JP5403165B2 - 流量検出装置 - Google Patents

流量検出装置 Download PDF

Info

Publication number
JP5403165B2
JP5403165B2 JP2012532771A JP2012532771A JP5403165B2 JP 5403165 B2 JP5403165 B2 JP 5403165B2 JP 2012532771 A JP2012532771 A JP 2012532771A JP 2012532771 A JP2012532771 A JP 2012532771A JP 5403165 B2 JP5403165 B2 JP 5403165B2
Authority
JP
Japan
Prior art keywords
flow rate
state
afm
flow
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012532771A
Other languages
English (en)
Other versions
JPWO2012032617A1 (ja
Inventor
真介 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2012032617A1 publication Critical patent/JPWO2012032617A1/ja
Application granted granted Critical
Publication of JP5403165B2 publication Critical patent/JP5403165B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • G01F15/046Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means involving digital counting

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、流量検出装置に関する。
内燃機関において、燃焼室に吸入されるべき空気が吸気通路内を流れているとき、同空気にいわゆる脈動が生じることが知られている。そして、燃焼室から排気通路に排出された排気ガスが吸気通路に導入されるようになっている場合、吸気通路内を流れる空気に生じる脈動が大きくなる。
ここで、吸気通路内を流れる空気に脈動が生じた場合、同空気の流れが順流方向(すなわち、燃焼室に向かう方向)と逆流方向(すなわち、順流方向とは逆の方向)との間で変化する。そして、近年、例えば、内燃機関から排出されるエミッションを低減するために、吸気通路内を順流方向に流れる空気の流量だけでなく、吸気通路内を逆流方向に流れる空気の流量をも検出することが望まれている。
ここで、順流方向に流れる流体の流量だけでなく、逆流方向に流れる流体の流量をも検出することができる流量測定装置が特許文献1に記載されている。この流量測定装置は、いわゆるシリコンチップ型の流量測定装置であり、1つの発熱抵抗体と2つの温度検出体とを有する。一方の温度検出体はそこに到来する空気の温度を検出し(以下この温度検出体を「流体温度検出体」という)、他方の温度検出体は発熱抵抗体の温度を検出する(以下この温度検出体を「発熱抵抗体温度検出体」という)。そして、この流量測定装置では、流体温度検出体によって検出される流体の温度に対して一定の温度だけ高い温度が基準温度として設定され、この基準温度と発熱抵抗体温度検出体によって検出される発熱抵抗体の温度との関係に基づいて流量測定装置を通過する流体が順流方向に流れているのか或いは逆流方向に流れているのかを判別することができ、そして、基準温度と発熱抵抗体温度検出体によって検出される発熱抵抗体の温度との差に基づいて流量測定装置を通過する空気の流量を測定することができる。
したがって、特許文献1に記載の流量測定装置を内燃機関の吸気通路に配置すれば、この流量測定装置によって吸気通路内を順流方向に流れる空気の流量だけでなく吸気通路内を逆流方向に流れる空気の流量を検出することができる。
特開2000−193505号公報 実開平2−69721号公報 特開2008−26203号公報
ところで、内燃機関の吸気通路内を流れる空気に脈動が生じたとき、上述したように、吸気通路内を流れる空気の流れの方向が順流方向と逆流方向との間で変化する。ここで、吸気通路内を流れる空気の流れの方向が順流方向から逆流方向に変化するときには、空気の流量は、空気が吸気通路内を順流方向に流れている間に比較的多い流量から徐々に少なくなり、そして、空気の流れの方向が順流方向から逆流方向に変化するときに瞬間的に零になり、そして、空気の流れが逆流方向に変化した後に零から徐々に比較的多くなる。一方、吸気通路内を流れる空気の流れの方向が逆流方向から順流方向に変化するときには、空気が吸気通路内を逆流方向に流れている間に比較的多い流量から徐々に少なくなり、そして、空気の流れの方向が逆流方向から順流方向に変化するときに瞬間的に零になり、そして、空気の流れが順流方向に変化した後に零から徐々に比較的多くなる。すなわち、吸気通路内を流れる空気の流れの方向が順流方向と逆流方向との間で変化するときには、吸気通路内を流れる空気の流量が減少していったん零になった後に増大する。
ここで、流体の流量が比較的多いとき、流体は乱流の状態で流れ、流体の流量が比較的少ないとき、流体は層流の状態で流れることが知られている。したがって、上述したように、吸気通路内を流れる空気に脈動が生じており、したがって、同空気の流れの方向が順流方向から逆流方向に変化するとき、同空気の流れは、順に、乱流状態での順流方向への流れ、層流状態での順流方向への流れ、そして、層流状態での逆流方向への流れを介して、乱流状態での逆流方向への流れに変化することになる。一方、吸気通路内を流れる空気に脈動が生じており、したがって、同空気の流れの方向が逆流方向から順流方向に変化するとき、同空気の流れは、順に、乱流状態での逆流方向への流れ、層流状態での逆流方向への流れ、そして、層流状態での順流方向への流れを介して、乱流状態での順流方向への流れに変化することになる。
したがって、特許文献1に記載の流量測定装置によって吸気通路内を流れる空気を測定する場合、流量測定装置は、乱流状態で順流方向に流れる空気の流量と、層流状態で順流方向に流れる空気の流量と、乱流状態で逆流方向に流れる空気の流量と、層流状態で逆流方向に流れる空気の流量とを正確に測定することができなければならない。
上述したように、特許文献1に記載の流量測定装置は、基準温度と発熱抵抗体温度検出体によって検出される発熱抵抗体の温度との関係に基づいて流量測定装置を通過する流体が順流方向に流れているのか或いは逆流方向に流れているのかを判別し、そして、基準温度と発熱抵抗体温度検出体によって検出される発熱抵抗体の温度との差(以下この差を「基準温度に対する温度差」という)に基づいて流量測定装置を通過する空気の流量を測定する。
ここで、特許文献1に記載の流量測定装置を通過する流体の流れの方向が同じ方向(すなわち、順流方向と逆流方向とのいずれか一方)であったとしても、同流体が乱流状態にあるときに同流体が発熱抵抗体から奪う熱量と同流体が層流状態にあるときに同流体が発熱抵抗体から奪う熱量とは互いに異なる。したがって、流体が層流状態で流量測定装置を通過しているときに得られる基準温度に対する温度差に基づいて同流体の正確な流量を算出することができる変換係数(すなわち、基準温度に対する温度差を流体の流量に変換するための係数)を用いて、流体が乱流状態で流量測定装置を通過しているときに得られる基準温度に対する温度差を変換して得られる流量は、正確な流量ではないことになる。もちろん、逆に、流体が乱流状態で流量測定装置を通過しているときに得られる基準温度に対する温度差に基づいて同流体の正確な流量を算出することができる変換係数を用いて、流体が層流状態で流量測定装置を通過しているときに得られる基準温度に対する温度差を変換して得られる流量は、正確な流量ではないことになる。
また、特許文献1に記載の流量測定装置を通過する流体の流れの状態が同じ状態(すなわち、乱流状態と層流状態とのいずれか一方)であったとしても、同流体が順流方向に流れているときの基準温度に対する温度差と同流体が逆流方向に流れているときの基準温度に対する温度差とは互いに異なる。したがって、流体が逆流方向に流量測定装置を通過しているときに得られる基準温度に対する温度差に基づいて同流体の正確な流量を算出することができる変換係数を用いて、流体が順流方向に流量測定装置を通過しているときに得られる基準温度に対する温度差を変換して得られる流量は、正確な流量ではないことになる。もちろん、逆に、流体が順流方向に流量測定装置を通過しているときに得られる基準温度に対する温度差に基づいて同流体の正確な流量を算出することができる変換係数を用いて、流体が逆流方向に流量測定装置を通過しているときに得られる基準温度に対する温度差を変化して得られる流量は、正確な流量ではないことになる。
そこで、一般的には、特許文献1に記載の流量測定装置によって流体の流れの方向および流体の状態に係わらず流体の正確な流量を検出しようとする場合、流体が流量測定装置を乱流状態で順流方向に通過しているときに得られる基準温度に対する温度差を同流体の正確な流量に変換することができる変換係数と、流体が流量測定装置を層流状態で順流方向に通過しているときに得られる基準温度に対する温度差を同流体の正確な流量を算出することができる変換係数と、流体が流量測定装置を乱流状態で逆流方向に通過しているときに得られる基準温度に対する温度差を同流体の正確な流量に変換することができる変換係数と、流体が流量測定装置を層流状態で逆流方向に通過しているときに得られる基準温度に対する温度差を同流体の正確な流量に変換することができる変換係数とが用意される。
ところが、上述した変換係数は、流量測定装置を通過する流体の流量および同流体の流れの方向を様々な流量および方向に変えたときに得られる基準温度に対する温度差と流量測定装置を通過する流体の流量との関係に基づいて基準温度に対する温度差を正確な流量に変換することができるように用意されるのである。ここで、基準温度に対する温度差と流量測定装置を通過する流体の流量との関係は、それぞれ、流量測定装置を通過する流体の流れの方向を一定の方向として同流体の流量を一定の流量に維持した状態で得られる関係である。したがって、流量測定装置を通過する流体の流量の変化が小さい場合、すなわち、同流体の流れの方向が順流方向から逆流方向に変化したり逆流方向から順流方向に変化したりせず且つ同流体の状態が乱流状態から層流状態に変化したり層流状態から乱流状態に変化したりしない場合、斯くして用意された変換係数を用いて基準温度に対する温度差を変換して得られる流量は、正確な流量である。
しかしながら、流量測定装置を通過する流体の流量の変化が大きく、したがって、同流体の流れの方向が順流方向から逆流方向に変化したり逆流方向から順流方向に変化したりする間に、上述したように用意された変換係数を用いて基準温度に対する温度差を変換して得られる流量は、正確な流量ではなく、また、同流体の状態が乱流状態から層流状態に変化したり層流状態から乱流状態に変化したりする間に、上述したように用意された変換係数を用いて基準温度に対する温度差を変換して得られる流量も、正確な流量ではない。
すなわち、上述したように用意される変換係数を用いて基準温度に対する温度差を変換して流量が算出される場合、流量測定装置を通過する流体の流量の変化が比較的小さい定常状態に同流体の状態があるときには正確な流量が算出されるが、流量測定装置を通過する流体の流量の変化が比較的大きい過渡状態に同流体の状態があるときには正確な流量が算出されない。
そこで、本発明の目的は、過渡状態にある流体の流量を正確に検出することにある。
本願の1番目の発明は、気体の流量に応じた出力値を出力する流量計を備え、該流量計から出力される出力値に基づいて気体の流量を算出することによって気体の流量を検出する流量検出装置に関する。ここで、本発明の流量検出装置では、前記流量計を通過する気体の流量と該流量の変化率とに基づいて前記流量計から出力される出力値が補正されるべきであるか否かが判断される。そして、前記流量計から出力される出力値が補正されるべきであると判断されたときには、前記流量計から出力される出力値が補正され、該補正された出力値に基づいて気体の流量が算出される。
そして、本発明の流量検出装置では、前記流量計を通過する気体の流量と該流量の変化率とに基づいて前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行し或いは乱流の状態から層流の状態に移行し或いは前記流量計を通過する気体の流れの方向が逆転したか否かが判断される。そして、前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行し或いは乱流の状態から層流の状態に移行し或いは前記流量計を通過する空気の流れの方向が逆転したと判断されたときに前記流量計から出力される出力値が補正されるべきであると判断される。
そして、本発明の流量検出装置では、前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行するときの前記流量計を通過する気体の流量と該流量の増大率とによって規定される点が流量増大時遷移点として予め求められている。また、前記流量計を通過する気体の状態が乱流の状態から層流の状態に移行するときの前記流量計を通過する気体の流量と該流量の減少率とによって規定される点が流量減少時遷移点として予め求められている。そして、前記流量計を通過する気体の流量が増大しているときには該流量と該流量の増大率とによって規定される点が前記流量増大時遷移点にあるか否かが判断される。ここで、前記流量計を通過する気体の流量と該流量の増大率とによって規定される点が前記流量増大時遷移点にあると判断されたときに前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行したと判断される。一方、前記流量計を通過する気体の流量が減少しているときには該流量と該流量の減少率とによって規定される点が前記流量減少時遷移点にあるか否かが判断される。ここで、前記流量計を通過する気体の流量と該流量の減少率とによって規定される点が前記流量減少時遷移点にあると判断されたときに前記流量計を通過する気体の状態が乱流の状態から層流の状態に移行したと判断される。
本発明によれば、以下の効果が得られる。すなわち、気体はその流量に応じて層流の状態で流れたり乱流の状態で流れたりする。ここで、気体の状態が層流状態から乱流状態に移行したときの流量計の出力特性(および、気体の状態が層流状態から乱流状態に移行してから一定期間が経過するまでの流量計の出力特性)が気体の状態が定常的に乱流状態にあるときの流量計の出力特性とは異なることが本願の発明者の研究により判明した。また、気体の状態が乱流状態から層流状態に移行したときの流量計の出力特性(および、気体の状態が乱流状態から層流状態に移行してから一定期間が経過するまでの流量計の出力特性)も気体の状態が定常的に層流状態にあるときの流量計の出力特性とは異なることも本願の発明者の研究により判明した。
また、流量計を通過する気体の流れの方向が逆転することもある。ここで、流量計を通過する気体の流れの方向が或る特定の方向からそれとは逆の方向に逆転したときの流量計の出力特性(および、気体の流れの方向が逆転してから一定期間が経過するまでの流量計の出力特性)が気体の流れの方向が定常的に上記逆の方向にあるときの流量計の出力特性とは異なることが本願の発明者の研究により判明した。
したがって、気体の状態が層流状態から乱流状態に移行したとき(或いは、気体の状態が層流状態から乱流状態に移行してから一定期間が経過するまでの間)に流量検出装置によって気体の流量を正確に検出させるためには、層流状態から乱流状態への気体の状態の移行時(或いは、該移行時から一定期間が経過するまでの間)は、気体の状態が定常的に乱流状態にあるときの流量計からの出力値の取扱いの形態とは異なる形態で流量計からの出力値を取り扱って気体の流量を検出することが好ましい。また、気体の状態が乱流状態から層流状態に移行したとき(或いは、気体の状態が乱流状態から層流状態に移行してから一定期間が経過するまでの間)に流量検出装置によって気体の流量を正確に検出させるためには、乱流状態から層流状態への気体の状態の移行時(或いは、該移行時から一定期間が経過するまでの間)は、気体の状態が定常的に層流状態にあるときの流量計からの出力値の取扱いの形態とは異なる形態で流量計からの出力値を取り扱って気体の流量を検出することが好ましい。また、気体の流れの方向が逆転したとき(或いは、気体の流れの方向が逆転してから一定期間が経過するまでの値)は、気体の流れの方向が定常的に逆転後の方向にあるときの流量計からの出力値の取扱いの形態とは異なる形態で流量計からの出力値を取り扱って気体の流量を検出することが好ましい。
そして、層流状態から乱流状態への気体の状態の移行または乱流状態から層流状態への気体の状態の移行あるいは気体の流れの方向の逆転が生じるか否かは気体の流量と該流量の変化率とに依存することが本願の発明者の研究により判明した。
ここで、本発明では、流量計を通過する気体の流量とその変化率とに基づいて流量計からの出力値が補正されるべきであるか否かが判断される。そして、流量計からの出力値が補正されるべきであると判断されたとき、すなわち、流量計を通過する気体の流量とその変化率とを考慮したときに層流状態から乱流状態への気体の状態の移行または乱流状態から層流状態への気体の状態の移行が生じたこと(或いは、該移行が生じたであろうこと、或いは、該移行が生じるであろうこと)或いは気体の流れの方向が逆転したこと(或いは、気体の流れの方向が逆転したであろうこと、或いは、気体の流れの方向が逆転するであろうこと)が判明し、その結果、気体の状態が定常的に乱流状態または層流状態にあるとき或いは気体の流れの方向が定常的に一定の方向であるときの流量計からの出力値の取扱いの形態とは異なる形態で流量計からの出力値を取り扱うべきであること(すなわち、流量計からの出力値を補正すべきであること)が判明したときには、流量計からの出力値が補正され、この補正された出力値に基づいて気体の流量が算出される。
したがって、本発明によれば、気体の状態が層流状態から乱流状態に移行したとき及び気体の状態が乱流状態から層流状態に移行したとき並びに気体の流れの方向が逆転したとき、すなわち、気体の状態が過渡状態にあるときであっても、流量検出装置によって気体の流量が正確に算出されるという効果が得られる。
特に、本発明の流量検出装置が内燃機関の燃焼室に吸入される空気の流量を検出するために利用される場合、燃焼室に吸入される空気の流量が一定ではなく、同空気の流量が過渡的に増大し或いは減少するとき、或いは、同空気にいわゆる脈動が生じて同空気の流れの方向が順流方向(すなわち、燃焼室に向かう方向)から逆流方向(すなわち、順流方向とは逆の方向)に変化したり逆流方向から順流方向に変化したりするときにも、本発明の流量検出装置によれば、空気の流量が正確に算出されるという効果が得られる。
また、本発明によれば、以下の効果が得られる。すなわち、上述したように、気体の状態が層流状態から乱流状態に移行したときの流量計の出力特性は、気体の状態が定常的に乱流状態にあるときの流量計の出力特性とは異なり、また、気体の状態が乱流状態から層流状態に移行したときの流量計の出力特性は、気体の状態が定常的に層流状態にあるときの流量計の出力特性とは異なる。また、気体の流れの方向が1つの方向からそれとは逆の方向に変化したときの流量計の出力特性は、気体の流れの方向が定常的に上記逆の方向にあるときの流量計の出力特性とは異なる。したがって、流量検出装置によって気体の流量を正確に検出するためには、気体の状態が層流状態から乱流状態に移行したこと或いは気体の状態が乱流状態から層流状態に移行したこと或いは気体の流れの方向が逆転したことを確実に把握し、このことが把握されたときに流量計からの出力値を補正し、この補正された出力値に基づいて気体の流量を算出するべきである。
ここで、本発明では、流量計を通過する気体の状態が層流状態から乱流状態に移行し或いは乱流状態から層流状態に移行したこと或いは気体の流れの方向が逆転したことをもって流量計からの出力値が補正されるべきであると判断される。したがって、気体の状態が層流状態から乱流状態に移行したこと或いは気体の状態が乱流状態から層流状態に移行したこと或いは気体の流れの方向が逆転したことが確実に把握されたときに、流量計からの出力値が補正され、この補正された出力値に基づいて気体の流量が算出される。
したがって、本発明によれば、気体の状態が層流状態から乱流状態に移行したとき及び気体の状態が乱流状態から層流状態に移行したとき及び気体の流れの方向が逆転したときであっても、流量検出装置によって気体の流量がより正確に算出されるという効果が得られる。
また、本発明によれば、以下の効果が得られる。すなわち、上述したように、気体はその流量に応じて層流状態で流れたり乱流状態で流れたりする。そして、具体的には、気体の流量が比較的少ないときには気体は層流状態で流れ、気体の流量が比較的多いときには気体は乱流状態で流れる。したがって、層流状態から乱流状態への気体の状態の移行は気体の流量が増大しているときに生じ、乱流状態から層流状態への気体の状態の移行は気体の流量が減少しているときに生じることになる。
ここで、本発明では、気体の状態が層流状態から乱流状態に移行するときの気体の流量とその増大率とによって規定される点が流量増大時遷移点として予め求められている。すなわち、気体の流量が増大しているときに気体の流量とその増大率とによって規定される点が流量増大時遷移点に達すると、層流状態から乱流状態への気体の状態の移行が生じる。そして、本発明では、流量計を通過する気体の流量が増大しているときに気体の流量とその増大率とによって規定される点が流量増大時遷移点に達したか否かに基づいて流量計を通過する気体の状態が層流状態から乱流状態に移行したか否かが判断される。これによれば、層流状態から乱流状態への気体の状態の移行を簡便に且つ確実に把握することができるという効果が得られる。
また、本発明では、気体の状態が乱流状態から層流状態に移行するときの気体の流量とその減少率とによって規定される点が流量減少時遷移点として予め求められている。すなわち、気体の流量が減少しているときに気体の流量とその減少率とによって規定される点が流量減少時遷移点に達すると、乱流状態から層流状態への気体の状態の移行が生じる。そして、本発明では、流量計を通過する気体の流量が減少しているときに気体の流量とその減少率とによって規定される点が流量減少時遷移点に達したか否かに基づいて流量計を通過する気体の状態が乱流状態から層流状態に移行したか否かが判断される。これによれば、乱流状態から層流状態への気体の状態の移行を簡便に且つ確実に把握することができるという効果が得られる。
本願の4番目の発明では、上記1番目の発明の流量検出装置において、気体の流量の変化率が零または略零であるときに前記流量計から出力される出力値とその時の気体の流量との関係が予め求められている。そして、前記流量計から出力される出力値または前記補正された出力値に基づいて前記予め求められている関係から気体の流量が算出される。
本発明によれば、以下の効果が得られる。すなわち、本発明では、気体の流量の変化率が零または略零であるとき、すなわち、気体の流れの方向が定常的に1つの方向またはそれとは逆の方向にあって且つ気体の状態が定常的に層流状態または乱流状態にあるときに流量計から出力される出力値とその時の気体の流量との関係が予め求められている。そして、流量計からの出力値が補正されるべきであると判断されなかったときには、流量計からの出力値をそのまま用いて上記予め求められている関係から気体の流量が算出される。一方、流量計からの出力値が補正されるべきであると判断されたときには、流量計からの出力値が補正され、この補正された出力値を用いて上記予め求められている関係から気体の流量が算出される。すなわち、流量計からの出力値を補正するべきである場合にも、流量計からの出力値を補正する必要がない場合に用いられる上記予め求められている関係を利用して気体の流量を算出することができる。
このため、気体の流量の変化が比較的大きいとき或いは気体の流れの方向が逆転したときに流量計から出力される出力値とその時の気体の流量との関係を新たに求めることなく、気体の流量の変化が零または略零であるときに流量計から出力される出力値とその時の気体の流量との関係を利用することができる。したがって、本発明によれば、気体の流量の変化が零または略零であるときに流量計から出力される出力値とその時の気体の流量との関係を用いて気体の流量を算出する流量検出装置の構成を大きく変更することなく、気体の状態が層流状態から乱流状態に移行したとき或いは気体の状態が乱流状態から層流状態に移行したとき或いは気体の流れの方向が逆転したときに気体の流量を正確に算出することができるという効果が得られる。
本願の5番目の発明では、上記1または4番目の発明の流量検出装置において、前記流量計から出力される出力値が補正されるときの該出力値に対する補正の度合が前記流量計を通過する気体の流量と該流量の変化率との少なくとも1つに応じて決定される。
本発明によれば、以下の効果が得られる。すなわち、気体の状態が層流状態から乱流状態に移行したときの流量計の出力特性(および、気体の状態が層流状態から乱流状態に移行してから一定期間が経過するまでの流量計の出力特性)が気体の状態が定常的に乱流状態にあるときの流量計の出力特性とは異なる程度、ならびに、気体の状態が乱流状態から層流状態に移行したときの流量計の出力特性(および、気体の状態が乱流状態から層流状態に移行してから一定期間が経過するまでの流量計の出力特性)が気体の状態が定常的に層流状態にあるときの流量計の出力特性とは異なる程度、ならびに、気体の流れの方向が逆転したときの流量計の出力特性(および、気体の流れの方向が逆転してから一定期間が経過するまでの流量計の出力特性)が気体の流れの方向が定常的に1つの方向にあるときの流量計の出力特性とは異なる程度が気体の流量とその変化率とによって決まることが本願の発明者の研究により判明した。
ここで、本発明では、流量計からの出力値が補正されるときの出力値に対する補正の度合が流量計を通過する気体の流量とその変化率との少なくとも1つに応じて決定される。したがって、本発明によれば、気体の状態が層流状態から乱流状態に移行したとき或いは気体の状態が乱流状態から層流状態に移行したとき或いは気体の流れの方向が逆転したときに、流量検出装置によって気体の流量がより正確に算出されるという効果が得られる。
本願の6番目の発明では、上記1、4、および、5番目の発明のいずれか1つの流量検出装置において、前記流量計から出力される出力値が補正される前に該出力値の一次遅れが除去される。そして、前記流量計から出力される出力値が補正されるべきであると判断されたときには前記一次遅れが除去された出力値が補正され、該補正された出力値に基づいて気体の流量が算出される。
本願の7番目の発明では、上記1、および、4〜6番目の発明のいずれか1つの流量検出装置において、前記流量計がシリコンチップ型の流量計である。
本発明によれば、以下の効果が得られる。すなわち、一般的に、シリコンチップ型の流量計は、その大きさが小さく且つその消費電力量が少ないという有利な特性を有する。さらに、シリコンチップ型の流量計は、検出するべき気体の流量の変化に対する出力応答性が高いという有利な特性をも有する。
ここで、内燃機関の燃焼室に吸入される空気にはいわゆる脈動が生じていることから、同空気の流れの方向が順流方向(すなわち、燃焼室に向かう方向)と逆流方向(すなわち、順流方向とは逆の方向)との間で極めて短い周期で変化する。すなわち、燃焼室に吸入される空気に脈動が生じている場合、順流方向に流れている空気の流量が減少して零となり、その直後に同空気の流れの方向が逆流方向に変化し、その後、逆流方向に流れる空気の流量がいったん増大した後に減少して零になり、その後、同空気の流れの方向が順流方向に変化し、その後、順流方向に流れる空気の流量がいったん増大した後に減少して零になり、その直後に同空気の流れの方向が再び逆流方向に変化するといった空気の流量の変化と空気の流れの方向の変化とが極めて短い周期で繰り返される。したがって、内燃機関の燃料室に吸入される空気の流量を正確に検出しようとする場合、空気の流量の変化に対する出力応答性が高く且つ空気の状態がその流量(および、その流れの方向)が大きく変化するいわゆる過渡状態にあるときにも同空気の流量を正確に検出することができる流量検出装置が必要となる。ここで、本発明の流量検出装置の流量計が気体の流量の変化に対する出力応答性が高いシリコンチップ型の流量計であって且つ本発明の流量検出装置が気体の状態がその流量(および、その流れの方向)が大きく変化する過渡状態にあるときも適宜補正された流量計からの出力値に基づいて気体の流量を正確に検出することができることから、本発明の流量検出装置が内燃機関の燃焼室に吸入される空気の流量を検出するために利用される場合、燃焼室に吸入される空気の流量を正確に検出することができるという効果が得られる。
本願の8番目の発明では、上記1、および、4〜7番目の発明のいずれか1つの流量検出装置において、前記流量計が電圧が印加されることによって発熱する発熱抵抗体を有し、前記流量計を通過する気体が前記発熱抵抗体から奪う熱量に応じた電圧が前記発熱抵抗体に印加されるようになっており、前記流量計が該流量計を通過する気体によって前記発熱抵抗素子から奪われる熱量に応じた出力値を出力する。
本発明によれば、以下の効果が得られる。すなわち、層流状態にある気体が発熱抵抗素子から奪う熱量と乱流状態にある気体が発熱抵抗素子から奪う熱量とは互いに異なる。したがって、流量計がそこを通過する気体によって発熱抵抗素子から奪われる熱量に応じた出力値を出力する流量計である場合、流量計の出力特性は、層流状態から乱流状態への検出するべき気体の状態の移行および乱流状態から層流状態への検出するべき気体の状態の移行の影響を比較的大きく受けることになる。
しかしながら、本発明では、検出するべき気体の状態が層流状態から乱流状態に移行したとき或いは検出するべき気体の状態が乱流状態から層流状態に移行したときに流量計からの出力値が適宜補正され、この補正された出力値に基づいて気体の流量が算出される。したがって、本発明によれば、流量計を通過する気体によって発熱抵抗素子から奪われる熱量に応じた出力値を出力する流量計を備えた流量検出装置によっても気体の流量が正確に検出されるという効果が得られる。
本発明の実施形態の流量検出装置のエアフローメータを示した図である。 本発明の実施形態のエアフローメータの発熱抵抗素子を詳細に示した図である。 本発明の実施形態の流量検出装置が適用される内燃機関を示した図である。 (A)は素子温度差に基づいて順流時AFM通過空気流量を取得するために用いられるマップを示した図であり、(B)は素子温度差に基づいて逆流時AFM通過空気流量を取得するために用いられるマップを示した図である。 (A)はAFM通過空気流量とその増大率とに基づいて順流増大時補正係数を取得するために用いられるマップを示した図であり、(B)はAFM通過空気流量とその減少率とに基づいて順流減少時補正係数を取得するために用いられるマップを示した図であり、(C)はAFM通過空気流量とその増大率とに基づいて逆流・順流増大時補正係数を取得するために用いられるマップを示した図である。 (A)はAFM通過空気流量とその増大率とに基づいて逆流増大時補正係数を取得するために用いられるマップを示した図であり、(B)はAFM通過空気流量とその減少率とに基づいて逆流減少時補正係数を取得するために用いられるマップを示した図であり、(C)はAFM通過空気流量とその増大率とに基づいて順流・逆流増大時補正係数を取得するために用いられるマップを示した図である。 本発明の実施形態に従ったAFM通過空気流量の算出を実行するルーチンの一例の一部を示した図である。 本発明の実施形態に従ったAFM通過空気流量の算出を実行するルーチンの一例の一部を示した図である。 本発明の実施形態に従ったAFM通過空気流量の算出を実行するルーチンの一例の一部を示した図である。 本発明の実施形態に従ったAFM通過空気流量の算出を実行するルーチンの一例の一部を示した図である。
以下、図面を参照して本発明の流量検出装置の実施形態について説明する。本実施形態の流量検出装置は、図1に示されているエアフローメータ11を有する。このエアフローメータ11は、例えば、図3に示されている内燃機関20の吸気通路30に配置される。そして、流量検出装置は、吸気通路30の吸入口31から吸気通路30に取り込まれてエアフローメータ11を通過する空気の流量(すなわち、内燃機関20の燃焼室21に吸入される空気の流量)に応じた出力値を出力する。また、エアフローメータ11は内燃機関20の電子制御装置60に接続されており、エアフローメータ11から出力される出力値は電子制御装置60に入力される。
なお、図3において、22は燃料噴射弁、23は燃料噴射弁22に燃料を供給する燃料通路、24は燃料噴射弁22に燃料を供給する燃料ポンプ、25は内燃機関20のクランクシャフト(図示せず)の回転位相を検出するクランクポジションセンサ、32は吸気通路30を流れる空気を冷却するインタークーラ、33は燃焼室21に吸入される空気の量を制御するスロットル弁、34はエアクリーナ、40は排気通路、APはアクセルペダル、75はアクセルペダルAPの踏込量を検出するアクセル踏込量センサ、50は排気再循環装置をそれぞれ示している。
排気再循環装置(以下この装置を「EGR装置」という)50は、排気通路40から吸気通路30まで延びる通路(以下この通路を「EGR通路」という)51を有する。EGR通路51には、そこを流れる排気ガスの流量を制御する制御弁(以下この制御弁を「EGR制御弁」という)52が配置されている。また、EGR通路51には、そこを流れる排気ガスを冷却するためのクーラ53が配置されている。
また、電子制御装置60は、マイクロプロセッサ(CPU)61と、リードオンリメモリ(ROM)62と、ランダムアクセスメモリ(RAM)63と、バックアップRAM(Back up RAM)64と、インターフェース65とを有する。インターフェース65には、燃料噴射弁22、燃料ポンプ24、スロットル弁33、および、EGR制御弁52が接続されており、これらの動作を制御する制御信号がインターフェース65を介して電子制御装置60から与えられる。また、インターフェース65には、エアフローメータ11の他に、クランクポジションセンサ25、および、アクセル踏込量センサ75も接続されており、クランクポジションセンサ25によって検出されたクランクシャフトの回転位相に対応する信号、および、アクセル踏込量センサ75によって検出されたアクセルペダルAPの踏込量に対応する信号がインターフェース65に入力される。
また、以下の説明において、「上流側」は「燃焼室21に向かって吸気通路30内を流れる空気の流れの方向に関する上流側」を意味し、「下流側」は「燃焼室21に向かって吸気通路30内を流れる空気の流れの方向に関する下流側」を意味する。また、以下の説明において、「AFM通過空気」は「エアフローメータを通過する空気」を意味し、「AFM通過空気流量」は「エアフローメータを通過する空気の流量」を意味し、「機関運転中」は「内燃機関20の運転中」を意味する。
エアフローメータ11は、いわゆるシリコンチップ型のエアフローメータである。そして、このエアフローメータ11は、2つの温度検出素子12U、12Dと1つの発熱抵抗素子13とを有する。各温度検出素子12U、12Dは、それぞれの周りの温度に応じた電圧を出力する。流量検出装置は、各温度検出素子12U、12Dから出力される電圧に基づいて各温度検出素子12U、12Dの周りの温度を算出することができる(すなわち、把握することができる)。したがって、別の云い方をすれば、各温度検出素子12U、12Dは、それぞれの周りの温度を検出する素子であるとも言える。一方、発熱抵抗素子13には、電圧が印加される。そして、発熱抵抗素子13に電圧が印加されると、発熱抵抗素子13は発熱する。また、温度検出素子12U、12Dおよび発熱抵抗素子13は、特定の方向に沿って一方の温度検出素子12U、他方の温度検出素子12D、発熱抵抗素子13の順に配置されている。そして、発熱抵抗素子13から遠い方の温度検出素子12Uは、発熱している発熱抵抗素子13の温度の影響を受けない程度に発熱抵抗素子13から離れた位置に配置されている。一方、発熱抵抗素子13に近い方の温度検出素子12Dは、発熱している発熱抵抗素子13の温度の影響を受ける程度に発熱抵抗素子13に近い位置に配置されている。また、温度検出素子12U、12Dおよび発熱抵抗素子13は、2つの絶縁保護膜14U、14Lに挟まれる形でこれら絶縁保護膜14U、14Lの間に配置されている。また、絶縁保護膜14U、14Lに挟まれた温度検出素子12U、12Dおよび発熱抵抗素子13は、シリコン基板15上に配置されている。すなわち、別の表現をすれば、シリコン基板15上に一層の絶縁保護膜14Lが形成され、この絶縁保護膜14L上に2つの温度検出素子12U、12Dおよび1つの発熱抵抗素子13が配置され、これら温度検出素子12U、12Dおよび発熱抵抗素子13を覆うようにもう一層の絶縁保護膜14Uが形成されている。
なお、図2に示されているように、発熱抵抗素子13は、温度検出素子12U、12Dおよび発熱抵抗素子13が並んでいる方向(すなわち、上記特定の方向)に対して垂直な方向に延在する複数の部分が形成されるように複数回折り曲げられた連続した部分によって構成されている。また、発熱抵抗素子13は、当該発熱抵抗素子13の一方の端部から他方の端部に熱が即座には伝達しない程度の長さを有している。
また、発熱抵抗素子13から遠い方の温度検出素子12Uと発熱抵抗素子13とは、ブリッジ回路によって互いに接続されている。そして、これによって、発熱抵抗素子13から遠い方の温度検出素子12U周りの温度(すなわち、発熱抵抗素子13から遠い方の温度検出素子12Uから出力される電圧に基づいて把握される温度)に対して発熱抵抗素子13の温度が一定温度だけ高い温度になるように発熱抵抗素子13に電圧が印加されるようになっている。
ところで、流量検出装置が図3に示されている内燃機関に適用される場合、エアフローメータ11は、AFM通過空気が順に発熱抵抗素子13から遠い方の温度検出素子12U、発熱抵抗素子13に近い方の温度検出素子12D、発熱抵抗素子13を通過するように吸気通路30に配置される。そして、上述したように、発熱抵抗素子13から遠い方の温度検出素子12U(以下この温度検出素子を「上流側温度検出素子」という)は、発熱している発熱抵抗素子13の温度の影響を受けない程度に発熱抵抗素子13から離れた位置に配置されている。このため、上流側温度検出素子12Uは、そこに到来する空気の温度に応じた電圧を出力することになる。したがって、流量検出装置は、上流側温度検出素子12Uから出力される電圧に基づいて上流側温度検出素子12Uに到来する空気の温度を算出することができる(すなわち、把握することができる)。一方、上述したように、発熱抵抗素子13に近い方の温度検出素子12D(以下この温度検出素子を「下流側温度検出素子」という)は、発熱する発熱抵抗素子13の温度の影響を受ける程度に発熱抵抗素子13に近い位置に配置されている。このため、下流側温度検出素子12Dは、発熱抵抗素子13の温度に応じた電圧を出力することになる。したがって、流量検出装置は、下流側温度検出素子12Dから出力される電圧に基づいて発熱抵抗素子13の温度を算出することができる(すなわち、把握することができる)。
また、上述したように、上流側温度検出素子12Uと発熱抵抗素子13とは、ブリッジ回路によって互いに接続されている。そして、これによって、上流側温度検出素子12U周りの温度(すなわち、上流側温度検出素子12Uから出力される電圧に基づいて把握される温度)に対して発熱抵抗素子13の温度が一定温度だけ高い温度になるように発熱抵抗素子13に電圧が印加されるようになっている。したがって、エアフローメータ11が吸気通路30に配置されている場合、上流側温度検出素子12Uに到来する空気の温度に対して発熱抵抗素子13の温度が一定温度だけ高い温度(以下この温度を「基準温度」という)になるように発熱抵抗素子13に電圧が印加されることになる。
次に、エアフローメータ11が図3に示されている内燃機関20の吸気通路30に配置されたときの発熱抵抗素子13の温度の挙動について説明する。
エアフローメータ11が吸気通路30に配置され、該エアフローメータ11を空気が吸入口31から燃焼室21に向かって通過するとき(すなわち、エアフローメータ11を空気が順流方向に通過するとき)、AFM通過空気によって発熱抵抗素子13から熱が奪われる。このとき、AFM通過空気によって発熱抵抗素子13の上流側部分(すなわち、エアフローメータ11を空気が順流方向に通過しているときの空気の流れに沿って見たときに上流側に位置する発熱抵抗素子13の部分13U)から奪われる熱量は、AFM通過空気によって発熱抵抗素子13の下流側部分(すなわち、エアフローメータ11を空気が順流方向に通過しているときの空気の流れに沿って見たときに下流側に位置する発熱抵抗素子13の部分13D)から奪われる熱量よりも大きい。すなわち、AFM通過空気が順流方向に発熱抵抗素子13を通過するとき、発熱抵抗素子の下流側部分13Dに到来するAFM通過空気は、発熱抵抗素子の上流側部分13Uから熱を奪ってその温度が上昇している空気である。したがって、発熱抵抗素子の上流側部分13Uに到来するAFM通過空気の温度よりも発熱抵抗素子の下流側部分13Dに到来するAFM通過空気の温度の方が高い。このため、AFM通過空気が順流方向にエアフローメータ11を通過しているとき、AFM通過空気によって発熱抵抗素子の上流側部分13Uから奪われる熱量は、AFM通過空気によって発熱抵抗素子の下流側部分13Dから奪われる熱量よりも大きいのである。したがって、AFM通過空気が順流方向にエアフローメータ11を通過しているときには、発熱抵抗素子の上流側部分13Uの温度が発熱抵抗素子の下流側部分13Dの温度よりも低くなる。そして、発熱抵抗素子13の平均温度が上記基準温度よりも低い限り、発熱抵抗素子13に印加される電圧が高くなり、発熱抵抗素子13の平均温度が基準温度よりも高くなれば、発熱抵抗素子13に印加される電圧が低くなる。したがって、このように発熱抵抗素子13に印加される電圧が制御されることによって、空気がエアフローメータ11を順流方向に通過しているとき、発熱抵抗素子の上流側部分13Uの温度は上記基準温度よりも低くなり且つ発熱抵抗素子の下流側部分13Dの温度は上記基準温度よりも高くなる。
そして、AFM通過空気流量が多いほど、AFM通過空気によって発熱抵抗素子の上流側部分13Uから奪われる熱量が大きくなる。したがって、基準温度に対する発熱抵抗素子の上流側部分13Uの温度の差(以下この差を「素子温度差」という)は、エアフローメータ11を順流方向に通過するAFM通過空気の流量が多いほど大きくなる。
一方、空気がエアフローメータ11を順流方向とは逆方向(以下この方向を「逆流方向」という)に通過するときにも、AFM通過空気によって発熱抵抗素子13から熱が奪われる。このとき、AFM通過空気によって発熱抵抗素子の上流側部分13Uから奪われる熱量は、AFM通過空気によって発熱抵抗素子の下流側部分13Dから奪われる熱量よりも小さい。すなわち、AFM通過空気が逆流方向に発熱抵抗素子13を通過するとき、発熱抵抗素子の上流側部分13Uに到来するAFM通過空気は、発熱抵抗素子の下流側部分13Dから熱を奪ってその温度が上昇している空気である。したがって、発熱抵抗素子の下流側部分13Dに到来するAFM通過空気の温度よりも発熱抵抗素子の上流側部分13Uに到来するAFM通過空気の温度の方が高い。このため、AFM通過空気が逆流方向にエアフローメータ11を通過しているとき、AFM通過空気が発熱抵抗素子の上流側部分13Uから奪う熱量は、AFM通過空気が発熱抵抗素子の下流側部分13Dから奪う熱量よりも小さいのである。したがって、AFM通過空気が逆流方向にエアフローメータ11を通過しているときには、発熱抵抗素子の上流側部分13Uの温度が発熱抵抗素子の下流側部分13Dの温度よりも高くなる。そして、発熱抵抗素子13の平均温度が上記基準温度よりも低い限り、発熱抵抗素子13に印加される電圧が高くなり、発熱抵抗素子13の平均温度が基準温度よりも高くなれば、発熱抵抗素子13に印加される電圧が低くなる。したがって、このように発熱抵抗素子13に印加される電圧が制御されることによって、空気がエアフローメータ11を逆流方向に通過しているとき、発熱抵抗素子の上流側部分13Uの温度は上記基準温度よりも高く且つ発熱抵抗素子の下流側部分13Dの温度は上記基準温度よりも低くなる。
そして、AFM通過空気流量が多いほど、AFM通過空気によって発熱抵抗素子の下流側部分13Dから奪われる熱量が大きくなる。そして、AFM通過空気によって発熱抵抗素子の下流側部分13Dから奪われる熱量が大きくなる分だけ、発熱抵抗素子13に印加される電圧が高くなる。そして、発熱抵抗素子13に印加される電圧が高くなる分だけ、発熱抵抗素子の上流側部分13Uの温度が高くなる。したがって、基準温度に対する発熱抵抗素子の上流側部分13Uの温度の差(すなわち、素子温度差)は、エアフローメータ11を逆流方向に通過するAFM通過空気の流量が多いほど大きくなる。
次に、空気がエアフローメータ11を順流方向に通過しているときのAFM通過空気流量の算出について説明する。
上述したように、下流側温度検出素子12Dは、発熱抵抗素子13よりも上流側の位置に該発熱抵抗素子13に近い位置に配置されている。このため、下流側温度検出素子12Dは、発熱抵抗素子の上流側部分13Uの温度に応じた電圧を出力する。また、上述したように、素子温度差は、エアフローメータ11を順流方向に通過するAFM通過空気の流量が多いほど大きくなる。したがって、空気がエアフローメータ11を順流方向に通過しているときに下流側温度検出素子12Dから出力される電圧に基づいて把握される温度と基準温度との差(すなわち、素子温度差)に基づいてAFM通過空気流量を算出することができる(すなわち、検出することができる)。
そこで、本実施形態では、空気がエアフローメータ11を順流方向に通過しているときの素子温度差に対するAFM通過空気流量が予め実験等によって求められ、この求められたAFM通過空気流量が図4(A)に示されているように順流時AFM通過空気流量FRFとして素子温度差ΔTの関数のマップの形で電子制御装置60に記憶されている。そして、機関運転中、空気がエアフローメータ11を順流方向に通過していると判断されるときには、素子温度差ΔTに基づいて上記図4(A)のマップからAFM通過空気流量FRFが取得される(すなわち、AFM通過空気流量が算出される)。
なお、空気がエアフローメータ11を順流方向に通過しているときには、発熱抵抗素子の上流側部分13Uの温度が上記基準温度よりも低いのであるから、素子温度差が正の値になる。したがって、素子温度差が正の値であることをもって空気がエアフローメータ11を順流方向に通過していることを把握することができる。そこで、本実施形態では、素子温度差ΔTが正の値であるときには、図4(A)のマップからAFM通過空気流量が算出される。
また、図4(A)のマップから算出されるAFM通過空気流量FRFは、素子温度差ΔTが大きいほど(すなわち、素子温度差ΔTの絶対値が大きいほど)多い。また、図4(A)のマップでは、素子温度差ΔTが或る値ΔTthよりも小さいときの素子温度差ΔTに対するAFM通過空気流量FRFの変化率よりも、素子温度差ΔTが上記或る値ΔTthよりも大きいときの素子温度差ΔTに対するAFM通過空気流量FRFの変化率の方が小さくなっている。
次に、空気がエアフローメータ11を逆流方向に通過しているときのAFM通過空気流量の算出について説明する。
上述したように、下流側温度検出素子12Dは、発熱抵抗素子13よりも上流側の位置に該発熱抵抗素子13に近い位置に配置されている。このため、下流側温度検出素子12Dは、発熱抵抗素子の上流側部分13Uの温度に応じた電圧を出力する。また、上述したように、素子温度差は、エアフローメータ11を逆流方向に通過するAFM通過空気の流量が多いほど大きくなる。したがって、空気がエアフローメータ11を逆流方向に通過しているときに下流側温度検出素子12Dから出力される電圧に基づいて把握される温度と基準温度との差(すなわち、素子温度差)に基づいてAFM通過空気流量を算出することができる(すなわち、検出することができる)。このとき、素子温度差が大きいほど算出されるAFM通過空気流量が多い。
そこで、本実施形態では、空気がエアフローメータ11を逆流方向に通過しているときの素子温度差に対するAFM通過空気流量が予め実験等によって求められ、この求められたAFM通過空気流量が図4(B)に示されているように逆流時AFM通過空気流量FRBとして素子温度差ΔTの関数のマップの形で電子制御装置60に記憶されている。そして、機関運転中、空気がエアフローメータ11を逆流方向に通過していると判断されるときには、素子温度差ΔTに基づいて上記図4(B)のマップからAFM通過空気流量FRBが取得される(すなわち、AFM通過空気流量が算出される)。
なお、空気がエアフローメータ11を逆流方向に通過しているときには、発熱抵抗素子の上流側部分13Uの温度が上記基準温度よりも高いのであるから、素子温度差は負の値になる。したがって、素子温度差が負の値であることをもって空気がエアフローメータ11を逆流方向に通過していることを把握することができる。そこで、本実施形態では、素子温度差ΔTが負の値であるときには、図4(B)のマップからAFM通過空気流量が算出される。
また、図4(B)のマップから算出されるAFM通過空気流量FRBは、素子温度差ΔTが小さいほど(すなわち、素子温度差ΔTの絶対値が大きいほど)多い。また、図4(B)のマップでは、素子温度差ΔTが或る値ΔTthよりも大きいときの素子温度差ΔTに対するAFM通過空気流量FRBの変化率よりも、素子温度差ΔTが上記或る値ΔTthよりも小さいときの素子温度差ΔTに対するAFM通過空気流量FRBの変化率の方が小さくなっている。
ところで、エアフローメータ11を通過する空気の流量(すなわち、吸気通路30内を流れる空気の流量)が比較的少ないとき、空気はエアフローメータ11を層流の状態で通過する。一方、エアフローメータ11を通過する空気の流量が比較的多いとき、空気はエアフローメータ11を乱流の状態で通過する。そして、空気が層流の状態でエアフローメータ11を通過するときの発熱抵抗素子13の温度の挙動と空気が乱流の状態でエアフローメータ11を通過するときの発熱抵抗素子13の温度の挙動とは互いに異なる。
次に、空気が層流状態でエアフローメータ11を通過するときの発熱抵抗素子13の温度の挙動と空気が乱流状態でエアフローメータ11を通過するときの発熱抵抗素子13の温度の挙動とについて説明する。なお、以下の説明では、発熱抵抗素子の上流側部分13Uの温度が低いほど下流側温度検出素子12Dから出力される電圧が高いことを前提としている。また、以下の説明において、「AFM出力値」は「下流側温度検出素子12Dから出力される電圧の値」であって、下流側温度検出素子12Dから出力される電圧の値に比例する値である。
空気がエアフローメータ11を順流方向に通過するときに、同空気が層流状態にある場合にAFM通過空気が発熱抵抗素子13から奪う熱量は、同空気が乱流状態にある場合にAFM通過空気が発熱抵抗素子13から奪う熱量よりも小さい。このため、空気がエアフローメータ11を順流方向に通過するときには、同空気が層流状態であっても乱流状態であっても、発熱抵抗素子の上流側部分13Uの温度は基準温度よりも低くなるが、空気が層流状態にある場合の発熱抵抗素子の上流側部分13Uの温度よりも、空気が乱流状態にある場合の発熱抵抗素子の上流側部分13Uの温度の方が低くなる。
同様に、空気がエアフローメータ11を逆流方向に通過するときに、同空気が層流状態にある場合にAFM通過空気が発熱抵抗素子13から奪う熱量は、同空気が乱流状態にある場合にAFM通過空気が発熱抵抗素子13から奪う熱量よりも小さい。このため、空気がエアフローメータ11を逆流方向に通過するときには、同空気が層流状態であっても乱流状態であっても、発熱抵抗素子の下流側部分13Dの温度は基準温度よりも低くなるが、空気が層流状態にある場合の発熱抵抗素子の下流側部分13Dの温度よりも、空気が乱流状態にある場合の発熱抵抗素子の下流側部分13Dの温度の方が低くなる。その結果、空気がエアフローメータ11を逆流方向に通過するときには、同空気が層流状態であっても乱流状態であっても、発熱抵抗素子の上流側部分13Uの温度は基準温度よりも高くなるが、空気が層流状態にある場合の発熱抵抗素子の上流側部分13Uの温度よりも、空気が乱流状態にある場合の発熱抵抗素子の上流側部分13Uの温度の方が高くなる。
このように、空気が層流状態でエアフローメータ11を通過するときの発熱抵抗素子13の温度の挙動と空気が乱流状態でエアフローメータ11を通過するときの発熱抵抗素子13の温度の挙動とは互いに異なるのである。
ところで、上述したように、空気がエアフローメータ11を順流方向に通過するときには、空気が層流状態にある場合の発熱抵抗素子の上流側部分13Uの温度よりも、空気が乱流状態にある場合の発熱抵抗素子の上流側部分13Uの温度の方が低くなる。このため、発熱抵抗素子の上流側部分13Uの温度が同じ温度であったとしても、AFM通過空気が層流状態にある場合よりも、AFM通過空気が乱流状態にある場合の方がAFM通過空気流量が少ないことになる。また、空気がエアフローメータ11を逆流方向に通過するときには、空気が層流状態にある場合の発熱抵抗素子の上流側部分13Uの温度よりも、空気が乱流状態にある場合の発熱抵抗素子の上流側部分13Uの温度の方が高くなる。このため、発熱抵抗素子の上流側部分13Uの温度が同じ温度であったとしても、AFM通過空気が層流状態にある場合よりも、AFM通過空気が乱流状態にある場合のほうがAFM通過空気流量が少ないことになる。
したがって、発熱抵抗素子の上流側部分13Uの温度に基づいて正確なAFM通過空気流量を算出するためには、AFM通過空気が層流状態にあるのか或いはAFM通過空気流量が乱流状態にあるのかを考慮すべきである。
これに関し、本実施形態では、空気がエアフローメータ11を順流方向に通過しているときには、その時の素子温度差ΔTに基づいて図4(A)のマップからAFM通過空気流量が算出される。ここで、図4(A)のマップは、空気にエアフローメータ11を順流方向に通過させつつAFM通過空気流量を様々な流量に変えたときの素子温度差とAFM通過空気流量との関係を実験等によって求めてこの求められた関係に基づいて作成される。すなわち、実験等においてAFM通過空気流量を特定の流量にして空気にエアフローメータ11を順流方向に通過させたときにAFM通過空気が層流状態にあれば、AFM通過空気が層流状態にあることを反映した素子温度差とAFM通過空気流量との関係が求まり、実験等においてAFM通過空気流量を特定の流量にして空気にエアフローメータ11を順流方向に通過させたときにAFM通過空気が乱流状態にあれば、AFM通過空気が乱流状態にあることを反映した素子温度差とAFM通過空気流量との関係が求まる。このため、図4(A)のマップは、AFM通過空気が層流状態にあるのか或いはAFM通過空気が乱流状態にあるのかを反映した素子温度差とAFM通過空気流量との関係を規定していることになる。そして、このことから、図4(A)のマップでは、素子温度差ΔTが或る値ΔTthよりも小さいときの素子温度差ΔTに対するAFM通過空気流量FRFの変化率よりも、素子温度差ΔTが上記或る値ΔTthよりも大きいときの素子温度差ΔTに対するAFM通過空気流量FRFの変化率の方が小さくなっているのである。したがって、空気がエアフローメータ11を順流方向に通過しているときの素子温度差ΔTに基づいて図4(A)のマップから算出されるAFM通過空気流量は、AFM通過空気が層流状態にあるのか或いはAFM通過空気が乱流状態にあるのかが反映された流量である。
なお、空気がエアフローメータ11を順流方向に通過している場合において、AFM通過空気流量が図4(A)の値ΔTthよりも小さい素子温度差ΔTに対応するAFM通過空気流量であるときには、空気が層流状態でエアフローメータ11を通過しており、AFM通過空気流量が図4(A)の値ΔTth以上の素子温度差ΔTに対応するAFM通過空気流量であるときには、空気が乱流状態でエアフローメータ11を通過している。すなわち、図4(A)の値ΔTthに対応するAFM通過空気流量は、AFM通過空気が層流状態にあるときのAFM通過空気流量とAFM通過空気が乱流状態にあるときのAFM通過空気流量との境界をなす流量である。そこで、以下の説明では、素子温度差ΔTが図4(A)の値ΔTthであるときのAFM通過空気流量を「定常時遷移流量」という。
また、本実施形態では、空気がエアフローメータ11を逆流方向に通過しているときには、その時の素子温度差ΔTに基づいて図4(B)のマップからAFM通過空気流量が算出される。ここで、図4(B)のマップは、空気にエアフローメータ11を逆流方向に通過させつつAFM通過空気流量を様々な流量に変えたときの素子温度差とAFM通過空気流量との関係を実験等によって求めてこの求められた関係に基づいて作成される。すなわち、実験等においてAFM通過空気流量を特定の流量にして空気にエアフローメータ11を逆流方向に通過させたときにAFM通過空気が層流状態にあれば、AFM通過空気が層流状態にあることを反映した素子温度差とAFM通過空気流量との関係が求まり、実験等においてAFM通過空気流量を特定の流量にして空気にエアフローメータ11を逆流方向に通過させたときにAFM通過空気が乱流状態にあれば、AFM通過空気が乱流状態にあることを反映した素子温度差とAFM通過空気流量との関係が求まる。このため、図4(B)のマップは、AFM通過空気が層流状態にあるのか或いはAFM通過空気が乱流状態にあるのかを反映した素子温度差とAFM通過空気流量との関係を規定していることになる。そして、このことから、図4(B)のマップでは、素子温度差ΔTが或る値ΔTthよりも大きいときの素子温度差ΔTに対するAFM通過空気流量FRBの変化率よりも、素子温度差ΔTが上記或る値ΔTthよりも小さいときの素子温度差ΔTに対するAFM通過空気流量FRBの変化率の方が小さくなっているのである。したがって、空気がエアフローメータ11を逆流方向に通過しているときの素子温度差ΔTに基づいて図4(B)のマップから算出されるAFM通過空気流量は、AFM通過空気が層流状態にあるのか或いはAFM通過空気が乱流状態にあるのかが反映された流量である。
なお、空気がエアフローメータ11を逆流方向に通過している場合において、AFM通過空気流量が図4(B)の値ΔTthよりも大きい素子温度差ΔTに対応するAFM通過空気流量であるときには、空気が層流状態でエアフローメータ11を通過しており、AFM通過空気流量が図4(B)の値ΔTth以下の素子温度差ΔTに対応するAFM通過空気流量であるときには、空気が乱流状態でエアフローメータ11を通過している。すなわち、図4(B)の値ΔTthに対応するAFM通過空気流量も、AFM通過空気が層流状態にあるときのAFM通過空気流量とAFM通過空気が乱流状態にあるときのAFM通過空気流量との境界をなす流量である。そこで、以下の説明では、素子温度差ΔTが図4(B)の値ΔTthであるときのAFM通過空気流量を「定常時遷移流量」という。
ところで、AFM通過空気流量が一定または略一定であるとき(すなわち、AFM通過空気流量の変化率が零または略零であるとき)には、上述したように、AFM通過空気流量が定常時遷移流量よりも少なければ空気はエアフローメータ11を層流状態で通過し、AFM通過空気流量が定常時遷移流量以上であれば空気はエアフローメータ11を乱流状態で通過する。したがって、AFM通過空気流量が一定または略一定であるときには、素子温度差に基づいて図4(A)または図4(B)のマップから実際のAFM通過空気流量と一致するAFM通過空気流量が算出される。
ところが、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間において、上述したように素子温度差に基づいて図4(A)または図4(B)のマップからAFM通過空気流量が算出された場合、算出されたAFM通過空気流量の一部が実際のAFM通過空気流量と一致しないことがある。
より詳細には、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間にAFM通過空気の状態が層流状態から乱流状態に移行した場合、AFM通過空気の状態が層流状態から乱流状態に移行するまでの間、上述したように素子温度差に基づいて図4(A)または図4(B)のマップから算出されるAFM通過空気流量が実際のAFM通過空気流量と一致しない現象が発生することがある。
こうした現象は、以下のような理由から発生するものと考えられる。すなわち、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間にAFM通過空気の状態が層流状態から乱流状態に移行する場合、AFM通過空気の状態は層流状態から乱流状態に瞬時に完全に移行するのではなく、AFM通過空気の状態は層流状態から乱流状態に徐々に移行する。云い方を換えれば、AFM通過空気の状態が層流状態から乱流状態に移行する場合、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでには一定の時間がかかる。したがって、この場合、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでの間は、AFM通過空気の状態は層流状態と乱流状態とが混在している状態となっている。このため、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでの間において、AFM通過空気の状態が層流状態と乱流状態とのいずれか一方の状態にあることを前提に作成された(或いは、校正された)図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。このことが上述した現象が発生する理由の1つと考えられる。
また、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間にAFM通過空気の状態が層流状態から乱流状態に移行する場合、AFM通過空気流量が定常時遷移流量に達した時点でAFM通過空気の状態が層流状態から乱流状態に移行し始めるのではなく、AFM通過空気流量が定常時遷移流量に達した時点よりも後の時点でAFM通過空気の状態が層流状態から乱流状態に移行し始めることがあり得る。すなわち、AFM通過空気流量が定常時遷移流量に達した時点から一定の時間が経過するまでの間、AFM通過空気の状態が層流状態に維持されていることがあり得る。したがって、この場合、AFM通過空気の状態が層流状態から乱流状態に瞬時に完全に移行するとしても、少なくとも、AFM通過空気流量が定常時遷移流量に達してからAFM通過空気の状態が層流状態から乱流状態に移行し始めるまでの間において、AFM通過空気流量が定常時遷移流量を上回った後はAFM通過空気の状態が乱流状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。このことも上述した現象が発生する理由の1つと考えられる。
もちろん、この場合(すなわち、AFM通過空気流量が定常時遷移流量に達した時点よりも後の時点でAFM通過空気の状態が層流状態から乱流状態に移行し始める場合)にも、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでには一定の時間がかかる可能性が高い。したがって、この場合、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでの間において、AFM通過空気の状態が層流状態と乱流状態とのいずれか一方の状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。
また、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間にAFM通過空気の状態が層流状態から乱流状態に移行する場合、AFM通過空気流量が定常時遷移流量に達した時点でAFM通過空気の状態が層流状態から乱流状態に移行し始めるのではなく、AFM通過空気流量が定常時遷移流量に達する時点よりも前の時点でAFM通過空気の状態が層流状態から乱流状態に移行し始めることがあり得る。すなわち、AFM通過空気流量が定常時遷移流量に達する時点よりも前の時点からAFM通過空気流量が定常時遷移流量に達する時点までの間、AFM通過空気の状態が層流状態に維持されていないことがあり得る。したがって、この場合、AFM通過空気の状態が層流状態から乱流状態に瞬時に完全に移行するか或いはAFM通過空気の状態が層流状態から乱流状態に完全に移行するまでに一定の時間がかかるかに係わらず、少なくとも、AFM通過空気の状態が層流状態から乱流状態に移行し始めた時点からAFM通過空気流量が定常時遷移流量に達する時点までの間において、AFM通過空気流量が定常時遷移流量に達するまではAFM通過空気の状態が層流状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。このことも上述した現象が発生する理由の1つと考えられる。
そして、この場合(すなわち、AFM通過空気流量が定常時遷移流量に達する時点よりも前の時点でAFM通過空気の状態が層流状態から乱流状態に移行し始める場合)において、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでに一定の時間がかかり、AFM通過空気流量が定常時遷移流量に達した時点でAFM通過空気の状態が層流状態から乱流状態に完全に移行しない可能性もある。したがって、この場合、AFM通過空気流量が定常時遷移流量に達した時点からAFM通過空気の状態が層流状態から乱流状態に完全に移行するまでの間において、AFM通過空気流量が定常時遷移流量を上回った後はAFM通過空気の状態が乱流状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。
いずれにせよ、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間にAFM通過空気の状態が層流状態から乱流状態に移行する場合、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでに一定の時間がかかること、或いは、AFM通過空気流量が定常時遷移流量に達する前にAFM通過空気の状態が層流状態から乱流状態に移行し始めること、或いは、AFM通過空気流量が定常時遷移流量に達した後にAFM通過空気の状態が層流状態から乱流状態に移行し始めることに起因して、AFM通過空気流量が一定または略一定であるときのAFM通過空気流量の算出方法と同じ方法によってAFM通過空気流量が算出されると、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことがある。
ここで、算出されたAFM通過空気流量が実際のAFM通過空気流量よりも多い場合もあるし、算出されたAFM通過空気流量が実際のAFM通過空気流量よりも少ない場合もある。そして、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間におけるその時々のAFM通過空気流量とその増大率とが算出されたAFM通過空気流量が実際のAFM通過空気流量よりも多いか少ないかを決定する要因であることが本願の発明者の研究によって判明した。
そこで、本実施形態では、AFM通過空気にエアフローメータを継続的に順流方向に通過させた状態で、層流状態から乱流状態へのAFM通過空気の状態の移行が生じるようにAFM通過空気流量を定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで様々な増大率で増大させ、この時の素子温度差ΔTに基づいて図4(A)のマップから算出されるAFM通過空気流量と実際のAFM通過空気流量との関係から、図4(A)のマップからAFM通過空気流量を算出したとしても算出されたAFM通過空気流量が実際のAFM通過空気流量に一致するように素子温度差ΔTを補正するために素子温度差ΔTに乗算されるべき係数が予め実験等によって求められる。そして、斯くして求められた係数が図5(A)に示されているように順流増大時補正係数KFiとしてAFM通過空気流量FRとその増大率ΔFRfiとの関数のマップの形で電子制御装置60に記憶されている。
そして、実際にAFM通過空気流量を検出する場合において、AFM通過空気がエアフローメータを継続的に順流方向に通過しており且つAFM通過空気流量が増大しているときには、AFM通過空気流量FRとその増大率ΔFRfiとに基づいて図5(A)のマップから順流増大時補正係数KFiが取得される。そして、この取得された補正係数KFiが素子温度差ΔTに乗算されることによって素子温度差ΔTが補正される。そして、この補正された素子温度差ΔTに基づいて図4(A)のマップからAFM通過空気流量が算出される。
これによれば、AFM通過空気がエアフローメータを継続的に順流方向に通過しており且つAFM通過空気流量が増大している間にAFM通過空気の状態が層流状態から乱流状態に移行することがあったとしても、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。
なお、図5(A)のマップから取得される順流増大時補正係数KFiは、1よりも大きい値である場合もあるし、1よりも小さい値である場合もあるし、当然のことながら、1である場合もある。しかしながら、順流増大時補正係数KFiは、概して、AFM通過空気流量が多いほど小さい値となり、AFM通過空気流量の増大率が大きいほど小さい値となるものと推察される。また、順流増大時補正係数KFiは、概して、AFM通過空気流量が定常時遷移流量に達する直前までは1であり、AFM通過空気流量が定常時遷移流量に達する直前から1よりも小さい値となり、AFM通過空気流量が定常時遷移流量を一定の流量だけ上回るまで1よりも小さい値であり、AFM通過空気流量が定常時遷移流量を一定の流量以上に上回ると1になるものと推察される。また、AFM通過空気流量が定常時遷移流量を上回った後に順流増大時補正係数KFiが1よりも小さい値になっているAFM通過空気流量の範囲は、AFM通過空気流量の増大率に依存するものと推察され、具体的には、AFM通過空気流量の増大率が大きいほど広くなるものと推察される。
同様に、本実施形態では、AFM通過空気にエアフローメータを継続的に逆流方向に通過させた状態で、層流状態から乱流状態へのAFM通過空気の状態の移行が生じるようにAFM通過空気流量を定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで様々な増大率で増大させ、この時の素子温度差ΔTに基づいて図4(B)のマップから算出されるAFM通過空気流量と実際のAFM通過空気流量との関係から、図4(B)のマップからAFM通過空気流量を算出したとしても算出されたAFM通過空気流量が実際のAFM通過空気流量に一致するように素子温度差ΔTを補正するために素子温度差ΔTに乗算されるべき係数が予め実験等によって求められる。そして、斯くして求められた係数が図6(A)に示されているように逆流増大時補正係数KBiとしてAFM通過空気流量FRとその増大率ΔFRbiとの関数のマップの形で電子制御装置60に記憶されている。
そして、実際にAFM通過空気流量を検出する場合において、AFM通過空気がエアフローメータを継続的に逆流方向に通過しており且つAFM通過空気流量が増大しているときには、AFM通過空気流量FRとその増大率ΔFRbiとに基づいて図6(A)のマップから順流増大時補正係数KFiが取得される。そして、この取得された補正係数KFiが素子温度差ΔTに乗算されることによって素子温度差ΔTが補正される。そして、この補正された素子温度差ΔTに基づいて図4(B)のマップからAFM通過空気流量が算出される。
これによれば、AFM通過空気がエアフローメータを継続的に逆流方向に通過しており且つAFM通過空気流量が増大している間にAFM通過空気の状態が層流状態から乱流状態に移行することがあったとしても、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。
なお、図6(A)のマップから取得される逆流増大時補正係数KBiは、1よりも大きい値である場合もあるし、1よりも小さい値である場合もあるし、当然のことながら、1である場合もある。しかしながら、逆流増大時補正係数KBiは、概して、AFM通過空気流量が多いほど小さい値となり、AFM通過空気流量の増大率が大きいほど小さい値となるものと推察される。また、逆流増大時補正係数KBiは、概して、AFM通過空気流量が定常時遷移流量に達する直前までは1であり、AFM通過空気流量が定常時遷移流量に達する直前から1よりも小さい値となり、AFM通過空気流量が定常時遷移流量を一定の流量だけ上回るまで1よりも小さい値であり、AFM通過空気流量が定常時遷移流量を一定の流量以上に上回ると1になるものと推察される。また、AFM通過空気流量が定常時遷移流量を上回った後に逆流増大時補正係数KBiが1よりも小さい値になっているAFM通過空気流量の範囲は、AFM通過空気流量の増大率に依存するものと推察され、具体的には、AFM通過空気流量の増大率が大きいほど広くなるものと推察される。
ところで、内燃機関20において、燃焼室21に吸入されるべき空気が吸気通路30内を流れているとき、同空気にいわゆる脈動が生じることが知られている。そして、図3に示されているように、燃焼室21から排気通路40に排出された排気ガスがEGR装置50によって吸気通ルーチン温度差30に導入されるようになっている場合、吸気通路30内を流れる空気に生じる脈動が大きくなる。このように吸気通路30内を流れる空気に脈動が生じた場合、同空気の流れが順流方向と逆流方向との間で変化する。
ここで、AFM通過空気の流れの方向が順流方向から逆流方向に変化するときには、AFM通過空気の状態が層流状態で順流方向に流れている状態からAFM通過空気流量が零である状態を経て層流状態で逆流方向に流れている状態に変化することになる。このようにAFM通過空気の流れの方向が順流方向から逆流方向に変化するときには、AFM通過空気の流れの方向が逆転するのみならず、AFM通過空気流量が零という特異な流量を瞬間的に採ることになる。このため、AFM通過空気の流れの方向が順流方向から逆流方向に変化した直後にAFM通過空気流量が増大していることから、素子温度差ΔTに基づいて図4(B)のマップからAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量と一致しないし、図6(A)のマップから取得される逆流増大時補正係数KBiが乗算されることによって補正された素子温度差ΔTに基づいて図4(B)のマップからAFM通過空気流量が算出された場合であっても、算出されたAFM通過空気流量が実際のAFM通過空気流量と一致しない可能性がある。
そこで、本実施形態では、AFM通過空気の流れの方向が順流方向から逆流方向に変化した直後に様々な増大率でAFM通過空気流量が増大するようにAFM通過空気の流れの方向を順流方向から逆流方向に変化させ、この時の素子温度差ΔTに基づいて図4(B)のマップから算出されるAFM通過空気流量と実際のAFM通過空気流量との関係から、図4(B)のマップからAFM通過空気流量を算出したとしても算出されたAFM通過空気流量が実際のAFM通過空気流量に一致するように素子温度差ΔTを補正するために素子温度差ΔTに乗算されるべき係数が予め実験等によって求められる。そして、斯くして求められた係数が図6(C)に示されているように順流・逆流増大時補正係数KFBiとしてAFM通過空気流量FRとその増大率(この増大率はAFM通過空気の流れの方向が順流方向から逆流方向に変化した直後のAFM通過空気流量の増大率である)ΔFRbicとの関数のマップの形で電子制御装置60に記憶されている。
そして、実際にAFM通過空気流量を検出する場合において、AFM通過空気の流れの方向が順流方向から逆流方向に変化したときには、AFM通過空気流量FRとその増大率ΔFRbicとに基づいて図6(C)のマップから順流・逆流増大時補正係数KFBiが取得される。そして、この取得された補正係数KFBiが素子温度差ΔTに乗算されることによって素子温度差ΔTが補正される。そして、この補正された素子温度差ΔTに基づいて図4(B)のマップからAFM通過空気流量が算出される。
これによれば、AFM通過空気の流れの方向が順流方向から逆流方向に変化したときであっても、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。
同様に、AFM通過空気の流れの方向が逆流方向から順流方向に変化するときには、AFM通過空気の状態が層流状態で逆流方向に流れている状態からAFM通過空気流量が零である状態を経て層流状態で順流方向に流れている状態に変化することになる。このようにAFM通過空気の流れの方向が逆流方向から順流方向に変化するときには、AFM通過空気の流れの方向が逆転するのみならず、AFM通過空気流量が零という特異な流量を瞬間的に採ることになる。このため、AFM通過空気の流れの方向が逆流方向から順流方向に変化した直後にAFM通過空気流量が増大していることから、素子温度差ΔTに基づいて図4(A)のマップからAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量と一致しないし、図5(A)のマップから取得される順流増大時補正係数KFiが乗算されることによって補正された素子温度差ΔTに基づいて図4(A)のマップからAFM通過空気流量が算出された場合であっても、算出されたAFM通過空気流量が実際のAFM通過空気流量と一致しない可能性がある。
そこで、本実施形態では、AFM通過空気の流れの方向が逆流方向から順流方向に変化した直後に様々な増大率でAFM通過空気流量が増大するようにAFM通過空気の流れの方向を逆流方向から順流方向に変化させ、この時の素子温度差ΔTに基づいて図4(A)のマップから算出されるAFM通過空気流量と実際のAFM通過空気流量との関係から、図4(A)のマップからAFM通過空気流量を算出したとしても算出されたAFM通過空気流量が実際のAFM通過空気流量に一致するように素子温度差ΔTを補正するために素子温度差ΔTに乗算されるべき係数が予め実験等によって求められる。そして、斯くして求められた係数が図5(C)に示されているように逆流・順流増大時補正係数KBFiとしてAFM通過空気流量FRとその増大率(この増大率はAFM通過空気の流れの方向が逆流方向から順流方向に変化した直後のAFM通過空気流量の増大率である)ΔFRficとの関数のマップの形で電子制御装置60に記憶されている。
そして、実際にAFM通過空気流量を検出する場合において、AFM通過空気の流れの方向が逆流方向から順流方向に変化したときには、AFM通過空気流量FRとその増大率ΔFRficとに基づいて図5(C)のマップから逆流・順流増大時補正係数KBFiが取得される。そして、この取得された補正係数KBFiが素子温度差ΔTに乗算されることによって素子温度差ΔTが補正される。そして、この補正された素子温度差ΔTに基づいて図4(A)のマップからAFM通過空気流量が算出される。
これによれば、AFM通過空気の流れの方向が逆流方向から順流方向に変化したときであっても、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。
ところで、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間において、上述したように素子温度差に基づいて図4(A)または図4(B)のマップからAFM通過空気流量が算出された場合、算出されたAFM通過空気流量の一部が実際のAFM通過空気流量と一致しないことがある。
より詳細には、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間にAFM通過空気の状態が乱流状態から層流状態に移行した場合、AFM通過空気の状態が乱流状態から移行状態に移行するまでの間、上述したように素子温度差に基づいて図4(A)または図4(B)のマップから算出されるAFM通過空気流量が実際のAFM通過空気流量と一致しない現象が発生することがある。
こうした現象は、以下のような理由から発生するものと考えられる。すなわち、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間にAFM通過空気の状態が乱流状態から層流状態に移行する場合、AFM通過空気の状態は乱流状態から層流状態に瞬時に完全に移行するのではなく、AFM通過空気の状態は乱流状態から層流状態に徐々に移行する。云い方を換えれば、AFM通過空気の状態が乱流状態から層流状態に移行する場合、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでには一定の時間がかかる。したがって、この場合、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでの間は、AFM通過空気の状態は乱流状態と層流状態とが混在している状態となっている。このため、AFM通過空気の状態が乱流状態と層流状態とのいずれか一方の状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。このことが上述した現象が発生する理由の1つと考えられる。
また、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間にAFM通過空気の状態が乱流状態から層流状態に移行する場合、AFM通過空気流量が定常時遷移流量に達した時点でAFM通過空気の状態が乱流状態から層流状態に移行し始めるのではなく、AFM通過空気流量が定常時遷移流量に達した時点よりも後の時点でAFM通過空気の状態が乱流状態から層流状態に移行し始めることがあり得る。すなわち、AFM通過空気流量が定常時遷移流量に達した時点から一定の時間が経過するまので間、AFM通過空気の状態が乱流状態に維持されていることがあり得る。したがって、この場合、AFM通過空気の状態が乱流状態から層流状態に瞬時に完全に移行するとしても、少なくとも、AFM通過空気流量が定常時遷移流量に達してからAFM通過空気の状態が乱流状態から層流状態に移行し始めるまでの間において、AFM通過空気流量が定常時遷移流量を下回った後はAFM通過空気の状態が層流状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。このことも上述した現象が発生する理由の1つと考えられる。
もちろん、この場合(すなわち、AFM通過空気流量が定常時遷移流量に達した時点よりも後の時点でAFM通過空気の状態が乱流状態から層流状態に移行し始める場合)にも、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでには一定の時間がかかる可能性が高い。したがって、この場合、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでの間において、AFM通過空気の状態が乱流状態と層流状態とのいずれか一方の状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。
また、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間にAFM通過空気の状態が乱流状態から層流状態に移行する場合、AFM通過空気流量が定常時遷移流量に達した時点でAFM通過空気の状態が乱流状態から層流状態に移行し始めるのではなく、AFM通過空気流量が定常時遷移流量に達する時点よりも前の時点でAFM通過空気の状態が乱流状態から層流状態に移行し始めることがあり得る。すなわち、AFM通過空気流量が定常時遷移流量に達する時点よりも前の時点からAFM通過空気流量が定常時遷移流量に達する時点までの間、AFM通過空気の状態が乱流状態に維持されていないことがあり得る。したがって、この場合、AFM通過空気の状態が乱流状態から層流状態に瞬時に完全に移行するか或いはAFM通過空気の状態が乱流状態から層流状態に完全に移行するまでに一定の時間がかかるかに係わらず、少なくとも、AFM通過空気の状態が乱流状態から層流状態に移行し始めた時点からAFM通過空気流量が定常時遷移流量に達する時点までの間において、AFM通過空気流量が定常時遷移流量に達するまではAFM通過空気の状態が乱流状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。このことも上述した現象が発生する理由の1つと考えられる。
そして、この場合(すなわち、AFM通過空気流量が定常時遷移流量に達する時点よりも前の時点でAFM通過空気の状態が乱流状態から層流状態に移行し始める場合)において、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでに一定の時間がかかり、AFM通過空気流量が定常時遷移流量に達した時点でAFM通過空気の状態が乱流状態から層流状態に完全に移行しない可能性もある。したがって、この場合、AFM通過空気流量が定常時遷移流量に達した時点からAFM通過空気の状態が乱流状態から層流状態に完全に移行するまでの間において、AFM通過空気流量が定常時遷移流量を下回った後はAFM通過空気の状態が層流状態にあることを前提に作成された図4(A)または図4(B)のマップから素子温度差に基づいてAFM通過空気流量が算出された場合、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことになる。
いずれにせよ、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間にAFM通過空気の状態が乱流状態から層流状態に移行する場合、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでに一定の時間がかかること、或いは、AFM通過空気流量が定常時遷移流量に達する前にAFM通過空気の状態が乱流状態から層流状態に移行し始めること、或いは、AFM通過空気流量が定常時遷移流量に達した後にAFM通過空気の状態が乱流状態から層流状態に移行し始めることに起因して、AFM通過空気流量が一定または略一定であるときのAFM通過空気流量の算出方法と同じ方法によってAFM通過空気流量が算出されると、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しないことがある。
ここで、算出されたAFM通過空気流量が実際のAFM通過空気流量よりも多い場合もあるし、算出されたAFM通過空気流量が実際のAFM通過空気流量よりも少ない場合もある。そして、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間におけるその時々のAFM通過空気流量とその減少率とが算出されたAFM通過空気流量が実際のAFM通過空気流量よりも多いか少ないかを決定する要因であることが本願の発明者の研究によって判明した。
そこで、本実施形態では、AFM通過空気にエアフローメータを継続的に順流方向に通過させた状態で、乱流状態から層流状態へのAFM通過空気の状態の移行が生じるようにAFM通過空気流量を定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで様々な減少率で減少させ、この時の素子温度差ΔTに基づいて図4(A)のマップから算出されるAFM通過空気流量と実際のAFM通過空気流量との関係から、図4(A)のマップからAFM通過空気流量を算出したとしても算出されたAFM通過空気流量が実際のAFM通過空気流量に一致するように素子温度差ΔTを補正するために素子温度差ΔTに乗算させるべき係数が予め実験等によって求められる。そして、斯くして求められた係数が図5(B)に示されているように順流減少時補正係数KFdとしてAFM通過空気流量FRとその減少率ΔFRfdとの関数のマップの形で電子制御装置60に記憶されている。
そして、実際にAFM通過空気流量を検出する場合において、AFM通過空気がエアフローメータを継続的に順流方向に通過しており且つAFM通過空気流量が減少しているときには、AFM通過空気流量FRとその減少率ΔFRfdとに基づいて図5(B)のマップから順流減少時補正係数KFdが取得される。そして、この取得された補正係数KFdが素子温度差ΔTに乗算されることによって素子温度差ΔTが補正される。そして、この補正された素子温度差ΔTに基づいて図4(A)のマップからAFM通過空気流量が算出される。
これによれば、AFM通過空気がエアフローメータを継続的に順流方向に通過しており且つAFM通過空気流量が減少している間にAFM通過空気の状態が乱流状態から層流状態に移行することがあったとしても、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。
なお、図5(B)のマップから取得される順流減少時補正係数KFdは、1よりも大きい値である場合もあるし、1よりも小さい値である場合もあるし、当然のことながら、1である場合もある。しかしながら、順流減少時補正係数KFdは、概して、AFM通過空気流量が多いほど小さい値となり、AFM通過空気流量の減少率が小さいほど(すなわち、AFM通過空気流量の減少率の絶対値が大きいほど)大きい値になるものと推察される。また、順流減少時補正係数KFdは、概して、AFM通過空気流量が定常時遷移流量に達する直前までは1であり、AFM通過空気流量が定常時遷移流量に達する直前から1よりも大きい値となり、AFM通過空気流量が定常時遷移流量を一定の流量だけ下回るまで1よりも大きい値であり、AFM通過空気流量が定常時遷移流量を一定の流量以上に下回ると1になるものと推察される。また、AFM通過空気流量が定常時遷移流量を下回った後に順流減少時補正係数KFdが1よりも大きい値になっているAFM通過空気流量の範囲は、AFM通過空気流量の減少率に依存するものと推察され、具体的には、AFM通過空気流量の減少率が大きいほど広くなるものと推察される。
同様に、本実施形態では、AFM通過空気にエアフローメータを継続的に逆流方向に通過させた状態で、乱流状態から層流状態へのAFM通過空気の状態の移行が生じるようにAFM通過空気流量を定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで様々な減少率で減少させ、この時の素子温度差ΔTに基づいて図4(B)のマップから算出されるAFM通過空気流量と実際のAFM通過空気流量との関係から、図4(B)のマップからAFM通過空気流量を算出したとしても算出されたAFM通過空気流量が実際のAFM通過空気流量に一致するように素子温度差ΔTを補正するために素子温度差ΔTに乗算させるべき係数が予め実験等によって求められる。そして、斯くして求められた係数が図6(B)に示されているように逆流現象時補正係数KBdとしてAFM通過空気流量FRとその減少率ΔFRbdとの関数のマップの形で電子制御装置60に記憶されている。
そして、実際にAFM通過空気流量を検出する場合において、AFM通過空気がエアフローメータを継続的に逆流方向に通過しており且つAFM通過空気流量が減少しているときには、AFM通過空気流量FRとその減少率ΔFRbdとに基づいて図6(B)のマップから逆流減少時補正係数KBdが取得される。そして、この取得された補正係数KBdが素子温度差ΔTに乗算されることによって素子温度差ΔTが補正される。そして、この補正された素子温度差ΔTに基づいて図4(B)のマップからAFM通過空気流量が算出される。
これによれば、AFM通過空気がエアフローメータを継続的に逆流方向に通過しており且つAFM通過空気流量が減少している間にAFM通過空気の状態が乱流状態から層流状態に移行することがあったとしても、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。
なお、図6(B)のマップから取得される逆流減少時補正係数KBdは、1よりも大きい値である場合もあるし、1よりも小さい値である場合もあるし、当然のことながら、1である場合もある。しかしながら、逆流減少時補正係数KBdは、概して、AFM通過空気流量が多いほど小さい値となり、AFM通過空気流量の減少率が小さいほど(すなわち、AFM通過空気流量の減少率の絶対値が大きいほど)大きい値になるものと推察される。また、逆流減少時補正係数KBdは、概して、AFM通過空気流量が定常時遷移流量に達する直前までは1であり、AFM通過空気流量が定常時遷移流量に達する直前から1よりも大きい値となり、AFM通過空気流量が定常時遷移流量を一定の流量だけ下回るまで1よりも大きい値であり、AFM通過空気流量が定常時遷移流量を一定の流量以上に下回ると1になるものと推察される。また、AFM通過空気流量が定常時遷移流量を下回った後に逆流減少時補正係数KBdが1よりも大きい値になっているAFM通過空気流量の範囲は、AFM通過空気流量の減少率に依存するものと推察され、具体的には、AFM通過空気流量の減少率が大きいほど広くなるものと推察される。
上述した実施形態によれば、以下の効果が得られる。すなわち、上述したように、空気はその流量に応じて層流の状態で流れたり乱流の状態で流れたりする。ここで、特定の方向(すなわち、順流方向または逆流方向)に流れているAFM通過空気の状態が層流状態から乱流状態に移行したときの下流側温度検出素子12Dの出力特性(および、AFM通過空気の状態が層流状態から乱流状態に移行してから一定期間が経過するまでの下流側温度検出素子12Dの出力特性)は、上記特定の方向と同じ方向に流れているAFM通過空気の状態が定常的に乱流状態にあるときの下流側温度検出素子12Dの出力特性とは異なる。また、特定の方向(すなわち、順流方向または逆流方向)に流れているAFM通過空気の状態が乱流状態から層流状態に移行したときの下流側温度検出素子12Dの出力特性(および、AFM通過空気の状態が乱流状態から層流状態に移行してから一定期間が経過するまでの下流側温度検出素子12Dの出力特性)も、上記特定の方向と同じ方向に流れているAFM通過空気の状態が定常的に層流状態にあるときの下流側温度検出素子12Dの出力特性とは異なる。
したがって、AFM通過空気の状態が層流状態から乱流状態に移行したとき(或いは、AFM通過空気の状態が層流状態から乱流状態に移行してから一定期間が経過するまでの間)に流量検出装置によってAFM通過空気流量を正確に検出させるためには、層流状態から乱流状態へのAFM通過空気の状態の移行時(或いは、この移行時から一定期間が経過するまでの間)は、AFM通過空気の状態が定常的に乱流状態にあるときのAFM出力値の取扱いの形態とは異なる形態でAFM出力値を取り扱ってAFM通過空気流量を検出することが好ましい。また、AFM通過空気の状態が乱流状態から層流状態に移行したとき(或いは、AFM通過空気の状態が乱流状態から層流状態に移行してから一定期間が経過するまでの間)に流量検出装置によってAFM通過空気流量を正確に検出させるためには、乱流状態から層流状態へのAFM通過空気の状態の移行時(或いは、この移行時から一定期間が経過するまでの間)は、AFM通過空気の状態が定常的に層流状態にあるときのAFM出力値の取扱いの形態とは異なる形態でAFM出力値を取り扱ってAFM通過空気流量を検出することが好ましい。
そして、層流状態から乱流状態へのAFM通過空気の状態の移行または乱流状態から層流状態へのAFM通過空気の状態の移行が生じるか否かはAFM通過空気流量とその変化率とに依存する。
ここで、上述した実施形態では、AFM通過空気流量とその変化率(すなわち、AFM通過空気流量の増大率または減少率)とに基づいて補正係数(すなわち、増大時補正係数Kiまたは減少時補正係数Kd)が適宜取得され、この取得された補正係数によってAFM出力値が補正され、この補正されたAFM出力値に基づいてAFM通過空気流量が算出される。ここで、上述した実施形態では、AFM通過空気流量とその変化率との組合せによっては、AFM出力値が補正されないこともある。したがって、上述した実施形態では、AFM通過空気流量とその変化率とに基づいてAFM出力値が補正されるべきであるか否かが判断され、ここで、AFM出力値が補正されるべきであると判断されたときに、AFM出力値が補正され、この補正されたAFM出力値に基づいてAFM通過空気流量が算出されるとも言える。
したがって、上述した実施形態によれば、AFM通過空気の状態が層流状態から乱流状態に移行したとき及びAFM通過空気の状態が乱流状態から層流状態に移行したときであっても、流量検出装置によってAFM通過空気流量が正確に算出されるという効果が得られる。
また、上述したように、AFM通過空気に脈動が生じ、AFM通過空気の流れの方向が順流方向から逆流方向に変化するときには、AFM通過空気の状態が乱流状態で順流方向に流れている状態から層流状態で順流方向に流れている状態に変化し、さらにその状態からAFM通過空気流量が零となる状態に変化し、さらにその状態から層流状態で逆流方向に流れている状態に変化し、そして、その状態から乱流状態で逆流方向に流れている状態に変化することになる。すなわち、このとき、AFM通過空気の状態は5つの全く異なる状態を採ることになる。そして、このとき、AFM通過空気の状態が上述した1つの状態から上述した別の状態に変化する度に、素子温度差とAFM通過空気流量との対応関係が定常的に同じ状態にあるときの同対応関係とは異なる。このため、AFM通過空気の流れの方向が順流方向から逆流方向に変化する間、AFM通過空気の状態が一定の状態(すなわち、定常の状態)にあることを前提にした素子温度差とAFM通過空気流量との対応関係からAFM通過空気流量が算出されていると、特に、その間に算出されるAFM通過空気流量の総量が実際のAFM通過空気流量の総量から大幅にずれてしまう可能性がある。しかしながら、上述した実施形態によれば、AFM通過空気の状態に応じて素子温度差が適正に補正され、この補正された素子温度差に基づいてAFM通過空気流量が算出されることから、常に、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。このため、算出されるAFM通過空気流量の総量が実際のAFM通過空気流量の総量から大幅にずれてしまうことが抑制される。
同様に、AFM通過空気に脈動が生じ、AFM通過空気の流れの方向が逆流方向から順流方向に変化するときには、AFM通過空気の状態が乱流状態で逆流方向に流れている状態から層流状態で逆流方向に流れている状態に変化し、さらにその状態からAFM通過空気流量が零となる状態に変化し、さらにその状態から層流状態で順流方向に流れている状態に変化し、そして、その状態から乱流状態で順流方向に流れている状態に変化することになる。すなわち、このときにも、AFM通過空気の状態は5つの全く異なる状態を採ることになる。このとき、そして、このとき、AFM通過空気の状態が上述した1つの状態から上述した別の状態に変化する度に、素子温度差とAFM通過空気流量との対応関係が定常的に同じ状態にあるときの同対応関係とは異なる。このため、AFM通過空気の流れの方向が逆流方向から順流方向に変化する間、AFM通過空気の状態が一定の状態(すなわち、定常の状態)にあることを前提にした素子温度差とAFM通過空気流量との対応関係からAFM通過空気流量が算出されていると、特に、その間に算出されるAFM通過空気流量の総量が実際のAFM通過空気流量の総量から大幅にずれてしまう可能性がある。しかしながら、上述した実施形態によれば、AFM通過空気の状態に応じて素子温度差が適正に補正され、この補正された素子温度差に基づいてAFM通過茎流量が算出されることから、常に、実際のAFM通過空気流量に一致するAFM通過空気流量が算出される。このため、算出されるAFM通過空気流量の総量が実際のAFM通過空気流量の総量から大幅にずれてしまうことが抑制される。
なお、以上を考慮すれば、上述した実施形態の流量検出装置は、広くは、AFM通過空気流量に応じたAFM出力値を出力するエアフローメータを備え、AFM出力値に基づいてAFM通過空気流量を算出することによってAFM通過空気流量を検出する流量検出装置であって、AFM通過空気流量とその変化率とに基づいてAFM出力値が補正されるべきであるか否かを判断し、AFM出力値が補正されるべきであると判断したときには、AFM出力値を補正し、この補正されたAFM出力値に基づいてAFM通過空気流量を算出する流量検出装置であると言える。
なお、上述した実施形態においてAFM出力値が補正されるべきであると判断されることは、AFM通過空気流量とその変化率とを考慮したときに層流状態から乱流状態へのAFM通過空気の状態の移行または乱流状態から層流状態へのAFM通過空気の状態の移行または順流方向から逆流方向へのAFM通過空気の流れの方向の移行または逆流方向から順流方向へのAFM通過空気の流れの方向の移行が生じたこと(或いは、こうしたAFM通過空気の状態の移行が生じたであろうこと、或いは、こうしたAFM通過空気の状態の移行が生じるであろうこと、或いは、こうしたAFM通過空気の流れの方向の移行が生じたであろうこと、或いは、こうしたAFM通過空気の流れの方向の移行が生じるであろうこと)が判明し、その結果、AFM通過空気の状態が定常的に乱流状態または層流状態にあるとき或いはAFM通過空気の流れの方向が定常的に順流方向または逆流方向にあるときのAFM出力値の取扱いの形態とは異なる形態で素子温度差を取り扱うべきであること(すなわち、素子温度差を補正すべきであること)が判明することであるとも言える。
ところで、上述したように、AFM通過空気の状態が層流状態から乱流状態に移行したときの下流側温度検出素子12Dの出力特性は、AFM通過空気の状態が定常的に乱流状態にあるときの同出力特性とは異なり、また、AFM通過空気の状態が乱流状態から層流状態に移行したときの下流側温度検出素子12Dの出力特性は、AFM通過空気の状態が定常的に層流状態にあるときの同出力特性とは異なる。したがって、流量検出装置によってAFM通過空気流量を正確に検出するためには、AFM通過空気の状態が層流状態から乱流状態に移行したこと或いはAFM通過空気の状態が乱流状態から層流状態に移行したことを確実に把握し、このことが把握されたときに素子温度差を補正し、この補正された素子温度差に基づいてAFM通過空気流量を算出するべきである。
同様に、AFM通過空気の流れの方向が順流方向から逆流方向に移行したときの下流側温度検出素子12Dの出力特性は、AFM通過空気の流れの方向が定常的に逆流方向にあるときの同出力特性とは異なり、また、AFM通過空気の流れの方向が逆流方向から順流方向に移行したときの下流側温度検出素子12Dの出力特性は、AFM通過空気の流れの状態が定常的に順流方向にあるときの同出力特性とは異なる。したがって、流量検出装置によってAFM通過空気流量を正確に検出するためには、AFM通過空気の流れの方向が順流方向から逆流方向に移行したこと或いはAFM通過空気の流れの方向が逆流方向から順流方向に移行したことを確実に把握し、このことが把握されたときに素子温度差を補正し、この補正された素子温度差に基づいてAFM通過空気流量を算出するべきである。
ここで、上述した実施形態では、AFM通過空気流量とその変化率(すなわち、AFM通過空気の流れの方向が順流方向であるときのAFM通過空気流量の増大率または減少率、或いは、AFM通過空気の流れの方向が逆流方向であるときのAFM通過空気流量の増大率または減少室)とに基づいて補正係数(すなわち、順流増大時補正係数KFi、順流減少時補正係数KFd、逆流・順流増大時補正係数KBFi、逆流増大時補正係数KBi、逆流減少時補正係数KBd、または、順流・逆流増大時補正係数KFBi)が適宜取得され、この取得された補正係数によって素子温度差が補正され、この補正された素子温度差に基づいてAFM通過空気流量が算出される。ここで、上述した実施形態において素子温度差が補正されるべきであると判断されることは、AFM通過空気の状態が層流状態から乱流状態に移行し或いは乱流状態から層流状態に移行し又はAFM通過空気の流れの方向が順流方向から逆流方向に移行し或いは逆流方向から順流方向に移行したと判断されることに相当する。
したがって、以上を考慮すれば、上述した実施形態の流量検出装置は、広くは、AFM通過空気流量に応じたAFM出力値を出力するエアフローメータを備え、AFM出力値に基づいてAFM通過空気流量を算出することによってAFM通過空気流量を検出する流量検出装置であって、AFM通過空気流量とその変化率とに基づいてAFM通過空気の状態が層流状態から乱流状態に移行し或いはAFM通過空気の状態が乱流状態から層流状態に移行し又はAFM通過空気の流れの方向が逆転したか否かを判断し、AFM通過空気の状態が層流状態から乱流状態に移行し或いはAFM通過空気の状態が乱流状態から層流状態に移行し又はAFM通過空気の流れの方向が逆転したと判断したときには、AFM出力値を補正し、この補正されたAFM出力値に基づいてAFM通過空気流量を算出する流量検出装置であると言える。
ところで、上述した実施形態では、AFM通過空気流量とその変化率(すなわち、AFM通過空気流量の増大率または減少率)とに基づいて補正係数(すなわち、増大時補正係数Kiまたは減少時補正係数Kd)が取得され、この取得された補正係数によってAFM出力値が補正され、この補正されたAFM出力値に基づいてAFM通過空気流量が算出される。ここで、1以外の値の増大時補正係数に対応するAFM通過空気流量とその増大率とによって規定される点は、AFM通過空気の状態が層流状態から乱流状態に移行するときのAFM通過空気流量とその増大率に相当し、1以外の値の減少時補正係数に対応するAFM通過空気流量とその減少率とによって規定される点は、AFM通過空気の状態が乱流状態から層流状態に移行するときのAFM通過空気流量とその増大率に相当する。
したがって、1以外の値の増大時補正係数に対するAFM通過空気流量とその増大率とによって規定される点を「流量増大時遷移点」と称したとき、上述した実施形態では、流量増大時遷移点が予め求められており、AFM通過空気流量が増大しているときにはAFM通過空気流量とその増大率とによって規定される点が流量増大時遷移点にあるか否かが判断され、ここで、AFM通過空気流量とその増大率とによって規定される点が流量増大時遷移点にあると判断されたときにAFM通過空気の状態が層流状態から乱流状態に移行したと判断され、1以外の値の増大時補正係数KiによってAFM出力値が補正され、この補正されたAFM出力値に基づいてAFM通過空気流量が算出されるとも言える。
また、1以外の値の減少時補正係数に対するAFM通過空気流量とその減少率とによって規定される点を「流量減少時遷移点」と称したとき、上述した実施形態では、流量減少時遷移点が予め求められており、AFM通過空気流量が減少しているときにはAFM通過空気流量とその減少率とによって規定される点が流量減少時遷移点にあるか否かが判断され、ここで、AFM通過空気流量とその減少率とによって規定される点が流量減少時遷移点にあると判断されたときにAFM通過空気の状態が乱流状態から層流状態に移行したと判断され、1以外の値の減少時補正係数KdによってAFM出力値が補正され、この補正されたAFM出力値に基づいてAFM通過空気流量が算出されるとも言える。
また、上述した実施形態では、AFM通過空気流量の変化率が零または略零であるときのAFM出力値に基づいて算出される素子温度差とその時のAFM通過空気流量との関係が図4(A)のマップおよび図4(B)のマップに規定されている。そして、AFM通過空気流量の変化率が零または略零であるときには素子温度差に基づいて図4(A)のマップまたは図4(B)のマップからAFM通過空気流量が算出され、AFM通過空気流量の変化率が零ではなく或いは略零ではないときには素子温度差が補正係数によって補正され、この補正された素子温度差に基づいて図4(A)または図4(B)のマップからAFM通過空気流量が算出される。
したがって、上述した実施形態では、AFM通過空気流量の変化率が零または略零であるときの素子温度差とその時のAFM通過空気流量との関係が予め求められており、素子温度差または補正された素子温度差に基づいて上記関係からAFM通過空気流量が算出されるものであると言える。
また、上述した実施形態では、順流増大時補正係数KFi、逆流増大時補正係数KBi、逆流・順流増大時補正係数KBFi、および、順流・逆流増大時補正係数KFBiはAFM通過空気流量とその増大率とに応じてそれぞれ異なる値をとり、順流減少時補正係数KFdおよび逆流減少時補正係数KBdはAFM通過空気流量とその減少率とに応じてそれぞれ異なる値をとる。
したがって、上述した実施形態では、素子温度差が補正係数によって補正されるときの素子温度差に対する補正の度合がAFM通過空気流量とその変化率(すなわち、増大率または減少率)とに応じて決定されるとも言える。
また、上述した実施形態では、AFM通過空気流量が増大し或いは減少しているとき又はAFM通過空気の流れの方向が逆転したときに素子温度差を補正係数によって補正している。しかしながら、AFM通過空気流量の変化率が零または略零であるときにAFM通過空気流量に応じて得られる出力値と実際のAFM通過空気流量との関係が予め判明しており、AFM通過空気流量に応じて得られる出力値に基づいて上記関係から実際のAFM通過空気流量が算出される場合には、AFM通過空気流量が増大し或いは減少しているとき又はAFM通過空気の流れの方向が逆転したときに上記出力値を補正係数によって補正し、この補正された出力値に基づいて上記関係から実際のAFM通過空気流量が算出されればよい。
このことを考慮すれば、上述した実施形態は、広くは、AFM通過空気流量の変化率が零または略零であるときのAFM通過空気流量と特定のパラメータ(すなわち、上述した実施形態では、素子温度差)との関係を利用してAFM通過空気流量が増大し或いは減少し又はAFM通過空気の流れの状態が逆転したときの実際のAFM通過空気流量に一致するAFM通過空気流量を算出することができるように、上記特定のパラメータまたは該特定のパラメータを得るために利用される別のパラメータを補正し、この補正されたパラメータに基づいて上記関係からAFM通過空気流量を算出するものであるとも言える。
なお、上述した実施形態では、AFM通過空気流量の増大中に素子温度差を補正するために用いられる補正係数KFi、KBi、KBFi、KFBiがAFM通過空気流量とその増大率とに基づいて設定される。これは、上述したように、AFM通過空気流量が定常時遷移流量よりも少ない流量から定常時遷移流量よりも多い流量まで増大する間にAFM通過空気の状態が層流状態から乱流状態に移行する場合、AFM通過空気の状態が層流状態から乱流状態に完全に移行するまでに一定の時間がかかること、或いは、AFM通過空気流量が定常時遷移流量に達する前にAFM通過空気の状態が層流状態から乱流状態に移行し始めること、或いは、AFM通過空気流量が定常時遷移流量に達した後にAFM通過空気の状態が層流状態から乱流状態に移行し始めること、又は、AFM通過空気の流れの状態が逆転した場合、その直後のAFM通過空気の状態が特異な状態にあることに起因して、AFM通過空気流量が一定または略一定であるときのAFM通過空気流量の算出方法と同じ方法によってAFM通過空気流量が算出されると、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しない現象が生じることがあるという知見に基づくものである。
これに関し、こうした現象の発生に大気圧が影響することも考えられる。そこで、上述した実施形態において、補正係数KFi、KBi、KBFi、KFBiがAFM通過空気流量とその増大率と大気圧とに基づいて設定されるようにしてもよい。また、こうした現象の発生にAFM通過空気の温度が影響することも考えられる。そこで、上述した実施形態において、補正係数KFi、KBi、KBFi、KFBiがAFM通過空気流量とその増大率とAFM通過空気の温度とに基づいて設定されるようにしてもよい。もちろん、上述した実施形態において、補正係数KFi、KBi、KBFi、KFBiがAFM通過空気流量とその増大率と大気圧とAFM通過空気の温度とに基づいて設定されるようにしてもよい。
なお、補正係数KFi、KBi、KBFi、KFBiの設定に大気圧が1つのパラメータとして利用される場合、概して、大気圧が高いほど補正係数は小さい値に設定されるものと考えられる。また、補正係数KFi、KBi、KBFi、KFBiの設定にAFM通過空気の温度が1つのパラメータとして利用される場合、概して、AFM通過空気の温度が高いほど補正係数は小さい値に設定されるものと考えられる。
一方、上述した実施形態では、AFM通過空気流量の減少中にAFM出力値を補正するために用いられる補正係数KFd、KBdがAFM通過空気流量とその減少率とに基づいて設定される。これは、上述したように、AFM通過空気流量が定常時遷移流量よりも多い流量から定常時遷移流量よりも少ない流量まで減少する間にAFM通過空気の状態が乱流状態から層流状態に移行する場合、AFM通過空気の状態が乱流状態から層流状態に完全に移行するまでに一定の時間がかかること、或いは、AFM通過空気流量が定常時遷移流量に達する前にAFM通過空気の状態が乱流状態から層流状態に移行し始めること、或いは、AFM通過空気流量が定常時遷移流量に達した後にAFM通過空気の状態が乱流状態から層流状態に移行し始めることに起因して、AFM通過空気流量が一定または略一定であるときのAFM通過空気流量の算出方法と同じ方法によってAFM通過空気流量が算出されると、算出されたAFM通過空気流量が実際のAFM通過空気流量に一致しない現象が生じることがあるという知見に基づくものである。
これに関し、こうした現象の発生に大気圧が影響することも考えられる。そこで、上述した実施形態において、補正係数KFd、KBdがAFM通過空気流量とその減少率と大気圧とに基づいて設定されるようにしてもよい。また、こうした現象の発生にAFM通過空気の温度が影響することも考えられる。そこで、上述した実施形態において、補正係数KFd、KBdがAFM通過空気流量とその減少率とAFM通過空気の温度とに基づいて設定されるようにしてもよい。もちろん、上述した実施形態において、補正係数KFd、KBdがAFM通過空気流量とその減少率と大気圧とAFM通過空気の温度とに基づいて設定されるようにしてもよい。
なお、補正係数KFd、KBdの設定に大気圧が1つのパラメータとして利用される場合、概して、大気圧が高いほど補正係数は大きい値に設定されるものと考えられる。また、補正係数KFd、KBdの設定にAFM通過空気の温度が1つのパラメータとして利用される場合、概して、AFM通過空気の温度が高いほど補正係数は大きい値に設定されるものと考えられる。
また、AFM出力値が発熱抵抗素子の上流側部分13Uの温度の変化に対して一次遅れを伴う出力値である場合には、素子温度差に上記補正係数を乗算することによって素子温度差を補正する前に、AFM出力値の一次遅れが解消されるようにAFM出力値を補正し、その後、この補正されたAFM出力値に基づいて算出される素子温度差に上記補正係数を乗算することによって素子温度差を補正することが好ましい。
したがって、この場合、AFM通過空気流量が増大し或いは減少しているときに素子温度差が1以外の値の補正係数によって補正されるべきであるときには、素子温度差が補正される前にAFM出力値の一次遅れが除去され、この一次遅れが除去されたAFM出力値に基づいて素子温度差が算出され、この算出された素子温度差が補正係数によって補正され、この補正された素子温度差に基づいてAFM通過空気流量が算出される。
また、上述した実施形態の流量検出装置は、空気の流量を検出するものである。しかしながら、上述した実施形態の流量検出装置に関する考え方は、空気以外の気体の流量を検出する流量検出装置にも適用可能である。したがって、本発明は、広くは、気体の流量を検出する流量検出装置に適用可能であると言える。
また、上述した実施形態の流量検出装置は、シリコンチップ型のエアフローメータを有する。しかしながら、上述した実施形態の流量検出装置に関する考え方は、シリコンチップ型のエアフローメータ以外のエアフローメータ(例えば、熱線式エアフローメータ、カルマン渦式エアフローメータ等)を有する流量検出装置にも可能である。また、上述した実施形態の流量検出装置は、上述した構成を備えたシリコンチップ型のエアフローメータを有する。しかしながら、上述した実施形態の流量検出装置に関する考え方は、上述した構成以外の構成を備えたシリコンチップ型のエアフローメータを有する流量検出装置にも適用可能である。したがって、本発明は、広くは、層流状態で流れる気体の流量だけでなく乱流状態で流れる気体の流量をも検出することができ且つ順流方向に流れる気体の流量だけでなく逆流方向に流れる気体の流量をも検出することができるエアフローメータであって気体の状態に変化がないときのエアフローメータの出力値の特性と気体の状態が層流状態と乱流状態との間で変化したとき或いは気体の流れの方向が逆転したときのエアフローメータの出力値の特性とが異なるエアフローメータを備えた流量検出装置に適用可能であると言える。
なお、上述した実施形態では、素子温度差を補正するための補正係数として、AFM通過空気の流れの状態が逆流状態から順流状態に変化した直後であってAFM通過空気流量が比較的大きく増大しているのか否か、AFM通過空気の流れの状態が順流状態から逆流状態に変化した直後であってAFM通過空気流量が比較的大きく増大しているのか否か、AFM通過空気の流れの状態が継続的に順流状態にあってAFM通過空気流量が比較的大きく増大しているのか或いは減少しているのか、そして、AFM通過空気の流れの状態が継続的に逆流状態にあってAFM通過空気流量が比較的大きく増大しているのか或いは減少しているのかに応じてそれぞれ異なる補正係数が用意されている。しかしながら、AFM通過空気流量の算出を簡易化するために、これら補正係数の幾つかとして、同じ値の補正係数を採用してもよい。
次に、上述した実施形態に従ったAFM通過空気流量の算出を実行するルーチンの一例について説明する。このルーチンは図7〜図10に示されている。なお、このルーチンは所定時間間隔毎に実行される。
図7〜図10のルーチンが開始されると、ステップ100において、現在の上流側温度検出素子12Uの出力値Vuと現在のAFM出力値(すなわち、現在の下流側温度検出素子12Dの出力値)Vdと前回の本ルーチンの実行によって算出されたAFM通過空気流量FR(k−1)と前々回の本ルーチンの実行によって算出されたAFM通過空気流量FR(k−2)とが取得される。次いで、ステップ101において、ステップ100で取得された前回のAFM通過空気流量FR(k−1)と前々回のAFM通過空気流量FR(k−2)とに基づいて前々回の本ルーチンの実行時点から前回の本ルーチンの実行時点までのAFM通過空気流量の変化率が今回の本ルーチンの実行時点のAFM通過空気流量の変化率ΔFR(k)として算出される。次いで、ステップ102において、今回の本ルーチンの実行時点のAFM通過空気の流れの方向が順流方向であるか否かが判別される。ここで、AFM通過空気の流れの方向が順流方向であると判別されたときには、ルーチンは図8のステップ103に進む。一方、AFM通過空気の流れの方向が順流方向ではない(すなわち、逆流方向である)と判別されたときには、ルーチンは図10のステップ119に進む。なお、ステップ102では、ステップ100で取得された前回のAFM通過空気流量FR(k−1)が正の値であるときにAFM通過空気の流れが順流方向であると判別され、同AFM通過空気流量FR(k−1)が負の値であるときにAFM通過空気の流れが順流方向ではないと判別される。
ステップ102においてAFM通過空気の流れの方向が順流方向であると判別され、ルーチンが図8のステップ103に進むと、ステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)が所定の正の変化率ΔFRfithよりも大きい(ΔFR(k)>ΔFRfith)か否かが判別される。ここで、ΔFR(k)>ΔFRfithであると判別されたときには、ルーチンはステップ104に進む。一方、ΔFR(k)≦ΔFRfithであると判別されたときには、ルーチンはステップ109に進む。なお、ルーチンがステップ103に進んだときにAFM通過空気流量が増大している場合、ステップ101で算出されるAFM通過空気流量の変化率ΔFR(k)が正の値であり、そして、ステップ103で用いられる所定の変化率ΔFRfithが正の値であることから、ステップ103においてΔFR(k)>ΔFRfithであると判別されたときには、順流方向に流れるAFM通過空気の流量が比較的大きく増大していることになり、ステップ103においてΔFR(k)≦ΔFRfithであると判別されたときには、順流方向に流れるAFM通過空気の流量が少なくとも比較的大きくは増大していないことになる。また、ステップ103で用いられる所定の変化率ΔFRfithは、零に近い値に設定される。しかしながら、この所定の変化率ΔFRfithに代えて、零が採用されてもよい。
ステップ103においてΔFR(k)>ΔFRfithであると判別され、ルーチンがステップ104に進むと、今回の本ルーチンの実行時点におけるAFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にあるか否かが判別される。ここで、AFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にあると判別されたときには、ルーチンはステップ105に進む。一方、AFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にない(すなわち、前回の本ルーチンの実行時点においてAFM通過空気の流れの方向が既に順流方向にあった)と判別されたときには、ルーチンはステップ107に進む。なお、ステップ104では、ステップ100で取得された前々回のAFM通過空気流量FR(k−2)が負の値であるときにAFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にあると判別され、同AFM通過空気流量FR(k−2)が正の値であるときにAFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にないと判別される。
ステップ104においてAFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にあると判別され、ルーチンがステップ105に進むと、ステップ100で取得された前回のAFM通過空気流量FR(k−1)とステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)とに基づいて図5(C)のマップから逆流・順流増大時補正係数KBFiが取得される。次いで、ステップ106において、ステップ105で取得された逆流・順流増大時補正係数KBFiが最終補正係数Kに入力され、ルーチンが図9のステップ113に進む。
一方、ステップ104においてAFM通過空気の流れの方向が逆流方向から順流方向に変化した直後の順流方向にないと判別され、ルーチンがステップ107に進むと、ステップ100で取得された前回のAFM通過空気流量FR(k−1)とステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)とに基づいて図5(A)のマップから順流増大時補正係数KFiが取得される。次いで、ステップ108において、ステップ107で取得された順流増大時補正係数KFiが最終補正係数Kに入力され、ルーチンが図9のステップ113に進む。
一方、ステップ103においてΔFR(k)≦ΔFRfithであると判別され、ルーチンがステップ109に進むと、ステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)が所定の負の変化率ΔFRfdthよりも小さい(ΔFR(k)<ΔFRfdth)か否かが判別される。ここで、ΔFR(k)<ΔFRfdthであると判別されたときには、ルーチンはステップ110に進む。一方、ΔFR(k)≧ΔFRfdthであると判別されたときには、ルーチンはステップ112に進む。なお、ルーチンがステップ109に進んだときにAFM通過空気流量が減少している場合、ステップ101で算出されるAFM通過空気流量の変化率ΔFR(k)が負の値であり、そして、ステップ109で用いられる所定の変化率ΔFRfdthが負の値であることから、ステップ109においてΔFR(k)<ΔFRfdthであると判別されたときには、AFM通過空気流量が比較的大きく減少していることになり、ステップ109においてΔFR(k)≧ΔFRfdthであると判別されたときには、AFM通過空気流量が少なくとも比較的大きくは減少していないことになる。また、ステップ109で用いられる所定の変化率ΔFRfdthは、零に近い値に設定される。しかしながら、この所定の変化率ΔFRfdthに代えて、零が採用されてもよい。
ステップ109においてΔFR(k)<ΔFRfdthであると判別され、ルーチンがステップ110に進むと、ステップ100で取得された前回のAFM通過空気流量FR(k−1)とステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)とに基づいて図5(B)のマップから順流減少時補正係数KFdが取得される。次いで、ステップ110において、ステップ110で取得された順流減少時補正係数KFdが最終補正係数Kに入力され、ルーチンが図9のステップ113に進む。
一方、ステップ109においてΔFR(k)≧ΔFRfdthであると判別され(すなわち、AFM通過空気流量の変化が小さいと判別され)、ルーチンがステップ112に進むと、最終補正係数Kに「1」が入力され、ルーチンが図9のステップ113に進む。
一方、図7のステップ102においてAFM通過空気の流れの方向が順流方向ではない(すなわち、逆流方向である)と判別され、ルーチンが図10のステップ119に進むと、ステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)が所定の負の変化率ΔFRbithよりも小さい(ΔFR(k)<ΔFRbith)か否かが判別される。ここで、ΔFR(k)<ΔFRdithであると判別されたときには、ルーチンはステップ120に進む。一方、ΔFR(k)≧ΔFRbithであると判別されたときには、ルーチンはステップ125に進む。なお、ルーチンがステップ119に進んだときにAFM通過空気流量が増大している場合、ステップ101で算出されるAFM通過空気流量の変化率ΔFR(k)が負の値であり、そして、ステップ119で用いられる所定の変化率ΔFRbithが負の値であることから、ステップ119においてΔFR(k)<ΔFRbithであると判別されたときには、逆流方向に流れるAFM通過空気の流量が比較的大きく増大していることになり、ステップ119においてΔFR(k)≧ΔFRbithであると判別されたときには、逆流方向に流れるAFM通過空気の流量が少なくとも比較的大きくは増大していないことになる。また、ステップ119で用いられる所定の変化率ΔFRbithは、零に近い値に設定される。しかしながら、この所定の変化率ΔFRbithに代えて、零が採用されてもよい。
ステップ119においてΔFR(k)<ΔFRbithであると判別され、ルーチンがステップ120に進むと、今回の本ルーチンの実行時点におけるAFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にあるか否かが判別される。ここで、AFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にあると判別されたときには、ルーチンはステップ121に進む。一方、AFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にない(すなわち、前回の本ルーチンの実行時点においてAFM通過空気の流れの方向が既に逆流方向にあった)と判別されたときには、ルーチンはステップ123に進む。なお、ステップ120では、ステップ100で取得された前々回のAFM通過空気流量FR(k−2)が正の値であるときにAFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にあると判別され、同AFM通過空気流量FR(k−2)が負の値であるときにAFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にないと判別される。
ステップ120においてAFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にあると判別され、ルーチンがステップ121に進むと、ステップ100で取得された前回のAFM通過空気流量FR(k−1)とステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)とに基づいて図6(C)のマップから順流・逆流増大時補正係数KFBiが取得される。次いで、ステップ122において、ステップ121で取得された順流・逆流増大時補正係数KFBiが最終補正係数Kに入力され、ルーチンが図9のステップ113に進む。
一方、ステップ120においてAFM通過空気の流れの方向が順流方向から逆流方向に変化した直後の逆流方向にないと判別され、ルーチンがステップ123に進むと、ステップ100で取得された前回のAFM通過空気流量FR(k−1)とステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)とに基づいて図6(A)のマップから逆流増大時補正係数KBiが取得される。次いで、ステップ124において、ステップ107で取得された順流増大時補正係数KBiが最終補正係数Kに入力され、ルーチンが図9のステップ113に進む。
一方、ステップ119においてΔFR(k)≧ΔFRbithであると判別され、ルーチンがステップ125に進むと、ステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)が所定の正の変化率ΔFRbdthよりも大きい(ΔFR(k)>ΔFRbdth)か否かが判別される。ここで、ΔFR(k)>ΔFRbdthであると判別されたときには、ルーチンはステップ126に進む。一方、ΔFR(k)≦ΔFRbdthであると判別されたときには、ルーチンはステップ128に進む。なお、ルーチンがステップ125に進んだときにAFM通過空気流量が減少している場合、ステップ101で算出されるAFM通過空気流量の変化率ΔFR(k)が正の値であり、そして、ステップ125で用いられる所定の変化率ΔFRbdthが正の値であることから、ステップ125においてΔFR(k)>ΔFRbdthであると判別されたときには、AFM通過空気流量が比較的大きく減少していることになり、ステップ125においてΔFR(k)≦ΔFRbdthであると判別されたときには、AFM通過空気流量が少なくとも比較的大きくは減少していないことになる。また、ステップ125で用いられる所定の変化率ΔFRbdthは、零に近い値に設定される。しかしながら、この所定の変化率ΔFRbdthに代えて、零が採用されてもよい。
ステップ125においてΔFR(k)>ΔFRbdthであると判別され、ルーチンがステップ126に進むと、ステップ100で取得された前回のAFM通過空気流量FR(k−1)とステップ101で算出されたAFM通過空気流量の変化率ΔFR(k)とに基づいて図6(B)のマップから逆流減少時補正係数KBdが取得される。次いで、ステップ127において、ステップ126で取得された逆流減少時補正係数KBdが最終補正係数Kに入力され、ルーチンが図9のステップ113に進む。
一方、ステップ125においてΔFR(k)≦ΔFRbdthであると判別され(すなわち、AFM通過空気流量の変化が小さいと判別され)、ルーチンがステップ128に進むと、最終補正係数Kに「1」が入力され、ルーチンが図9のステップ113に進む。
ルーチンが図9のステップ113に進むと、ステップ100で取得されたAFM出力値Vdに基づいて発熱抵抗素子の上流側部分13Uの温度Tuが算出される。次いで、ステップ114において、ステップ100で取得された上流側温度検出素子12Uの出力値Vuに基づいて上流側温度検出素子12Uを通過する空気の温度Taが算出される。次いで、ステップ115において、ステップ114で算出された空気の温度Taに基づいて基準温度Tbが算出される。次いで、ステップ116において、ステップ115で算出された基準温度Tbに対するステップ113で算出された発熱抵抗素子の上流側部分13Uの温度Tuの差(すなわち、素子温度差)ΔTが算出される。
次いで、ステップ117において、ステップ116で算出された素子温度差ΔTに最終補正係数Kが乗算されることによって同温度差ΔTが補正される。ここで、ルーチンがステップ106からステップ113に進んだときには、ステップ116で算出された素子温度差ΔTに逆流・順流増大時補正係数KBFiが乗算されることになり、ルーチンがステップ108からステップ113に進んだときには、素子温度差ΔTに順流増大時補正係数KFiが乗算されることになり、ルーチンがステップ111からステップ113に進んだときには、素子温度差ΔTに順流減少時補正係数KFdが乗算されることになり、ルーチンがステップ122からステップ113に進んだときには、素子温度差ΔTに順流・逆流増大時補正係数KFBiが乗算されることになり、ルーチンがステップ124からステップ113に進んだときには、素子温度差ΔTに逆流増大時補正係数KBiが乗算されることになり、ルーチンがステップ127からステップ113に進んだときには、素子温度差ΔTに逆流現象時補正係数KBdが乗算されることになる。なお、ルーチンがステップ112またはステップ128からステップ113に進んだときには、素子温度差ΔTに「1」が乗算されることになるので、実質的には、素子温度差ΔTは補正されないとも言える。
次いで、ステップ118において、ステップ117で補正された素子温度差ΔTに基づいてAFM通過空気流量FR(k)が算出され、ルーチンが終了する。

Claims (6)

  1. 気体の流量に応じた出力値を出力する流量計を備え、該流量計から出力される出力値に基づいて気体の流量を算出することによって気体の流量を検出する流量検出装置であって、前記流量計を通過する気体の流量と該流量の変化率とに基づいて前記流量計から出力される出力値が補正されるべきであるか否かが判断され、前記流量計から出力される出力値が補正されるべきであると判断されたときには、前記流量計から出力される出力値が補正され、該補正された出力値に基づいて気体の流量が算出される流量検出装置において、
    前記流量計を通過する気体の流量と該流量の変化率とに基づいて前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行し或いは乱流の状態から層流の状態に移行し或いは前記流量計を通過する気体の流れの方向が逆転したか否かが判断され、前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行し或いは乱流の状態から層流の状態に移行し或いは前記流量計を通過する気体の流れの方向が逆転したと判断されたときに前記流量計から出力される出力値が補正されるべきであると判断され、
    前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行するときの前記流量計を通過する気体の流量と該流量の増大率とによって規定される点が流量増大時遷移点として予め求められており、前記流量計を通過する気体の状態が乱流の状態から層流の状態に移行するときの前記流量計を通過する気体の流量と該流量の減少率とによって規定される点が流量減少時遷移点として予め求められており、
    前記流量計を通過する気体の流量が増大しているときには該流量と該流量の増大率とによって規定される点が前記流量増大時遷移点にあるか否かが判断され、前記流量計を通過する気体の流量と該流量の増大率とによって規定される点が前記流量増大時遷移点にあると判断されたときに前記流量計を通過する気体の状態が層流の状態から乱流の状態に移行したと判断され、
    前記流量計を通過する気体の流量が減少しているときには該流量と該流量の減少率とによって規定される点が前記流量減少時遷移点にあるか否かが判断され、前記流量計を通過する気体の流量と該流量の減少率とによって規定される点が前記流量減少時遷移点にあると判断されたときに前記流量計を通過する気体の状態が乱流の状態から層流の状態に移行したと判断される流量検出装置。
  2. 気体の流量の変化率が零または略零であるときに前記流量計から出力される出力値とその時の気体の流量との関係が予め求められており、前記流量計から出力される出力値または前記補正された出力値に基づいて前記予め求められている関係から気体の流量が算出される請求項1に記載の流量検出装置。
  3. 前記流量計から出力される出力値が補正されるときの該出力値に対する補正の度合が前記流量計を通過する気体の流量と該流量の変化率との少なくとも1つに応じて決定される請求項1または4に記載の流量検出装置。
  4. 前記流量計から出力される出力値が補正される前に該出力値の一次遅れが除去され、前記流量計から出力される出力値が補正されるべきであると判断されたときには前記一次遅れが除去された出力値が補正され、該補正された出力値に基づいて気体の流量が算出される請求項1、4、および、5のいずれか1つに記載の流量検出装置。
  5. 前記流量計がシリコンチップ型の流量計である請求項1、および、4〜6のいずれか1つに記載の流量検出装置。
  6. 前記流量計が電圧が印加されることによって発熱する発熱抵抗体を有し、前記流量計を通過する気体が前記発熱抵抗体から奪う熱量に応じた電圧が前記発熱抵抗体に印加されるようになっており、前記流量計が該流量計を通過する気体によって前記発熱抵抗素子から奪われる熱量に応じた出力値を出力する請求項1、および、4〜7のいずれか1つに記載の流量検出装置。
JP2012532771A 2010-09-08 2010-09-08 流量検出装置 Expired - Fee Related JP5403165B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065413 WO2012032617A1 (ja) 2010-09-08 2010-09-08 流量検出装置

Publications (2)

Publication Number Publication Date
JPWO2012032617A1 JPWO2012032617A1 (ja) 2013-12-12
JP5403165B2 true JP5403165B2 (ja) 2014-01-29

Family

ID=45810242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012532771A Expired - Fee Related JP5403165B2 (ja) 2010-09-08 2010-09-08 流量検出装置

Country Status (5)

Country Link
US (1) US8869604B2 (ja)
EP (1) EP2615430A4 (ja)
JP (1) JP5403165B2 (ja)
CN (1) CN103154676B (ja)
WO (1) WO2012032617A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628754B2 (ja) * 2017-03-01 2020-01-15 株式会社デンソー 流量測定システム
JP2019100182A (ja) * 2017-11-28 2019-06-24 トヨタ自動車株式会社 吸入空気量計測装置
DE112022001142T5 (de) * 2021-04-27 2023-12-07 Hitachi Astemo, Ltd. Erfassungsvorrichtung für eine physikalische Größe, Signalverarbeitungsvorrichtung, und Signalverarbeitungsverfahren
WO2023100232A1 (ja) * 2021-11-30 2023-06-08 日立Astemo株式会社 空気流量計測装置及び空気流量計測方法
CN114527260A (zh) * 2022-01-24 2022-05-24 广州发展环保建材有限公司 一种料浆监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510612B2 (ja) * 1983-02-11 1993-02-10 Bosch Gmbh Robert
JPH0729419U (ja) * 1993-10-27 1995-06-02 株式会社ユニシアジェックス エンジンの吸入空気流量検出装置
JPH0862012A (ja) * 1994-06-13 1996-03-08 Hitachi Ltd 空気流量計測装置及び空気流量計測方法
JP2003287453A (ja) * 2002-03-27 2003-10-10 Denso Corp 吸入空気流量測定装置
JP2006105847A (ja) * 2004-10-07 2006-04-20 Mitsubishi Heavy Ind Ltd 熱式流量計
JP2008002833A (ja) * 2006-06-20 2008-01-10 Toyota Motor Corp 吸気流量補正装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269721A (ja) 1988-09-05 1990-03-08 Pioneer Electron Corp 光導電型液晶ライトバルブ
JPH0269721U (ja) 1988-11-16 1990-05-28
JP2681569B2 (ja) 1992-01-17 1997-11-26 株式会社ユニシアジェックス 内燃機関の吸入空気流量検出装置
NL1001719C2 (nl) 1995-11-22 1997-05-23 Krohne Altometer Werkwijze en inrichting voor de ultrasone meting van de snelheid en doorstroomhoeveelheid van een medium in een buisleiding.
US6389364B1 (en) * 1999-07-10 2002-05-14 Mykrolis Corporation System and method for a digital mass flow controller
JP3700511B2 (ja) 2000-01-14 2005-09-28 日産自動車株式会社 変位量測定方法及び電磁駆動吸排気弁装置
NL1017334C2 (nl) 2001-02-12 2002-08-13 Tno Werkwijze en inrichting voor het bepalen van een warmtestroom naar een flu´dum.
JP4906422B2 (ja) 2006-07-24 2012-03-28 日立オートモティブシステムズ株式会社 熱式ガス流量センサ及びそれを用いた内燃機関制御装置
US9080528B2 (en) * 2010-05-17 2015-07-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5083583B1 (ja) * 2011-05-11 2012-11-28 トヨタ自動車株式会社 内燃機関の制御装置
US9777659B2 (en) * 2011-05-13 2017-10-03 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510612B2 (ja) * 1983-02-11 1993-02-10 Bosch Gmbh Robert
JPH0729419U (ja) * 1993-10-27 1995-06-02 株式会社ユニシアジェックス エンジンの吸入空気流量検出装置
JPH0862012A (ja) * 1994-06-13 1996-03-08 Hitachi Ltd 空気流量計測装置及び空気流量計測方法
JP2003287453A (ja) * 2002-03-27 2003-10-10 Denso Corp 吸入空気流量測定装置
JP2006105847A (ja) * 2004-10-07 2006-04-20 Mitsubishi Heavy Ind Ltd 熱式流量計
JP2008002833A (ja) * 2006-06-20 2008-01-10 Toyota Motor Corp 吸気流量補正装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods

Also Published As

Publication number Publication date
US8869604B2 (en) 2014-10-28
CN103154676A (zh) 2013-06-12
EP2615430A1 (en) 2013-07-17
JPWO2012032617A1 (ja) 2013-12-12
EP2615430A4 (en) 2014-06-18
CN103154676B (zh) 2014-12-10
WO2012032617A1 (ja) 2012-03-15
US20130167626A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5403165B2 (ja) 流量検出装置
US6662640B2 (en) Air amount detector for internal combustion engine
JP5558599B1 (ja) 熱式空気流量計
JP4154991B2 (ja) 内燃機関の吸気量推定装置
KR100988190B1 (ko) 내연기관용 배기가스 정화 장치
JP2017014924A (ja) 過給機付き内燃機関の制御装置
US8656764B2 (en) Flow-rate measuring apparatus
JPH0421809B2 (ja)
JP3981907B2 (ja) 流量測定装置
JP2007155435A (ja) 空気流量測定装置
JP2012127864A (ja) 脈動流の流量測定方法およびガス流量測定装置
JP5479654B2 (ja) 排気ガス流量センサでの合成全流量を求める方法
JP4019413B2 (ja) 吸入空気流量測定装置
JP6544365B2 (ja) 絶対湿度センサ
JP5295078B2 (ja) 内燃機関のガス流量計測装置
JP5120289B2 (ja) 空気流量測定装置
JP2004170357A (ja) 排ガス流量計測装置及び排ガスの流量計測方法
JP2019100182A (ja) 吸入空気量計測装置
JP6628754B2 (ja) 流量測定システム
JP7259787B2 (ja) 計測制御装置
JP4650082B2 (ja) 理想値演算装置
JP2003004496A (ja) 流量測定装置
KR0163456B1 (ko) 내연 기관의 흡입 공기 유량 검출 장치
JP6664279B2 (ja) エンジンのegr率算出方法及びegr装置
JP2006090830A (ja) 発熱抵抗体式流量測定装置及びそれを用いた制御システム

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees