴の進行方向を制御し、かつ振動振幅量を調整することが可能である。
円形薄膜の振動により、円形膜各所に設けられたノズル近傍の液体には、膜の振動速度Vに比例した音圧Pacが発生する。音圧は、媒質(トナー組成液)の放射インピーダンスZの反作用として生じることが知られており、音圧は、放射インピーダンスと膜振動速度Vmの積で下記式(1)の方程式を用いて表される。
ac(r,t)=Z・V(r,t) (1)
膜の振動速度Vは時間とともに周期的に変動しているため時間(t)の関数であり、
例えばサイン波形、矩形波形など、様々な周期変動を形成することが可能である。また、
前述のとおり、膜の各所で振動方向の振動変位は異なっており、Vは、膜上の位置座標
の関数でもある。本発明で用いられる膜の振動形態は、上述のとおり軸対象である。した
がって、実質的には半径(r)座標の関数となる。
以上のように、分布を持った膜の振動変位速度に対して、それに比例する音圧が発生し、音圧の周期的変化に対応してトナー組成液が、気相へ吐出される。
気相へ周期的に排出されたトナー組成液は、液相と気相との表面張力差によって球体を形成するため、液滴化が周期的に発生する。
液滴化を可能とする膜の振動周波数としては20kHz〜2.0MHzの領域が用いられ、50kHz〜500kHzの範囲がより好適に用いられる。20kHz以上の振動周期であれば、液体の励振によって、トナー組成液中の顔料やワックスなどの微粒子の分散が促進される。
更には、前記音圧の変位量が、10kPa以上となることによって、上述の微粒子分散促進作用がより好適に発生する。
ここで、形成される液滴の直径は、前記膜のノズル近傍における振動変位が大きいほど大きくなる傾向にあり、振動変位が小さい場合、小滴が形成されるか、または液滴化しない。このような、各ノズル部位における液滴サイズのばらつきを低減するためには、ノズル配置を、膜振動変位の最適な位置に規定することが必要である。
本発明においては、図18〜20で説明されるように、前記機械的振動手段により発生するノズル近傍における膜の振動方向変位ΔLの最大値ΔLmaxと最小値ΔLminの比R(
=ΔLmax/ΔLmin)が、2.0以内である部位にノズルが配置することにより、上記液
滴サイズのばらつきを、高画質な画像を提供することのできるトナー微粒子として必要な
領域に保てることを見出した。
トナー組成液の条件を変更し、粘度20mPa・s以下、表面張力20乃至75mN/
mの領域においてサテライトの発生開始領域が同様であったことから、前記音圧の変位量
が、500kPa以下であることが必要となる更に好適には、100kPa以下である。
(複数のノズルを有する薄膜)
ノズルを有する薄膜は、先にも述べたように、トナー組成物の溶解乃至分散液を、吐出
させて液滴とする部材である。
この薄膜12の材質、ノズル11の形状としては、特に制限はなく、適宜選択した形状
とすることができるが、例えば、薄膜12は厚み5〜500μmの金属板で形成され、か
つ、ノズル11の開口径が3〜30μmであることが、ノズル11からトナー組成液10
の液滴を噴射させるときに、極めて均一な粒子径を有する微小液滴を発生させる観点から
好ましい。なお、前記ノズル11の開口径は、真円であれば直径を意味し、楕円であれば
短径を意味する。また、複数のノズル11の個数は、2ないし3000個が好ましい。
(液共振方式)
液共振方式のトナーの製造装置の一例を図22に、液滴噴射ユニット例を図23に示した。その基本的な構成は機械的縦振動方式とほぼ同一であるが、機械的縦振動方式が振動発生手段によりノズルを有する薄膜を振動させて液滴化しているのに対して、液共振方式ではノズルを有する薄膜の振動によるのではなく、液の共振により液滴化している点が異なる。
したがって、薄膜は振動しない程度に強度を高めている。材質としては、シリコンやシリコン酸化物などが用いられ、シリコン基板、特にSOI(Silicon on Insulator)基板を用いることがノズルの形成の面でも望ましい。なお、ノズルの開口径に対して膜厚が非常に厚い場合はノズルの断面形状を2段型とすることにより吐出性が向上する。
図23(b)は液滴噴射ユニット2の概略断面説明図であり、図23(a)はより詳細に説明するための組立図であり、図23(c)は図23(a)、(b)に示した液滴噴射ユニットによる液滴形成の説明図である。
この液滴噴射ユニット2は、複数のノズル(吐出口)11が形成された薄膜12と、振動手段13と、薄膜12と振動手段13との間に少なくとも樹脂、着色剤、及び特定のフェノール系樹脂を含有するトナー組成液10を供給する貯留部(液流路)14を形成する貯留部構成部材15とを備えている。振動手段と貯留部壁との間には、振動を伝達させないための、振動分離部材26により位置を固定されている構成が望ましいが、振動手段の、振動振幅の小さい節の部分27を介して壁に直接固定する形態でも構わない。液貯留部14には、液供給、及び液循環に用いる配管18を通じてトナー組成液10が供給される。
振動手段13や振動増幅手段22は前述の機械的縦振動手段を用いる膜振動方式の説明において記述したものが同様に使用できる。
液貯留部の隔壁を構成する部材は金属やセラミックス、プラスチックなど一般的な材質のうち、噴霧液に溶解しない、かつ噴霧液の変性を起こさないようなもので構成される。また、液貯留部14は複数の隔壁によって、複数の液貯留領域29に分割される。このように隔壁で分割することにより数十kHz駆動において、液室内の振動圧力分布が均等になるため均等な吐出が可能となり、また共振周波数を高める効果も期待できる。
次に、この液滴化手段としての液滴噴射ユニット2による液滴形成のメカニズムについて図23(c)を参照して説明する。振動手段により振動面13aに発生した振動は貯留部内の液に伝達し、貯留部内の液は液共振現象を起こす。薄膜12に設けられた複数のノズルにおいて、液は均質に加圧された状態において気体側に放出される。この液全体の共振の作用によって、全てのノズルから均等に液が噴出され、更には、トナー組成液に多く含有される、分散微粒子が前記薄膜の貯留部面に沈着することなく貯留部を浮遊するため、安定的に液を噴射し続けることができる構成となっている。
次に、ノズルの断面形状を2段型とする方法を図24を用いて説明する。シリコン基板両面にレジスト111をコートし(11a)、ノズルパターンが形成されたフォトマスクで覆い、紫外線を露光し、レジスト111をノズルパターンとして形成する(11b)。支持層112面側からICP放電を用いた異方性ドライエッチングを行い、第1のノズル孔115を形成し、活性層114面側を同様の異方性ドライエッチングを行なって第2のノズル116を形成し(11c)、最後に誘電体層113をフッ酸系エッチング液により取り除き、2段の貫通孔を得る(11d)ことが、深堀りノズル形状を均等に形成する上で最も好ましい。また、図示しないが、シリコン基板としてはSOI基板ではなく、単層のシリコン基板でも同様の方法でノズルを形成することができる。その際には、エッチング時間を調整することにより、第1のノズル孔の深さ及び第2のノズル孔の深さを調整することが可能である。
ノズル11の形状としては、特に制限はなく、適宜選択した形状とすることができるが、例えば、薄膜12は厚み30〜1000μmでかつ、ノズル11の開口径が4〜15μmであることが、ノズル11からトナー組成液10の液滴を噴射させるときに、均一な粒子径を有する微小液滴を発生させる観点から好ましい。なお、前記ノズル11の開口径は、真円であれば直径を意味し、楕円であれば短径を意味する。
振動手段13は、例えば積層型PZTや、後述する超音波振動子と超音波ホーンを組み合わせたものなど、高い振幅において機械的超音波振動を液に与えることができるものであればどのようなものでも構わない。
振動手段により発生した振動は貯留部内の液に伝達し、貯留部内の液は液共振現象を起こす。薄膜に設けられた複数のノズルにおいて、液は均質に加圧された状態において気体側に放出される。この液全体の共振の作用によって、全てのノズルから均等に液が噴出され、更には、トナー組成液に多く含有される、分散微粒子が前記薄膜の貯留部面に沈着することなく貯留部を浮遊するため、安定的に液を噴射しつづけることができる構成となっている。
複数のノズルを設けた薄膜を機械的に振動させる場合はノズル詰りが発生しづらいという利点があるが、薄膜面積が広いと均一振動が得られずに液滴の粒度分布なる場合がある。これに対し、液共振方式は各ノズルにほぼ等しい振動圧力が与えられるため広い薄膜でも狭粒度分布の液滴が得られやすい。
(乾燥)
液滴から溶剤を除去する乾燥工程(粒子形成工程)は、加熱した乾燥窒素などの気体中
に液滴を放出し行われる。必要であれば、さらに流動床乾燥や真空乾燥といった二次乾燥
が行われる。
上記の製造方法のうち、本発明で採用するトナー組成液を気相中で液滴化した後乾燥を行う、噴霧法や振動噴射法により得られたトナーは少量の耐電制御剤の添加で優れた帯電特性が得られる。トナー組成液を気相中で液滴化した後乾燥を行ったトナー粒子の表面を、XPS(PHI Quantera SXM)にてフッ素及び珪素の定量を行ったところ、同じ量のフルオロアルキルシルセスキオキサン化合物を含有する粉砕法トナーに比べてフッ素及び珪素の量が非常に多いことが判明し、フルオロアルキルシルセスキオキサン化合物が表面に非常に多く存在することが確認された。さらに、振動噴射法では噴霧法に比べて非常にシャープな粒度分布が得られるため、トナー粒子缶の帯電量のばらつきが少ないためと思われるが、実使用時での画像の安定性に優れていた。
以下、実施例により本発明についてさらに詳細に説明するが、本発明は、下記実施例に何ら限定されるものではない。
[比較例1]
結着樹脂としてポリエステル樹脂(重量平均分子量:Mw=30000、THF不溶分=
0、Tg=60℃) 82質量部
着色剤としてカーボンブラック(「MOGUL L」、キャボット社製) 10質量部、帯電制御剤としてフルオロアルキルシルセスキオキサン化合物I(XT−C−3 チッソ(株)製:フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃) 3質量部、離型剤としてカルナウバワックス 5質量部 をヘンシェルミキサー(「MF20C/I型」、三井三池加工機株式会社製)に仕込み、十分攪拌混合した後、2軸押出機(東芝機械株式会社製)にて混練し、冷却した2本ロールで圧延した後、スチールベルト上で冷却した。ここで、前記混練は、2軸押出機出口での混練生成物の温度が120℃前後となるように設定して行った。次いで、ロートプレックスにて粗粉砕し、ジェットミルにて微粉砕し、風力分級により粒度分布を整え、重量平均粒径が約7.1μm、重量平均粒径/個数平均粒径(D4/Dn)が1.22のフルオロアルキルシルセスキオキサン化合物Iを3質量%含有したトナー母体粒子aを作製した。
−キャリアの作製− シリコーン樹脂(オルガノストレートシリコ−ン)
100質量部
トルエン 100質量部
γ−(2−アミノエチル)アミノプロピルトリメトキシシラン 5質量部
カーボンブラック 10質量部
上記混合物をホモミキサーで20分間分散し、コート層形成液を調製した。このコート層形成液を流動床型コーティング装置を用いて、粒径50μmの球状マグネタイト1000部の表面にコーティングして磁性キャリアaを得た。
−帯電特性の測定−
トナー母体粒子a4質量部と、上記磁性キャリアa96質量部とを20℃/50%RHの環境に24時間暴露した後、その環境内でトナー母体粒子a及び磁性キャリアaをボールミル内に投入し、1分間及び10分間、30分間ボールミルで混合し、二成分現像剤常温常湿1分撹拌品及び10分撹拌品、30分撹拌品を作成し,ブローオフ法にて帯電量を測定した。1分撹拌品の帯電量が10分撹拌品の帯電量に近いほど帯電の立ち上がり性が良いといえ、30分撹拌品の帯電量が10分撹拌品の帯電量に近いほど帯電の安定性がよいといえる。
また、トナー母体粒子a4質量部と、上記磁性キャリアa96質量部とを30℃/90%RHの環境に24時間暴露した後、その環境内でトナー母体粒子a及びキャリアaをボールミル内に投入し、10分間ボールミルで混合し、二成分現像剤高温高湿品を作成し、ブローオフ法にて帯電量を測定し、高温高湿品の帯電量とした。高温高湿品の帯電量と常温常湿10分撹拌品の帯電量の差が小さい方が耐環境安定性に優れているといえる。
測定結果を表1に示したが、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性は良好であった。
−現像剤の作製及び画像安定性の評価−
得られたトナー母体粒子a99.0質量部に、外添剤として疎水性シリカ(HDK H2000、クラリアントジャパン社製)1.0質量部を添加し、ヘンシェルミキサーで混合して、トナーAを作製した。
得られたトナーA4質量部に対して、上記磁性キャリアa96質量部を20℃/50%RHの環境に24時間暴露した後、その環境内でトナーA及び磁性キャリアaをボールミル内に投入し、10分間ボールミルで混合し、二成分現像剤を作成した。
比較例1のトナー母体粒子は前記のように重量平均粒径(D4)は7.1μmでありDv/Dnは1.22であったが、下記の実施例1に比べて帯電量が低く、帯電の立ち上がり性や安定性及び帯電量の耐環境変動性ともに劣っていた。画像安定性評価からは、30℃/90%RHで画像面積が50%の場合は100枚目の画像に地肌汚れが生じていた。
[評価方法]
<粒度分布>
本発明のトナーの重量平均粒径(D4)及び個数平均粒径(Dn)は、粒度測定器(「
マルチサイザーIII」、ベックマンコールター社製)を用い、アパーチャー径100μm
で測定し、解析ソフト(Beckman Coulter Mutlisizer 3 Version3.51)にて解析を行った。具体的にはガラス製100mlビーカーに10wt%界面活性剤(アルキルベンゼンスルフォン酸塩ネオゲンSC−A;第一工業製薬性)を0.5ml添加し、各トナー0.5g添加しミクロスパーテルでかき混ぜ、次いでイオン交換水80mlを添加した。得られた分散液を超音波分散器(W−113MK−II本多電子社製)で10分間分散処理した。前記分散液を前記マルチサイザーIIIを用い、測定用溶液としてアイソトンIII(ベックマンコールター製)を用いて測定を行った。測定は装置が示す濃度が8±2%に成るように前記トナーサンプル分散液を滴下した。本測定法は粒径の測定再現性の点から前記濃度を8±2%にすることが重要である。この濃度範囲であれば粒径に誤差は生じない。チャンネルとしては、2.00〜2.52μm未満;2.52〜3.17μm未満;3.17〜4.00μm未満;4.00〜5.04μm未満;5.04〜6.35μm未満;6.35〜8.00μm未満;8.00〜10.08μm未満;10.08〜12.70μm未満;12.70〜16.00μm未満;16.00〜20.20μm未満;20.20〜25.40μm未満;25.40〜32.00μm未満;32.00〜40.30μm未満の13チャンネルを使用し、粒径2.00μm以上乃至40.30μm未満の粒子を対象とした。トナー粒子又はトナーの体積、個数を測定後、体積分布と個数分布を算出する。得られた分布から、トナーの重量平均粒径(D4)、個数平均粒径(Dn)を求めることができる。粒度分布の指標としては、トナーの重量平均粒径(D4)を個数平均粒径(Dn)で除したD4/Dnを用いる。完全に単分散であれば1となり、数値が大きいほど分布が広いことを意味する。
<重量平均分子量Mw>
結着樹脂のTHF溶解分の分子量分布はGPC(ゲルパーミエーションクロマトグラフィー)測定装置GPC−150C(ウォーターズ社製)によって測定した。カラムにはKF801〜807(ショウデックス社製)を使用した。測定は以下の方法で行う。
40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてTHFを毎分1mlの流速で流した。結着樹脂0.05gをTHF5gに十分に溶かした後、前処理用フィルター(例えば、孔径0.45μm クロマトディスク(クラボウ製))で濾過し、最終的に試料濃度として0.05〜0.6質量%に調製した樹脂のTHF試料溶液を50〜200μl注入して測定する。結着樹脂のTHF溶解分の重量平均分子量Mw、数平均分子量Mnピークトップ分子量Mpの測定に当たっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検出器、検出条件及び検量線作成用の標準ポリスチレン試料は次の通りとした。
(装置)
GPC:日本ウォーターズ社製 ゲルパーミエーションクロマトグラフィー
(条件)
展開溶媒 : THF 1ml/min
カラム : KF−G(ガードカラム)、KF−804L×2 昭和電工社製
カラム温度: 40℃
検出器 : RI 40℃
(標準試料)
標準試料: ポリスチレン(Polymer Laboratories社製)
<THF不溶解分>
結着樹脂10gを秤量し、これにTHF90gを加えて、20℃で撹拌子を用いて60分間撹拌した後、20℃で20〜30時間放置する。20〜30時間後、THF不溶解分が沈降するので、これを濾紙にて分離する。濾紙にはFILTER PAPER No.7(アドバンテック社製)を用い、濾紙上に分離された不溶分をTHFで良く洗浄しながら吸引濾過を行った。分離した不溶分を120℃で3時間加温し、THFを揮発させた後、質量を秤量する。本発明におけるTHF不溶解分は10gに対する秤量値の割合(質量%)で求められる。
<帯電量:ブローオフ法>
現像剤6gを、両底面に目開き20μmのステンレス製メッシュを設けた金属性円柱容器に入れ、窒素ガスを吹き付けてトナーのみを除去し、残ったキャリアの電荷(q)を計測し、除去されたトナーの質量(m)で除したq/mとして帯電量を求めた。
<画像安定性評価>
現像剤を、リコー社製の複写機(Imagio Neo C285)に入れ、リコー社製タイプ6000ペーパーを用いて、30℃/90%RH及び10℃/30%RHの環境にて、画像の面積率が2%、10%、50%の画像を連続して各100枚出力し、画像を評価した結果を表1に示した。なお、いずれの環境及び画像面積率でも100枚目の画像が初期画像と同等の良好な画像であった場合は○、いずれかの環境及び画像面積率で100枚目の画像が初期画像より明らかな変化を生じた場合は×で示した。
[実施例1]
−着色剤分散液の調製−
先ず、着色剤としての、カーボンブラックの分散液を調製した。
カーボンブラック(Regal400;Cabot社製)20質量部、顔料分散剤2質量部を、酢酸エチル78質量部に、攪拌羽を有するミキサーを使用し、一次分散させた。該顔料分散剤としては、アジスパーPB821(味の素ファインテクノ社製)を使用した。
得られた一次分散液を、ダイノーミルを用いて強力なせん断力により細かく分散し、凝集体を完全に除去した二次分散液を調製した。更に、1μmの細孔を有するフィルター(PTFE製)を通過させ、サブミクロン領域まで分散させた液を調製した。
−ワックス分散液の調製−
撹拌羽と温度計をセットした容器に、結着樹脂としてのポリエステル樹脂(重量平均分子量:Mw=30000、THF不溶分=0、Tg=60℃)30質量部、カルナバワックス10質量部、酢酸エチル160質量部を仕込み、85℃に加温し20分間撹拌しポリエステル樹脂及びカルナバワックスを溶解させた後、急冷しカルナバワックスの微粒子を析出させた。このワックス分散液をダイノーミルを用いて強力なせん断力によりさらに細かく分散し、ワックスの最大粒径が1μm以下になるよう調整した。
−トナー組成液の調製−
前記カーボンブラック分散液を50質量部
前記ワックス分散液を100質量部
ポリエステル樹脂(重量平均分子量:Mw=30000、THF不溶分=0、Tg=60℃)の固形分20質量%酢酸エチル溶液を343.5質量部
フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)の固形分30質量%酢酸エチル溶液を1質量部
酢酸エチルを172.17質量部
を攪拌羽を有するミキサーを使用し10分間撹拌混合し、固形分が15質量%のトナー組成液を調製した。
−トナーの作製−
得られた−トナー組成分散液をノズル径250μmの二流体ノズルを用いて空気圧0.1MPaにて45℃の窒素中に噴霧し、サイクロンで捕集した後、40℃で3日間送風乾燥を行い、黒色微粒子を得た。
更にこの黒色微粒子を風力分級により粒度分布を整え、重量平均粒径が約6.2μm、重量平均粒径/個数平均粒径(D4/Dn)が1.25のフルオロアルキルシルセスキオキサン化合物Iを0.3質量%含有したトナー母体粒子bを作製した。 このトナー母体粒子bを用いて、比較例1と同様に帯電特性の測定及び現像剤の作製、画像安定性の評価を行った結果を表1に示したが、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性は良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例2]
−トナー組成液の調製−
実施例1と同様に作成したカーボンブラック分散液を50質量部
実施例1と同様に作成したワックス分散液を100質量部
ポリエステル樹脂(重量平均分子量:Mw=30000、THF不溶分=0、Tg=60℃)の固形分20質量%酢酸エチル溶液を343.5質量部
フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)の固形分30質量%酢酸エチル溶液を1質量部
酢酸エチルを505.5質量部
を攪拌羽を有するミキサーを使用し10分間撹拌混合し、固形分が10質量%のトナー組成液を調製した。
−トナーの作製−
得られたトナー組成液を、図11に示した、振動発生手段(圧電体)を円環状に形成したリング型振動子のヘッドに供給し、45℃の窒素中に液滴を吐出させた後、該液滴を乾燥固化し、サイクロンで捕集した後、40℃で3日間送風乾燥を行い、フルオロアルキルシルセスキオキサン化合物Iを0.3質量%含有したトナー母体粒子cを作製した。
使用したノズルプレートは、外径8.0mmで厚み20μmのニッケル板に、真円形状の直径8μmの吐出孔を、電鋳法による加工で作製した。吐出孔は各吐出孔間の距離が100μmとなるように千鳥格子状に、ノズルプレート中心の約5mmφの範囲にのみ設け
た。この場合の有効吐出孔数は約1000個となる。
〔トナー作製条件〕
乾燥空気流量 :分散用窒素ガス 2.0L/分、
装置内乾燥窒素ガス 30.0L/分
装置内温度 :38〜40℃
ノズル振動数 :98kHz
圧電体印加電圧 :10V
トナー母体粒子cの重量平均粒径(D4)は5.0μm、でありDv/Dnは1.13であり非常にシャープな粒度分布であった。
このトナー母体粒子cを用いて、比較例1と同様に帯電特性の測定及び現像剤の作製、画像安定性の評価を行った結果を表1に示したが、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性は良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例3]
実施例2で得られたトナー組成液を用いて、図1に示したトナー製造装置の、ノズル1に供給し45℃の窒素中に液滴を吐出させた後、該液滴を乾燥固化し、サイクロンで捕集した後、40℃で3日間送風乾燥を行い、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)を0.3質量%含有したトナー母体粒子dを作製した。
使用したノズルプレートは、外径8.0mmで厚み20μmのニッケル板に、真円形状の直径8μmの吐出孔を、電鋳法による加工で作製した。吐出孔は各吐出孔間の距離が100μmとなるように千鳥格子状に、ノズルプレートの中心の約5mmφの範囲にのみ設
けた。この場合の計算上の有効吐出孔数は1000個となる。
〔トナー作製条件〕
乾燥空気流量 :分散用窒素ガス 2.0L/分、
装置内乾燥窒素ガス 30.0L/分
装置内温度 :38〜40℃
ノズル振動数 :180kHz
圧電体印加電圧 :10V
トナー母体粒子dの重量平均粒径(D4)は5.0μm、でありDv/Dnは1.06であり非常にシャープな粒度分布であった。
このトナー母体粒子dを用いて、比較例1と同様に帯電特性の測定及び現像剤の作製、画像安定性の評価を行った結果を表1に示したが、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性ともに良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例4]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をフルオロアルキルシルセスキオキサン化合物II(フッ素含有率16.3質量%、重量平均分子量15000、Tg78℃:XT−C−1、チッソ(株)製)に変えた以外は実施例3と同様にトナー母体粒子eを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.07であり非常にシャープな粒度分布であり、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性ともに良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例5]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をフルオロアルキルシルセスキオキサン化合物III(フッ素含有率8.2質量%、重量平均分子量21000、Tg94℃:XT−C−10、チッソ(株)製))に変えた以外は実施例3と同様にトナー母体粒子fを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.07で非常にシャープな粒度分布であり、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性ともに良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例6]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をフルオロアルキルシルセスキオキサン化合物IV(フッ素含有率29.3質量%、重量平均分子量8000、Tg61℃:XT−C−9、チッソ(株)製)に変えた以外は実施例3と同様にトナー母体粒子gを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.06で非常にシャープな粒度分布であり、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性ともに良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例7]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をフルオロアルキルシルセスキオキサン化合物V(フッ素含有率29.3質量%、重量平均分子量5000、Tg50℃:チッソ(株)製)に変えた以外は実施例3と同様にトナー母体粒子hを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.06で非常にシャープな粒度分布であり、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性ともに良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例8]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をフルオロアルキルシルセスキオキサン化合物VI(フッ素含有率29.3質量%、重量平
均分子量59000、Tg75℃:XT−C−4、チッソ(株)製)に変えた以外は実施
例3と同様にトナー母体粒子iを作成し、評価を行った結果を表1に示したが、重量平均
粒径(D4)は5.0μm、でありDv/Dnは1.07で非常にシャープな粒度分布で
あり、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性とも
に良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例9]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をフルオロアルキルシルセスキオキサン化合物VII(フッ素含有率29.3質量%、重量平均分子量100000、Tg81℃:チッソ(株)製)に変えた以外は実施例3と同様にトナー母体粒子jを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μmでありDv/Dnは1.08で非常にシャープな粒度分布であり、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性ともに良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[実施例10]
実施例2で得られたトナー組成液を、図22に示したトナー製造装置の液滴噴射ユニットに供給し、45℃の窒素中に液滴を吐出させた後、該液滴を乾燥固化し、サイクロンで捕集した後、40℃で3日間送風乾燥を行い、フルオロアルキルシルセスキオキサン化合物Iを0.3質量%含有したトナー母体粒子kを作製した。
薄膜(ノズルプレート)は500μm厚のSOI基板を用い、ノズルは図33に示す115開口部直径が100μm、116開口部直径が8.5μmの2段形状(凸形状)として形成し、116開口部を液が放出される側として用いた。各吐出孔間の距離が100μmとなるように千鳥格子状に設けた。液貯留部は均等分割された液貯留領域で構成されているものを用いた。本実施例で用いた加振周波数及び液貯留部の構成を以下に示す。
<液貯留部構成及び駆動周波数>
加振周波数:32.7kHz(共振周波数)
液貯留部分割数(液貯留領域の個数):6
液貯留部長手方向寸法A:8mm
液貯留部短手方向寸法B:8mm
1の液貯留領域当りのノズル数:480
トナー母体粒子kの重量平均粒径(D4)は5.0μm、でありDv/Dnは1.05
であり非常にシャープな粒度分布であった。
このトナー母体粒子kを用いて、比較例1と同様に帯電特性の測定及び現像剤の作製、画像安定性の評価を行った結果を表1に示したが、充分な帯電量が得られ、帯電の立ち上がり性や安定性、帯電量の耐環境変動性は良好であり、画像安定性評価でもいずれの画像も良好な画像であった。
[比較例2]
実施例1において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をサリチル酸亜鉛化合物(E−84 オリエント化学社製)に変えた以外は実施例1と同様にトナー母体粒子mを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は6.1μm、でありDv/Dnは1.26であったが、実施例1に比べて帯電量が低く、帯電の立ち上がり性や安定性及び帯電量の耐環境変動性ともにやや劣っていた。画像安定性評価からは、30℃/90%RHで画像面積が50%の場合は100枚目の画像に地肌汚れが生じていた。
[比較例3]
実施例2において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をサリチル酸亜鉛化合物(E−84 オリエント化学社製)に変えた以外は実施例2と同様にトナー母体粒子nを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.14であったが、実施例2に比べて帯電量が低く、帯電の立ち上がり性や安定性及び帯電量の耐環境変動性ともにやや劣っていた。画像安定性評価からは、30℃/90%RHで画像面積が50%の場合は100枚目の画像に地肌汚れが生じていた。
[比較例4]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)を添加しない以外は実施例3と同様にトナー母体粒子oを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.1μm、でありDv/Dnは1.11であったが、実施例3に比べて帯電量が低く、帯電の立ち上がり性や安定性及び帯電量の耐環境変動性ともに劣っていた。画像安定性評価からは、30℃/90%RHで画像面積が10%及び50%の場合は100枚目の画像に地肌汚れが生じていた。
[比較例5]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)をサリチル酸亜鉛化合物(E−84 オリエント化学社製)に変えた以外は実施例3と同様にトナー母体粒子pを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.11であったが、実施例3に比べて帯電量が低く、帯電の立ち上がり性や安定性及び帯電量の耐環境変動性ともにやや劣っていた。画像安定性評価からは、30℃/90%RHで画像面積が50%の場合は100枚目の画像に地肌汚れが生じていた。
[比較例6]
実施例3において、フルオロアルキルシルセスキオキサン化合物I(フッ素含有率29.3質量%、重量平均分子量18000、Tg67℃:XT−C−3、チッソ(株)製)を以下に示すフッ素化合物に変えた以外は実施例3と同様にトナー母体粒子qを作成し、評価を行った結果を表1に示したが、重量平均粒径(D4)は5.0μm、でありDv/Dnは1.11であったが、実施例3に比べて帯電の立ち上がり性が非常に優れていたが、撹拌時間とともに帯電量が急激に低下した。画像安定性評価からは、10℃/30%RHで画像面積が50%の場合は100枚目の画像の濃度が低下しており、30℃/90%RHで画像面積が2%の場合は地肌汚れが生じていた。
フッ素化合物:FT-A(パーフルオロアルケニルオキシ安息香酸 株式会社ネオス社製)
Figure 0005407351
本発明のトナーは、トナーの粒度分布が非常にシャープであり、従来のトナーに比べて帯電の立ち上がり性、トナー粒子表面の帯電均一性及び耐環境変動性に優れており、高品質の画像を安定して得ることができるので、電子写真、静電記録、静電印刷等に於ける静電荷像を現像する為のトナーとして好適である。
1 トナーの製造装置
2 液滴噴射ユニット
3 粒子形成部(溶媒除去部)
4 トナー捕集部
5 チューブ
6 トナー捕集部
7 原料収容部
8 配管
9 ポンプ
10 トナー組成液
11 ノズル
12 薄膜
13 振動手段
13a振動面
14 貯留部
15 流路部材
16 液滴化手段
17 振動発生手段(電気機械変換手段)
18 液供給チューブ
19 気泡排出チューブ
21 振動発生手段
21A 圧電体
22 振動増幅手段
22A ホーン
23 駆動回路(駆動信号発生源)
24 通信手段
31 液滴
35 気流
36 気流路形成部材
37 気流路
80 ホーン型振動子
81 圧電体
82 ホーン
83 固定部
90 ランジュバン型振動子
91 圧電体
92 ホーン
T トナー粒子
(図22〜図24について)
1 トナーの製造装置
2 液滴噴射ユニット
3 粒子形成部(溶媒除去部)
4 トナー捕集部
5 チューブ
6 トナー貯留部
7 原料収容部
8 配管
9 ポンプ
10 トナー組成液
11 ノズル
12 薄膜
13 振動手段
13a振動面
14 貯留部
15 貯留部構成部材
18 液供給チューブ
21 振動発生手段
22 振動増幅手段
23 駆動回路(駆動信号発生源)
24 通信手段
26 振動分離部材
27 振動手段の、振動振幅の小さい節の部分
29 液貯留領域
31 液滴
35 気流
111 レジスト
112 支持層
113 誘電体層
114 活性層
115 第1のノズル孔
116 第2のノズル孔
T トナー粒子
特開平5−53367号公報 特許第3999622号 特許第3407521号 特開2006−163187号公報 特開2003−262976号公報 特開2003−280236号公報 特開2003−262977号公報

Claims (12)

  1. 少なくとも結着樹脂、着色剤、及び帯電制御剤を含有するトナー組成物を有機溶剤に溶解ないしは分散したトナー組成液を、気相中で液滴化し、次いで該液滴を固化することによって製造されたトナーであって、前記帯電制御剤が付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなるガラス転移点が50〜95℃の共重合体であることを特徴とするトナー。
  2. 前記液滴化が前記トナー組成液を、同じ開口径の複数のノズルを有する薄膜を機械的振動手段によって振動させることにより周期的に放出することによって行われたことを特徴とする請求項1に記載のトナー。
  3. 前記機械的振動手段が前記薄膜のノズルを設けた領域の周囲に円環状に形成された振動発生手段であることを特徴とする請求項2に記載のトナー。
  4. 前記機械的振動手段が前記薄膜に対して平行な振動面を有し、該振動面が垂直方向に縦振動する振動手段であることを特徴とする請求項2に記載のトナー。
  5. 前記機械的振動手段は、前記薄膜に対して平行な振動面を有し、該振動面が垂直方向に縦振動する振動手段であり、液の共振現象を利用してトナー組成液を前記薄膜に設けた複数のノズルから周期的に液滴化して放出させたことを特徴とする請求項3に記載のトナー。
  6. 前記機械的振動手段がホーン型振動子であることを特徴とする請求項4又は5記載のトナー。
  7. 前記付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体におけるフッ素の含有量が7〜30質量%であることを特徴とする請求項1〜6のいずれかに記載のトナー。
  8. 前記付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体の重量平均分子量が5000〜100000であることを特徴とする請求項1〜7のいずれかに記載のトナー。
  9. 前記付加重合性官能基を含むフルオロアルキルシルセスキオキサン(b1)と付加重合性単量体(b2)からなる共重合体の含有量が、トナー組成物100質量部に対して0.05〜5質量部であることを特徴とする請求項1〜のいずれかに記載のトナー。
  10. 前記トナー組成液の固形分が5〜40質量%であることを特徴とする請求項1〜のいずれかに記載のトナー。
  11. 重量平均粒径が1〜15μmであり、粒度分布(重量平均粒径/個数平均粒径)が、1.00〜1.15の範囲にあることを特徴とする請求項1〜10のいずれかに記載のトナー。
  12. 少なくとも請求項1〜11のいずれかに記載のトナーと磁性粒子を含むキャリアを含有することを特徴とする二成分系の現像剤。
JP2009007877A 2008-06-25 2009-01-16 トナー及び現像剤 Expired - Fee Related JP5407351B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007877A JP5407351B2 (ja) 2008-06-25 2009-01-16 トナー及び現像剤

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008166072 2008-06-25
JP2008166072 2008-06-25
JP2009007877A JP5407351B2 (ja) 2008-06-25 2009-01-16 トナー及び現像剤

Publications (2)

Publication Number Publication Date
JP2010033000A JP2010033000A (ja) 2010-02-12
JP5407351B2 true JP5407351B2 (ja) 2014-02-05

Family

ID=41737500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007877A Expired - Fee Related JP5407351B2 (ja) 2008-06-25 2009-01-16 トナー及び現像剤

Country Status (1)

Country Link
JP (1) JP5407351B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391612B2 (ja) * 2008-09-01 2014-01-15 株式会社リコー トナーの製造方法、トナーの製造装置及びトナー
JP5799696B2 (ja) * 2011-09-13 2015-10-28 株式会社リコー トナーの製造方法
JP6148626B2 (ja) * 2014-01-16 2017-06-14 理想科学工業株式会社 着色樹脂粒子分散体及びインクジェットインク
JP6200334B2 (ja) 2014-01-16 2017-09-20 理想科学工業株式会社 着色樹脂粒子分散体及びインクジェットインク
JP6249785B2 (ja) 2014-01-16 2017-12-20 理想科学工業株式会社 着色樹脂粒子分散体及びインクジェットインク
JP6185849B2 (ja) 2014-01-16 2017-08-23 理想科学工業株式会社 着色樹脂粒子分散体及びインクジェットインク

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803811B2 (ja) * 2006-09-15 2011-10-26 株式会社リコー トナー製造方法、トナー、及びトナー製造装置
EP2103636B1 (en) * 2006-12-15 2016-07-20 JNC Corporation Fluorine-containing polymer and resin composition
WO2008072765A1 (ja) * 2006-12-15 2008-06-19 Chisso Corporation フッ素系重合体および樹脂組成物
JP5241402B2 (ja) * 2008-09-24 2013-07-17 株式会社リコー 樹脂粒子、トナー並びにこれを用いた画像形成方法及びプロセスカートリッジ

Also Published As

Publication number Publication date
JP2010033000A (ja) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5433986B2 (ja) トナー及びその製造方法
JP5500492B2 (ja) トナーの製造方法
JP4966166B2 (ja) トナーの製造方法及びトナー、現像剤、画像形成方法
JP5365904B2 (ja) トナーの製造方法
JP5315920B2 (ja) トナーの製造方法及び製造装置
JP4896000B2 (ja) 静電荷像現像用トナー、製造方法、及び製造装置、並びに、現像剤、トナー入り容器、プロセスカートリッジ、画像形成方法、及び画像形成装置
JP5754219B2 (ja) トナーの製造方法
JP5386889B2 (ja) トナー及びその製造方法
JP5493530B2 (ja) トナーの製造方法
JP5407351B2 (ja) トナー及び現像剤
JP5724464B2 (ja) トナーの製造方法
JP5754225B2 (ja) トナーの製造方法及びトナーの製造装置
JP2009109732A (ja) トナー
JP5080942B2 (ja) トナーの製造方法
JP5644367B2 (ja) トナー及びその製造方法、並びに現像剤
JP5257676B2 (ja) トナー及び現像剤、画像形成装置
JP5446639B2 (ja) トナーの製造方法
JP5239233B2 (ja) トナーの製造方法
JP2012093644A (ja) トナーの製造装置及びトナーの製造方法、並びにトナー
JP4991386B2 (ja) トナーの製造方法及びトナーの製造装置
JP5413123B2 (ja) トナーの製造装置及び製造方法
JP2011059632A (ja) トナーの製造装置及び製造方法
JP5561045B2 (ja) トナーの製造方法及びトナーの製造装置、並びにトナー
JP5515344B2 (ja) トナーの製造方法及びトナー
JP2011059148A (ja) トナーの製造方法及びトナー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees