JP5375035B2 - 抵抗変化型素子および抵抗変化型素子製造方法 - Google Patents

抵抗変化型素子および抵抗変化型素子製造方法 Download PDF

Info

Publication number
JP5375035B2
JP5375035B2 JP2008284945A JP2008284945A JP5375035B2 JP 5375035 B2 JP5375035 B2 JP 5375035B2 JP 2008284945 A JP2008284945 A JP 2008284945A JP 2008284945 A JP2008284945 A JP 2008284945A JP 5375035 B2 JP5375035 B2 JP 5375035B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
resistance
oxide
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008284945A
Other languages
English (en)
Other versions
JP2010114231A (ja
Inventor
浩康 川野
敬二 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008284945A priority Critical patent/JP5375035B2/ja
Publication of JP2010114231A publication Critical patent/JP2010114231A/ja
Application granted granted Critical
Publication of JP5375035B2 publication Critical patent/JP5375035B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、抵抗状態が変化可能な部位を有する抵抗変化型素子、および、そのような抵抗変化型素子の製造方法に関する。
抵抗状態が変化可能な部位を有する素子の一つとして、電界効果トランジスタが知られている。電界効果トランジスタは、例えば、ソース電極、ドレイン電極、およびゲート電極を有する3端子素子であり、ゲート電極に加える電圧を変化させることによって、ソース―ドレイン間に位置する領域(チャネル)を通過する電流を制御することが可能な素子である。電界効果トランジスタでは、ゲート電極に加えられる電圧に応じた電界がチャネルに発生し、当該電界の発生および変化によって、チャネルの抵抗が変化する。このような電界効果トランジスタは、例えば下記の特許文献1〜3に記載されている。
特開2006−186336号公報 特開2006−237304号公報 特開2006−295653号公報
しかしながら、電界効果トランジスタにおいてチャネルの抵抗状態を一定に維持するためには、ゲート電極に一定の電圧を加え続けなければならない。すなわち、電界効果トランジスタは、抵抗状態について揮発性の素子である。
本発明は、以上のような事情の下で考え出されたものであり、書換え可能で不揮発性の抵抗変化型素子およびその製造方法を提供することを、目的とする。
本発明の第1の側面によると抵抗変化型素子が提供される。この抵抗変化型素子は、酸化物部と、一対の第1電極と、第2電極と、第3電極とを備える。酸化物部は、P型半導性を有する。一対の第1電極は、相互に離隔して酸化物部に接合する。第2電極は、一対の第1電極の間において酸化物部に接合する。第3電極は、酸化物部を介して第2電極に対向する部位を有して酸化物部に接合する。
このような構成の本抵抗変化型素子は、所定の初期化処理を受けた後、第2および第3電極の間に印加される電圧の変化に応じて、一対の第1電極間における酸化物部の抵抗状態が変化することが可能である。
本素子において、第2電極を正極とし且つ第3電極を負極として当該電極間に所定電圧を所定時間にわたって印加することによって初期化処理すると、本素子内における一対の第1電極間のキャリア移動のルートを酸化物部内に制限することが可能である。具体的には、初期化処理では、第2電極(正極)と第3電極(負極)との間の電界作用により、酸化物部内に比較的多量の酸素イオンを発生させ且つ当該酸素イオンを第2電極に引き寄せて、当該酸素イオンから第2電極へと電子を奪うことが可能である。電子を奪われた酸素は、第2電極における酸化物部側端面を酸化する。これとともに、一定量の構成酸素を第2電極側に放出した酸化物部の内部では、正電荷を伴う比較的多量の酸素空孔が、第2電極との界面近傍に偏在する。一方、酸化物部から第2電極へと移動した電子は、外部回路を通って第3電極へと流入する。当該電子は、第3電極内において、第2電極と協働して電界を形成する部分領域へと移動するが、第3電極とP型半導性の酸化物部との界面では、第3電極から酸化物部に電子が流入するようには電子とホールの交換が充分には生じない。そのため、第3電極に流入した比較的多量の電子は、第3電極内において、第2電極と協働して電界を形成する部分領域に蓄積する。第3電極内でこのように電子が局所的に蓄積した部分は、電子密度が過大であって、電子移動の自由度が相当程度に低下しており、従って、相当程度に高抵抗化している。これに対し、酸化物部内は、上述のように、正電荷を伴う酸素空孔が第2電極との界面近傍に偏在している状態にある。そのため、一対の第1電極間に電圧を印加した場合の、本素子内における第1電極間のキャリア移動のルートについては、実質的に、酸化物部内に制限される(P型半導性の酸化物部内の主キャリアはホールである)。以上のような初期化処理によって、チャネルないし電流路が酸化物部内に形成されて本素子が動作可能な状態に至る。初期化処理のための印加電圧を消滅させても、チャネル形成状態、即ち、第3電極内での局所的な電子蓄積状態は、維持される。第3電極内の蓄積電子と、正電荷を伴って酸化物部内に存在する上述の酸素空孔との間には、静電引力が生じ、当該静電引力の作用によって、第3電極内での蓄積電子の拡散が阻まれるからである。
初期化処理を経た本素子において、第2電極を正極とし且つ第3電極を負極として当該電極間に初期化電圧より小さな所定電圧(高抵抗化電圧)を所定時間にわたって印加すると、本素子内における第1電極間の抵抗を高めることが可能である。具体的には、高抵抗化電圧の印加によって、酸化物部内にて第2電極近傍に偏在している酸素空孔(正電荷を伴う)と第2電極(正極)との間に静電斥力を生じさせて、第3電極側へ酸素空孔を所定程度に分散させることが可能である。すなわち、正電荷を伴う酸素空孔の存在密度が所定以上である領域を、高抵抗化電圧の印加によって、第3電極側へ所定程度に膨出させることが可能なのである。このような、酸素空孔の偏在の緩和により、酸化物部内のチャネル(キャリア移動のルート)は部分的に狭くなり、本素子内における第1電極間の抵抗は、より高くなる(高抵抗化)。酸素空孔の偏在緩和の程度、即ち高抵抗化の程度は、高抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、高抵抗化電圧を消滅させても、当該高抵抗状態は維持される。第3電極内の蓄積電子と、正電荷を伴って酸化物部内に存在する上述の酸素空孔との間には、静電引力が生じ、当該静電引力の作用によって、酸化物部内での酸素空孔の拡散が阻まれて酸素空孔の分布が固定されるからである。
高抵抗化を経た本素子において、第2電極を正極とし且つ第3電極を負極として当該電極間に初期化電圧より小さく且つ既に印加された高抵抗化電圧より大きな所定電圧を所定時間にわたって印加すると、本素子内の第1電極間の抵抗を更に高めることが可能である。また、高抵抗化を経た本素子において、第2電極を正極とし且つ第3電極を負極として当該電極間に初期化電圧より小さく且つ既に印加された高抵抗化電圧と同じ大きさの電圧を所定時間にわたって印加すると、本素子内の第1電極間の抵抗を更に高めることが可能な場合がある。具体的には、当該更なる高抵抗化電圧の印加によって、酸化物部内にて第2電極側に偏在している酸素空孔(正電荷を伴う)と第2電極(正極)との間に静電斥力を生じさせて、第3電極側へ酸素空孔を更に分散させることが可能である。すなわち、正電荷を伴う酸素空孔の存在密度が所定以上である領域を、更なる高抵抗化電圧の印加によって、第3電極側へ更に膨出させることが可能なのである。このような、酸素空孔の偏在の更なる緩和により、酸化物部内のチャネル(キャリア移動のルート)は部分的に更に狭くなり、本素子内における第1電極間の抵抗は更に高くなる(更なる高抵抗化)。酸素空孔の更なる偏在緩和の程度、即ち更なる高抵抗化の程度は、更なる高抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、当該更なる高抵抗化電圧を消滅させても、当該高抵抗状態は維持される。第3電極内の蓄積電子と、正電荷を伴って酸化物部内に存在する上述の酸素空孔との間には、静電引力が生じ、当該静電引力の作用によって、酸化物部内での酸素空孔の拡散が阻まれて酸素空孔の分布が固定されるからである。
高抵抗化(更なる高抵抗化を含む)を経た本素子において、第2電極を負極とし且つ第3電極を正極として当該電極間に所定電圧(低抵抗化電圧)を所定時間にわたって印加すると、本素子内における第1電極間の抵抗を低めることが可能である。具体的には、低抵抗化電圧の印加によって、酸化物部内にて所定程度に分散している酸素空孔(正電荷を伴う)と第2電極(負極)との間に静電引力を生じさせて、第2電極側へ酸素空孔を所定程度に引き寄せて偏在化させることが可能である。すなわち、正電荷を伴う酸素空孔の存在密度が所定以上である領域を、低抵抗化電圧の印加によって、第2電極側へ所定程度に縮小させることが可能なのである。このような、酸素空孔の偏在化により、酸化物部内のチャネル(キャリア移動のルート)の少なくとも一部は広がり、本素子内における第1電極間の抵抗は、より低くなる(低抵抗化)。酸素空孔の偏在化の程度、即ち低抵抗化の程度は、低抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、低抵抗化電圧を消滅させても、当該低抵抗状態は維持される。第3電極内の蓄積電子と、正電荷を伴って酸化物部内に存在する上述の酸素空孔との間には、静電引力が生じ、当該静電引力の作用によって、酸化物部内での酸素空孔の拡散が阻まれて酸素空孔の分布が固定されるからである。このような低抵抗状態にある本素子については、上述の高抵抗化過程を経ることにより、再び高抵抗化することが可能である。
低抵抗化を経た本素子にて、第2電極を負極とし且つ第3電極を正極として、当該電極間に、既に印加された低抵抗化電圧より大きな所定電圧を所定時間にわたって印加すると、本素子内の第1電極間の抵抗を更に低めることが可能である。また、低抵抗化を経た本素子にて、第2電極を負極とし且つ第3電極を正極として、当該電極間に、既に印加された低抵抗化電圧と同じ大きさの電圧を所定時間にわたって印加すると、本素子内の第1電極間の抵抗を更に低めることが可能な場合がある。具体的には、当該更なる低抵抗化電圧の印加によって、酸化物部内にて所定程度に偏在化している酸素空孔(正電荷を伴う)と第2電極(負極)との間に静電引力を生じさせて、第2電極側へ酸素空孔を更に引き寄せて偏在化させることが可能である。すなわち、正電荷を伴う酸素空孔の存在密度が所定以上である領域を、更なる低抵抗化電圧の印加によって、第2電極側へ更に縮小させることが可能なのである。このような、酸素空孔の更なる偏在化により、酸化物部内のチャネル(キャリア移動のルート)の少なくとも一部は一層広がり、本素子内における第1電極間の抵抗は更に低くなる(更なる低抵抗化)。酸素空孔の更なる偏在化の程度、即ち更なる低抵抗化の程度は、更なる低抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、当該更なる低抵抗化電圧を消滅させても、当該低抵抗状態は維持される。第3電極内の蓄積電子と、正電荷を伴って酸化物部内に存在する上述の酸素空孔との間には、静電引力が生じ、当該静電引力の作用によって、酸化物部内での酸素空孔の拡散が阻まれて酸素空孔の分布が固定されるからである。このような更なる低抵抗状態にある本素子については、上述の高抵抗化過程を経ることにより、再び高抵抗化することが可能である。
以上のように、本抵抗変化型素子においては、第2および第3電極の間に印加する電圧を変化させることにより、一対の第1電極間における酸化物部内のチャネルないし電流路を部分的に拡縮して、当該チャネルの抵抗を可逆的に変化させることができる。すなわち、本素子は、第2および第3電極の間に印加する電圧を制御することによって、チャネルの抵抗状態を書き換えることが可能なのである。このような本素子では、相対的に高抵抗の状態と相対的に低抵抗の状態との間を切り替えることが可能である。また、本素子では、相対的に高抵抗の状態と相対的に低抵抗の状態との間を書き換えることが可能である。更に、本素子では、3以上の複数の抵抗状態の間を書き換えることが可能である(即ち、本素子は抵抗状態について多値性を有する)。
加えて、本抵抗変化型素子においては、所定の電圧印加によって酸化物部内に生じさせた抵抗状態について、電圧印加を停止しても維持することが可能である。上述のように、第3電極内の蓄積電子と、酸化物部内にて正電荷を伴って存在する酸素空孔とが、相互作用するからである。
以上のように、抵抗変化型素子は、書換え可能であり且つ不揮発性なのである。このような本抵抗変化型素子は、スイッチング素子、メモリ素子、またはプログラマブル素子(ロジックデバイスに含まれる素子)として使用することが可能であって、低消費電力化を図るのに適する。
また、本抵抗変化型素子は、第2電極を電圧制御電極とし且つ一対の第1電極を電流読み出し電極とする3端子素子として使用することが可能である。このような本素子では、抵抗変化を生じさせる電圧制御と所定抵抗状態での電流読み出しとを、異なる電極を使用して行うことができる。そのため、本素子では、電圧印加による抵抗状態の切り替えないし書き換えの自由度が高い傾向にある。
本発明の第2の側面によると抵抗変化型素子製造方法が提供される。この方法は、導電材料膜形成工程と、酸化物膜形成工程と、電極形成工程とを含む。導電材料膜形成工程では、基材上に導電材料膜を形成する。酸化物膜形成工程では、P型半導性を有する酸化物膜を導電材料膜上に形成する。電極形成工程では、相互に離隔する一対の第1電極、および、当該第1電極間に位置する第2電極を、酸化物膜上に形成する。電極形成工程では、当該工程に含まれる異なるプロセスを経て第1および第2電極を形成してもよい。このような方法によると、本発明の第1の側面に係る抵抗変化型素子を適切に製造することができる。
本発明の第3の側面によると抵抗変化型素子製造方法が提供される。この方法は、電極形成工程と、酸化物膜形成工程と、導電材料膜形成工程とを含む。電極形成工程では、相互に離隔する一対の第1電極、および、当該第1電極間に位置する第2電極を、基材上に形成する。電極形成工程では、当該工程に含まれる異なるプロセスを経て第1および第2電極を形成してもよい。酸化物膜形成工程では、一対の第1電極および第2電極を覆うように、P型半導性を有する酸化物膜を形成する。導電材料膜形成工程では、酸化物膜上に導電材料膜を形成する。このような方法によると、本発明の第1の側面に係る抵抗変化型素子を適切に製造することができる。
図1および図2は、本発明に係る抵抗変化型素子Xを表す。図1は、抵抗変化型素子Xの断面図である。図2は、抵抗変化型素子Xの平面図であり、図1の線II−IIに沿った矢視図に相当する。
抵抗変化型素子Xは、基板Sと、一対の電極1と、電極2,3と、酸化物層4とを備え、電極1間の酸化物層4について複数の抵抗状態の間を書き換えることが可能とされている。
基板Sは、例えばシリコン基板や酸化物基板である。シリコン基板の表面には、熱酸化膜が形成されていてもよい。酸化物基板としては、例えば、MgO基板、SrTiO3基板、Al23基板、石英基板、およびガラス基板が挙げられる。
一対の電極1は、相互に離隔して酸化物層4に接合している。各電極1は、本発明における第1電極であり、酸素によって酸化されにくい非酸化性の金属材料よりなる。このような電極1は、例えば、Pt、Au、およびSrRuO3からなる群より選択される導電材料を含んでなる。電極1の厚さは、例えば20〜100nmである。
電極2は、電極1間において酸化物層4に接合している。電極2は、本発明における第2電極であって、酸素によって酸化されやすい酸化性の金属材料よりなる。好ましくは、電極2は、電極1および/または電極3よりも酸化されやすい材料よりなる。このような電極2は、例えば、Ta、Ti、Al、Fe、Co、およびNiからなる群より選択される導電材料を含んでなる。電極2の厚さは、例えば20〜100nmである。
電極3は、本発明における第3電極であり、各電極1との間に酸化物層4が介在し且つ電極2との間に酸化物層4が介在するように酸化物層4に接合する。すなわち、電極3は、酸化物層4を介して各電極1と対向する部位、および、酸化物層4を介して電極2と対向する部位を有する。このような電極3は、例えば、Pt、Au、およびSrRuO3からなる群より選択される導電材料を含んでなる。電極3の厚さは、例えば5〜10nmである。
酸化物層4は、本発明における酸化物部であって、電極1,2と電極3との間に位置し、且つ、P型半導性を有する。また、酸化物層4は、第1面4a、これとは反対の第2面4b、および側面4cを有する。第1面4a側に電極1,2が接合しており、第2面4b側に電極3が接合している。本実施形態では、酸化物層4は、酸素イオン伝導体よりなり、例えば蛍石構造型酸化物、ペロブスカイト構造型酸化物、パイロクロア構造型酸化物、タングステンブロンズ構造型酸化物、またはブラウンミラライト構造型酸化物よりなる。蛍石構造型酸化物としては、ZrO2およびY23などを採用することができる。ペロブスカイト構造型酸化物としては、PrCaMnO3、SrTiO3、およびLaSrCoO3などを採用することができる。パイロクロア構造型酸化物としては、Nd2Mо27などを採用することができる。タングステンブロンズ構造型酸化物としては、CuWO3などを採用することができる。ブラウンミラライト構造型酸化物としては、Sr2Fe25などを採用することができる。また、好ましくは、酸化物層4は、P型半導性を有する遷移金属酸化物からなり、当該遷移金属酸化物は、価数変動可能な遷移金属を含む。そのような価数変動可能な遷移金属としては、例えばMn、Ti、およびCoなどが挙げられる。このような酸化物層4の厚さは、例えば50〜150nmである。
図2に示すように、本実施形態では、上述の電極1,2が配列するD1方向に直交するD2方向において、各電極1が酸化物層4に接合する長さL1は、電極2が酸化物層4に接合する長さL2と等しい。好ましくは、電極1が酸化物層4に接合する長さL1は、電極2が酸化物層4に接合する長さL2以下である。また、D2方向における電極3の長さは例えば1μm以下であり、D2方向における酸化物層4の長さは例えば1μm以下である。
図3は、抵抗変化型素子Xの製造方法を表す。本方法においては、まず、図3(a)に示すように、材料膜11および材料膜12を、順次、基板S上に積層形成する。材料膜11,12の成膜手法としては、例えば、スパッタリング法、真空蒸着法、CVD法、またはPLD(Pulsed Laser Deposition)法を採用することができる(後出の材料成膜手法としても、これらの手法を採用することができる)。材料膜11は、電極3に関して上述した材料よりなる。材料膜12は、酸化物層4に関して上述した材料よりなる。
次に、図3(b)に示すように、材料膜12上に電極2を形成する。電極2の形成においては、例えば、電極2に関して上述した材料を材料膜12上に成膜した後、所定のレジストパターンをマスクとして使用して当該材料膜をパターニングする。
次に、図3(c)に示すように、材料膜12上に一対の電極1を形成する。電極1の形成においては、例えば、電極1に関して上述した材料を材料膜12上に成膜した後、所定のレジストパターンをマスクとして使用して当該材料膜をパターニングする。
次に、図3(d)に示すように、材料膜11,12の各々に対してパターニングを施して電極3および酸化物層4を形成する。以上のようにして、基板S上において電極3、酸化物層4、および電極1,2を形成して抵抗変化型素子Xを適切に製造することができる。本方法においては、抵抗変化型素子Xを製造可能な限りで、上述した各工程を行う順序を変更してもよい。
図4は、抵抗変化型素子Xの初期化処理を表す。初期化処理では、電極2を正極とし且つ電極3を負極として電極2,3間に所定電圧を所定時間にわたって印加し、抵抗変化型素子X内における一対の電極1間のキャリア移動のルートを酸化物層4内に制限する。初期化処理における印加電圧は例えば8〜12Vであり、当該初期化電圧の印加時間は例えば1〜10msecである。
具体的には、初期化処理では、電極2(正極)と電極3(負極)との間の電界作用により、図4(a)に示すように酸化物層4内に比較的多量の酸素イオン5を発生させ、且つ、図4(b)に示すように酸素イオン5を電極2に引き寄せる。そして、初期化処理では、電極2に引き寄せた酸素イオン5から電極2側に電子を奪う。電子を奪われた酸素は、電極2における酸化物層4側端面を酸化する。これとともに、一定量の構成酸素を電極2側に放出した酸化物層4の内部では、図4(c)に示すように、正電荷を伴う比較的多量の酸素空孔6が、電極2との界面近傍に偏在する。
一方、酸化物層4から電極2へと移動した電子は、外部回路を通って電極3へと流入する。当該電子は、電極3内において、電極2と協働して電界を形成する部分領域3aへと移動するが、電極3とP型半導性の酸化物層4との界面では、電極3から酸化物層4に電子が流入するようには電子とホールの交換が充分には生じない。そのため、電極3に流入した比較的多量の電子7は、電極3内の部分領域3aに蓄積する。電極3内でこのように電子7が局所的に蓄積した部分は、電子密度が過大であって、電子移動の自由度が相当程度に低下しており、従って、相当程度に高抵抗化している。これに対し、酸化物層4内は、上述のように、正電荷を伴う酸素空孔6が電極2との界面近傍に偏在している状態にある。そのため、一対の電極1間に電圧を印加した場合の、抵抗変化型素子X内における電極1間のキャリア移動のルートについては、実質的に、酸化物層4内に制限される(P型半導性の酸化物層4内の主キャリアはホールである)。
以上のような初期化処理によって、チャネルないし電流路が酸化物層4内に形成されて抵抗変化型素子Xが動作可能な状態に至る。初期化処理のための印加電圧を消滅させても、チャネル形成状態、即ち、電極3内での局所的な電子蓄積状態は、維持される。電極3内の蓄積電子7と、正電荷を伴って酸化物層4内に存在する上述の酸素空孔6との間には、静電引力が生じ、当該静電引力の作用によって、電極3内での蓄積電子7の拡散が阻まれるからである。
図5および図6は、抵抗変化型素子Xの動作原理を表す。初期化処理を経た抵抗変化型素子Xにおいて、図5(a)に示すように電極2を正極とし且つ電極3を負極として電極2,3間に所定電圧(高抵抗化電圧)を所定時間にわたって印加すると、抵抗変化型素子X内における電極1間の抵抗を高めることが可能である。高抵抗化電圧は、初期化電圧より小さく、例えば2〜3Vである。高抵抗化電圧の印加時間は、例えば50〜100nsecである。
具体的には、高抵抗化電圧の印加によって、例えば図4(c)に示すように電極2近傍に偏在している酸素空孔6(正電荷を伴う)と電極2(正極)との間に静電斥力を生じさせて、例えば図5(a)に示すように酸素空孔6を電極3側へ分散させることが可能である。すなわち、正電荷を伴う酸素空孔6の存在密度が所定以上である領域6Aを、高抵抗化電圧の印加によって、電極3側へ所定程度に膨出させることが可能なのである。このような、酸素空孔6の偏在の緩和により、酸化物層4内のチャネル(キャリア移動のルート)は部分的に狭くなり、抵抗変化型素子X内における電極1間の抵抗は、より高くなる(高抵抗化)。酸素空孔6の偏在緩和の程度、即ち高抵抗化の程度は、高抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、高抵抗化電圧を消滅させても、当該高抵抗状態は維持される。電極3内の蓄積電子7と、正電荷を伴って酸化物層4内に存在する上述の酸素空孔6との間には、静電引力が生じ、当該静電引力の作用によって、酸化物層4内での酸素空孔6の拡散が阻まれて酸素空孔6の分布が固定されるからである。
高抵抗化を経た抵抗変化型素子Xにおいて、電極2を正極とし且つ電極3を負極として電極2,3間に所定電圧(更なる高抵抗化電圧)を所定時間にわたって印加すると、抵抗変化型素子X内の電極1間の抵抗を更に高めることが可能である。更なる高抵抗化電圧は、初期化電圧より小さく且つ上述の高抵抗化電圧より大きく、例えば3〜4Vである。この場合、更なる高抵抗化電圧の印加時間は例えば50〜100nsecである。或は、更なる高抵抗化電圧は、初期化電圧より小さく且つ上述の高抵抗化電圧と同じ大きさで、例えば2〜3Vである。この場合、更なる高抵抗化電圧の印加時間は例えば500〜1000nsecである。
具体的には、更なる高抵抗化電圧の印加によって、例えば図5(a)に示すように電極2側に偏在している酸素空孔6と電極2との間に静電斥力を生じさせて、例えば図5(b)に示すように酸素空孔6を電極3側へ更に分散させることが可能である。すなわち、正電荷を伴う酸素空孔6の存在密度が所定以上である領域6Aを、更なる高抵抗化電圧の印加によって、電極3側へ更に膨出させることが可能なのである。このような、酸素空孔6の偏在の更なる緩和により、酸化物層4内のチャネル(キャリア移動のルート)は部分的に更に狭くなり、抵抗変化型素子X内における電極1間の抵抗は更に高くなる(更なる高抵抗化)。酸素空孔6の更なる偏在緩和の程度、即ち更なる高抵抗化の程度は、更なる高抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、当該更なる高抵抗化電圧を消滅させても、当該高抵抗状態は維持される。電極3内の蓄積電子7と、正電荷を伴って酸化物層4内に存在する上述の酸素空孔6との間には、静電引力が生じ、当該静電引力の作用によって、酸化物層4内での酸素空孔6の拡散が阻まれて酸素空孔6の分布が固定されるからである。
高抵抗化(更なる高抵抗化を含む)を経た抵抗変化型素子Xにおいて、電極2を負極とし且つ電極3を正極として電極2,3間に所定電圧(低抵抗化電圧)を所定時間にわたって印加すると、抵抗変化型素子X内における電極1間の抵抗を低めることが可能である。低抵抗化電圧については、電極2における酸化物層4側端面(部分酸化部)に存在する有意量の酸素を電子によって還元しない程度の大きさとする。また、低抵抗化電圧は例えば3〜4Vであり、低抵抗化電圧の印加時間は例えば100〜150nsecである。
具体的には、低抵抗化電圧の印加によって、例えば図5(a)または図5(b)に示すように酸化物層4内にて分散している酸素空孔6と電極2との間に静電引力を生じさせて、図6(a)に示すように酸素空孔6を電極2側へ引き寄せて偏在化させることが可能である。すなわち、正電荷を伴う酸素空孔6の存在密度が所定以上である領域6Aを、低抵抗化電圧の印加によって、電極2側へ所定程度に縮小させることが可能なのである。このような、酸素空孔6の偏在化により、酸化物層4内のチャネル(キャリア移動のルート)の少なくとも一部は広がり、抵抗変化型素子X内における電極1間の抵抗は、より低くなる(低抵抗化)。酸素空孔6の偏在化の程度、即ち低抵抗化の程度は、低抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、低抵抗化電圧を消滅させても、当該低抵抗状態は維持される。電極3内の蓄積電子7と、正電荷を伴って酸化物層4内に存在する上述の酸素空孔6との間には、静電引力が生じ、当該静電引力の作用によって、酸化物層4内での酸素空孔6の拡散が阻まれて酸素空孔6の分布が固定されるからである。このような低抵抗状態にある抵抗変化型素子Xについては、上述の高抵抗化過程を経ることにより、再び高抵抗化することが可能である。
低抵抗化を経た抵抗変化型素子Xにて、電極2を負極とし且つ電極3を正極として電極2,3間に所定電圧を所定時間にわたって印加すると、抵抗変化型素子X内の電極1間の抵抗を更に低めることが可能である。更なる低抵抗化電圧については、電極2における酸化物層4側端面(部分酸化部)に存在する有意量の酸素を電子によって還元しない程度の大きさとする。このような更なる低抵抗化電圧は、上述の低抵抗化電圧より大きく、例えば4〜5Vである。この場合、更なる低抵抗化電圧の印加時間は、例えば100〜150nsecである。或は、更なる低抵抗化電圧は、上述の低抵抗化電圧と同じ大きさで、例えば3〜4Vである。この場合、更なる低抵抗化電圧の印加時間は例えば1〜5μsecである。
具体的には、当該更なる低抵抗化電圧の印加によって、例えば図6(a)に示すように所定程度に偏在化している酸素空孔6と電極2との間に静電引力を生じさせて、例えば図6(b)に示すように酸素空孔6を電極2側へ更に引き寄せて偏在化させることが可能である。すなわち、正電荷を伴う酸素空孔6の存在密度が所定以上である領域6Aを、更なる低抵抗化電圧の印加によって、電極2側へ更に縮小させることが可能なのである。このような、酸素空孔6の更なる偏在化により、酸化物層4内のチャネル(キャリア移動のルート)の少なくとも一部は一層広がり、抵抗変化型素子X内における電極1間の抵抗は更に低くなる(更なる低抵抗化)。酸素空孔6の更なる偏在化の程度、即ち更なる低抵抗化の程度は、更なる低抵抗化電圧の大きさ及び印加時間を調整することによって、調節することが可能である。また、当該更なる低抵抗化電圧を消滅させても、当該低抵抗状態は維持される。電極3内の蓄積電子7と、正電荷を伴って酸化物層4内に存在する上述の酸素空孔6との間には、静電引力が生じ、当該静電引力の作用によって、酸化物層4内での酸素空孔6の拡散が阻まれて酸素空孔6の分布が固定されるからである。このような更なる低抵抗状態にある抵抗変化型素子Xについては、上述の高抵抗化過程を経ることにより、再び高抵抗化することが可能である。
以上のように、抵抗変化型素子Xにおいては、電極2,3間に印加する電圧を変化させることにより、一対の電極1間における酸化物層4内のチャネルないし電流路を部分的に拡縮して、当該チャネルの抵抗を可逆的に変化させることができる。すなわち、抵抗変化型素子Xは、電極2,3間に印加する電圧を制御することによって、チャネルの抵抗状態を書き換えることが可能なのである。このような抵抗変化型素子Xは、相対的に高抵抗の状態と相対的に低抵抗の状態との間を切り替えるようにして使用することが可能である。また、抵抗変化型素子Xは、相対的に高抵抗の状態と相対的に低抵抗の状態との間を書き換えるようにして使用することが可能である。更に、抵抗変化型素子Xは、3以上の複数の抵抗状態の間を書き換えるようにして使用することが可能である(即ち、抵抗変化型素子Xは抵抗状態について多値性を有する)。
加えて、抵抗変化型素子Xにおいては、所定の電圧印加によって酸化物層4内に生じさせた抵抗状態について、電圧印加を停止しても維持することが可能である。上述のように、電極3内の蓄積電子7と、酸化物層4内にて正電荷を伴って存在する酸素空孔6とが、相互作用するからである。
以上のように、抵抗変化型素子Xは、書換え可能であり且つ不揮発性なのである。このような抵抗変化型素子Xは、スイッチング素子、メモリ素子、またはプログラマブル素子(ロジックデバイスに含まれる抵抗変化型素子)として使用することが可能であって、低消費電力化を図るのに適する。
また、抵抗変化型素子Xは、電極2を電圧制御電極とし且つ一対の電極1を電流読み出し電極とする3端子素子として使用することが可能である。このような抵抗変化型素子Xでは、抵抗変化を生じさせる電圧制御と所定抵抗状態での電流読み出しとを、異なる電極を使用して行うことができる。そのため、抵抗変化型素子Xでは、電圧印加による抵抗状態の切り替えないし書き換えの自由度が高い傾向にある。
抵抗変化型素子Xでは、上述のように、図2に示すD2方向において、各電極1が酸化物層4に接合する長さL1は、電極2が酸化物層4に接合する長さL2以下であるのが好ましい。このような構成は、一対の電極1による電流値読み出しの対象となる酸化物層4内のチャネル(キャリア移動のルート)を、酸化物層4内において酸素空孔6が適切に分散および偏在化する領域に制限するうえで、好適である。
抵抗変化型素子Xにおける電極2は、好ましくは電極1および/または電極3よりも酸化されやすい材料よりなる。このような構成は、上述の初期化処理において、酸化物層4に発生した酸素イオン5を電極2に引き寄せて電極2が当該酸素イオン5から電子を奪うのに好適である。
抵抗変化型素子Xにおける電極3の厚さは10nm以下であるのが好ましい。電極3の厚さが10nm以下で電極3が充分に薄いことは、上述の初期化処理において、電子流入による電極3の高抵抗化(キャリア移動のルートの遮断)を効率よく行ううえで好適である。
抵抗変化型素子Xにおける電極3の図2に示すD2方向の長さは、好ましくは1μm以下である。このような構成は、初期化処理によって電極3内に蓄積する電子7について、D2方向における分布のバラつきを抑制するうえで好適である。
抵抗変化型素子Xにおける酸化物層4は、上述のように、好ましくは、P型半導性を有する遷移金属酸化物よりなり、当該遷移金属酸化物は、価数変動可能な遷移金属を含む。このような構成は、上述の初期化処理を経ることによって酸化物層4内に酸素空孔6(正電荷を伴う)が発生および増大しても、酸化物層4の結晶構造を維持するうえで好適である。酸化物層4内の価数変動可能な遷移金属は、初期化処理によって酸化物層4内にて発生および増大する正電荷を電気的に補償するように価数変動することが可能である。
抵抗変化型素子Xにおける酸化物層4の厚さは、好ましくは50nm以上である。酸化物層4におけるチャネルの抵抗値変化幅を充分に確保するうえでは、酸化物層4の厚さは50nm以上であるのが好ましいのである。また、酸化物層4の厚さは、好ましくは150nm以下である。初期化処理後において電極3内の蓄積電子7と酸化物層4内の酸素空孔(正電荷を伴う)との間に充分な相互作用(静電引力)を確保して抵抗変化型素子Xの不揮発性を担保するうえでは、酸化物層4の厚さは150nm以下であるのが好ましいのである。
抵抗変化型素子Xにおける酸化物層4の図2に示すD2方向の長さは、好ましくは1μm以下である。このような構成は、初期化処理によって酸化物層4内に生ずる酸素空孔6について、D2方向における分布のバラつきを抑制するうえで好適である。
図7は、抵抗変化型素子Xの第1変形例の断面図である。図7に示すように、抵抗変化型素子Xにおいて、各電極1は、一部が酸化物層4の第1面4a上に位置せずに側面4c上に位置するように、酸化物層4に接合してもよい。このような構成においても、一対の電極1は、抵抗変化型素子X1の電流読み出し電極として機能することが可能である。また、各電極1の全体が酸化物層4の側面4c上にて酸化物層4に接合する場合であっても、当該一対の電極1は、抵抗変化型素子X1の電流読み出し電極として機能することが可能である。
図8および図9は、抵抗変化型素子Xの第2変形例を表す。図8は、第2変形例の断面図である。図9は、第2変形例の平面図であり、図8の線IX−IXに沿った矢視図に相当する。抵抗変化型素子Xにおいては、図8および図9に示すように、基板S上に電極1,2が位置し、当該電極1,2を部分的に覆うようにして酸化物層4が基板S上に位置し、酸化物層4上に電極3が位置してもよい。このような構造を有する抵抗変化型素子Xについても、図4を参照して上述した初期化処理を行うことが可能であり、且つ、図5および図6を参照して上述した動作原理で動作させることが可能である。
図10は、抵抗変化型素子Xの上記の第2変形例の製造方法を表す。本方法においては、まず、図10(a)に示すように、基板S上に電極2を形成する。電極2の形成においては、例えば、電極2に関して上述した材料を基板S上に成膜した後、所定のレジストパターンをマスクとして使用して当該材料膜をパターニングする。
次に、図10(b)に示すように、基板S上に一対の電極1を形成する。電極1の形成においては、例えば、電極1に関して上述した材料を基板S上に成膜した後、所定のレジストパターンをマスクとして使用して当該材料膜をパターニングする。
次に、図10(c)に示すように、材料膜12および材料膜11を、順次、電極1,2を覆うようにして積層形成する。材料膜12は、酸化物層4に関して上述した材料よりなる。材料膜11は、電極3に関して上述した材料よりなる。
次に、図10(d)に示すように、材料膜11,12の各々に対してパターニングを施して電極3および酸化物層4を形成する。以上のようにして、基板S上において電極1,2、酸化物層4、および電極3を形成して抵抗変化型素子Xの第2変形例を適切に製造することができる。本方法においては、抵抗変化型素子Xを製造可能な限りで、上述した各工程を行う順序を変更してもよい。
図11に示す構成を有する抵抗変化型素子を、上述の抵抗変化型素子Xの実施例として作製した。本実施例の抵抗変化型素子は、MgO単結晶基板である基板Sと、Auよりなる一対の電極1と、Taよりなる電極2と、Ptよりなる電極3と、PrCaMnO3よりなる酸化物層4とを備える。
本実施例の抵抗変化型素子の製造においては、まず、スパッタリング装置を使用して行うスパッタリング法により、MgO単結晶基板の(100)面上にPtを10nmの厚さで成膜した。本スパッタリングでは、スパッタガスとしてArガス(0.5Pa)を用い、Ptターゲットを用い、DC放電とし、投入電力を0.8kWとし、温度条件を400℃とした。
次に、スパッタリング法により、Pt膜上にPrCaMnO3(Pr0.7Ca0.3MnO3)を80nmの厚さで成膜した。本スパッタリングでは、スパッタガスとしてArとO2の混合ガス(0.5Pa,酸素濃度20vol%)を用い、Pr0.7Ca0.3MnO3ターゲットを用い、RF放電とし、投入電力を0.8kWとし、温度条件を400℃とした。
次に、スパッタリング法により、PrCaMnO3膜上にTaを50nmの厚さで成膜した。本スパッタリングでは、スパッタガスとしてArガス(0.5Pa)を用い、Taターゲットを用い、DC放電とし、投入電力を0.8kWとし、温度条件を室温とした。
次に、所定のレジストパターンをマスクとして利用してTa膜をパターニングし、PrCaMnO3膜上に電極2(一辺の長さが1000nmの正方形)を形成した。
次に、スパッタリング法により、PrCaMnO3膜上にAuを50nmの厚さで成膜した。本スパッタリングでは、スパッタガスとしてArガス(0.5Pa)を用い、Auターゲットを用い、DC放電とし、投入電力を0.8kWとし、温度条件を室温とした。
次に、所定のレジストパターンをマスクとして利用してAu膜をパターニングし、PrCaMnO3膜上に一対の電極1(一辺の長さが1000nmの正方形)を形成した。
次に、所定のレジストパターンをマスクとして利用してPrCaMnO3膜にパターニングを施して酸化物層4(図2のD2方向の長さ即ち幅は1000nm)を形成した。
次に、所定のレジストパターンをマスクとして利用してPt膜に対してパターニングを施して電極3(図2のD2方向の長さ即ち幅は1000nm)を形成した。
以上のようにして、抵抗変化型素子Xの実施例としての複数の抵抗変化型素子を作製した。そして、本実施例の各抵抗変化型素子について、電極1間の抵抗値を測定し、初期化処理を行い、その後に再び電極1間の抵抗値を測定した。初期化処理前の抵抗値測定では、各抵抗変化型素子の一対の電極1間に対して400mVのDC電圧を印加したところ、各素子は1〜5×104Ωの抵抗値を示した。初期化処理では、電極2を正極とし且つ電極3を負極として、印加強度10Vで印加時間1msecのパルス電圧を電極2,3間に印加した。初期化処理後の抵抗値測定では、各抵抗変化型素子に対して一対の電極1間に対する400mVのDC電圧を印加したところ、各素子は1〜50×109Ωの抵抗値を示した。電極1間の抵抗値がこのように大きく上昇したことから、各素子における電極3内に存在していたキャリア(電子)移動のルートが初期化処理によって実質的に閉ざされて、各素子における電極1間のキャリア移動のルートが酸化物層4内に制限されたことが判る。このようにして電極1間のキャリア移動のルートが酸化物層4内に制限された各抵抗変化型素子においては、図5および図6を参照して上述したように、電極2,3間の電圧制御によってチャネル(酸化物層4内のキャリア移動のルート)の抵抗状態を変化させることが可能であった。
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
(付記1)P型半導性を有する酸化物部と、
相互に離隔して前記酸化物部に接合する一対の第1電極と、
前記一対の第1電極の間において前記酸化物部に接合する第2電極と、
前記酸化物部を介して前記第2電極に対向する部位を有して前記酸化物部に接合する第3電極と、を備える抵抗変化型素子。
(付記2)前記酸化物部は、第1面および当該第1面とは反対の第2面を有する酸化物層であり、前記一対の第1電極および前記第2電極は、前記酸化物層の前記第1面の側に接合しており、前記第3電極は、前記酸化物層の前記第2面の側に接合している、付記1に記載の抵抗変化型素子。
(付記3)前記第2電極は、前記第1電極および/または前記第3電極よりも酸化されやすい材料よりなる、付記1または2に記載の抵抗変化型素子。
(付記4)前記第2電極は、Ta、Ti、Al、Fe、Co、またはNiを含んでなる、付記1から3のいずれか一つに記載の抵抗変化型素子。
(付記5)前記第1電極および/または前記第3電極は、Pt、Au、またはSrRuO3を含んでなる、付記1から4のいずれか一つに記載の抵抗変化型素子。
(付記6)前記第3電極は、10nm以下の厚さを有する、付記1から5のいずれか一つに記載の抵抗変化型素子。
(付記7)前記酸化物部は、P型半導性を有する遷移金属酸化物よりなり、当該遷移金属酸化物は、価数変動可能な遷移金属を含む、付記1から6のいずれか一つに記載の抵抗変化型素子。
(付記8)前記酸化物部は、PrCaMnO3を含んでなる、付記1から7のいずれか一つに記載の抵抗変化型素子。
(付記9)前記酸化物部は、50〜150nmの厚さを有する、付記1から8のいずれか一つに記載の抵抗変化型素子。
(付記10)前記一対の第1電極および前記第2電極が配列する第1方向に直交する第2方向において、前記第1電極が前記酸化物部に対して接合する長さは、前記第2電極が前記酸化物部に対して接合する長さ以下である、付記1から9のいずれか一つに記載の抵抗変化型素子。
(付記11)前記第2方向における前記酸化物部の長さは1μm以下である、付記10に記載の抵抗変化型素子。
(付記12)前記第2方向における前記第3電極の長さは1μm以下である、付記10または11に記載の抵抗変化型素子。
(付記13)基材上に導電材料膜を形成する工程と、
前記導電材料膜上に、P型半導性を有する酸化物膜を形成する工程と、
前記酸化物膜上に、相互に離隔する一対の第1電極および当該第1電極間に位置する第2電極を形成する工程と、を含む、抵抗変化型素子製造方法。
(付記14)基材上に相互に離隔する一対の第1電極および当該第1電極間に位置する第2電極を形成する工程と、
前記一対の第1電極および前記第2電極を覆うように、P型半導性を有する酸化物膜を形成する工程と、
前記酸化物膜上に導電材料膜を形成する工程と、を含む、抵抗変化型素子製造方法。
本発明に係る抵抗変化型素子の断面図である。 本発明に係る抵抗変化型素子の平面図であり、図1の線II−IIに沿った矢視図に相当する。 図1に示す抵抗変化型素子の製造方法を表す。 本発明に係る抵抗変化型素子の初期化処理を表す。 本発明に係る抵抗変化型素子の動作原理を表す(高抵抗化)。 本発明に係る抵抗変化型素子の動作原理を表す(低抵抗化)。 図1に示す抵抗変化型素子の第1変形例を表す。 図1に示す抵抗変化型素子の第2変形例を表す。 第2変形例に係る抵抗変化型素子の平面図であり、図8の線IX−IXに沿った矢視図に相当する。 図8に示す抵抗変化型素子の製造方法を表す。 実施例のサンプル素子における積層構成を表す。
符号の説明
X 抵抗変化型素子
S 基板
1,2,3 電極
4 酸化物層
5 酸素イオン
6 酸素空孔
7 電子
11,12 材料膜

Claims (6)

  1. P型半導性を有する酸化物部と、
    相互に離隔して前記酸化物部に接合する一対の第1電極と、
    前記一対の第1電極の間において前記酸化物部に接合する第2電極と、
    前記酸化物部を介して前記第2電極に対向する部位を有して前記酸化物部に接合する第3電極と、を備え、
    前記第2電極に、前記第3電極に対し正電圧を印加することにより、前記酸化物部の内部の前記第2電極との界面に酸素空孔が偏在し、前記第3電極内の前記第2電極と協働して電界を形成する部分領域に電子が蓄積し、前記一対の第1電極間のキャリアの移動のルートを前記酸化物部内に制限し、前記第2電極と前記第3電極との間の印加する電圧を変化させることにより、前記一対の第1電極間における前記酸化物部内のチャネルを部分的に拡縮して、前記チャネルの抵抗を可逆的変化させる抵抗変化型素子。
  2. 前記第2電極は、前記第1電極および/または前記第3電極よりも酸化しやすい材料よりなる、請求項1に記載の抵抗変化型素子。
  3. 前記酸化物部は、50〜150nmの厚さを有する、請求項1または2に記載の抵抗変化型素子。
  4. 前記一対の第1電極および前記第2電極が配列する第1方向に直交する第2方向において、前記第1電極が前記酸化物部に接合する長さは、前記第2電極が前記酸化物部に接合する長さ以下である、請求項1から3のいずれか一つに記載の抵抗変化型素子。
  5. 基材上に導電材料膜を形成する工程と、
    前記導電材料膜上に、P型半導性を有する酸化物膜を形成する工程と、
    前記酸化物膜上に、相互に離隔する一対の第1電極および当該第1電極間に位置する第2電極を形成する工程と、を含み、
    前記第2電極に、前記導電材料膜に対し正電圧を印加することにより、前記酸化物膜の内部の前記第2電極との界面に酸素空孔が偏在し、前記導電材料膜内の前記第2電極と協働して電界を形成する部分領域に電子が蓄積し、前記一対の第1電極間のキャリアの移動のルートを前記酸化物膜内に制限し、前記第2電極と前記導電材料膜との間の印加する電圧を変化させることにより、前記一対の第1電極間における前記酸化物膜内のチャネルを部分的に拡縮して、前記チャネルの抵抗を可逆的変化させる、抵抗変化型素子製造方法。
  6. 基材上に、相互に離隔する一対の第1電極および当該第1電極間に位置する第2電極を形成する工程と、
    前記一対の第1電極および前記第2電極を覆うように、P型半導性を有する酸化物膜を形成する工程と、
    前記酸化物膜上に導電材料膜を形成する工程と、を含み、
    前記第2電極に、前記導電材料膜に対し正電圧を印加することにより、前記酸化物膜の内部の前記第2電極との界面に酸素空孔が偏在し、前記導電材料膜内の前記第2電極と協働して電界を形成する部分領域に電子が蓄積し、前記一対の第1電極間のキャリアの移動のルートを前記酸化物膜内に制限し、前記第2電極と前記導電材料膜との間の印加する電圧を変化させることにより、前記一対の第1電極間における前記酸化物膜内のチャネルを部分的に拡縮して、前記チャネルの抵抗を可逆的変化させる、抵抗変化型素子製造方法。
JP2008284945A 2008-11-06 2008-11-06 抵抗変化型素子および抵抗変化型素子製造方法 Expired - Fee Related JP5375035B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284945A JP5375035B2 (ja) 2008-11-06 2008-11-06 抵抗変化型素子および抵抗変化型素子製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284945A JP5375035B2 (ja) 2008-11-06 2008-11-06 抵抗変化型素子および抵抗変化型素子製造方法

Publications (2)

Publication Number Publication Date
JP2010114231A JP2010114231A (ja) 2010-05-20
JP5375035B2 true JP5375035B2 (ja) 2013-12-25

Family

ID=42302575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284945A Expired - Fee Related JP5375035B2 (ja) 2008-11-06 2008-11-06 抵抗変化型素子および抵抗変化型素子製造方法

Country Status (1)

Country Link
JP (1) JP5375035B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128017A1 (ja) * 2011-03-22 2012-09-27 日本電気株式会社 抵抗記憶装置およびその書き込み方法
JP5622769B2 (ja) * 2012-03-08 2014-11-12 株式会社東芝 半導体装置
US10032892B2 (en) 2015-01-09 2018-07-24 National University Corporation Hokkaido University Semiconductor device
JP7205273B2 (ja) * 2019-02-12 2023-01-17 富士通株式会社 電子装置及び認証装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460095B2 (ja) * 1994-06-01 2003-10-27 富士通株式会社 強誘電体メモリ
EP1643508B1 (en) * 2004-10-01 2013-05-22 International Business Machines Corporation Non-volatile memory element with programmable resistance
JP5010891B2 (ja) * 2006-10-16 2012-08-29 富士通株式会社 抵抗変化型素子
JP2008177469A (ja) * 2007-01-22 2008-07-31 Fujitsu Ltd 抵抗変化型素子および抵抗変化型素子製造方法

Also Published As

Publication number Publication date
JP2010114231A (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
KR101468521B1 (ko) 멤리스티브 디바이스와 그 제조 방법 및 사용 방법
JP5010891B2 (ja) 抵抗変化型素子
TWI302739B (en) Semiconductor memory, its fabrication process, its operation method and portable electronic equipment
KR101390430B1 (ko) 전기 작동 스위치
US9000411B2 (en) Memristor devices configured to control bubble formation
JP5477281B2 (ja) 抵抗変化素子、半導体記憶装置、その製造方法及び駆動方法
TWI500192B (zh) 記憶電阻裝置、用以製造記憶電阻裝置的方法以及交叉桿陣列
EP2361438B1 (en) Electrically actuated device and method of controlling the formation of dopants therein
JP2003243615A (ja) 量子ドットを備えたメモリ素子及びその製造方法
JP2009218260A (ja) 抵抗変化型素子
US8530873B2 (en) Electroforming free memristor and method for fabricating thereof
US8487289B2 (en) Electrically actuated device
JP2008177469A (ja) 抵抗変化型素子および抵抗変化型素子製造方法
JP5375035B2 (ja) 抵抗変化型素子および抵抗変化型素子製造方法
US8207519B2 (en) Ionic-modulated dopant profile control in nanoscale switching devices
KR101842759B1 (ko) 이중 저항변화층을 갖는 저항변화 메모리 및 이의 제조방법
JP2008311449A (ja) シリコンによる2端子抵抗スイッチ素子及び半導体デバイス
Lee et al. Highly reliable resistive switching without an initial forming operation by defect engineering
Jiang et al. Effect of voltage polarity and amplitude on electroforming of TiO 2 based memristive devices
JP5476686B2 (ja) 抵抗変化型素子および抵抗変化型素子製造方法
KR20120022218A (ko) 버퍼층을 가지는 저항변화 메모리 및 이의 제조방법
JP2013207131A (ja) 抵抗変化素子及びその製造方法
TW201121042A (en) Electroforming-free nanoscale switching device
KR101505495B1 (ko) Cbram 소자 및 그 제조 방법
US20130234103A1 (en) Nanoscale switching device with an amorphous switching material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5375035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees