JP5392958B2 - 複数のレーザのずれ検出及び補正装置 - Google Patents

複数のレーザのずれ検出及び補正装置 Download PDF

Info

Publication number
JP5392958B2
JP5392958B2 JP2002523550A JP2002523550A JP5392958B2 JP 5392958 B2 JP5392958 B2 JP 5392958B2 JP 2002523550 A JP2002523550 A JP 2002523550A JP 2002523550 A JP2002523550 A JP 2002523550A JP 5392958 B2 JP5392958 B2 JP 5392958B2
Authority
JP
Japan
Prior art keywords
deviation
laser
beams
photodetector
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002523550A
Other languages
English (en)
Other versions
JP2004507751A (ja
Inventor
マシューズ、エドワルド、ダブリュー
Original Assignee
ソニー エレクトロニクス インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー エレクトロニクス インク filed Critical ソニー エレクトロニクス インク
Publication of JP2004507751A publication Critical patent/JP2004507751A/ja
Application granted granted Critical
Publication of JP5392958B2 publication Critical patent/JP5392958B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/16Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by deflecting electron beam in cathode-ray tube, e.g. scanning corrections
    • H04N3/22Circuits for controlling dimensions, shape or centering of picture on screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0031Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

本発明はレーザに関する。特に、本発明は、投写型表示装置(projection display)やその他のレーザ装置のように、マルチレーザビーム(multiple laser beam)を採用している装置における各レーザビームのずれ(misalignment)を検出し、補正するビームずれ検出及び補正装置及び方法に関する。
マルチレーザビームは、映画館における前面及び背面投写型表示装置(front and rear projection devices)、ホームシアターシステム、自動車や飛行機のコックピットで使用するヘッドアップディスプレイ(heads-up display)、設計用のワークステーション等を含む様々な要求が厳しい用途(demanding application)で使用されている。このような用途では、殆どの場合、最高の表示品質を得るために、マルチレーザビームの正確な同軸位置合わせ(coaial alignment)が要求される。通常は、マルチレーザビームの各レーザビームの波長は異なる。
レーザビームの好ましくない偏差(deviation)は、投写型表示装置の用途では特に問題であり、レーザビームのずれにより画質が著しく劣化する。レーザ投写型表示装置において、光学素子は長い時間が経つと位置がずれる(shift)こともあり、それに応じて、レーザビームの光路に不適切な偏差が生じ、表示品質が劣化する。消費者は、信頼性の高い、高品質の表示を要求する。
例えば、レーザ投写型表示装置は、赤色レーザビーム、青色レーザビーム、緑色レーザビームから成るマルチ同軸レーザビームを有する。コントローラは、画像情報を用いて制御信号を生成し、これらを1つ以上の光変調器(light modulator)及びスキャナに供給する。光変調器は、コントローラから供給される制御信号に基づいて、マルチ同軸レーザビームの全体の色を調整するために、各レーザビームの強度を選択的に変調する。そして、スキャナ(投写光学系(projection optics))は、変調ビームをスクリーンに投射してスクリーンの所定位置にドット(画素)を形成する。スクリーン全体を走査しながら、光変調器及び関連する制御信号によって各画素の色を選択的に制御することにより、所望の画像情報が表示される。
所望の軸に対する同軸レーザビームのずれは、スクリーン上におけるビームのコンバーゼンス(convergence)を悪化し、これにより画像が劣化する。更に、同軸レーザビームのずれは、光変調器の入射面に対する適切な照明(illumination)の妨げとなり、表示の明るさが低下し、画像アーチファクト(image artifacts)が現れ、正確な不均一補正(non-uniformity correction)を妨げ、スクリーン上の輝度に画素毎の好ましくない変動が生じる。
発明が解決しようとする課題
マルチレーザビームを採用したレーザの応用は比較的新しく、複数のレーザビームを自動的に位置合わせする(aligning)ビーム位置決め装置(beam orientation system)の開発は進んでいない。個々のレーザビームを所定の光学軸に位置合わせする装置及び方法は、技術的に知られている。しかしながら、既存の装置では、一般的に、正確かつ自動的に、ビームのずれを検出し、複数のレーザビーム又は1組の近接した平行ビームを調整することはできない。
したがって、当該技術分野では、レーザビームのずれを自動的に検出して補正する効率の良い装置及び方法が必要とされている。更に、所定の光学軸に沿った複数のレーザビームのずれを効率良く自動的に検出して補正する装置が必要とされている。
課題を解決するための手段
この技術的ニーズは、本発明に係る複数のビームのずれ検出装置により対応される。具体例において、本発明に係るビーム偏差検出装置は、レーザプロジェクタと共に使用されるように構成される。このビーム偏差検出装置は、複数のビームから個々の成分ビームを自動的に且つ選択的に分離し、この分離された個々の成分ビームの各々を出射する第1の機構を備える。第2の機構は、第1の機構から入射される個々の成分ビームの軸に対するずれを検出する。
特定の具体例において、更に、ビーム偏差検出装置は、検出したずれを自動的に補正する機構を備える。第1の機構は、複数のビームをサンプリングし、分岐した複数のビームを出射するサンプリング機構を備える。このサンプリング機構は、コリメーティングレンズ又はピックオフビームスプリッタを備える。個々の成分ビームは、赤色ビーム、緑色ビーム及び青色ビームを含む。カラーホイールは、分岐された複数のビームから赤色ビーム、緑色ビーム及び/又は青色ビームを選択的に分離し、この分離された成分ビームを出射する。ビームスプリッタは、分離された成分ビームを第1の分離ビームと第2の分離ビームに分割し、第1の分離ビームと第2の分離ビームをそれぞれ第1の光路と第2の光路に分岐する。第1の光路は第1の光検出器で終了し、第2の光路は第2の光検出器で終了する。第1の光路と第2の光路は長さは所定の距離だけ異なる。第1の制御アルゴリズムは、第1の光検出器上における第1の分離ビームの相対位置と、第2の光検出器上における第2の分離ビームの位置とを所定の距離に基づいて比較し、この比較に応じたビーム偏差信号を出力する。第2の制御アルゴリズムは、分離ビームに関するビーム偏差信号により示されるビーム偏差を補正するように補正装置を動作させる。
第1の代替的具体例において、第1の光路は、第1の電気的に制御可能なシャッタを通り、第1の反射器で反射し、ビームスプリッタを通り、単一の光検出器の表面に至る。第2の光路は、第2の電気的に制御可能なシャッタを通り、第2の反射器で反射し、ビームスプリッタを通り、単一の光検出器の表面に至る。第2の機構は、第1及び第2の電気的に制御可能なシャッタを介して単一の光検出器の表面上にそれぞれ第1及び第2のスポットを形成する第1及び第2の分離ビームを選択的に遮断するコンピュータを備える。コンピュータは、第1及び第2のスポットの位置を解析して、分離ビームに関するビーム偏差又はずれを測定する。
第2の代替的具体例において、サンプルを分岐(redirect)する分岐機構は、複数のビームから第1のサンプルを第1の光路に沿う方向、第2のサンプルを第2の光路に沿う方向にそれぞれ分岐する直線上に配設された第1のピックアップビームスプリッタと第2のピックアップビームスプリッタを備える。第1の光路は第1のカラーホイールを通って第1の光検出器の表面上で終了する。第2の光路は第2のカラーホイールを通って第2の光検出器の表面上で終了する。第1の光路と第2の光路の長さは所定の距離異なる。コントローラは、第1及び第2のカラーホイールを制御し、第1及び第2のカラーホイールから出射される分離ビームに関するビーム偏差を計算する。
本発明に係る新規な設計は、第1の機構により容易に達成され、この第1の機構は、複数のレーザビームの個々の成分ビームを自動的かつ選択的に分離し、解析することにより、所望の光学軸に対するビームの位置及び方向の偏差を検出することができる。成分ビームの偏差を検出した後、補正することにより正確に位置が合った複数のビームが得られる。したがって、本発明に係る複数のビームの偏差検出及び補正装置を使用することにより、複数の正確に位置の合ったレーザビームが要求される関連したレーザ投写型装置やその他のアプリケーションは効率良く、高い信頼性で動作することができる。
本明細書においては、本発明を特定の用途における具体例について説明するが、本発明は、それらには限定されないと解すべきである。本明細書で提示する教示を利用する当業者は、本発明の範囲及び本発明が有用と示唆される更なる技術分野から逸脱することなく、更なる変更形態、応用及び具体的形態を認識するであろう。
図1は、本発明の教示に基づいて構成されたレーザ投写型装置(laser projection system)10の構成を示すブロック図であり、レーザ投写型装置10は、本発明独特のマルチビーム偏差検出装置(muliple beam deviation detection system)12と、ビーム偏差補正装置(deviation correction system)14とを備える。説明を明瞭にするために、図1においては、電源装置、画像入力装置等の様々な構成装置を省略しているが、本明細書で提示する教示を利用する当業者にとっては、必要な構成部品をどこにどのように追加すべきかは明らかである。
レーザ投写型装置10は、赤色レーザ16と、緑色レーザ18と、青色レーザ20とを備え、これらの出射レーザビームは、第1のセットの照明光学系(illumination optics)22、第2のセットの照明光学系24及び第3のセットの照明光学系26にそれぞれ入射される。第1のセットの照明光学系22、第2のセットの照明光学系24及び第3のセットの照明光学系26の出射レーザビームは、赤色用の光変調器28、緑色用の光変調器30及び青色用の光変調器32にそれぞれ入射される。光変調器28、30、32の出射レーザビームは、ビーム合成器(beam combiner)34に入射される。ビーム合成器34は、略一致した光学軸に沿ったマルチビームを(multiple beams directed along aproximarely similar optila axis)ピックオフレンズ(pickoff lens)36に入射し、ピックオフレンズ36は、マルチビーム、すなわち略同軸の(approximately coaxial)レーザビームをマルチビーム偏差検出装置12及びビーム偏差補正装置14に入射する。所望の軸からの成分ビーム(component beams)のずれ(misalignment)、すなわち偏差(deviation)について補正した略同軸のマルチビーム(multiple approimately coaxial beams)は、投写光学系(projection optics)38に入射される。コントローラ40は、入力として表示データが供給され、光変調器28、30、32及び投写光学系38に制御信号を入力する。投写光学系38は、マルチビーム、すなわち略同軸のレーザビームを表示スクリーン44に投射する。
マルチビームは、幾つかの平行な成分ビームであってもよいが、本明細書で説明するレーザ投写型装置の応用では、典型的には、マルチビームの所望の軸に対応する略一致した光学軸に沿って進むマルチビームを使用する。典型的には、本明細書で説明するレーザ投写型装置の応用においては、マルチビームは、所望の軸から著しくずれることはなく、1つ以上の成分ビームがピックオフレンズ36等の本発明で使用する各種光学素子の入射面から外れるようなことはない。
次に、動作について説明する。照明光学系22、24、26は、赤色レーザ16、緑色レーザ18、青色レーザ20から出射される赤色レーザ光、緑色レーザ光、青色レーザ光をそれぞれ整形して、光変調器28、30、32にそれぞれ入射する。赤色レーザビーム、緑色レーザビーム、青色レーザビームは、それぞれ照明光学系22、24、26により、通常は光変調器28、30、32の入射面の寸法に基づいて、光変調器28、30、32で受光されるレーザエネルギが最大となるように整形される。
コントローラ40は、表示データ42を用いて光変調器28、30、32を制御する制御信号を生成する。制御信号の指示により、光変調器28、30、32は、表示すべき画像データに基づいて赤色レーザビーム、緑色レーザビーム、青色レーザビームの強度プロファイル(intensity profile)を選択的に調整、すなわち変調する。そして、変調レーザビームは、ビーム合成器34により合成されて、略一致した光学軸を有するマルチビームとなる。
表示データ42は、典型的には、異なる色の画素に分けられる。赤色、緑色及び青色の各レーザビームの強度プロファイルをそれぞれ光変調器28、30、32を介して個々に制御することにより、画素の色が決まり、この画素の色は、ビーム合成器34によって出射される合成されたマルチビームの色に対応する。
ビーム合成器34によって出射される変調マルチビームのごく一部は、ピックオフレンズ36によりピックオフされ、すなわち分岐(redirect)又はサンプリングされ、マルチビーム偏差検出装置12に送られる。マルチビームの残りの部分は、ビーム偏差補正装置14に送られる。
当業者には明らかなように、本発明の範囲から逸脱することなく、例えばビームスプリッタのようなピックオフレンズ36以外の機構を使用して、ビーム合成器34の出力の一部をピックオフすることができる。また、ピックオフレンズ36によりピックオフされるマルチビームのエネルギの割合は、応用に特有であり、与えられた応用の要求に合わせて当業者が決めることができる。
マルチビーム偏差検出装置12は、ピックオフされたマルチビームを解析して、赤色のレーザ成分、緑色のレーザ成分及び/又は青色のレーザ成分がマルチビームに関する1つ以上の所定の望ましい光学軸と適切に合っているか判定する。赤色、緑色又は青色の成分ビームが1つ以上の所望の光学軸から外れた偏差量がマルチビーム偏差検出装置12により決定され、マルチビーム偏差検出装置12は、その偏差量に応じて制御信号をビーム偏差補正装置14に供給する。ビーム偏差補正装置14は、マルチビーム偏差検出装置12が決定した1つ以上の所望の光学軸に対する望ましくない成分ビームの偏差をキャンセルするように、各成分ビームの光学軸を調整する。
マルチビーム偏差検出装置12とビーム偏差補正装置14間にはビーム偏差を容易になくすための閉ループのフィードバックパスがある。当業者には明らかなように、本発明の範囲から逸脱することなく、マルチビーム偏差検出装置12とビーム偏差補正装置14により実現されるビーム位置合わせ制御システムを、閉ループ制御方式ではなく、オープンループ制御方式で実現してもよい。
マルチビームを1つ以上の所望の光学軸に対して適正に位置合わせした後、位置決めされたマルチビームは投写光学系38に出射される。投写光学系38は、マルチビームを表示スクリーン44に投写する。投写光学系38は、光変調器28、30、32が合成されたマルチビームの色を調整するのと同時に、表示スクリーン44を高速に走査し、その結果、表示スクリーン44に所望の画像が表示される。このように、コントローラ44に供給される画像情報に基づいて、光変調器28、30、32によりマルチビームを変調するとともに、投写光学系38を介して表示スクリーン44に対し、変調されたマルチビームを選択的に位置決めすることにより、所望の画像が表示スクリーン44に表示される。
レーザ16、18、20、照明光学系22、24、26、光変調器28、30、32、ビーム合成器34、ピックオフレンズ36、コントローラ40、投写光学系38及び表示スクリーン44の構成については既に当分野で知られている。例えば、投写光学系38は、自由度が2のスキャナにより実現することができ、このスキャナは、第1の回転軸と第2の回転軸をそれぞれ有する第1のミラーと第2のミラー(図示せず)を備え、第1及び第2のミラーは、コントローラ40から制御信号が供給されるモータ(図示せず)によって、その向きが制御される。スキャナの具体例は、発明の名称が光りビーム表示システムのスキャナ装置(SCANNING SYSTEM FOR LIGHT BEAM DISPLAYS)である米国特許第4213146号に開示されており、この特許は、参照により本願に援用される。
本発明の好ましい具体例では、シリコンライトマシンズ(Silicon Light Machines)社が製作したグレーティングライトバルブ(grating light valves)を使用する。これらの変調器は、約1インチ×25ミクロンのビームを必要とする。これらの変調器は、www.siliconlight.comから入手可能なドキュメント及び例えば米国特許第5841579号のような特許に詳しく記載されており、これらの文献は、参照により本願に援用される。マルチビーム偏差検出装置12及びビーム偏差補正装置14について、以下に詳しく説明する。
図2は、本発明の教示に基づいて構成された順次式色変調プロジェクタ(sequential color modulator projector)50の構成を示すブロック図である。プロジェクタ50において、赤色レーザ16、緑色レーザ18及び青色レーザ20は、対応する赤色、緑色及び青色の出力ビームを直接ビーム合成器34に出射する。ビーム合成器34の出射ビームは、赤色、緑色及び青色のビームからなるマルチビームであり、ピックオフレンズ36に入射される。ピックオフレンズ36からの出射ビームは、マルチビーム偏差検出装置12及びビーム偏差補正装置14に入射される。ビーム偏差補正装置14の出射ビームは色分離器(color separator)52に入射され、色分離器52は、順次、赤色ビーム、緑色ビーム、青色ビームを照明光学系54に出射する。照明光学系54は、整形した赤色ビーム、緑色ビーム、青色ビームを順次式光変調器56に出射する。順次式光変調器56の出射ビームは、順次式投写光学系58に入射される。コントローラ40は、表示データ42が供給され、対応する制御信号を順次式光変調器56及び順次式投写光学系58に供給する。
次に、動作を説明する。マルチビーム偏差検出装置12及びビーム偏差補正装置14は、ビーム合成器34から出射されるマルチビームの所望の光学軸に対する各成分ビームのずれをそれぞれ検出して、補正する。補正されたマルチビームは、色分離器52に入射され、色分離器52は、カラーホイール又は回転機構により順次、赤色ビーム、緑色ビーム、青色ビームを分離する。照明光学系54は、順次、赤色ビーム、緑色ビーム、青色ビームを整形し、整形したビームを順次式光変調器56に出射する。順次式光変調器56は、順次、赤色ビーム、緑色ビーム、青色ビームを、コントローラ40に供給される制御データに基づき、コントローラ40から供給される制御信号によって表示されるように、変調する。そして、順次式投写光学系58は、個々の赤色ビーム、緑色ビーム、青色ビームを順次、表示スクリーン44に投写して所望の画像を表示する。
当業者には明らかなように、本発明の範囲から逸脱することなく、レーザ16、18、20は、例えば発光ダイオードやコリメータのようにビームを発生する他のビーム発生機構で置換することができる。
図3は、図1及び図2のマルチビーム偏差検出装置12で採用されたビーム偏差の原理を説明するための図である。図3は、マルチビーム発生器74から異なる距離にある第1の光検出器70と第2の光検出器72の表面におけるビームのずれ方の違いを説明したものであり、マルチビーム発生器74は、偏向した成分ビーム80、82をそれぞれ有する同一の第1のマルチビーム76と第2のマルチビーム78をそれぞれ投射する。成分ビーム80、82は、それぞれに対応する所望のビーム軸84、86から角度θだけ偏向している。
第1の光検出器70がマルチビーム発生器74からxの距離にあるのに対して、第2の光検出器73はマルチビーム発生器74から2xの距離にあり、マルチビーム発生器74と第1の光検出器70間の距離は、マルチビーム発生器74と第2の光検出器72間の距離の半分である。したがって、第1の光検出器70の表面における第1の偏向ビーム80の中心は、対応する所望の光学軸84からyの距離だけ偏差する。第2の光検出器72の表面における第2の偏向ビーム82の偏差は2yであり、これは、第1の光検出器70の表面における第1の偏向ビーム80の偏差の倍である。偏向角度θは、第1の偏向ビーム80と第2の偏向ビーム82に対して等しい。したがって、第1の光検出器70と第2の光検出器72の表面における偏向ビーム80、82の偏差距離(yと2y)の比は、マルチビーム発生器74からの距離(xと2x)に比例する。すなわち、y/x=2y/2x=tanθである。
第1の光検出器70と第2の光検出器72からの情報を重ね合わせたとしたら、重ね合わせた光検出器の表面には、所望の光学軸から離れた2つの点が形成される。1つの点は第1の偏向ビーム80に関する偏向に対応し、他方の点は第2の偏向ビーム82に関する偏向に対応している。第1の点は、第2の点と所望の光学軸の中間に位置する。第1の偏向ビーム80は第2の偏向ビーム82の半分まで進むということが予め知られていることから、ビームが所望の光学軸に垂直な平面において偏向する角度は、簡単に求められる。
例えば1つの角度のみの偏差のように1次元のビーム偏差のみがある場合、偏差角度(θ=arctan(y/x))を計算するには、1つの光検出器のみが必要である。しかしながら、ビームは、所望の光学軸に垂直な平面において2次元でずれることができる。例えば、ビームは所望の光学軸と平行に変位(オフセット)することがある。したがって、更なる1つの自由度を与えてビームの偏差を正確に特定するためには、第2の光検出器が必要となる。なお、好ましい具体例では、2個の光検出器を用いているが、任意の数の光検出器を用いることができる。
図1及び図2に示すマルチビーム偏差検出装置12は、マルチレーザビームから成分、すなわち赤色ビーム、緑色ビーム、青色ビームを順次分離し、各成分ビームを異なる長さの2つの光路に分割(sprit)する。ビーム路長が異なると、ビーム偏向位置が異なり、これらを用いて、マルチビームに関する成分ビームの1つ以上の所望の光学軸からの偏差を、以下詳述するように、計算することができる。
図4は、図1のマルチビーム偏差検出装置12の具体的な構成を示すブロック図である。説明を簡単にするために、様々な構成部品が図4には示されていないが、本発明の教示を利用する当業者にとっては、必要な構成部品をどこにどのように追加すべきかは明らかである。
ピックオフレンズ36は、マルチビームのごく一部を分岐して、マルチビーム偏差検出装置12のカラーホイール90に入射する。残りビームはピックオフレンズ36から出射されてビーム偏差補正装置14に入射される。なお、ここでは、ビーム補正をビームのピックオフ後に行うものとして説明するが、ビーム補正を、ビームのピックオフ前により有益に行うことができる。更に、本発明の配慮した一具体例として、マルチビーム装置の製造時に工場においてビームのずれを検出して、補正する。後者の場合、大量生産の装置には、ずれ検出及び補正回路は含まれない。
カラーホイール90には、コンピュータ92から制御信号が入力され、コンピュータ92は、カラーホイールコントローラ94と、ビーム補正コントローラ96とを備える。カラーホイールコントローラ94及びビーム補正コントローラ96はソフトウェアで実現することができる。カラーホイール90は、コンピュータ92上で実行されるカラーホイールコントローラ94からの制御信号に応じて、入射されたマルチビームから赤色ビーム、緑色ビーム、青色ビームを交互に分離する。カラーホイール90は、一度に1つのビームをビームスプリッタ98に出射し、ビームスプリッタ98は、1つのビームを第1のビーム路100と第2のビーム路102に分割する。第1のビーム路100には集光レンズ(focusing lens)104が設けられており、集光レンズ104は、ビームを第1の光検出器70に集光する。第2のビーム路102には第2の集光レンズ108が設けられており、集光レンズ104は、第2のビーム路102に関するビームを第2の光検出器72に集光する。マルチビーム偏差検出装置12における各種光学部品の入射面、例えばカラーホイール90、ビームスプリッタ98、光検出器70、72の入射面は、入射ビームの所望の光学軸と直交している。
この具体例において、光検出器70、72は、例えば電荷結合素子(Charge Couled Device:以下、CCDという)アレーや他の焦点面アレー(focal plane array)のような光検出器アレーにより実現される。光検出器70、72は、光検出器70、72の表面における、光路100、102に関するビームの位置を表す信号をそれぞれ出力する。各検出ビームの中心(centroid)は、各光検出器70、72の表面に対して計算され、コンピュータ92上で実行されるビーム補正コントローラ96に供給される。ビーム補正コントローラ96は、光検出器70、72の表面におけるビームの中心位置に基づき、カラーホイール90から出射される成分ビームの偏差を計算する。そして、ビーム補正コントローラ96は、適当な制御信号を生成し、これらの制御信号は成分ビームの再調整のためにビーム偏差補正装置14に供給される。
光検出器としてCCDアレーを使用することにより、装置は非軸対称ビーム(non-rotationally symmetric beam)(例えば、ラインビーム又は矩形ビーム)が回転方向の位置合わせ(rotational alignment)から外れたか検出することができる。
ビーム補正コントローラ96は、光検出器70、72と接続されている。特定の具体例において、ビーム補正コントローラ96は、コンピュータ92上で実行されるソフトウェアで実現される。ビーム補正コントローラ96とビーム偏差補正装置14は、ビーム偏差補正装置14からビーム補正コントローラ96へのフィードバックを有する閉ループ制御システムを実現している。ビーム偏差補正装置14は、成分ビームに対してビーム位置補正を実施した後、ビーム偏差補正装置14は、ビーム補正コントローラ96を介して、ビーム偏差の更新を要求する。ビーム偏差補正装置14は、偏差がゼロになるまで調整を続ける。成分ビームが位置合わせされた後、コンピュータ92は、異なるビームを補正のために、カラーホイール90に異なるビームを分離するように指示する。
ビーム偏差補正装置14とビーム補正コントローラ96は、本発明の範囲から逸脱することなく、オープンループ制御アルゴリズムを実現することができる。例えば、ビーム偏差補正装置14からのフィードバックとビーム補正コントローラ96は省略することができる。
ビーム偏差補正装置14は、十分な自由度を有するミラーやその他の機構によりビームを任意の軸に位置合わせできるという原理に基づき動作する。本発明の範囲から逸脱することなく、普通のビーム位置決め装置を本発明と組み合わせて使用することができる。ビーム偏差補正装置14は、入射マルチビームから補正が必要なビームを選択するカラーホイール90又はその他のビーム選択装置を備えている。ビーム補正コントローラ96からの制御信号により駆動されるモータに連結された水平軸と垂直軸を有する2つのミラーによって、成分ビームを制御信号に応じて望ましい所定の軸に位置合わせする。
ジーンエフ・フランクリン(Gene F.Franklin)、アバスエマミニーニ(Abbas Emami-Naeini)著、1991年、アディソンウェスリー(Addison Wesley)出版の表題「第2版ダイナミックシステムのフィードバック制御(FEEDBACK COCTROL OF DYNAMIC SYSTEMS), second edition」には、一般制御理論が記載されており、当業者は、この一般理論を適用することにより、ビーム偏差補正装置14で使用され、測定されたビーム偏差をキャンセルする位置制御可能なビーム位置合わせミラーを制御するコントローラ94、96の特定用途の詳細を容易に構成することができる。
特定の具体例において、第1の光路100は長さは、第2の光路102の半分である。当業者には明らかなように、第1及び第2の光路100、102の長さは、用途に特有であり、本発明の範囲から逸脱することなく、この具体例で使用した2対1の関係と異なってもよい。
上述のマルチビーム偏差検出装置12は、カラーホイール90から出射される赤色、青色及び緑色の成分ビームの向きと位置を順次補正するが、本発明では、ビーム位置合わせを並列で補正するように構成することも容易である。この場合、カラーホイールは、マルチビームから赤色、緑色及び青色のビームを順次ではなく並列して分離する他の素子に置き換えられる。
マルチビームから成分ビームを分離する装置は、本発明の教示を利用する当業者により開発可能である。更なる1つ以上のビームスプリッタ(図示せず)を備え、赤色、緑色、青色の光学フィルタを選択的に位置決めする簡単な装置を用いて、赤色、緑色、青色のビームを並列に分離、あるいはカラーホイール90を用いて赤色、緑色、青色のビームを順次分離することができる。
代わりに、成分ビームの偏光(polarization)に基づき成分ビームを分離する装置で、カラーホイール90を置き換えることもできる。例えば、逆極性の偏光フィルタを選択的に位置決めすることにより、マルチビームから逆極性の偏光ビームを分離抽出することができる。例えば、1つの偏光フィルタは第1の成分ビームを透過し、第2のビームを阻止し、もう1つの偏光フィルタは第2のビームを透過し、第1のビームを阻止する。第1及び第2の偏光フィルタを交互に使用することにより、複数のビームから第1及び第2のビームを分離することができる。
当業者には明らかなように、本発明の範囲から逸脱することなく、マルチビームは、同軸ビームではなく、望ましい複数の平行な光学軸に位置合わせされる複数の平行なレーザビームであってもよい。平行なビームは、単一光学軸ではなく、1又は幾つかの望ましい所定の光学軸に位置合わせされる。更に、当業者には明らかなように、マルチビーム偏差検出装置12は、本発明の範囲から逸脱することなく、カラーホイール90に代えて、図2に示す色分離器52又は図2に示す順次式光変調器56で用いられている他のカラーホイール(図示せず)を使用することができる。
マルチビーム偏差検出装置12は、メインビームから補正すべきビームを分離する分離機構であるカラーホイール90と、対応する成分ビームを所望の軸に再調整する機構であるビーム偏差補正装置14とを備える。ビーム補正コントローラ96により実施される制御アルゴリズム及び/又はビーム偏差補正装置14において実現されるもう1つのコントローラ(図示せず)は、検出されたビーム偏差をキャンセルする。
このように、マルチビーム偏差検出装置12及びビーム偏差補正装置14は、異なる色の複数のレーザビームを同一の光学軸に自動的に位置合わせする。
マルチビーム偏差検出装置12は、カラーホイール90又は同様の素子、第1の光検出器70、第2の光検出器72、及び50%のビームスプリッタ98を用いる。カラーホイール90は、マルチビームから各色ビームを順次選択する。そして、光検出器70、72は、光検出器70、72の表面において各ビームの相対位置を検査する。異なる距離にある2個の光検出器70、72を使用することにより、任意のビームから、ビーム位置の横方向の変位や角度の変化を検出することができる。
ビームの位置及び向きを検出するマルチビーム偏差検出装置12にカラーホイール90を設けることにより、同一の光学軸に沿った複数の色の幾つかのビームを、位置、向き(pointing)及び角度を安定させるために、順番に監視することができる。カラーホイール90は、本発明の範囲から逸脱することなく、他の測定技術と組み合わせることができる。
図1に示すレーザ投写型装置10の特定の設計に対応して、コリメーティングレンズ36は、分離ビームを平行光線にするために必要又は不要となる。平行光線(collimated light)は、カラーホイール90の一部を照射し、この具体例においては、カラーホイール90により一度に1色のみのビームが透過される。カラーホイール90は、コンピュータ92上で実行されるカラーホイールコントローラ94により又は図1のレーザ投写型装置10に含まれる他の構成部品からの同期信号(図示せず)により制御される。
カラーホイール90から出射される成分ビームは、非偏光の50%のビームスプリッタ98に入射され、ビームスプリッタ98は、光の半分を透過し、残り半分を垂直方向に対して向きを変える。そして、得られたビームは、それぞれ集光レンズ104、108に入射され、集光レンズ104、108は、ビームを個々の光検出器70、72にそれぞれ集光する。ビームスプリッタ98と2個の光検出器70、72間のそれぞれの距離は、成分ビームの角度変化を検出して成分ビームのずれを十分に補正することができるように、十分に異なる。
光検出器70、72のそれぞれは、2次元アレーからなり、光強度プロファイルから、点に対する2次元情報を示す対応した電圧又は電流信号を生成する。第1の光検出器70に至る光は、第2の光検出器72に至る光よりも短いビーム路100を進む。したがって、所望のビーム軸に対する成分ビームの角度変化は、第2の光検出器72においてより大きな変化として検出される。ビームが光学軸と平行にずれた場合、両光検出器70、72で検出される位置変化は略等しくなる。
コンピュータ92は得られた情報を解析する。各光検出器70、72におけるビームプロファイルは、各検出平面における中心(centroid)位置を計算するのに用いられる。そして、これらの2つの点間の直線方程式を計算して、ビーム偏差を容易に決定することができる。この処理は、各色ビーム毎に独立して行われる。光検出器70、72上における各色に関する中心位置を比較することにより、表示スクリーン上でのビームのコンバーゼンス(convergence)を見積もることができる。直線方程式及び中心位置を1つ以上の基準と比較することにより、スクリーンにおける成分ビームの絶対位置を計算することができる。成分ビームの位置が変化すると、コンピュータ92は、ビーム偏差補正装置14に実装されたミラー系を遠隔制御して、ビームの位置及び/又は向きを補正する。
図5は、図4に示すマルチビーム偏差検出装置12に対する第1の代替であるマルチビーム偏差補正装置12’の具体的構成を示すブロック図である。入射ビームスプリッタ120は、メインの入射マルチビームのごく一部、例えばマルチビームのエネルギの1%に相当する部分を分割し、その部分を第1のコリメーティングレンズ122に入射する。マルチビームの残りの99%は、ビーム偏差補正装置14に入射される。第1のコリメーティングレンズ122から出射される平行光線のマルチビームはカラーホイール90に入射され、カラーホイール90は、コンピュータ124から供給される制御信号に応じて順次、赤色、緑色、青色の成分ビームを選択して50%のビームスプリッタ98に出射する。コンピュータ124は、シャッタコントローラ126が追加されたことを除いて、図4に示すコンピュータ92と同様の構成を有する。シャッタコントローラ126は、第1の電気的に制御可能なシャッタ132及び第2の電気的に制御可能なシャッタ134を制御して、50%のビームスプリッタ98から出射される第1の分離ビーム128と第2の分離ビーム130を選択的に遮断する。
マルチビーム偏差検出装置12’が第1のモードにあるとき、第1のシャッタ132は開いており、第2のシャッタ134は閉じている。第1のシャッタ132が開いていると、第1の分離ビーム128は、50%のビームスプリッタ98から第1の光路に沿って進み、第1の集光レンズ108を透過して第1の反射器136の表面に至る。第1の分離ビーム128は、第1の反射器136で反射し、戻りビームとして集光レンズ108を透過し、ビームスプリッタ98を透過し、第3の集光レンズ138を透過して1個の光検出器140に入射する。光検出器140は、その表面に入射された第1の分離ビーム128の一部を受光する。そして、コンピュータ124は、ビーム補正コントローラ96で実行されるソフトウェアにより、光検出器140の表面に入射したビームの中心位置を計算する。計算した中心位置はコンピュータ124が具備するメモリ(図示せず)に記憶される。
マルチビーム偏差検出装置12’が第2のモードにあるとき、第2のシャッタ134は開いており、第1のシャッタ132は閉じている。第2の分離ビーム130は、第2のシャッタ134を透過し、第2の集光レンズ104を透過して第2の反射器136の表面に至り、ここから同じ光路を戻って、50%のビームスプリッタ98に入射する。50%のビームスプリッタ98は、第2の分離ビーム130の50%を第3の集光レンズ138に分岐し、1個の光検出器140に入射する。光検出器140は、入射されたビームを受光し、それに応じた信号をコンピュータ124に供給する。そして、コンピュータ124は、標準の中心計算法(standard centroid calculation methods)により、光検出器140の表面に入射したビームの中心位置を計算する。
第1の分離ビーム128が進む光路の長さは、第2の分離ビーム130が進む光路の長さと所定の距離だけ異なる。第2の分離ビーム130に対応するビームの中心位置は、コンピュータ124のメモリ(図示せず)に先に記憶された、第1の分離ビーム128に関する中心位置と比較される。この比較はビーム補正コントローラ96によって行われる。ビーム補正コントローラ96は、カラーホイール90から出射される成分ビームの、所望の光学軸からの偏差を計算する。偏差は、光検出器140の表面上における中心位置と、第1の分離ビーム128と第2の分離ビーム130の光路差との関数である。そして、算出されたビーム偏差は、ビーム偏差補正装置14によって、ビーム補正コントローラ96から供給される制御信号に応じてキャンセルされる。カラーホイールコントローラ94は、カラーホイール90を制御して、位置合わせのために、入射マルチビームのどの成分ビームを選択すべきかを決定する。
説明の便宜上、カラーホイールという用語は、複数の色のビームを含むマルチビームの個々の成分ビームを、成分ビームの色、及びカラーホイールコントローラ94のようなコントローラから供給される制御信号に基づいて、選択的に出射することができる任意の機構を指すものとする。本発明を利用する当業者は、このような装置を容易に製造し、既存の装置を変更し、あるいはこれらの機能を実行する装置を特別に製作することができる。
当業者には明らかなように、第1の集光レンズ108と第2の集光レンズ104は本発明の範囲から逸脱することなく省略することができる。更に、50%のビームスプリッタ98は、本発明の範囲から逸脱することなく、異なるビームスプリッタ、例えば40〜60%のビームスプリッタに置き換えることができる。
カラーホイール90は、以下に詳述する他の位置検出機構と共に使用できる。また、光検出器の数は変えてよい。1つの光検出器のみを使用する場合、光検出器に対する光路長を変える何らかの手段が必要である。図5に示す構成では、シャッタ132、134のペアは、第1の分離ビーム128と第2の分離ビームに対する長さが異なる2つの光路を交互に遮断するために、用いられている。
測定感度をより高めるためには、例えばマッハツェンダ(Mach-Zender)のような干渉計を、カラーホイール90の後方で用いることができる。干渉計は、干渉縞を発生し、その縞は検出することができる。レーザビームの相対位相が変化すると、それに応じて縞模様がシフトし、これにより、ビーム位置及び/又は向きの計算と共に、所望の光学軸からのビーム偏差の決定を容易に行うことができる。
当業者には明らかなように、本発明の範囲から逸脱することなく、カラーホイール90又は同様の機構により1つ以上の成分ビームを分離した後、単一ビームのずれを補正する、様々な普通のビーム偏差検出及び位置決め装置(図示せず)を適切に変更して、ここで説明した装置の代わりとして使用することができる。
このように、代替的構成のマルチビーム偏差検出装置12’は、遠隔制御される2つのシャッタ132、134と、特別な2つの反射面(ミラー)136、142と、唯一の光検出器140とを使用する。ピックオフされたマルチレーザビームを第1のコリメーティングレンズ122に通しているが、用途によってはこの第1のコリメーティングレンズ122は不要である。得られた平行光線はカラーホイール90と第2の非偏光ビームスプリッタ98を透過する。この構成において、第2のビームスプリッタ98から出射される2つのビーム128、130は、それぞれ第1又は第2のシャッタ132、140に入射するが、任意の時点において、これらのシャッタの1つのみが開いている。
シャッタ132とシャッタ134は、開いたときに、光を対応する反射器136、142にそれぞれ出射し、ここで光は反射されて、開いているシャッタ132、134を透過して戻り、第2のビームスプリッタ98を透過して、第3の集光レンズ138に入射され、第3の集光レンズ138によって単一の光検出器140に集光される。第2のビームスプリッタ98と2つの反射面136、142間のそれぞれの距離は、ビームの角度変化を検出するできるように十分に異なる。
何れかのシャッタ132、134を交互に開くことにより、ビーム路に沿った2点を、並列ではなく、上述した図4に示す構成と同様に、順次測定することができる。
図6は、図4に示すマルチビーム偏差検出装置12に対する第2の代替であるマルチビーム偏差検出装置12”の具体的構成を示すブロック図である。マルチビーム偏差検出装置12”は、第1のピックオフビームスプリッタ150と、この第1のピックオフビームスプリッタ150に対して直線上に配設された第2のピックオフビームスプリッタ152とを備える。第1のピックオフビームスプリッタ150でピックオフされたビームは、第1のコリメーティングレンズ154に入射され、その出射ビームは第1のカラーホイール156に入射される。第1のカラーホイール156は、コンピュータ92上で実行されるカラーホイールコントローラ94によって制御される。第1のカラーホイール156の出射ビームは、第1の光検出器70の表面に入射され、第1の光検出器70は電気的な出力信号をコンピュータ92に供給する。
第1のピックオフビームスプリッタ150から出射される残りのマルチビームは、第2のピックオフビームスプリッタ152に入射される。第2のピックオフビームスプリッタ152は、第2のピックオフされたビームを第2のコリメーティングレンズ158に出射する。残りのビームはビーム偏差補正装置14に入射される。第2のピックオフされたビームは、第2のコリメーティングレンズ158により平行光線にされて第2のカラーホイール160に入射され、第2のカラーホイール160は、コンピュータ92上で実行されるカラーホイールコントローラ94により制御される。第2のカラーホイール160の出射ビームは、第2の光検出器72の表面に入射され、第2の光検出器72は、電気的出力信号をコンピュータ92に供給する。コンピュータ92は、上述したようにビーム偏差補正装置14と情報を送受する。上述したように、本発明の装置は、必要に応じて任意の数の光検出器と任意の数のビームを用いることができ、装置の使用中、あるいは使用前又は使用後、例えば製造時、修理時又は保守時に、ずれを検出及び/又は補正することができる。
次に動作について説明する。第1のカラーホイール156と第2のカラーホイール160は、解析のために入射マルチビームから同じ成分ビームを選択する。例えば、第1のカラーホイール156が青色ビームを選択して出射するときは、第2のカラーホイール160も青色ビームを選択して出射する。
第1のピックオフビームスプリッタ150から第1の光検出器70の表面までのビーム路長は、第2のピックオフビームスプリッタ152から第2の光検出器72の表面までのビーム路長より短い。したがって、カラーホイール156、160で選択されたビームは、光検出器70、72の表面上において異なる光量で検出される。この偏向、すなわち偏差の特性は、ビーム補正コントローラ96によって解析され、ビーム補正コントローラ96は、ビーム偏差補正装置14に対する制御信号を生成し、ビーム偏差補正装置14は、それに応じて検出ビームのずれを補正する。
このように、第2の代替的構成のマルチビーム偏差検出装置12”は、2つのカラーホイール150、15と、2つの光検出器70、72とを使用する。光検出器70、72に入射されるビームは、第1のピックオフビームスプリッタ150と第2のピックオフビームスプリッタ152に対応する2つの異なる位置でマルチビームから分離抽出される。これらの2つの位置は、十分に離れており、光検出器70、72及びコンピュータ92は、位置と角度に関するビーム偏差を正確に測定することができる。
図7は、図4〜6のマルチビーム偏差検出装置12、12’、12”により検出される偏差の結果を説明する、重ね合わせた光検出器面を示したものであり、この偏差結果は、例えば、ビーム偏差が水平のx−y平面に対し45度で、y−z平面に対し45度であり、y軸がマルチビームの所望の光学軸である場合に得られたものである。第1の点172は、例えば図4の光検出器70のような第1の光検出器の表面(x−z平面)上における第1の成分ビームの位置に対応する。第2の点174は、例えば図4の光検出器72のような第2の光検出器の表面(x−z平面)上における第2の成分ビームの位置に対応する。第2の点は第1の点に比して、所望の軸であるy軸から2倍(h対2h)ずれている。第1の点172と第2の点174間の線分176が成す角度を計算することにより、x−z平面においてx軸及び/又はz軸に対して成分ビームが成す偏差角を容易に求めることができる。成分ビームに関するオフセットについても、点172、174と原点(x、y、zの交点)間の距離を解析することにより容易に求められる。
図8は、本発明に係るビーム偏差検出及び補正方法180の動作を説明するためのフローチャートである。最初のピックオフステップ182において、位置合わせすべきマルチビームのごく一部をメインのマルチビームからピックオフする。そして、処理は成分ビーム分離ステップ184に進む。
成分ビーム分離ステップ184において、ピックオフされたマルチビームから1つ以上の成分ビームをビーム位置合わせの検査のために分離する。そして、処理は成分ビーム分割ステップ186に進む。
成分ビーム分割ステップ186において、分離された1つ以上の成分ビームは、1つ以上の光検出器に至るまでの長さが異なる2つの分岐路に分割される。そして、処理は偏差計算ステップ188に進む。
偏差計算ステップ188において、ハードウェア又はソフトウェアで実現される制御アルゴリズムにより、2つの分岐路に分岐された成分ビームの1つ以上の光検出器の表面上における位置に基づき、分離された1つ以上の成分ビームに関する偏差を計算する。そして、処理はビーム補正ステップ190に進む。
ビーム補正ステップ190において、分離された成分ビームに関する偏差、すなわちずれをキャンセルするように、1つ以上の成分ビームの位置を調整する。
以上、本発明を特定の応用における特定の具体例に従って説明した。本発明の教示を利用する当業者には、本発明の範囲に逸脱することなく、更なる変更、応用、具体例は明らかである。例えば、同軸レーザ光のマルチビームについて詳しく述べたが、本発明の特徴は、他の種類の光、あるいは同軸でないマルチビームにも応用可能である。可視光について説明したが、本発明はマルチビーム構成の任意のエネルギ、例えば赤外線や紫外線の波長にも適用することができる。
したがって、特許請求の範囲は、本発明の範囲を逸脱することなく、このような応用、変形及び具体例を含むものである。
本発明の教示に基づいて構成した、ユニークなマルチビーム偏差検出装置と偏差補正装置を備えるレーザ投写型装置の構成を示すブロック図である。 本発明の教示に基づいて構成した、順次式レーザ投写型装置の構成を示すブロック図である。 図1及び図2のマルチビーム偏差検出装置で使用するビーム偏差の原理を説明するための図である。 図1及び図2のマルチビーム偏差検出装置の詳細な構成を示すブロック図である。 図4に示すマルチビーム偏差検出装置の第1の代替的具体例の構成を示すブロック図である。 図4に示すマルチビーム偏差検出装置の第2の代替的具体例の構成を示すブロック図である。 図4〜6のマルチビーム偏差検出装置により検出される偏差の結果を説明する、重ね合わせた光検出器面を示す図である。 図4〜6に係るマルチビームの偏差検出及び補正装置で実施される方法のフローチャートである。

Claims (5)

  1. 画像及び/又は動画を表示するために複数のレーザビームを投写するレーザプロジェクタであって、
    複数のレーザビームに関する成分ビームの軸からの偏差を検出するビーム偏差検出装置を有し、前記ビーム偏差検出装置は、
    上記複数のレーザビームから、赤色ビーム、緑色ビーム及び青色ビームを含む個々の成分ビームを自動的且つ選択的に分離し、該分離された個々の成分ビームの各々を出射する第1の手段であって、上記複数のレーザビームからサンプルを分岐し、該分岐された複数のレーザビームを出射する分岐手段を含む第1の手段と、
    上記第1の手段から入射される個々の成分ビームの上記軸に対するずれを検出する第2の手段とを備え、
    上記第1の手段は、上記複数のレーザビームから上記赤色ビーム、緑色ビーム及び/又は青色ビームを自動的に且つ選択的に分離し、該分離された成分ビームを出射し、
    上記第2の手段は、上記分離されたビームを第1の分離ビームと第2の分離ビームに分割し、上記第1の分離ビームと第2の分離ビームをそれぞれ第1の光路と第2の光路に分岐するビームスプリッタを備え、
    上記第1の光路は、第1の電気的に制御可能なシャッタを通り、第1の反射器で反射し、上記ビームスプリッタを通り、単一の光検出器の表面に至る、
    ことを特徴とするレーザプロジェクタ。
  2. 上記第2の光路は、第2の電気的に制御可能なシャッタを通り、第2の反射器で反射し、上記ビームスプリッタを通り、上記単一の光検出器の表面に至ることを特徴とする請求項1記載のレーザプロジェクタ。
  3. 上記第2の手段は、上記第1及び第2の電気的に制御可能なシャッタを介して上記単一の光検出器の表面上にそれぞれ第1及び第2のスポットを形成する上記第1及び第2の分離ビームを選択的に遮断するコンピュータを備えることを特徴とする請求項2記載のレーザプロジェクタ。
  4. 上記第2の手段は、上記第1及び第2のスポットの位置を解析して、上記分離ビームに関するビーム偏差又はずれを測定するコンピュータを更に備えることを特徴とする請求項3記載のレーザプロジェクタ。
  5. 画像及び/又は動画を表示するために複数のレーザビームを投写するレーザプロジェクタであって、
    複数のレーザビームに関する成分ビームのずれを検出するレーザビームずれ検出装置を有し、当該レーザビームずれ検出装置は、
    1つの入射面と第1及び第2の出射面を有するピックオフ素子と、
    上記ピックオフ素子の第1の出力面から上記複数のレーザビームが入射されるカラーホイールと、
    上記カラーホイールの出射面に向いた入射面を有するとともに、第1及び第2の出射開口を有するビームスプリッタと、
    上記ビームスプリッタの第1の出射開口に面し、該第1の出力開口から第1の距離に位置する第1の光検出器と、
    上記ビームスプリッタの第2の出射開口に面し、該第2の出力開口から第2の距離に位置する第2の光検出器と、
    上記ピックオフ素子の第2の出射面から上記複数のレーザビームが入射されるビーム偏差補正装置と、
    上記第1及び第2の光検出器と上記ビーム偏差補正装置と信号を送受し、ビーム補正制御アルゴリズムを実行するコンピュータとを備えるレーザプロジェクタ。
JP2002523550A 2000-08-30 2001-08-15 複数のレーザのずれ検出及び補正装置 Expired - Fee Related JP5392958B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/651,165 2000-08-30
US09/651,165 US6424412B1 (en) 2000-08-30 2000-08-30 Efficient system and method for detecting and correcting laser misalignment of plural laser beams
PCT/US2001/025700 WO2002018870A1 (en) 2000-08-30 2001-08-15 Detecting and correcting plural laser misalignment

Publications (2)

Publication Number Publication Date
JP2004507751A JP2004507751A (ja) 2004-03-11
JP5392958B2 true JP5392958B2 (ja) 2014-01-22

Family

ID=24611815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002523550A Expired - Fee Related JP5392958B2 (ja) 2000-08-30 2001-08-15 複数のレーザのずれ検出及び補正装置

Country Status (7)

Country Link
US (1) US6424412B1 (ja)
EP (1) EP1328773B8 (ja)
JP (1) JP5392958B2 (ja)
KR (1) KR100832182B1 (ja)
CN (1) CN1250935C (ja)
AU (1) AU2001290537A1 (ja)
WO (1) WO2002018870A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738105B1 (en) * 2000-11-02 2004-05-18 Intel Corporation Coherent light despeckling
US6995810B2 (en) * 2000-11-30 2006-02-07 Texas Instruments Incorporated Method and system for automated convergence and focus verification of projected images
JP2003285249A (ja) * 2002-03-27 2003-10-07 Mori Seiki Co Ltd 工作機械の精度解析装置
JP4104427B2 (ja) * 2002-10-31 2008-06-18 日本電産サンキョー株式会社 光学特性計測装置
JP4446087B2 (ja) * 2004-03-01 2010-04-07 独立行政法人情報通信研究機構 光検出装置及びこれを用いた光検出システム
CN100337092C (zh) * 2005-11-02 2007-09-12 哈尔滨工业大学 漂移量靶标反馈的长距离二维偏振光电自准直装置和方法
CN102298250B (zh) * 2006-11-14 2014-06-25 奥斯兰姆有限公司 具有改进的投影特征的投影方法和投影设备
JP2009122455A (ja) * 2007-11-15 2009-06-04 Funai Electric Co Ltd 画像表示装置
WO2009154134A1 (ja) * 2008-06-18 2009-12-23 株式会社日立製作所 光ビーム走査型画像投影装置
US8675141B2 (en) * 2010-01-20 2014-03-18 Microvision, Inc. Closed loop feedback for electronic beam alignment
CN101927403A (zh) * 2010-08-02 2010-12-29 东阳市双燕设备有限公司 一种恒定式飞行光路激光切割机
DE102011079059A1 (de) * 2011-07-13 2013-01-17 Osram Ag Detektionseinrichtung für einen projektor
CN102944978B (zh) * 2011-08-15 2014-08-06 中山新诺科技股份有限公司 曝光系统、校准系统、光学引擎、曝光方法和制造方法
US9523905B2 (en) * 2012-08-06 2016-12-20 Intel Corporation Projection device and a method of manufacturing a projection device
TWI498535B (zh) * 2013-12-26 2015-09-01 Chroma Ate Inc An optical detection device with an on-line correction function
CN104965526B (zh) * 2015-07-01 2017-10-31 天津市视讯软件开发有限公司 光束平行准直快速调整检测装置及快速调整检测方法
CN106785871A (zh) * 2017-03-08 2017-05-31 严伟 基于红绿蓝半导体激光器合成白光的装置及方法
WO2019198441A1 (ja) * 2018-04-13 2019-10-17 パナソニックIpマネジメント株式会社 レーザ溶接方法
US11353786B2 (en) * 2018-09-11 2022-06-07 Sony Corporation Polarizing beam splitter and projector
US11342721B1 (en) * 2019-05-08 2022-05-24 Raytheon Company Beam director for high-energy laser (HEL) weapon
CN112013953B (zh) * 2020-07-09 2023-06-20 北京工业大学 一种激光器巴条的光束指向性偏差计算系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621901B2 (ja) * 1983-08-18 1994-03-23 富士写真フイルム株式会社 レーザビームの合波方法
JPH0829605B2 (ja) * 1987-06-10 1996-03-27 富士写真フイルム株式会社 カラービームの露光制御方法
JP2574807B2 (ja) * 1987-08-28 1997-01-22 株式会社日立製作所 膜厚分布測定方法及びその装置
JPH01210805A (ja) * 1988-02-18 1989-08-24 Yokogawa Electric Corp 三次元形状測定装置
US4847479A (en) * 1988-06-06 1989-07-11 Trw Inc. System for controlling the wavelength and colinearity of multiplexed laser beams
JP3409330B2 (ja) * 1991-02-08 2003-05-26 ソニー株式会社 投射型表示装置の調整装置および調整方法
JP3335373B2 (ja) * 1992-03-27 2002-10-15 ソニー株式会社 光学変調装置、光学装置、レーザビームプリンタ、表示装置及び光媒体記録装置
JP3735158B2 (ja) * 1996-06-06 2006-01-18 オリンパス株式会社 画像投影システム、画像処理装置
JPH10314973A (ja) * 1997-03-12 1998-12-02 Kawasaki Heavy Ind Ltd 複合レーザビームによるレーザ加工装置および加工法
JP2947513B1 (ja) * 1998-07-30 1999-09-13 株式会社ニデック パターン検査装置

Also Published As

Publication number Publication date
EP1328773A4 (en) 2008-02-13
CN1471624A (zh) 2004-01-28
KR100832182B1 (ko) 2008-05-23
EP1328773B1 (en) 2011-10-05
US6424412B1 (en) 2002-07-23
KR20030031174A (ko) 2003-04-18
JP2004507751A (ja) 2004-03-11
AU2001290537A1 (en) 2002-03-13
EP1328773B8 (en) 2012-04-25
WO2002018870A1 (en) 2002-03-07
CN1250935C (zh) 2006-04-12
EP1328773A1 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
JP5392958B2 (ja) 複数のレーザのずれ検出及び補正装置
US8562150B2 (en) Optical axis adjustment device, method for adjusting optical axis and projection-type display apparatus
KR101240762B1 (ko) 영상 투영 방법 및 투영 장치
US6670603B2 (en) Image projector and image correction method
US8235534B2 (en) Projector that projects a correction image between cyclic main image signals
US7078720B2 (en) Range finder for measuring three-dimensional geometry of object and method thereof
JP3594706B2 (ja) 光源位置調整装置
US10133165B2 (en) Optical device
US7006269B2 (en) Multi-beam scanning device
CN104755996A (zh) 偏振分光复用装置、光学系统和显示单元
US10182217B2 (en) Projection device and a method of manufacturing a projection device
KR20050073533A (ko) 광주사장치, 상의 위치 교정방법 및 화상표시장치
CN106605163A (zh) 激光光学装置和图像投影装置
US5434632A (en) Image projection apparatus with a autofocusing system
US5170250A (en) Full-color light valve projection apparatus having internal image registration system
JP2005084325A (ja) 照明装置及びこれを用いたプロジェクタ
US20120081681A1 (en) Drawing device and drawing method
JP2014059522A (ja) 画像表示装置
CN112104793A (zh) 基于光同步的激光电视投影装置
JPH04205722A (ja) 光軸調整装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110607

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120314

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees