JP5403095B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP5403095B2
JP5403095B2 JP2012074660A JP2012074660A JP5403095B2 JP 5403095 B2 JP5403095 B2 JP 5403095B2 JP 2012074660 A JP2012074660 A JP 2012074660A JP 2012074660 A JP2012074660 A JP 2012074660A JP 5403095 B2 JP5403095 B2 JP 5403095B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
expansion mechanism
outdoor heat
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012074660A
Other languages
English (en)
Other versions
JP2013148328A (ja
Inventor
隆之 瀬戸口
啓介 谷本
則之 奥田
隆宗 奥井
順一 下田
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012074660A priority Critical patent/JP5403095B2/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to CN201280062572.1A priority patent/CN103998875B/zh
Priority to EP12859176.5A priority patent/EP2801770B1/en
Priority to ES12859176T priority patent/ES2797450T3/es
Priority to BR112014014557-1A priority patent/BR112014014557B1/pt
Priority to PCT/JP2012/082912 priority patent/WO2013094638A1/ja
Priority to AU2012354761A priority patent/AU2012354761B2/en
Priority to KR1020147019771A priority patent/KR101452690B1/ko
Priority to US14/366,251 priority patent/US20140360223A1/en
Publication of JP2013148328A publication Critical patent/JP2013148328A/ja
Application granted granted Critical
Publication of JP5403095B2 publication Critical patent/JP5403095B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、冷凍装置、特に、冷却運転及び加熱運転を行うことが可能な冷凍装置に関する。
従来の冷暖房運転可能な空気調和装置等の冷凍装置では、冷房運転(冷却運転)時に最適な冷媒量と、暖房運転(加熱運転)時に最適な冷媒量とが異なる。このため、冷房運転時に放熱器として機能する室外熱交換器の容積と、暖房運転時に放熱器として機能する室内熱交換器の容積とが異なる。通常は、室外熱交換器の容積が室内熱交換器の容積よりも大きいため、暖房運転時に室内熱交換器で収容しきれない冷媒は、圧縮機の吸入側に接続された冷媒貯留タンクなどにより一時的に貯留される。
しかし、上記の冷凍装置において、特許文献1(特開平6−143991号公報)に記載されているような高性能な放熱器が室外熱交換器として使用されるようになると、室外熱交換器の容積が室内熱交換器の容積以下になる。このため、この場合には、冷房運転時に室外熱交換器で収容しきれない冷媒(余剰冷媒)が発生し、その量は、冷媒貯留タンクなどに貯留可能な量を超えてしまうことになる。
本発明の課題は、冷却運転及び加熱運転を行うことが可能な冷凍装置において、室外熱交換器の容積が室内熱交換器の容積以下の場合に、冷却運転時に生じる余剰冷媒を収容できるようにすることにある。
第1の観点にかかる冷凍装置は、冷却運転時に圧縮機、室外熱交換器、膨張機構及び室内熱交換器の順に冷媒が流れ、加熱運転時に圧縮機、室内熱交換器、膨張機構及び室外熱交換器の順に冷媒が流れる冷凍装置である。そして、この冷凍装置では、室内熱交換器がクロスフィン型熱交換器、室外熱交換器が積層型熱交換器であり、室内熱交換器に対する室外熱交換器の容積比が0.3〜0.9である。しかも、膨張機構は、冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける中間圧まで減圧する上流側膨張機構と、上流側膨張機構において減圧された冷凍サイクルにおける中間圧の冷媒を冷凍サイクルにおける低圧まで減圧する下流側膨張機構とを有している。室外熱交換器、上流側膨張機構及び下流側膨張機構は、室外ユニットに設けられ、室内熱交換器は、室内ユニットに設けられ、室外ユニットと室内ユニットとは、液冷媒連絡管を介して接続されている。冷媒は、R32であり、上流側膨張機構と下流側膨張機構との間には、上流側膨張機構によって減圧された冷凍サイクルにおける中間圧の冷媒を貯留する冷媒貯留タンクが設けられており、冷媒貯留タンクは、冷却運転時に室外熱交換器の容積が室内熱交換器の容積よりも小さいことに起因して発生する余剰冷媒を収容する。
積層型熱交換器の容積は、同等の熱交換性能を有するクロスフィン型熱交換器の容積に比べて小さい。例えば、室外熱交換器及び室内熱交換器の両方がクロスフィン型熱交換器である冷凍装置に対して、室外熱交換器だけを同等の熱交換性能を有する積層型熱交換器に変更した場合を想定する。すると、この積層型の室外熱交換器の容量は、クロスフィン型の室外熱交換器の容積に比べて小さくなるだけでなく、これに接続されているクロスフィン型の室内熱交換器の容量よりも小さくなる。
このため、このような冷凍装置では、室外熱交換器の容量が室内熱交換器の容量よりも小さくなることによって、冷却運転時に、余剰冷媒が発生することになる。このような余剰冷媒が、気相部分を有する室内熱交換器から圧縮機の吸入側までの部分に過剰に行き渡ると、冷媒制御に支障をきたすおそれがある。
そこで、ここでは、上流側膨張機構と下流側膨張機構との間に上流側膨張機構によって減圧された冷媒を貯留する冷媒貯留タンクを設けることによって、冷却運転時に室外熱交換器で収容しきなくなった余剰冷媒を、室外熱交換器の下流側近傍に位置する冷媒貯留タンクに収容するようにしている。
これにより、この冷凍装置では、気相部分を有する室内熱交換器から圧縮機の吸入側までの部分に過剰に行き渡ることを防ぐことができるようになるため、冷媒制御に支障をきたすことを防止することができる。
また、冷凍装置において冷媒としてR32を使用すると、低温条件においては、圧縮機の潤滑のために冷媒とともに封入されている冷凍機油の溶解度が非常に小さくなる傾向がある。このため、冷凍サイクルにおける低圧になると、冷媒温度の低下によって、冷凍機油の溶解度が大きく低下することになる。ここで、例えば、圧縮機の吸入側に冷媒貯留タンクを有する従来の冷凍装置において、冷媒としてR32を使用すると、冷凍サイクルにおける低圧になる冷媒貯留タンク内で冷媒と冷凍機油が二層分離し、圧縮機に冷凍機油が戻りにくくなる。
しかし、この冷凍装置では、上記のように、上流側膨張機構と下流側膨張機構との間に冷媒貯留タンクを設けているため、圧縮機の吸入側に冷媒貯留タンクを設ける場合に比べて、圧縮機に冷凍機油が戻りやすくなっている。
このように、この冷凍装置では、上流側膨張機構と下流側膨張機構との間に冷媒貯留タンクを設けることによって、室外熱交換器として積層型熱交換器等を使用する等によって室外熱交換器の容積が室内熱交換器の容積以下にすることによって生じる余剰冷媒の問題だけでなく、冷媒としてR32を使用することによって生じる圧縮機への油戻しの問題を解消することができる。
第2の観点にかかる冷凍装置は、冷却運転時に圧縮機、室外熱交換器、膨張機構及び室内熱交換器の順に冷媒が流れ、加熱運転時に圧縮機、室内熱交換器、膨張機構及び室外熱交換器の順に冷媒が流れる冷凍装置である。そして、この冷凍装置では、室外熱交換器の容積が、室内熱交換器の容積の30%〜90%である。しかも、膨張機構は、冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける中間圧まで減圧する上流側膨張機構と、上流側膨張機構において減圧された冷凍サイクルにおける中間圧の冷媒を冷凍サイクルにおける低圧まで減圧する下流側膨張機構とを有している。室外熱交換器、上流側膨張機構及び下流側膨張機構は、室外ユニットに設けられ、室内熱交換器は、室内ユニットに設けられ、室外ユニットと室内ユニットとは、液冷媒連絡管を介して接続されている。冷媒は、R32であり、上流側膨張機構と下流側膨張機構との間には、上流側膨張機構によって減圧された冷凍サイクルにおける中間圧の冷媒を貯留する冷媒貯留タンクが設けられており、冷媒貯留タンクは、冷却運転時に室外熱交換器の容積が室内熱交換器の容積よりも小さいことに起因して発生する余剰冷媒を収容する。
室外熱交換器の容積が室内熱交換器の容積以下になると、冷却運転時に、余剰冷媒が発生することになる。このような余剰冷媒が、気相部分を有する室内熱交換器から圧縮機の吸入側までの部分に過剰に行き渡ると、冷媒制御に支障をきたすおそれがある。
そこで、ここでは、上流側膨張機構と下流側膨張機構との間に上流側膨張機構によって減圧された冷媒を貯留する冷媒貯留タンクを設けることによって、冷却運転時に室外熱交換器で収容しきなくなった余剰冷媒を、室外熱交換器の下流側近傍に位置する冷媒貯留タンクに収容するようにしている。
これにより、この冷凍装置では、気相部分を有する室内熱交換器から圧縮機の吸入側までの部分に過剰に行き渡ることを防ぐことができるようになるため、冷媒制御に支障をきたすことを防止することができる。
また、冷凍装置において冷媒としてR32を使用すると、低温条件においては、圧縮機の潤滑のために冷媒とともに封入されている冷凍機油の溶解度が非常に小さくなる傾向がある。このため、冷凍サイクルにおける低圧になると、冷媒温度の低下によって、冷凍機油の溶解度が大きく低下することになる。ここで、例えば、圧縮機の吸入側に冷媒貯留タンクを有する従来の冷凍装置において、冷媒としてR32を使用すると、冷凍サイクルにおける低圧になる冷媒貯留タンク内で冷媒と冷凍機油が二層分離し、圧縮機に冷凍機油が戻りにくくなる。
しかし、この冷凍装置では、上記のように、上流側膨張機構と下流側膨張機構との間に冷媒貯留タンクを設けているため、圧縮機の吸入側に冷媒貯留タンクを設ける場合に比べて、圧縮機に冷凍機油が戻りやすくなっている。
このように、この冷凍装置では、上流側膨張機構と下流側膨張機構との間に冷媒貯留タンクを設けることによって、室外熱交換器として積層型熱交換器等を使用する等によって室外熱交換器の容積が室内熱交換器の容積以下にすることによって生じる余剰冷媒の問題だけでなく、冷媒としてR32を使用することによって生じる圧縮機への油戻しの問題を解消することができる。
の観点にかかる冷凍装置は、第1又は第2の観点のいずれかにかかる冷凍装置において、室外熱交換器が、間隔を空けて積み重なるように配列された複数の扁平管と、隣接する扁平管に挟まれたフィンと、を有する積層型熱交換器である。
この冷凍装置では、上記の第1又は第2の観点にかかる冷凍装置と同様に、室外熱交換器の容量が室内熱交換器の容量以下になるため、冷凍装置内の冷媒量が低減される。尚、この冷凍装置では、冷却運転時に余剰冷媒が発生するが、この余剰冷媒を冷媒貯留タンクに収容することができるため、冷媒制御に支障をきたすことを防止することができる。
の観点にかかる冷凍装置は、第1又は第2の観点のいずれかにかかる冷凍装置において、室外熱交換器が、間隔を空けて積み重なるように配列された複数の扁平管と、扁平管が差し込まれる切り欠きが形成されたフィンと、を有する積層型熱交換器である。
この冷凍装置では、上記の第1又は第2の観点にかかる冷凍装置と同様に、室外熱交換器の容量が室内熱交換器の容量以下になるため、冷凍装置内の冷媒量が低減される。尚、この冷凍装置では、冷却運転時に余剰冷媒が発生するが、この余剰冷媒を冷媒貯留タンクに収容することができるため、冷媒制御に支障をきたすことを防止することができる。
の観点にかかる冷凍装置は、第1又は第2の観点のいずれかにかかる冷凍装置において、室外熱交換器は、蛇行形状に成形された扁平管と、扁平管の互いに隣接する面の間に挟まれたフィンと、を有する積層型熱交換器である。
この冷凍装置では、上記の第1又は第2の観点にかかる冷凍装置と同様に、室外熱交換器の容量が室内熱交換器の容量以下になるため、冷凍装置内の冷媒量が低減される。尚、この冷凍装置では、冷却運転時に余剰冷媒が発生するが、この余剰冷媒を冷媒貯留タンクに収容することができるため、冷媒制御に支障をきたすことを防止することができる。
の観点にかかる冷凍装置は、第2の観点にかかる冷凍装置において、室外熱交換器及び室内熱交換器が、クロスフィン型熱交換器であり、室外熱交換器の伝熱管径が、室内熱交換器の伝熱管径よりも細く設定されている。
この冷凍装置では、上記の第2の観点にかかる冷凍装置と同様に、室外熱交換器の容量が室内熱交換器の容量以下になるため、冷凍装置内の冷媒量が低減される。尚、この冷凍装置では、冷却運転時に余剰冷媒が発生するが、この余剰冷媒を冷媒貯留タンクに収容することができるため、冷媒制御に支障をきたすことを防止することができる。
の観点にかかる冷凍装置は、第1〜第6の観点のいずれかにかかる冷凍装置において、冷媒貯留タンク内に溜まる冷媒のガス成分を圧縮機又は圧縮機の吸入管に導くバイパス管がさらに設けられている。
この冷凍装置では、上流側膨張機構において減圧された冷媒が、冷媒貯留タンクにおいて液成分とガス成分とに分離され、ガス成分はバイパス管へ向うことになる。
これにより、この冷凍装置では、加熱運転時に、蒸発に寄与しないガス成分が冷媒の蒸発器として機能する室外熱交換器に流入しなくなるため、その分だけ、冷媒の蒸発器として機能する室外熱交換器を流れる冷媒の流量を減少させることができ、冷凍サイクルにおける減圧ロスを低減することができる。
の観点にかかる冷凍装置は、第の観点にかかる冷凍装置において、バイパス管が、流量調整機構を有する。
圧縮機の運転周波数が高い場合には、冷媒貯留タンクから気液二相状態の冷媒がバイパス管を通じて圧縮機または圧縮機の吸入管に戻り、圧縮機に吸入されるおそれがある。
しかし、この冷凍装置では、バイパス管に流量調整機構が設けられているため、気液二相状態の冷媒の液成分が減圧されて蒸発することになる。
これにより、この冷凍装置では、圧縮機又は圧縮機の吸入管に液成分が戻ることを防止することができる。
また、この冷凍装置では、加熱運転時に、流量調整機構を通過した冷媒が、室外熱交換器において蒸発した後に、圧縮機又は圧縮機の吸入管に向う冷媒に合流することになる。このとき、流量調整機構が電動膨張弁である場合には、弁開度を制御することによって、圧縮機に吸入される直前の冷媒状態を、より最適に調整することができる。しかも、流量調整機構の弁開度を制御することによって、圧縮機に戻る冷媒の流量を増減させることができるため、室内熱交換器側の冷凍負荷に応じて冷媒の循環流量、すなわち、室内熱交換器を流れる冷媒の流量を制御することができる。
の観点にかかる冷凍装置は、第1〜第8の観点のいずれかにかかる冷凍装置において、冷媒貯留タンクが、気液分離器である。
この冷凍装置では、気液分離器からなる冷媒貯留タンクが、液成分を溜める機能、及び、液成分とガス成分とを分離する機能の両方を担うことになる。
これにより、この冷凍装置では、冷媒貯留機能を有する機器と気液分離機能を有する機器とを併設する必要がなくなるため、装置構成の簡素化に寄与する。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1〜第6の観点にかかる冷凍装置では、冷却運転時に室外熱交換器で収容しきなくなった余剰冷媒を、室外熱交換器の下流側近傍に位置する冷媒貯留タンクに収容できるため、冷媒制御に支障をきたすことを防止することができる。また、第3又は第7の観点にかかる冷凍装置のように、冷媒としてR32を使用する場合には、これによって生じる圧縮機への油戻しの問題を解消することができる。
第7の観点にかかる冷凍装置では、加熱運転時に、蒸発に寄与しないガス成分が冷媒の蒸発器として機能する室外熱交換器に流入しなくなるため、その分だけ、冷媒の蒸発器として機能する室外熱交換器を流れる冷媒の流量を減少させることができ、冷凍サイクルにおける減圧ロスを低減することができる。
第8の観点にかかる冷凍装置では、圧縮機又は圧縮機の吸入管に液成分が戻ることを防止することができる。また、圧縮機に吸入される直前の冷媒状態を、より最適に調整することができる。しかも、室内熱交換器側の冷凍負荷に応じて冷媒の循環流量、すなわち、室内熱交換器を流れる冷媒の流量を制御することができる。
第9の観点にかかる冷凍装置では、冷媒貯留機能を有する機器と気液分離機能を有する機器とを併設する必要がなくなるため、装置構成の簡素化に寄与する。
本発明の一実施形態にかかる冷凍装置としての空気調和装置の概略構成図である。 室内熱交換器の概略正面図である。 室外熱交換器の外観斜視図である。 室外熱交換器容積/室内熱交換器容積比を能力別に表したグラフである。 変形例1における冷媒貯留タンクの概略断面図である。 変形例2における室外熱交換器の外観斜視図である。 変形例2における室外熱交換器の縦断面図である。
以下、本発明にかかる冷凍装置の実施形態及びその変形例について、図面に基づいて説明する。尚、本発明にかかる冷凍装置の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(1)空気調和装置の構成
図1は、本発明の一実施形態にかかる冷凍装置としての空気調和装置1の概略構成図である。
空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、冷却運転としての冷房運転及び加熱運転としての暖房運転を行うことが可能な冷凍装置である。空気調和装置1は、主として、室外ユニット2と、室内ユニット4とが接続されることによって構成されている。ここで、室外ユニット2と室内ユニット4とは、液冷媒連絡管5及びガス冷媒連絡管6を介して接続されている。すなわち、空気調和装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と、室内ユニット4とが冷媒連絡管5、6を介して接続されることによって構成されている。
<室内ユニット>
室内ユニット4は、室内に設置されており、冷媒回路10の一部を構成している。室内ユニット4は、主として、室内熱交換器41を有している。
室内熱交換器41は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する熱交換器である。室内熱交換器41の液側は液冷媒連絡管5に接続されており、室内熱交換器41のガス側はガス冷媒連絡管6に接続されている。
室内熱交換器41は、図2に示すように、クロスフィン型熱交換器であり、主として、伝熱フィン411と、伝熱管412とを有している。ここで、図2は、室内熱交換器41の正面図である。伝熱フィン411は、薄いアルミニウム製の平板であり、伝熱フィン411には、複数の貫通孔が形成されている。伝熱管412は、伝熱フィン411の貫通孔に挿入される直管412aと、隣り合う直管412aの端部同士を連結するU字管412b、412cとを有している。直管412aは、伝熱フィン411の貫通孔に挿入された後に拡管加工されることによって、伝熱フィン411と密着させられている。直管412aと第1U字管412bとは一体に形成されており、第2U字管412cは、直管412aが伝熱フィン411の貫通孔に挿入され拡管加工された後に、溶接やろう付け等によって直管411aの端部に連結されている。
また、室内ユニット4は、室内ユニット4内に室内空気を吸入して、室内熱交換器41において冷媒と熱交換させた後に、供給空気として室内に供給するための室内ファン42を有している。ここでは、室内ファン42として、室内ファンモータ43によって駆動される遠心ファンや多翼ファン等が使用されている。
また、室内ユニット4は、室内ユニット4を構成する各部の動作を制御する室内側制御部44を有している。そして、室内側制御部44は、室内ユニット4の制御を行うためのマイクロコンピュータやメモリ等を有しており、リモートコントローラ(図示せず)との間で制御信号等のやりとりを行ったり、室外ユニット2との間で伝送線8aを介して制御信号等のやりとりを行うことができるようになっている。
<室外ユニット>
室外ユニット2は、室外に設置されており、冷媒回路10の一部を構成している。室外ユニット2は、主として、圧縮機21と、切換機構22と、室外熱交換器23と、第1膨張機構24と、冷媒貯留タンク25と、第2膨張機構26と、液側閉鎖弁27と、ガス側閉鎖弁28とを有している。
圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機21は、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)をインバータにより制御される圧縮機モータ21aによって回転駆動する密閉式構造となっている。圧縮機21は、吸入側に吸入管31が接続されており、吐出側に吐出管32が接続されている。吸入管31は、圧縮機21の吸入側と切換機構22の第1ポート22aとを接続する冷媒管である。吸入管31には、アキュムレータ29が設けられている。吐出管32は、圧縮機21の吐出側と切換機構22の第2ポート22bとを接続する冷媒管である。
切換機構22は、冷媒回路10における冷媒の流れの方向を切り換えるための機構である。切換機構22は、冷房運転時には、室外熱交換器23を圧縮機21において圧縮された冷媒の放熱器として機能させ、かつ、室内熱交換器41を室外熱交換器23において放熱した冷媒の蒸発器として機能させる切り換えを行う。すなわち、切換機構22は、冷房運転時には、第2ポート22bと第3ポート22cとを連通させ、かつ、第1ポート22aと第4ポート22dとを連通させる切り換えを行う。これにより、圧縮機21の吐出側(ここでは、吐出管32)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の切換機構22の実線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の切換機構22の実線を参照)。また、切換機構22は、暖房運転時には、室外熱交換器23を室内熱交換器41において放熱した冷媒の蒸発器として機能させ、かつ、室内熱交換器41を圧縮機21において圧縮された冷媒の放熱器として機能させる切り換えを行う。すなわち、切換機構22は、暖房運転時には、第2ポート22bと第4ポート22dとを連通させ、かつ、第1ポート22aと第3ポート22cとを連通させる切り換えを行う。これにより、圧縮機21の吐出側(ここでは、吐出管32)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の切換機構22の破線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の切換機構22の破線を参照)。第1ガス冷媒管33は、切換機構22の第3ポート22cと室外熱交換器23のガス側とを接続する冷媒管である。第2ガス冷媒管33は、切換機構22の第4ポート22dとガス冷媒連絡管6側とを接続する冷媒管である。切換機構22は、ここでは、四路切換弁である。
室外熱交換器23は、冷房運転時には室外空気を冷却源とする冷媒の放熱器として機能し、暖房運転時には室外空気を加熱源とする冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、液側が液冷媒管35に接続されており、ガス側が第1ガス冷媒管33に接続されている。液冷媒管35は、室外熱交換器23の液側と液冷媒連絡管7側とを接続する冷媒管である。
室外熱交換器23は、図3に示すように、積層型熱交換器であり、主として、扁平管231と、波形フィン232と、ヘッダ233a、233bとを有している。ここで、図3は、室外熱交換器23の外観斜視図である。扁平管231は、アルミニウムまたはアルミニウム合金で成形されており、伝熱面となる平面部231aと、冷媒が流れる複数の内部流路(図示せず)を有している。扁平管231は、平面部231aを上下に向けた状態で間隔(通風空間)を空けて積み重なるように複数段配列されている。波形フィン232は、波形に折り曲げられたアルミニウム製またはアルミニウム合金製のフィンである。波形フィン232は、上下に隣接する扁平管231に挟まれた通風空間に配置され、谷部および山部が扁平管231の平面部231aと接触している。なお、谷部と山部と平面部231aとはロウ付け等によって接合されている。ヘッダ233a、233bは、上下方向に複数段配列された扁平管231の両端に連結されている。ヘッダ233a、233bは、扁平管231を支持する機能と、冷媒を扁平管231の内部流路に導く機能と、内部流路から出てきた冷媒を集合させる機能とを有している。室外熱交換器23が冷媒の放熱器として機能する場合には、第1ヘッダ233aの第1出入口234から流入した冷媒は、最上段の扁平管231の各内部流路へほぼ均等に分配され、第2ヘッダ233bに向って流れる。第2ヘッダ233bに達した冷媒は、2段目の扁平管231の各内部流路へ均等に分配され第1ヘッダ233aへ向って流れる。以降、奇数段目の扁平管231内の冷媒は、第2ヘッダ233bへ向って流れ、偶数段目の扁平管231内の冷媒は、第1ヘッダ233aに向って流れる。そして、最下段で且つ偶数段目の扁平管231内の冷媒は、第1ヘッダ233aに向って流れ、第1ヘッダ233aで集合して、第1ヘッダ233aの第2出入口235から流出する。室外熱交換器23が冷媒の蒸発器として機能する場合には、第1ヘッダ233aの第2出入口235から冷媒が流入して、冷媒の放熱器として機能する場合とは逆方向に扁平管231及びヘッダ233a、233bを流れた後に、第1ヘッダ233aの第1出入口234から流出する。そして、室外熱交換器23が冷媒の放熱器として機能する場合には、扁平管231内を流れる冷媒は、波形フィン232を介して通風空間を流れる空気流に放熱する。また、室外熱交換器23が冷媒の蒸発器として機能する場合には、扁平管231内を流れる冷媒は、波形フィン232を介して通風空間を流れる空気流から吸熱する。ここでは、室外熱交換器23として、上記のような積層型熱交換器を使用することによって、室外熱交換器23の容量が、室内熱交換器41の容量よりも小さくなっている。この点に関して、パッケージエアコンを例に挙げて、図4を用いて説明する。ここで、図4は、室外熱交換器容積/室内熱交換器容積比を能力別に表したグラフである。図4において、◇はパッケージエアコンの通常タイプ(クロスフィン型室外熱交換器)、◆はパッケージエアコンの室外熱交換器細径タイプ(積層型室外熱交換器)、△はルームエアコンの通常タイプ(クロスフィン型室外熱交換器)、▲はルームエアコンの室外熱交換器細径タイプ(積層型室外熱交換器)を示している。図4によれば、室外熱交換器と室内熱交換器とがともにクロスフィン型熱交換器である場合に対して、室外熱交換器だけを同等の熱交換性能を有する積層型熱交換器に変更した場合には、室外熱交換器容量/室内熱交換器容積比が1.0を下回っている。これは、積層型熱交換器の容量がクロスフィン型の室外熱交換器の容積に比べて小さくなるだけでなく、これに接続されているクロスフィン型の室内熱交換器41の容量よりも小さくなることを意味している。このため、空気調和装置1では、冷房運転時に余剰冷媒が発生することになる。そこで、空気調和装置1では、その余剰冷媒を冷媒貯留タンク25に収容するようにしている。尚、図4によれば、室外熱交換器容量/室内熱交換器容積比が0.3〜0.9のときに、余剰冷媒を収容する冷媒貯留タンク25を用いることが好ましいが、室外熱交換器容量/室内熱交換器容積比が1.0の場合でも冷媒貯留タンク25を用いることによって、安定した冷媒制御が可能になる。
第1膨張機構24は、冷房運転時には、室外熱交換器23において放熱した冷媒を冷凍サイクルにおける中間圧まで減圧する上流側膨張機構として機能する機器である、また、第1膨張機構24は、暖房運転時には、上流側膨張機構としての第2膨張機構26において減圧された後に冷媒貯留タンク25に一時的に貯留された冷媒を冷凍サイクルにおける低圧まで減圧する下流側膨張機構として機能する機器である。第1膨張機構24は、液冷媒管35の室外熱交換器23寄りの部分に設けられている。ここでは、第1膨張機構24として、電動膨張弁が使用されている。
第2膨張機構26は、冷房運転時には、上流側膨張機構としての第1膨張機構24において減圧された後に冷媒貯留タンク25に一時的に貯留された冷媒を冷凍サイクルにおける低圧まで減圧する下流側膨張機構として機能する機器である。また、第2膨張機構26は、暖房運転時には、室内熱交換器41において放熱した冷媒を冷凍サイクルにおける中間圧まで減圧する上流側膨張機構として機能する機器である。第2膨張機構26は、液冷媒管35の液側閉鎖弁27寄りの部分に設けられている。ここでは、第2膨張機構26として、電動膨張弁が使用されている。
冷媒貯留タンク25は、第1膨張機構24と第2膨張機構26との間に設けられており、上流側膨張機構として機能する第1膨張機構24又は第2膨張機構26によって減圧された冷媒を余剰冷媒として溜めることが可能な容器である。例えば、室内熱交換器41が冷媒の放熱器として機能する暖房運転時に室内熱交換器41に収容することができる液冷媒量が1100ccであり、室外熱交換器23が冷媒の放熱器として機能する冷房運転時に室外熱交換器23に収容することができる液冷媒量が800ccである場合には、冷房運転時に室外熱交換器23に収容しきれずに余った液冷媒300ccは、冷媒貯留タンク25に一時的に収容される。また、例えば、冷媒貯留タンク25に入る直前の冷媒には、上流側膨張機構として機能する第1膨張機構24又は第2膨張機構26において減圧される際に発生したガス成分が含まれている。このため、この冷媒は、冷媒貯留タンク25に入った後、液成分とガス成分とに分離され、下部側に液冷媒が貯留され、上部側にガス冷媒が貯留されることになる。そして、冷媒貯留タンク25で分離されたガス冷媒は、バイパス管30を通じて、圧縮機21の吸入管31へ流れる。また、冷媒貯留タンク25で分離された液冷媒は、上流側膨張機構として機能する第2膨張機構26又は第1膨張機構24において減圧された後に、室外熱交換器23へ流れる。ここで、バイパス管30は、冷媒貯留タンク25の上部と吸入管31の途中部分との間を接続するように設けられている。バイパス管30の途中には、流量調整機構30aが設けられている。ここでは、流量調整機構30aとして、電動膨張弁が使用されている。尚、バイパス管30の出口は、吸入管31の途中部分に接続するのではなく、圧縮機21に直接接続するようにしてもよい。
液側閉鎖弁27及びガス側閉鎖弁28は、外部の機器・配管(具体的には、液冷媒連絡管5及びガス冷媒連絡管6)との接続口に設けられた弁である。液側閉鎖弁26は、液冷媒管35の端部に設けられている。ガス側閉鎖弁27は、第2ガス冷媒管34の端部に設けられている。
また、室外ユニット2は、室外ユニット2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための室外ファン36を有している。ここでは、室外ファン36として、室外ファンモータ37によって駆動されるプロペラファン等が使用されている。
また、室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部38を有している。そして、室外側制御部38は、室外ユニット2の制御を行うためのマイクロコンピュータやメモリ等を有しており、室内ユニット4の室内側制御部43との間で伝送線8aを介して制御信号等のやりとりを行うことができるようになっている。すなわち、室内側制御部44と室外側制御部38と制御部38、44間を接続する伝送線8aとによって、空気調和装置1全体の運転制御を行う制御部8が構成されている。
制御部8は、各種運転設定や各種センサの検出値等に基づいて、各種機器及び弁21a、22、24、26、30a、37、43等の動作を制御することができるようになっている。
<冷媒連絡管>
冷媒連絡配管5、6は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニットと室内ユニットとの組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。
以上のように、室外ユニット2と、室内ユニット4と、冷媒連絡管5、6とが接続されることによって、空気調和装置1の冷媒回路10が構成されている。冷媒回路10は、冷却運転としての冷房運転時に、圧縮機21、室外熱交換器23、上流側膨張機構としての第1膨張機構24、冷媒貯留タンク25、下流側膨張機構としての第2膨張機構26、及び、室内熱交換器41の順に冷媒が流れる冷凍サイクルを行うようになっている。また、冷媒回路10は、加熱運転としての暖房運転時に、圧縮機21、室内熱交換器41、上流側膨張機構としての第2膨張機構26、冷媒貯留タンク25、下流側膨張機構としての第1膨張機構24、及び、室外熱交換器23の順に冷媒が流れる冷凍サイクルを行うようになっている。そして、空気調和装置1は、室内側制御部44と室外側制御部38とから構成される制御部8によって、冷房運転及び暖房運転等の各種運転を行うことができるようになっている。
(2)空気調和装置の動作
空気調和装置1は、上記のように、冷房運転、及び、暖房運転を行うことができる。以下、空気調和装置1の冷房運転時及び暖房運転時の動作について説明する。
<暖房運転>
暖房運転時には、切換機構22が図1の破線で示される状態、すなわち、第2ポート22bと第4ポート22dとを連通させ、かつ、第1ポート22aと第3ポート22cとを連通させる切り換えを行う。
この冷媒回路10において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、高圧になるまで圧縮された後に吐出される。
圧縮機21から吐出された高圧の冷媒は、切換機構22、ガス側閉鎖弁28及びガス冷媒連絡管6を通じて、室内熱交換器41に送られる。
室内熱交換器41に送られた高圧の冷媒は、室内熱交換器41において、室内空気と熱交換を行って放熱する。これにより、室内空気は加熱される。ここで、室内熱交換器41の容量は、室外熱交換器23の容量よりも大きいため、暖房運転時においては、ほとんどの液冷媒が室内熱交換器41に収容されることになる。
室内熱交換器41で放熱した高圧の冷媒は、液冷媒連絡管5及び液側閉鎖弁27を通じて、上流側膨張機構として機能する第2膨張機構26に送られる。
第2膨張機構26に送られた冷媒は、第2膨張機構26によって中間圧まで減圧され、その後、冷媒貯留タンク25に送られる。冷媒貯留タンク25に入る直前の冷媒には、第2膨張機構26において減圧される際に発生したガス成分が含まれているが、冷媒貯留タンク25に入った後、液成分とガス成分とに分離され、下部側に液冷媒が貯留され、上部側にガス冷媒が貯留される。そして、このとき、バイパス管30の流量調整機構30aが開状態に制御されるため、冷媒貯留タンク25のガス冷媒は、バイパス管30を通じて圧縮機21の吸入管31へ向う。冷媒貯留タンク25の液冷媒は、下流側膨張機構として第1膨張機構24によって低圧まで減圧された後に、室外熱交換器23に送られる。
室外熱交換器23に送られた低圧の冷媒は、室外熱交換器23において、室外ファン36によって供給される室外空気と熱交換を行って蒸発する。このとき、冷媒貯留タンク25における気液分離操作、及び、気液分離されたガス冷媒をパイパス管30を通じて圧縮機21に吸入させる操作によって、室外熱交換器23に流入する冷媒が減少している。このため、室外熱交換器23を流れる冷媒の流量が減少し、その分だけ圧力損失を小さくすることができるため、冷凍サイクルにおける減圧ロスを低減させることができる。
室外熱交換器23で蒸発した低圧の冷媒は、切換機構22を通じて、再び、圧縮機21に吸入される。
<冷房運転>
冷房運転時には、切換機構22が図1の実線で示される状態、すなわち、第2ポート22bと第3ポート22cとを連通させ、かつ、第1ポート22aと第4ポート22dとを連通させる切り換えを行う。
この冷媒回路10において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、高圧になるまで圧縮された後に吐出される。
圧縮機21から吐出された高圧の冷媒は、切換機構22を通じて、室外熱交換器23に送られる。
室外熱交換器23に送られた高圧の冷媒は、室外熱交換器23において、室外空気と熱交換を行って放熱する。
室外熱交換器23において放熱した高圧の冷媒は、上流側膨張機構として機能する第1膨張機構24に送られて、第1膨張機構24によって中間圧まで減圧され、その後、冷媒貯留タンク25に送られる。ここで、室外熱交換器23の容量は、室内熱交換器41の容量以下であるため、冷房運転時においては、室外熱交換器23が全ての液冷媒を収容することができない。このため、室外熱交換器23に収容しきれない液冷媒は冷媒貯留タンク25に溜まり、冷媒貯留タンク25は液冷媒で満たされる。冷媒貯留タンク25に入る直前の冷媒には、第1膨張機構24において減圧される際に発生したガス成分が含まれているが、冷媒貯留タンク25に入った後、液成分とガス成分とに分離され、下部側に液冷媒が貯留され、上部側にガス冷媒が貯留される。そして、このとき、バイパス管30の流量調整機構30aが開状態に制御されるため、冷媒貯留タンク25のガス冷媒は、バイパス管30を通じて圧縮機21の吸入管31へ向う。冷媒貯留タンク25の液冷媒は、下流側膨張機構として機能する第2膨張機構26によって低圧まで減圧された後に、液側閉鎖弁27及び液冷媒連絡管5を通じて、室内熱交換器41に送られる。
室内熱交換器41に送られた低圧の冷媒は、室内熱交換器41において、室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却される。このとき、冷媒貯留タンク25における気液分離操作、及び、気液分離されたガス冷媒をパイパス管30を通じて圧縮機21に吸入させる操作によって、室内熱交換器41に流入する冷媒が減少している。このため、室内熱交換器41を流れる冷媒の流量が減少し、その分だけ圧力損失を小さくすることができるため、冷凍サイクルにおける減圧ロスを低減させることができる。
室内熱交換器51において蒸発した低圧の冷媒は、ガス冷媒連絡管6、ガス側閉鎖弁28及び切換機構22を通じて、再び、圧縮機21に吸入される。
(3)空気調和装置の特徴
本実施形態の空気調和装置1には、以下のような特徴がある。
<A>
空気調和装置1では、上記のように、室内熱交換器41がクロスフィン型熱交換器、室外熱交換器23が積層型熱交換器であり、室外熱交換器23の容積が、室内熱交換器41の容積の100%以下である。
このため、空気調和装置1では、冷却運転としての冷房運転時に、余剰冷媒が発生することになる。このような余剰冷媒が、気相部分を有する室内熱交換器41から圧縮機21の吸入側までの部分に過剰に行き渡ると、冷媒制御に支障をきたすおそれがある。
そこで、空気調和装置1では、上記のように、上流側膨張機構としての第1膨張機構24及び第2膨張機構26の一方と下流側膨張機構としての第1膨張機構24及び第2膨張機構26の他方との間に、上流側膨張機構によって減圧された冷媒を貯留する冷媒貯留タンク25を設けるようにしている。そして、空気調和装置1では、冷房運転時に室外熱交換器23で収容しきなくなった余剰冷媒を、室外熱交換器23の下流側近傍に位置する冷媒貯留タンク25に収容するようにしている。
これにより、空気調和装置1では、気相部分を有する室内熱交換器41から圧縮機21の吸入側までの部分に過剰に行き渡ることを防ぐことができるようになるため、冷媒制御に支障をきたすことを防止することができる。
<B>
空気調和装置1では、上記のように、バイパス管30が設けられている。バイパス管30は、冷媒貯留タンク25内に溜まる冷媒のガス成分を圧縮機21又は圧縮機21の吸入管31に導くようになっている。
空気調和装置1では、上流側膨張機構としての第1膨張機構24及び第2膨張機構26の一方において減圧された冷媒が、冷媒貯留タンク25において液成分とガス成分とに分離され、ガス成分はバイパス管30へ向うことになる。
これにより、空気調和装置1では、暖房運転時に、蒸発に寄与しないガス成分が冷媒の蒸発器として機能する室外熱交換器23に流入しなくなるため、その分だけ、冷媒の蒸発器として機能する室外熱交換器23を流れる冷媒の流量を減少させることができ、冷凍サイクルにおける減圧ロスを低減することができる。
<C>
圧縮機21の運転周波数が高い場合には、冷媒貯留タンク25から気液二相状態の冷媒がバイパス管30を通じて圧縮機21または圧縮機21の吸入管31に戻り、圧縮機21に吸入されるおそれがある。
しかし、空気調和装置1では、バイパス管30に流量調整機構30aが設けられているため、気液二相状態の冷媒の液成分が減圧されて蒸発することになる。
これにより、空気調和装置1では、圧縮機21又は圧縮機21の吸入管31に液成分が戻ることを防止することができる。
<D>
また、空気調和装置1では、暖房運転時に、流量調整機構30aを通過した冷媒が、室内熱交換器41や室外熱交換器23において蒸発した後に、圧縮機21又は圧縮機21の吸入管31に向う冷媒に合流することになる。このとき、流量調整機構30aが電動膨張弁である場合には、弁開度を制御することによって、圧縮機21に吸入される直前の冷媒状態を、より最適に調整することができる。しかも、流量調整機構30aの弁開度を制御することによって、圧縮機21に戻る冷媒の流量を増減させることができるため、室内熱交換器41側の冷凍負荷に応じて冷媒の循環流量、すなわち、室内熱交換器41を流れる冷媒の流量を制御することができる。
(4)変形例1
上記実施形態では、冷媒貯留タンク25として冷媒を貯留する容器を採用しているが、これに限定されず、例えば、図5に示すようなサイクロン方式の気液分離器を採用してもよい。
本変形例の冷媒貯留タンク25は、主として、円筒容器251、第1接続管252、第2接続管253、及び、第3接続管254を有している。
第1接続管252は、円筒容器251の円周側壁の接線方向に連結されており、円筒容器251の内部と下流側膨張機構としての第2膨張機構26又は第1膨張機構24とを連絡している。第2接続管253は、円筒容器251の底壁に連結されており、円筒容器251の内部と上流側膨張機構としての第1膨張機構24又は第2膨張機構26とを連絡している。第3接続管254は、円筒容器251の上壁に連結されており、円筒容器251の内部とバイパス管30とを連絡している。
このような構成により、第1接続管252を通じて円筒容器251に流入する中間圧の冷媒は、円筒容器251の円周側壁の内周面251aに沿って渦を巻くように流れ、そのとき、その内周面251aに液冷媒が付着し液冷媒とガス冷媒とが効率よく分離される。
液冷媒は重力によって降下して、下部側に溜まり、第2接続管253を通じて円筒容器251から流出する。他方、ガス冷媒は旋回しながら上昇して、上部側に溜まり、第3接続管254を通じて円筒容器251から流出する。
以上のように、本変形例では、冷媒貯留タンク25として、サイクロン方式の気液分離器を採用しているため、気液分離を効率よく行うことができる。また、気液分離器からなる冷媒貯留タンク25が液冷媒を溜める冷媒貯留機能、及び、液成分とガス成分とを分離する機能の両方を担っており、これにより、冷媒貯留容器と気液分離器とを併設する必要がなくなるため、装置構成の簡略化に寄与する。
(5)変形例2
上記実施形態及び変形例1では、室外熱交換器23が複数の扁平管231と波形フィン232とを有する積層型熱交換器が例示されている。この室外熱交換器23は、複数の扁平管231が間隔をあけて積み重なるように配列され、波形フィン232が隣接する扁平管231に挟まれている。
しかし、室外熱交換器23は、上記実施形態及び変形例1における構成に限定されることはなく、例えば、図6及び図7に示すように、間隔を空けて積み重なるように配列された複数の扁平管231と、扁平管231が差し込まれる切り欠き236aが形成されたフィン236と、を有する積層型熱交換器であってもよい。
この場合においても、上記実施形態及び変形例1と同様の作用効果を得ることができる。
(6)変形例3
上記実施形態及び変形例1では、室外熱交換器23が複数の扁平管231と波形フィン232とを有する積層型熱交換器が例示されている。この室外熱交換器23は、複数の扁平管231が間隔をあけて積み重なるように配列され、波形フィン232が隣接する扁平管231に挟まれている。
しかし、室外熱交換器23は、上記実施形態及び変形例1における構成に限定されることはなく、例えば、扁平管が蛇行形状に成形され、フィンが扁平管の互いに隣接する面の間に挟まれている構成であってもよい。
この場合においても、上記実施形態及び変形例1、2と同様の作用効果を得ることができる。
(7)変形例4
上記実施形態及び変形例1〜3では、室外熱交換器23が複数の扁平管231と、波形フィン232や切り欠き236aが形成されたフィン236と、を有する積層型熱交換器であるが、これに限定されるものではない。例えば、冷房運転時に室外熱交換器23を水で冷却するような冷凍装置の場合、室外熱交換器23および室内熱交換器41がともにクロスフィン型熱交換器であって、室外熱交換器23の伝熱管径が室内熱交換器41の伝熱管径よりも細い構成であってもよい。
この場合においても、上記実施形態及び変形例1〜3と同様の作用効果を得ることができる。
(8)変形例5
上記実施形態及び変形例1〜4では、冷媒回路10に封入される冷媒として、種々の冷媒を使用することが可能であるが、例えば、その一種として、HFC系冷媒の一種であるR32を使用することが考えられる。
しかし、冷凍装置において冷媒としてR32を使用すると、低温条件においては、圧縮機21の潤滑のために冷媒とともに封入されている冷凍機油の溶解度が非常に小さくなる傾向がある。このため、冷凍サイクルにおける低圧になると、冷媒温度の低下によって、冷凍機油の溶解度が大きく低下することになる。冷媒回路10では、冷房運転時において、下流側膨張機構として機能する第2膨張機構26を通過した後から室内熱交換器41を経て圧縮機21に吸入されるまでの間の回路部分が冷凍サイクルにおける低圧になる。また、冷房運転時において、下流側膨張機構として機能する第1膨張機構24を通過した後から室外熱交換器23を経て圧縮機21に吸入されるまでの間の回路部分が冷凍サイクルにおける低圧になる。尚、冷媒としてR32を使用する場合の冷凍機油としては、R32に対していくらか相溶性を有するエーテル系合成油や、R32に対して非相溶性を有する鉱油、アルキルベンゼン系合成油等が考えられる。そして、エーテル系合成油では、−5℃程度まで温度が低下すると相溶性が失われ、鉱油やアルキルベンゼン系合成油では、エーテル系合成油よりも高温の条件でも相溶性を有しない。ここで、例えば、圧縮機の吸入側に冷媒貯留タンクを有する従来の冷凍装置において、冷媒としてR32を使用すると、冷凍サイクルにおける低圧になる冷媒貯留タンク内で冷媒と冷凍機油が二層分離し、圧縮機に冷凍機油が戻りにくくなる。
しかし、本変形例の冷凍装置1では、上記実施形態及び変形例1〜4に記載しているように、上流側膨張機構及び下流側膨張機構としての第1及び第2膨張機構24、26間に冷媒貯留タンク25を設けているため、圧縮機21の吸入側に冷媒貯留タンクを設ける場合に比べて、圧縮機21の吸入側における二層分離が生じにくくなり、圧縮機21に冷凍機油が戻りやすくなっている。
このように、本変形例の冷凍装置1では、上流側膨張機構及び下流側膨張機構としての第1及び第2膨張機構24、26間に冷媒貯留タンク25を設けることによって、室外熱交換器23として積層型熱交換器を使用する等によって室外熱交換器23の容積が室内熱交換器41の容積以下にすることによって生じる余剰冷媒の問題だけでなく、冷媒としてR32を使用することによって生じる圧縮機21への油戻しの問題を解消することができる。
本発明は、冷却運転及び加熱運転を行うことが可能な冷凍装置に対して、広く適用可能である。
1 空気調和装置(冷凍装置)
21 圧縮機
23 室外熱交換器
24、26 膨張機構
25 冷媒貯留タンク
30 バイパス管
30a 流量調整機構
41 室内熱交換器
特開平6−143991号公報

Claims (9)

  1. 冷却運転時に圧縮機(21)、室外熱交換器(23)、膨張機構(24、26)及び室内熱交換器(41)の順に冷媒が流れ、加熱運転時に前記圧縮機、前記室内熱交換器、前記膨張機構及び前記室外熱交換器の順に冷媒が流れる冷凍装置において、
    前記室内熱交換器がクロスフィン型熱交換器、前記室外熱交換器が積層型熱交換器であり、前記室内熱交換器に対する前記室外熱交換器の容積比が0.3〜0.9であり、
    前記膨張機構は、冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける中間圧まで減圧する上流側膨張機構と、前記上流側膨張機構において減圧された冷凍サイクルにおける中間圧の冷媒を冷凍サイクルにおける低圧まで減圧する下流側膨張機構とを有しており、
    前記室外熱交換器、前記上流側膨張機構及び前記下流側膨張機構は、室外ユニット(2)に設けられ、前記室内熱交換器は、室内ユニット(4)に設けられ、前記室外ユニットと前記室内ユニットとは、液冷媒連絡管(5)を介して接続されており、
    前記冷媒は、R32であり、
    前記上流側膨張機構と前記下流側膨張機構との間には、前記上流側膨張機構によって減圧された冷凍サイクルにおける中間圧の冷媒を貯留する冷媒貯留タンク(25)が設けられており、
    前記冷媒貯留タンクは、前記冷却運転時に前記室外熱交換器の容積が前記室内熱交換器の容積よりも小さいことに起因して発生する余剰冷媒を収容する、
    冷凍装置(1)。
  2. 冷却運転時に圧縮機(21)、室外熱交換器(23)、膨張機構(24、26)及び室内熱交換器(41)の順に冷媒が流れ、加熱運転時に前記圧縮機、前記室内熱交換器、前記膨張機構及び前記室外熱交換器の順に冷媒が流れる冷凍装置において、
    前記室外熱交換器の容積は、前記室内熱交換器の容積の30%〜90%であり、
    前記膨張機構は、冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける中間圧まで減圧する上流側膨張機構と、前記上流側膨張機構において減圧された冷凍サイクルにおける中間圧の冷媒を冷凍サイクルにおける低圧まで減圧する下流側膨張機構とを有しており、
    前記室外熱交換器、前記上流側膨張機構及び前記下流側膨張機構は、室外ユニット(2)に設けられ、前記室内熱交換器は、室内ユニット(4)に設けられ、前記室外ユニットと前記室内ユニットとは、液冷媒連絡管(5)を介して接続されており、
    前記冷媒は、R32であり、
    前記上流側膨張機構と前記下流側膨張機構との間には、前記上流側膨張機構によって減圧された冷凍サイクルにおける中間圧の冷媒を貯留する冷媒貯留タンク(25)が設けられており、
    前記冷媒貯留タンクは、前記冷却運転時に前記室外熱交換器の容積が前記室内熱交換器の容積よりも小さいことに起因して発生する余剰冷媒を収容する、
    冷凍装置(1)。
  3. 前記室外熱交換器(23)は、間隔を空けて積み重なるように配列された複数の扁平管と、隣接する前記扁平管に挟まれたフィンと、を有する積層型熱交換器である、
    請求項1又は2に記載の冷凍装置(1)。
  4. 前記室外熱交換器(23)は、間隔を空けて積み重なるように配列された複数の扁平管と、前記扁平管が差し込まれる切り欠きが形成されたフィンと、を有する積層型熱交換器である、
    請求項1又は2に記載の冷凍装置(1)。
  5. 前記室外熱交換器(23)は、蛇行形状に成形された扁平管と、前記扁平管の互いに隣接する面の間に挟まれたフィンと、を有する積層型熱交換器である、
    請求項1又は2に記載の冷凍装置(1)。
  6. 前記室外熱交換器(23)及び前記室内熱交換器(41)は、クロスフィン型熱交換器であり、
    前記室外熱交換器の伝熱管径は、前記室内熱交換器の伝熱管径よりも細く設定されている、
    請求項に記載の冷凍装置(1)。
  7. 前記冷媒貯留タンク(25)内に溜まる冷媒のガス成分を前記圧縮機(21)又は前記圧縮機の吸入側の冷媒管に導くバイパス管(30)がさらに設けられている、
    請求項1〜6のいずれか1項に記載の冷凍装置(1)。
  8. 前記バイパス管(30)は、流量調整機構(30a)を有する、
    請求項に記載の冷凍装置(1)。
  9. 前記冷媒貯留タンク(25)は、気液分離器である、
    請求項1〜8のいずれか1項に記載の冷凍装置(1)。
JP2012074660A 2011-12-20 2012-03-28 冷凍装置 Active JP5403095B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012074660A JP5403095B2 (ja) 2011-12-20 2012-03-28 冷凍装置
EP12859176.5A EP2801770B1 (en) 2011-12-20 2012-12-19 Refrigeration device
ES12859176T ES2797450T3 (es) 2011-12-20 2012-12-19 Dispositivo de refrigeración
BR112014014557-1A BR112014014557B1 (pt) 2011-12-20 2012-12-19 Aparelho de refrigeração
CN201280062572.1A CN103998875B (zh) 2011-12-20 2012-12-19 制冷装置
PCT/JP2012/082912 WO2013094638A1 (ja) 2011-12-20 2012-12-19 冷凍装置
AU2012354761A AU2012354761B2 (en) 2011-12-20 2012-12-19 Refrigeration apparatus
KR1020147019771A KR101452690B1 (ko) 2011-12-20 2012-12-19 냉동 장치
US14/366,251 US20140360223A1 (en) 2011-12-20 2012-12-19 Refrigeration apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011278427 2011-12-20
JP2011278427 2011-12-20
JP2012074660A JP5403095B2 (ja) 2011-12-20 2012-03-28 冷凍装置

Publications (2)

Publication Number Publication Date
JP2013148328A JP2013148328A (ja) 2013-08-01
JP5403095B2 true JP5403095B2 (ja) 2014-01-29

Family

ID=48668522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074660A Active JP5403095B2 (ja) 2011-12-20 2012-03-28 冷凍装置

Country Status (9)

Country Link
US (1) US20140360223A1 (ja)
EP (1) EP2801770B1 (ja)
JP (1) JP5403095B2 (ja)
KR (1) KR101452690B1 (ja)
CN (1) CN103998875B (ja)
AU (1) AU2012354761B2 (ja)
BR (1) BR112014014557B1 (ja)
ES (1) ES2797450T3 (ja)
WO (1) WO2013094638A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858022B2 (ja) * 2013-10-24 2016-02-10 ダイキン工業株式会社 空気調和装置
JPWO2015111175A1 (ja) * 2014-01-23 2017-03-23 三菱電機株式会社 ヒートポンプ装置
JP6865846B2 (ja) * 2017-10-10 2021-04-28 三菱電機株式会社 空気調和装置
US11280529B2 (en) * 2019-06-10 2022-03-22 Trane International Inc. Refrigerant volume control
JP2021055958A (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 冷凍装置
JP6828790B1 (ja) * 2019-10-31 2021-02-10 ダイキン工業株式会社 冷凍装置
JP7372556B2 (ja) * 2021-09-30 2023-11-01 ダイキン工業株式会社 冷媒容器および冷凍サイクル装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171908A3 (en) 1984-07-11 1987-07-15 Takeda Chemical Industries, Ltd. Hepatitis b virus surface antigen and production thereof
US5111876A (en) * 1991-10-31 1992-05-12 Carrier Corporation Heat exchanger plate fin
JPH08233378A (ja) * 1994-11-29 1996-09-13 Sanyo Electric Co Ltd 空気調和機
JPH10332212A (ja) * 1997-06-02 1998-12-15 Toshiba Corp 空気調和装置の冷凍サイクル
JP2001248922A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP5011957B2 (ja) * 2006-09-07 2012-08-29 ダイキン工業株式会社 空気調和装置
JP4811204B2 (ja) * 2006-09-11 2011-11-09 ダイキン工業株式会社 冷凍装置
EP1974171B1 (en) * 2006-09-29 2014-07-23 Carrier Corporation Refrigerant vapor compression system with flash tank receiver
JP4856044B2 (ja) * 2007-10-17 2012-01-18 シャープ株式会社 熱交換器
ES2650443T3 (es) * 2007-12-26 2018-01-18 Lg Electronics Inc. Sistema de acondicionamiento de aire
CN201196506Y (zh) * 2008-04-22 2009-02-18 陈灿 一种制暖系统的冷媒与制冷系统分离的空调装置
JP5228637B2 (ja) * 2008-06-11 2013-07-03 ダイキン工業株式会社 冷凍装置の冷媒回収方法

Also Published As

Publication number Publication date
CN103998875B (zh) 2015-09-02
CN103998875A (zh) 2014-08-20
AU2012354761A1 (en) 2014-08-07
JP2013148328A (ja) 2013-08-01
BR112014014557B1 (pt) 2022-01-11
EP2801770B1 (en) 2020-04-01
ES2797450T3 (es) 2020-12-02
AU2012354761B2 (en) 2015-10-29
KR101452690B1 (ko) 2014-10-22
KR20140102313A (ko) 2014-08-21
WO2013094638A1 (ja) 2013-06-27
EP2801770A4 (en) 2015-09-16
EP2801770A1 (en) 2014-11-12
BR112014014557A2 (pt) 2017-06-13
US20140360223A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP5617860B2 (ja) 冷凍装置
JP5403095B2 (ja) 冷凍装置
WO2012043377A1 (ja) 冷凍回路
JP6045489B2 (ja) 空気調和機
JP6036356B2 (ja) 冷凍装置
WO2018225252A1 (ja) 熱交換器及び冷凍サイクル装置
JP2015052439A (ja) 熱交換器
CN114502887B (zh) 冷冻装置
AU2017444848A1 (en) Heat exchanger and refrigeration cycle device
JP6036357B2 (ja) 空気調和装置
JP5783192B2 (ja) 空気調和装置
JP5765278B2 (ja) 室外マルチ型空気調和装置
KR101622225B1 (ko) 공기조화장치
JP2017219216A (ja) 熱交換器
JP2014129961A (ja) 空気調和装置
JP2008196760A (ja) 冷凍装置
JP2016148483A (ja) 冷凍装置
JP2022054728A (ja) 分離器および空調装置
JP2014137173A (ja) 熱交換器及び冷凍装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5403095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151