JP5389995B1 - 計測システム及びその計測システムを備えた工作機械 - Google Patents

計測システム及びその計測システムを備えた工作機械 Download PDF

Info

Publication number
JP5389995B1
JP5389995B1 JP2012182073A JP2012182073A JP5389995B1 JP 5389995 B1 JP5389995 B1 JP 5389995B1 JP 2012182073 A JP2012182073 A JP 2012182073A JP 2012182073 A JP2012182073 A JP 2012182073A JP 5389995 B1 JP5389995 B1 JP 5389995B1
Authority
JP
Japan
Prior art keywords
measurement
position information
index
measurement system
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012182073A
Other languages
English (en)
Other versions
JP2014041014A (ja
Inventor
拓人 安田
敬介 嶋村
康雅 守分
一文 徳毛
Original Assignee
安田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安田工業株式会社 filed Critical 安田工業株式会社
Priority to JP2012182073A priority Critical patent/JP5389995B1/ja
Application granted granted Critical
Publication of JP5389995B1 publication Critical patent/JP5389995B1/ja
Publication of JP2014041014A publication Critical patent/JP2014041014A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】マシニングセンタなどの機上計測において、ワークの小径穴、細い溝、微小段差の突起物など微細な形状を対象に高精度な計測ができると共に、機械加工の基準としてこの計測結果を活用することにより、高精度な加工を実現することができる計測システム及びその計測システムを備えた工作機械を提供する。
【解決手段】テーブル2上の既知の位置に設けられた指標と、光軸が主軸の回転軸と平行になるように配置され、テーブル2上の測定対象物を撮像する撮像装置20と、撮像装置20で撮像された画像を処理し、光軸を基準として測定対象物の画像から計測位置情報に変換する画像処理装置24と、この計測位置情報を用いた各種処理を行う制御装置6とを備え、制御装置6は、撮像装置20が指標を撮像したときに回転軸と光軸との相対位置情報を求め、該相対位置情報に基づいて計測位置情報を回転軸を基準とした絶対位置情報に変換することを特徴とする。
【選択図】図1

Description

本発明は、マシニングセンタなどの工作機械において、テーブルに設置したワーク上の微細形状をデジタルカメラで撮影し、画像処理することによって位置情報を認識し、ワーク計測の手段とする計測システム及びその計測システムを備えた工作機械に関する。
マシニングセンタなどの工作機械において、テーブル上に設置したワークの形状や寸法を計測する機上計測の手法には、従来からタッチプローブなどの接触式センサが用いられている。しかし、この接触式センサを用いる手法では、ワークの小径穴、細い溝、微小段差の突起物など微細な形状について、プローブの触子が計測対象に接触できないために、機上での計測を行うことができなかった。また、微細形状の計測を目的とした極小のプローブ触子も開発されているが、被計測対象に接触させるのが困難な上、極小のプローブ触子は高価で壊れやすいなどの問題があった。
この微細な形状の計測も可能にした計測手法としては、マシニングセンタなどの工作機械において、主軸に着脱自在な治具にCCDカメラを取り付けてあり、加工前や加工後にCCDカメラでテーブル上のワークを撮像し、ワーク画像の画像処理を行って測定対象の位置情報や距離情報などを算出することにより、非接触で機上計測を行えるようにした計測手法が知られている(例えば、特許文献1,2参照)。
また、熱交換器等における管板の管穴シール溶接を行う際に使用される管穴自動探索装置において、X,Y,Z軸の3軸方向に移動可能なNC装置に、Z軸と平行に移動可能な溶接装置を連結すると共に、このNC装置にZ軸方向に進退可能なCCDカメラを配置してあり、CCDカメラで撮像した実際の管穴とマスタ画像とのパターンマッチング処理を行なって、マスタ画像と実際に撮像した対象管穴の位置のずれを求める非接触の機上計測手法も知られている(例えば、特許文献3参照)。
特開2004−202634号公報 特開2010−54399号公報 特開2000−9427号公報
特許文献1,2に記載の計測手法は、マシニングセンタなどの工作機械において、工具を装着する主軸にCCDカメラを取り付けた治具を装着することから、主軸中心とCCDカメラの撮影点が一致し、単純に撮影点を工具位置とみなすことができる。しかし、この計測手法では、主軸に工具を装着して加工している間は計測を行うことができず、CCDカメラを取り付けた治具を主軸に着脱する度にチャッキング誤差が生じ、計測結果がばらつくという問題がある。
また、この計測手法では、CCDカメラを取り付けた治具が主軸に装着されている間、主軸を回転させることができない。一般に、主軸が回転すると、回転による発熱が主因で主軸周辺に熱変位が生じ、主軸とワーク(計測対象)の相対位置関係が変化する。したがって、主軸の回転開始前にこの計測手法で座標系を定めたとしても、主軸の回転開始後に生じる熱変位のために座標系に誤差が発生し、精度の高い計測や加工を行うことができないという問題もある。
また、この計測手法では、CCDカメラを主軸の先端部に取り付けるために、光学系に全長の長いテレセントリックレンズを採用するのは、スペース確保の点から無理がある。また、CCDカメラを着脱自在にするためにカメラの配線処理が問題となり、計測を自動化するためには、特許文献2に記載のように、非接触の給電手段やデータの無線通信手段が必要になるという様々な課題があった。
これに対し、特許文献3に記載の計測手法では、Z軸と平行に移動可能な溶接装置を連結すると共に、このNC装置にZ軸方向に進退可能なCCDカメラを配置してあり、CCDカメラと溶接装置が間隔をおいて配置されていることから、CCDカメラの着脱は不要で配線処理や計測の自動化が容易になる。一方、この計測手法では、溶接装置とCCDカメラの撮影点が一致しないために、CCDカメラに対して位置決めした後に両者のオフセット量だけNC装置を移動させる必要がある。
このNC装置において、溶接装置とCCDカメラのオフセット量は、加工時の発熱などによる熱変位によって時間と共に変化する。しかし、特許文献3に記載の計測手法では、組立上の溶接装置とCCDカメラの間隔をオフセット量としているために、熱変位によるオフセット量の変化によって位置決め精度に誤差を生じるという課題があった。
そこで、本発明は、マシニングセンタなどの機上計測において、従来のタッチプローブなどの接触式センサでは計測できなかったワークの小径穴、細い溝、微小段差の突起物など微細な形状を対象に高精度な計測ができると共に、次工程(機械加工)の基準としてこの計測結果を活用することにより、高精度な加工を実現することができる計測システム及びその計測システムを備えた工作機械を提供するものである。
本発明は、上記課題を解決するために、ワークを載置するテーブルと、工具を装着する主軸と、該主軸を回転自在に支持する主軸ハウジングと、を有する工作機械において、前記テーブル上の既知の位置に設けられた指標と、光軸が前記主軸の回転軸と平行になるように配置され、前記テーブル上の測定対象物を撮像する撮像装置と、前記撮像装置で撮像された画像を処理し、前記光軸を基準として前記測定対象物の画像から計測位置情報に変換する画像処理装置と、この計測位置情報を用いた各種処理を行う制御装置と、を備え、前記制御装置は、前記撮像装置が前記指標を撮像したときに前記回転軸と前記光軸との相対位置情報を求め、該相対位置情報に基づいて前記計測位置情報を前記回転軸を基準とした絶対位置情報に変換することを特徴とする計測システムを提供するものである。
また、本発明の計測システムは、前記主軸を挿通可能な円環形状に形成された支持部材が前記主軸ハウジングの端部に設けられ、該支持部材の外縁部に前記撮像装置を取り付けてある。
また、本発明の計測システムは、前記支持部材が、前記主軸ハウジングの端部にネジ止めするための複数のネジ挿通孔を有すると共に、それぞれのネジ挿通孔に対して径方向の外側に該径方向と直交する方向のスリットを備えている。
また、本発明の計測システムは、前記撮像装置が、低熱膨張材で形成された支持部材を介して前記主軸ハウジングに取り付けられている。
また、本発明の計測システムは、前記制御装置が、前記相対位置情報の初期値を記憶してあり、該初期値に基づいて前記計測位置情報を前記絶対位置情報に変換すると共に、前記指標を撮像したときに求められる前記相対位置情報と前記初期値との差分を求め、該差分に基づいて前記絶対位置情報を補正することを特徴とする。
また、本発明の計測システムは、前記制御装置が、前記差分を記憶する手段と、前記差分の変化の収束点を求める手段と、を備えている。
また、本発明の計測システムは、前記テーブル上の既知の位置に透明な円柱状体を設け、該円柱状体の前記テーブル側の端面中央部に前記指標を描画したことを特徴とする。
また、本発明の計測システムは、前記指標が、放射状に配列された複数の誘導マークと、これら誘導マークの中心に描画された中心マークと、を有する。
また、本発明は、上記の何れかに記載の計測システムを備えた工作機械を提供するものである。
本発明の計測システムは、ワークを載置するテーブルと、工具を装着する主軸と、該主軸を回転自在に支持する主軸ハウジングと、を有する工作機械において、前記テーブル上の既知の位置に設けられた指標と、光軸が前記主軸の回転軸と平行になるように配置され、前記テーブル上の測定対象物を撮像する撮像装置と、前記撮像装置で撮像された画像を処理し、前記光軸を基準として前記測定対象物の画像から計測位置情報に変換する画像処理装置と、この計測位置情報を用いた各種処理を行う制御装置と、を備え、前記制御装置は、前記撮像装置が前記指標を撮像したときに前記回転軸と前記光軸との相対位置情報を求め、該相対位置情報に基づいて前記計測位置情報を前記回転軸を基準とした絶対位置情報に変換する構成を有することにより、主軸の回転軸と平行に配置された撮像装置によって主軸を回転させた状態での撮像が可能になり、主軸を回転させた状態で指標を撮像して回転軸と光軸との相対位置情報を求めることができる。したがって、主軸の回転時に発生する熱によって生じる回転軸と光軸の間の熱変位の影響を排除して計測位置情報を絶対位置情報に変換することができると共に、ワークの加工中においても任意のタイミングで計測を行うことができるから、運転中の熱変位を随時補正して高精度な計測及び加工が可能になる効果がある。
操作者は、加工工程に応じた主軸回転数の変更や、機械設置環境の温度変化を考慮しつつ、任意のタイミングで指標を撮像することにより、回転軸と光軸の間の熱変位の影響を確実に排除することができ、精度の高い計測及び加工を行うことができる。
また、本発明の計測システムは、撮像装置が主軸の回転軸と平行に配置されたことにより、スペースの制約を受けないので、撮像装置に全長の長いテレセントリックレンズを装着することができ、焦点の多少のずれによって撮影対象の画像サイズが変化することもなく、正確な画像が撮影できるから、精度の高い位置情報を得ることができる効果がある。
また、本発明の計測システムは、前記主軸を挿通可能な円環形状に形成された支持部材が前記主軸ハウジングの端部に設けられ、該支持部材の外縁部に前記撮像装置を取り付けたことにより、主軸ハウジングの温度変化が円環形状の支持部材の全方位に均等に伝播するから、支持部材の中心を回転軸に一致させて主軸ハウジングに取り付けることにより、支持部材は相似的に拡縮し、支持部材の中心も回転軸からずれていかない。したがって、支持部材の外縁部に取り付けられた撮像装置の光軸と回転軸の位置関係が変化しにくく、安定した機上計測を行うことができる効果がある。
また、本発明の計測システムは、前記支持部材が、前記主軸ハウジングの端部にネジ止めするための複数のネジ挿通孔を有すると共に、それぞれのネジ挿通孔に対して径方向の外側に該径方向と直交する方向のスリットを備えたことにより、主軸ハウジングと支持部材の熱膨張率が異なっていても、主軸ハウジングと支持部材の熱変位量の差をスリットによって吸収して支持部材の変形を抑制することができるから、回転軸と光軸の位置関係が変化しにくく、更に安定した機上計測を行うことができる効果がある。
また、本発明の計測システムは、前記撮像装置が、低熱膨張材で形成された支持部材を介して前記主軸ハウジングに取り付けられたことにより、支持部材が熱による影響を受けにくくなり、回転軸と光軸の距離変化を抑制することができるから、主軸の回転を始めた温度上昇過程においても安定した機上計測を行うことができる効果がある。
また、本発明の計測システムは、前記制御装置が、前記相対位置情報の初期値を記憶してあり、該初期値に基づいて前記計測位置情報を前記絶対位置情報に変換すると共に、前記指標を撮像したときに求められる前記相対位置情報と前記初期値との差分を求め、該差分に基づいて前記絶対位置情報を補正することにより、主軸の回転時に発生する熱などによって生じる回転軸と光軸の間の熱変位を上記差分によって補正することができるから、絶対位置情報を簡便な手段によって補正することができる効果がある。
また、本発明の計測システムは、前記制御装置が、前記差分を記憶する手段と、前記差分の変化の収束点を求める手段と、を備えたことにより、主軸の回転時に発生する熱によって生じる回転軸と光軸の間の熱変位の収束を把握することができ、収束点における差分に基づいて計測位置情報を絶対位置情報に変換することによって、それ以後は指標の撮影を行わなくても精度の高い安定した機上計測を行うことができる効果がある。
また、本発明の計測システムは、前記テーブル上の既知の位置に透明な円柱状体を設け、該円柱状体の前記テーブル側の端面中央部に前記指標を描画したことにより、ワークの加工時に発生する切粉が指標に直接触れないため、指標を確実に保護することができる。また、円柱状体の表面に付着した切粉をエアブローで吹き飛ばしても、切削油の油滴まで排除することは困難であるが、指標をテーブル側の端面に描画したことにより、撮像装置の焦点を指標側に合わせたときに油滴には焦点が合わないから、指標のみが明瞭な画像となり、画像処理によるパターン認識を確実に行うことができる効果がある。
また、本発明の計測システムは、前記指標が、放射状に配列された複数の誘導マークと、これら誘導マークの中心に描画された中心マークと、を有することにより、撮像装置によって指標を撮像する際に、誘導マークによって直ちに中心マークの位置を把握することができ、指標の撮像に要する時間を短縮することができる効果がある。
また、本発明の工作機械は、上記の何れかに記載の計測システムを備えたことにより、主軸の回転軸と平行に配置された撮像装置によって主軸を回転させた状態での撮像が可能になり、主軸を回転させた状態で指標を撮像して回転軸と光軸との相対位置情報を求めることができる。したがって、主軸の回転時に発生する熱によって生じる回転軸と光軸の間の熱変位の影響を排除して計測位置情報を絶対位置情報に変換することができると共に、ワークの加工中においても任意のタイミングで計測を行うことができるから、運転中の熱変位を随時補正して高精度な計測及び加工が可能になる効果がある。
本発明に係る計測システムを備えた工作機械の一実施例を示す斜視図。 その工作機械の一実施例の主要部を示す分解斜視図。 撮像装置の支持部材の一実施例を示す平面図。 その支持部材の熱変位の様子を示す説明図。 指標の一実施例を示す平面図。 指標の支持構造の一実施例を示す分解斜視図。 指標の撮像画像の比較例を示す説明図。 テレセントリックレンズを通過する光路を示す模式図。 指標の位置を計測する計測手段の一実施例を示す説明図。 本発明に係る計測システムの熱変位の補正手段を示す説明図。
本発明の実施の形態を図示する実施例に基づいて説明する。
本発明に係る計測システムは、ワークWを載置するテーブル2と、工具5を装着する主軸3と、該主軸3を回転自在に支持する主軸ハウジング4と、を有する工作機械1において、前記テーブル2上の既知の位置に設けられた指標11と、光軸21aが前記主軸の回転軸3aと平行になるように配置され、前記テーブル2上の測定対象物を撮像する撮像装置20と、前記撮像装置20で撮像された画像を処理し、前記光軸21aを基準として前記測定対象物の画像から計測位置情報に変換する画像処理装置24と、この計測位置情報を用いた各種処理を行う制御装置6と、を備え、前記制御装置6は、前記撮像装置20が前記指標11を撮像したときに前記回転軸3aと前記光軸21aとの相対位置情報を求め、該相対位置情報に基づいて前記計測位置情報を前記回転軸3aを基準とした絶対位置情報に変換することを特徴とする。
図1は、本発明に係る計測システムを備えた工作機械の一実施例を示す斜視図である。
図1に示す実施例において、工作機械1はマシニングセンタであり、ワークWを載置するテーブル2と、工具5を装着する主軸3と、主軸3を回転自在に支持する主軸ハウジング4と、を有する。テーブル2はX軸方向及びY軸方向に駆動され、主軸ハウジング4はZ軸方向に駆動される。工作機械1は、主軸3の先端に工具5が装着され、工具5を回転させながらワークWに対してX,Y,Z軸方向に相対移動させ、ワークWを所望の形状に加工する。また、工作機械1は、工具5の加工軌跡を数値制御する制御装置6と、加工条件、工具交換、座標設定などの指示を入力する操作パネル7と、加工情報や位置情報などを表示するモニター8を備えている。なお、工作機械1は、図示の立形マシニングセンタに限られず、横形マシニングセンタの他、ボール盤、中ぐり盤、フライス盤、研削盤など各種の工作機械に本発明の計測システムを採用することが可能である。
[撮像装置]
図2は、本発明に係る工作機械の一実施例の主要部を示す分解斜視図である。
撮像装置20は、テーブル2上に載置された測定対象物を撮像するものであり、テレセントリックレンズ21と、CCDイメージセンサなどの撮像素子22と、測定対象物に光を照射するスポット照明23とを有する。撮像装置20は、テレセントリックレンズ21の光軸21aが主軸3の回転軸3aと平行になるように配置され、支持部材30を介して主軸ハウジング4に取り付けられている。本発明の計測システムは、撮像装置20の光軸21aが主軸3の回転軸3aと平行に配置されたことによって、撮像装置20の光学系がスペースの制約を受けないので、撮像装置20の光学系に全長の長いテレセントリックレンズを装着することが可能になった。このテレセントリックレンズ21は、(1)焦点位置と被写体位置に多少のずれがあっても被写体サイズが変化しない、(2)ワーキングディスタンスが長い、(3)歪曲収差が生じにくい等の特徴を有している。なお、撮像装置20の光学系は、テレセントリックレンズに限られず、種々の光学系を用いることも可能である。
スポット照明23は、テレセントリックレンズ21の鏡筒に対して垂直に配置され、図示しないビームスプリッタなどを介してテレセントリックレンズ21の筒先から測定対象物に光を照射する。制御装置6には、スポット照明23の照度をコントロールする照度コントローラー25を設けてある。また、撮像装置20と制御装置6とは着脱可能な通信ケーブル26によって接続され、撮像装置20で撮像された画像データは通信ケーブル26を介して制御装置6内の画像処理装置24に送られる。なお、スポット照明23は、撮像装置20とは異なる光学系を用いて測定対象物に光を照射してもよい。
[支持部材]
図1乃至図3に示す実施例において、支持部材30は、インバー合金やスーパーインバー合金などの低熱膨張材で円環形状に形成してある。図2及び図3に示すように、支持部材30は、主軸ハウジング4の端部にネジ止めするための複数のネジ挿通孔31を有すると共に、それぞれのネジ挿通孔31に対して径方向の外側に該径方向と直交する方向のスリット32を備えている。支持部材30は、主軸ハウジング4の端部にネジ34によって固定され、この支持部材30の外縁部には撮像装置20を取り付ける取付部33を形成してある。ネジ挿通孔31及びスリット32は、取付部33と円環形状の中心を通る直線に対して対称な位置に4箇所ずつ設けてある。
一般に主軸3が回転すると、その発熱が主因で主軸3及び主軸ハウジング4に熱変位が生じる。このため、単に支持部材を介して主軸ハウジング4に撮像装置20を取り付けただけでは、主軸3の回転軸3aと撮像装置20の光軸21aの位置関係が熱変位による影響を受けて変化する。一方、図4に示すように、支持部材30を主軸ハウジング4の端部に設けた場合には、主軸ハウジング4の熱変位による影響は受けにくいが、主軸ハウジング4を介して支持部材30にも熱が伝播する。このとき、支持部材30は、主軸ハウジング4に接する側の温度が高くなり、熱変位も大きくなるので、図4に示す30'のように支持部材が湾曲し、撮像装置20の光軸21aが主軸3の回転軸3aに対して傾く。光軸21aの傾きは僅かであっても、ワークWの測定対象面までの距離(ワークディスタンス)により、撮像対象点(光軸21aと測定対象面との交点)は大きくずれることがある。
本発明は、支持部材30が、円環形状に形成され、中心からみて均等な寸法を持つ形状であるため、発熱源である主軸3の回転軸3aと支持部材30の中心を一致させて取り付けることにより、温度上昇は支持部材30の全方位に均等に伝播する。したがって、支持部材30は、熱膨張によって相似的に膨張することはあっても、不均等な熱変形はしないから、支持部材30の中心は回転軸3aからずれることはない。また、支持部材30は、インバー合金などの低熱膨張材で形成されているから、主軸ハウジング4に接する側と反対側との熱変位量の差も殆どなく、支持部材30が湾曲するのを阻止することができる。また、主軸ハウジング4と支持部材30の熱膨張率が異なることにより生じる主軸ハウジング4と支持部材30の熱変位の差は、スリット32によって吸収されるから、支持部材30の変形を抑止することができ、回転軸3aと撮像装置20の光軸21aの位置関係が変化しにくくなり、安定した機上計測を行うことができる。
支持部材30は、上述の実施例の構成を採用することが最も好ましいが、本発明は、主軸3の回転軸3aと平行に配置された撮像装置20によって主軸3を回転させた状態での撮像が可能になるから、後述する回転軸3aと撮像装置20の光軸21a間で生じる熱変位の影響を排除する手法と組み合わせることにより、他の構成の支持部材を用いることも可能である。
[指標装置]
図1及び図6において、10は指標装置であり、指標11が描画された円形のガラス板14と、このガラス板14を載置する載置台15と、ガラス板14を載置台15に固定する固定部材16と、を有する。ガラス板14は、高い真円度で円形に加工され、中央部に撮像装置20で撮像可能な任意のパターン形状を描画してある。スポット照明23からの照明光が指標11に反射して帰ってくる光を撮像装置20の撮像素子22が捉えて、指標11の位置情報を認識する。指標11の描画は、フォトリソグラフィなど既存の方法を用いて行うことができる。また、固定部材16は複数の係止片17を備え、この係止片17でガラス板14を固定しているから、タッチプローブなどの接触式センサによってガラス板14の周囲を計測可能になっている。
図5に示す実施例において、指標11は、放射状に配列された複数の誘導マーク12と、これら誘導マーク12の中心に描画された中心マーク13と、を有する。指標11は、撮像装置20によって指標(中心マーク13)を撮像する際に、複数の誘導マーク12の延長線上の交点が中心マーク13の位置を示すから、指標への位置合わせに要する時間を短縮することができる。指標11の中心である中心マーク13の中心位置と、指標11が描画されたガラス板14の中心位置は、できる限り一致させておくことが望ましいが、中心マーク13がガラス板14の中心から多少ずれていても、そのずれ量を把握できていればよい。
この指標11の中心マーク13の形状は、撮像した画像の処理におけるパターンマッチング処理に使用するため、テンプレート画像として画像処理装置24に予め記憶しておく。
指標装置10は、主軸3の回転軸3aと撮像装置20の光軸21aとの距離を測定するとき、及び主軸3の回転によって生じるこの距離の熱変位を補正するときに使用するキャリブレーション・ターゲットであり、テーブル2上の既知の位置に定置しておく。載置台15は、磁石を備えており、テーブル2の任意の位置に固定できるように構成してある。指標装置10の位置は、主軸3にタッチプローブ9を装着し、予めガラス板14の位置を計測することにより把握できる。また、指標11の位置は、光学顕微鏡などを用いてガラス板14の中心位置と指標11の中心位置のずれ量を測定することにより、予め把握しておくことができる。このとき、ガラス板14には、ずれ量の方向を把握可能なマークを描画してあることが好ましい。
指標装置10は、熱変位の補正も目的としていることから、ワークWの加工中もテーブル2上に定置させておく必要があるため、切粉や切削油にさらされる。ガラス板14の上面に付着した切粉はエアブローで簡単に除去できるが、油滴を完全に除去するのは困難である。エアブローにより、ガラス板14の上面に付着した油分は、大部分が飛散するが、残った僅かな油分が微細な油粒の群となってガラス表面に残留し、簡単に吹き飛ばすことができない。この微細な油滴17が指標11の形状に被った状態で撮像を行うと、図7に示すように、油滴17で反射光が乱反射して画素に油滴17の影17aが映り込み、画像処理装置24は、撮像された画像11aとテンプレート画像が一致しないと認識し、パターンマッチングに支障を来す恐れがある。
図示の実施例では、ガラス板14の指標11が描画された面を下(テーブル側)にして載置台15に載置してある。この構成により、(1)指標11に切粉が直接当たらないために指標11が保護される、(2)ガラス板14が適当な厚みを有するから、裏面に描写された指標11に焦点が合っているときは、表面に付着した微細な油滴17には焦点が合わず、画素に像を結ばない。したがって、撮像素子22には、指標11の形状のみが明瞭に結像する。
図8は、テレセントリックレンズ21を通過する光路を示す模式図である。同図(a)は、ガラス板14の表側に指標11を描画してあり、指標11に焦点が合っている状態を示している。これより、指標11のエッジに被った油滴17が画素に映り込む様子が分かる。同図(b)は、ガラス板14の裏側に指標11を描画した状態を示しており、同じく指標11に焦点が合っている状態を示している。これより、ガラス板14の表側に付着した油滴17は、画素上で結像せず、指標11の輪郭のみが明瞭に結像する様子が分かる。このように、ガラス板14の裏面に指標11を描画し、ガラス板14の表面をエアブローすることにより、ワークWの加工中に発生する切粉や切削油の影響を排除することができる。
[画像処理装置・制御装置]
画像処理装置24は、撮像装置20で撮像された画像を処理し、撮像装置20の光軸21aを基準として測定対象物の画像から計測位置情報に変換する。制御装置6は、この計測位置情報を用いてデータの記憶や演算などの各種処理を行う。制御装置6は、撮像装置20が指標11を撮像したときに回転軸3aと光軸21aとの相対位置情報を求め、この相対位置情報に基づいて上記計測位置情報を回転軸3aを基準とした絶対位置情報に変換する。本発明の計測システムは、撮像装置20がワークW上の測定対象物を撮像し、画像処理装置24が画像データを画像処理して位置情報に変換すると共に、制御装置6が位置情報の記憶・演算などの処理をすることにより、小径穴、細い溝、微小段差の突起物など微細な形状について機上計測を可能にしている。
画像処理装置24は制御装置6に設けてあり、指示入力は操作パネル7によって行い、画像処理・演算結果はモニター8に表示される。画像処理装置24は、テンプレート画像として予め登録した画像と、撮像装置20によって撮像された画像とのパターンマッチング処理を行い、画像の一致を判断したときに、その位置情報を元に演算を行って目標物の座標値や寸法を算出し、測定対象物の画像から計測位置情報に変換する。画像のパターンマッチング処理、画像に基づく目標物の座標値や寸法の算出処理には、既存の画像処理技術を用いることができる。
実施例の制御装置6は、回転軸3aと光軸21aとの相対位置情報の初期値を記憶してあり、この初期値に基づいて光軸21aを基準とした測定対象物の計測位置情報を回転軸3aを基準とした絶対位置情報に変換する。また、制御装置6は、指標11を撮像したときに求められる相対位置情報と上記初期値との差分を求め、この差分に基づいて絶対位置情報を補正する。
また、制御装置6は、上記の差分を記憶する手段と、この差分の変化の収束点を求める手段と、を備えている。工作機械1の操作者は、この収束点から主軸3の回転時に発生する熱によって生じる回転軸3aと光軸21aの間の熱変位の収束を把握することができ、収束点における差分に基づいて計測位置情報を絶対位置情報に変換して、それ以後の機上計測を行うことができる。
[機上計測方法]
次に、本発明に係る計測システムを用いた機上計測方法について説明する。
初めに、主軸3の回転軸3aと撮像装置20の光軸21aとの相対位置を正確に計測する。
(イ)図9に示すように、主軸1にタッチプローブ9を装着し、円形のガラス板14の外周を接触測定し、主軸3の回転軸3aと円形のガラス板14の中心が一致したときの座標[X(cc),Y(cc)]を求める。円形のガラス板14の外周4点(a,b,c,d)を測定することにより、ガラス板14の円形中心(cc)の座標が算出される。なお、円形中心は外周3点より求まるので、接触測定点は3点以上であればよい。
(ロ)図10に示すように、撮像装置20がガラス板14に描画された指標11を撮像し、指標11の画像を画像処理装置24で画像処理して計測位置情報に変換する。制御装置6は、この計測位置情報から演算を行い、光軸21aと指標11の中心(pc)が一致したときの座標[X(pc),Y(pc)]を算出する。
(ハ)ガラス板14の円形中心(cc)と、指標11の中心(pc)は、一致していることが望ましいが、仮にずれていたとしてもずれ量は不変値なので、この値[Δx,Δy]を単純に足し引きして補正する。この[Δx,Δy]は光学顕微鏡などで測定して、予め制御装置6に記憶しておく。具体的には、制御装置6が(ロ)で求めた座標[X(pc),Y(pc)]に、このずれ量[Δx,Δy]を加えて、光軸21aとガラス板14の円形中心(cc)が一致したときの座標[X(cc),Y(cc)]を算出する。
(cc)=X(pc)+Δx
(cc)=Y(pc)+Δy
(ニ)上記の(イ)で求めた座標[X(cc),Y(cc)]と、(ハ)で求めた座標[X(cc),Y(cc)]の差が、主軸3の回転軸3aと撮像装置20の光軸21aとの正確な距離[XL−S,YL−S]となる。
L−S=|X(cc)−X(cc)|
L−S=|Y(cc)−Y(cc)|
次に、主軸3の回転軸3aと撮像装置20の光軸21aの熱変位を補正する手段について説明する。工作機械1の稼働中は、主軸3の回転による発熱や機械設置環境の温度変化によって、上述の距離[XL−S,YL−S]が初期値に対して変位してくる。この変位は、主軸3の回転中に指標11を撮像することにより、指標11の中心の移動(これが熱変位に相当)を計測し、主軸3の回転軸3aと撮像装置20の光軸21a間の距離の初期値を補正することにより、熱変位の影響を排除できる。指標11を撮像するタイミングは、機械操作者の判断で随時実行して、熱変位の影響を極力排除することができる。
(ホ)加工時の主軸回転数(任意の一定回転数)で主軸3を空回しする(暖機運転)。
(ヘ)暖機運転を続けると、一定時間後に主軸熱変位がほぼ収束する。この時点で、主軸3を回転させた状態で、指標11を撮像し、上述の距離[XL−S,YL−S]を求める。
(ト)今回計測した距離[XL−S,YL−S]と、上述の(ロ)で計測した距離[XL−S,YL−S]の初期値との差分が熱変位量となる。以後の撮像装置20による計測においては、この差分を補正することにより、熱変位量を補正した計測結果を導くことができる。
(チ)この補正(キャリブレーション)は、操作者が、工程に応じた主軸回転数の変更や温度環境の変化を考慮して、任意のタイミングで実行できる。
1 工作機械
2 テーブル
3 主軸
3a 回転軸
4 主軸ハウジング
5 工具
6 制御装置
7 操作パネル
8 モニター
10 指標装置
11 指標
12 誘導マーク
13 中心マーク
14 ガラス板
15 載置台
16 固定部材
17 係止片
20 撮像装置
21 テレセントリックレンズ
21a 光軸
22 撮像素子
23 スポット照明
24 画像処理装置
25 照度コントローラー
26 通信ケーブル
30 支持部材
31 ネジ挿通孔
32 スリット
33 取付部
34 ネジ
W ワーク

Claims (9)

  1. ワークを載置するテーブルと、工具を装着する主軸と、該主軸を回転自在に支持する主軸ハウジングと、を有する工作機械において、
    前記テーブル上の既知の位置に設けられた指標と、
    光軸が前記主軸の回転軸と平行になるように配置され、前記テーブル上の測定対象物を撮像する撮像装置と、
    前記撮像装置で撮像された画像を処理し、前記光軸を基準として前記測定対象物の画像から計測位置情報に変換する画像処理装置と、
    この計測位置情報を用いた各種処理を行う制御装置と、を備え、
    前記制御装置は、前記撮像装置が前記指標を撮像したときに前記回転軸と前記光軸との相対位置情報を求め、該相対位置情報に基づいて前記計測位置情報を前記回転軸を基準とした絶対位置情報に変換することを特徴とする計測システム。
  2. 前記主軸を挿通可能な円環形状に形成された支持部材が前記主軸ハウジングの端部に設けられ、該支持部材の外縁部に前記撮像装置を取り付けた請求項1に記載の計測システム。
  3. 前記支持部材が、前記主軸ハウジングの端部にネジ止めするための複数のネジ挿通孔を有すると共に、それぞれのネジ挿通孔に対して径方向の外側に該径方向と直交する方向のスリットを備えた請求項2に記載の計測システム。
  4. 前記撮像装置が、低熱膨張材で形成された支持部材を介して前記主軸ハウジングに取り付けられた請求項1乃至3の何れか一項に記載の計測システム。
  5. 前記制御装置が、前記相対位置情報の初期値を記憶してあり、該初期値に基づいて前記計測位置情報を前記絶対位置情報に変換すると共に、前記指標を撮像したときに求められる前記相対位置情報と前記初期値との差分を求め、該差分に基づいて前記絶対位置情報を補正することを特徴とする請求項1乃至4の何れか一項に記載の計測システム。
  6. 前記制御装置が、前記差分を記憶する手段と、前記差分の変化の収束点を求める手段と、を備えた請求項5に記載の計測システム。
  7. 前記テーブル上の既知の位置に透明な円柱状体を設け、該円柱状体の前記テーブル側の端面中央部に前記指標を描画したことを特徴とする請求項1乃至6の何れか一項に記載の計測システム。
  8. 前記指標が、放射状に配列された複数の誘導マークと、これら誘導マークの中心に描画された中心マークと、を有する請求項7に記載の計測システム。
  9. 請求項1乃至8の何れか一項に記載の計測システムを備えた工作機械。
JP2012182073A 2012-08-21 2012-08-21 計測システム及びその計測システムを備えた工作機械 Active JP5389995B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182073A JP5389995B1 (ja) 2012-08-21 2012-08-21 計測システム及びその計測システムを備えた工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182073A JP5389995B1 (ja) 2012-08-21 2012-08-21 計測システム及びその計測システムを備えた工作機械

Publications (2)

Publication Number Publication Date
JP5389995B1 true JP5389995B1 (ja) 2014-01-15
JP2014041014A JP2014041014A (ja) 2014-03-06

Family

ID=50036702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182073A Active JP5389995B1 (ja) 2012-08-21 2012-08-21 計測システム及びその計測システムを備えた工作機械

Country Status (1)

Country Link
JP (1) JP5389995B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897004B2 (ja) * 2016-04-15 2021-06-30 オムロン株式会社 光学式センサ取付用アダプタおよび光学式センサの取付位置の調整方法
CN110160445B (zh) * 2019-06-07 2020-12-25 宝鸡文理学院 一种基于远心光学技术的视觉测量仪
JP6709316B1 (ja) 2019-07-16 2020-06-10 Dmg森精機株式会社 測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593749U (ja) * 1992-05-13 1993-12-21 株式会社椿本チエイン チャックとロボットハンドの相対位置確認装置
DE19882963T1 (de) * 1998-12-22 2001-05-10 Mitsubishi Electric Corp Positionsfehler-Messverfahren und Einrichtung unter Verwendung einer Positionsmarke und Bearbeitungseinrichtung zum Korrigieren einer Position auf Grundlage eines Ergebnisses oder eines Messpositionsfehlers unter Verwendung einer Positionsmarke
JP3566166B2 (ja) * 2000-02-10 2004-09-15 株式会社新川 ツール位置測定方法、オフセット測定方法、基準部材およびボンディング装置
JP3967518B2 (ja) * 2000-03-06 2007-08-29 株式会社新川 オフセット測定方法、ツール位置検出方法およびボンディング装置
JP2008026487A (ja) * 2006-07-19 2008-02-07 Fuji Xerox Co Ltd 現像装置及び画像形成装置
JP2009220118A (ja) * 2008-03-13 2009-10-01 Mitsutoyo Corp 加工ヘッド位置校正方法、及びその装置

Also Published As

Publication number Publication date
JP2014041014A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
US10189133B2 (en) Measurement, calibration and compensation system and method for machine tool
US7005606B2 (en) Laser machine tool with image sensor for registration of workhead guidance system
JP2011177845A (ja) ロボットのキャリブレーション方法及びロボット用キャリブレーション装置
JP2012213840A (ja) 工作機械
JP6069275B2 (ja) 端子挿入用位置合わせ装置
CN114102256B (zh) 机床旋转轴几何误差识别方法、装置及存储介质
JP2010064203A (ja) 加工装置、および、加工具と被加工物の距離補正方法
JP2009509778A (ja) 生産機械におけるカメラの校正方法及びシステム
US9067283B2 (en) Machining method
JP2010234451A (ja) ワーク加工方法、マシニングセンタ
JP2009139139A (ja) 画像測定装置の校正方法
JP5389995B1 (ja) 計測システム及びその計測システムを備えた工作機械
JP2019063954A (ja) ロボットシステム、キャリブレーション方法及びキャリブレーションプログラム
JP2010058239A (ja) 加工方法
JP7368215B2 (ja) 工作機械及びワーク加工部の形状測定方法
JP2016040531A (ja) 加工工具の測定方法及び測定装置
JP2006300817A (ja) 光学式測定器、光学式測定装置及び光学式測定システム
CN112461871A (zh) 测量用x射线ct装置
JP5389613B2 (ja) 切削装置における切削ブレードの消耗量管理方法
JP2009195955A (ja) 高精度レーザ加工およびレーザ・電解複合加工装置
TWI633522B (zh) Measuring and correcting compensation system and method for machine tool
JP5702577B2 (ja) レンズアレイ金型の加工方法および加工装置
JP6731409B2 (ja) 光学測定システムのための展開機構
JP2004034259A (ja) 工具基準点設定装置及び工具基準点設定方法
JP2019136705A (ja) レーザマーキング装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5389995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250