JP5367926B1 - アルミニウム合金線およびその製造方法 - Google Patents

アルミニウム合金線およびその製造方法 Download PDF

Info

Publication number
JP5367926B1
JP5367926B1 JP2013527211A JP2013527211A JP5367926B1 JP 5367926 B1 JP5367926 B1 JP 5367926B1 JP 2013527211 A JP2013527211 A JP 2013527211A JP 2013527211 A JP2013527211 A JP 2013527211A JP 5367926 B1 JP5367926 B1 JP 5367926B1
Authority
JP
Japan
Prior art keywords
heat treatment
wire
aluminum alloy
mass
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013527211A
Other languages
English (en)
Other versions
JPWO2013147270A1 (ja
Inventor
茂樹 関谷
京太 須齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2013527211A priority Critical patent/JP5367926B1/ja
Application granted granted Critical
Publication of JP5367926B1 publication Critical patent/JP5367926B1/ja
Publication of JPWO2013147270A1 publication Critical patent/JPWO2013147270A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】十分な導電率と引張強度を有し、耐屈曲疲労特性に優れたアルミニウム合金線を提供する。
【解決手段】Feを0.01〜1.2質量%、Mgを0.1〜1.0質量%、及びSiを0.1〜1.0質量%含有し、残部がAlと不可避的不純物からなる合金組成を有するアルミニウム合金線であって、結晶粒径が1〜30μmであり、かつ該アルミニウム合金中のMgSi針状析出物の分散密度が10〜200個/μmであるアルミニウム合金線、およびその製造方法。
【選択図】なし

Description

本発明は、電気配線体の導体として用いられるアルミニウム合金線およびその製造方法に関する。
従来、自動車、電車、航空機等の移動体の電気配線体として、ワイヤーハーネスと呼ばれる銅又は銅合金製の導体を含む電線に銅又は銅合金(例えば、黄銅)製の端子(コネクタ)を装着した部材が用いられていた。一方、近年の移動体に求められる軽量化に応える手段の中で、電気配線体の導体として、銅又は銅合金に替えて、より軽量なアルミニウム又はアルミニウム合金を用いる検討が進められている。
アルミニウムの比重は銅の約1/3、アルミニウムの導電率は銅の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、純アルミニウムの導体線材に純銅の導体線材と同じ電流を流すためには、純アルミニウムの導体線材の断面積を純銅の導体線材の約1.5倍にする必要があるが、それでも質量では銅に比べて約半分となるので、有利な点がある。
なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。
そのアルミニウムを移動体の電気配線体の導体として用いるためには幾つかの課題がある。
その1つは耐屈曲疲労特性の向上である。ドアなどに取り付けられたワイヤーハーネスではドアの開閉により繰り返し曲げ応力を受けるためである。アルミニウムなどの金属材料は、ドアの開閉のように荷重を加えたり除いたりを繰り返し行うと、一回の負荷では破断しないような低い荷重でも、ある繰り返し回数で破断を生じる(疲労破壊)。前記アルミニウム導体が開閉部に用いられたとき、耐屈曲疲労特性が悪いと、その使用中に導体が破断することが懸念され、耐久性、信頼性に欠ける。一般に強度の高い材料ほど耐屈曲疲労特性は良好と言われている。そこで、強度の高いアルミニウム線材を適用すればよいと考えられるが、その一方で、強度の高い加工材では伸びが不足し、車体への取付け作業がしにくくなる。このために、一般的には伸びが確保できる鈍し材(焼鈍材)が使われていることが多い。
もう1つの課題は引張強度の向上である。電線と端子の接続部における圧着部の引張強度を保ち、さらに、車体への取付け作業時に不意に負荷される荷重に耐えられるようにするためである。銅導体からアルミニウム導体への置き換えは、先述した通り断面積を大きくするため耐負荷荷重[N]は上昇する傾向にあるが、それでも純アルミニウム導体では銅導体より耐負荷荷重[N]が低く、置き換えが難しい。そこで、アルミニウム導体の単位面積当たりの負荷荷重(引張強度[MPa])を向上させた新しい線材が求められている。
よって、移動体の電気配線体に使用されるアルミニウム導体には、電気を多く流すために必要となる導電率に加えて、引張強度、耐屈曲疲労特性の優れた材料が求められている。
このような要求のある用途に対して、送電線用アルミニウム合金線材(JIS1060やJIS1070)を代表とする純アルミニウム系では、ドアなどの開閉で生じる繰り返し曲げ応力に十分耐えることはできない。また、種々の添加元素を加えて合金化した材料は引張強度には優れるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に金属間化合物に起因する断線が生じることがあった。そのため、添加元素を限定、選択して断線しないことを必須とし、導電率低下を防ぎ、強度及び耐屈曲疲労特性を向上する必要があった。
移動体の電気配線体に用いられるアルミニウム導体として代表的なものに特許文献1に記載のものがある。これは細いアルミニウム合金素線を複数本撚り合わせてなる電線導体を用いて必要な引張強度、破断伸び、耐衝撃性等を実現するものである。
しかしながら、特許文献1に記載されたアルミニウム導体は、結晶粒径が大きいために耐屈曲疲労特性を満足するものではなく、更なる改善が望まれる。
特開2008−112620号公報
本発明は、十分な導電率と引張強度を有し、耐屈曲疲労特性に優れたアルミニウム合金線を提供することを課題とする。
本発明者らは種々検討を重ね、特定の成分組成とすることと、および、溶体化熱処理や時効熱処理などの製造条件を制御することにより、結晶粒径及びMgSi針状析出物を制御して、優れた耐屈曲疲労特性、引張強度、及び導電率を具備するアルミニウム合金線を製造しうることを見い出し、この知見に基づき本発明を完成するに至った。
すなわち、本発明によれば、以下の手段が提供される。
(1)Feを0.01〜1.2質量%、Mgを0.1〜1.0質量%、及びSiを0.1〜1.0質量%含有し、残部がAlと不可避的不純物からなる合金組成を有するアルミニウム合金線であって、結晶粒径が1〜30μmであり、かつ該アルミニウム合金中のMgSi針状析出物の分散密度が10〜200個/μmであるアルミニウム合金線。
(2)さらにCuを0.01〜0.5質量%含有してなる(1)に記載のアルミニウム合金線。
(3)Ti及びBの少なくとも1つを合計で0.001〜0.03質量%含有してなる(1)又は(2)に記載のアルミニウム合金線。
(4)溶解、鋳造、熱間加工、第1伸線加工、第1熱処理、第2伸線加工、第2熱処理、及び時効熱処理の各工程をこの順で含む(1)〜(3)のいずれか1項に記載のアルミニウム合金線の製造方法であって、
前記第2熱処理が連続通電熱処理によって行う溶体化熱処理であり、その条件が下記式の関係を満たすアルミニウム合金線の製造方法。
0.03≦x≦0.73、かつ
22x−0.4+500≦y≦18x−0.4+560
(式中、xは焼鈍時間(秒)、yは線材温度(℃)を示す。左辺と右辺のxは同値である。)
(5)溶解、鋳造、熱間加工、第1伸線加工、第1熱処理、第2伸線加工、第2熱処理、及び時効熱処理の各工程をこの順で含む(1)〜(3)のいずれか1項に記載のアルミニウム合金線の製造方法であって、
前記第2熱処理が連続走間熱処理によって行う溶体化熱処理であり、その条件が下記式の関係を満たすアルミニウム合金線の製造方法。
1.5≦x≦5、かつ
−8.5x+612≦z≦−8.5x+667
(式中、xは焼鈍時間(秒)、zは焼鈍炉温度(℃)を示す。左辺と右辺のxは同値である。)
(6)前記時効熱処理の処理温度が140〜220℃である(4)又は(5)に記載のアルミニウム合金線の製造方法。
(7)前記第2伸線加工の加工度が3〜6である(4)〜(6)のいずれか1項に記載のアルミニウム合金線の製造方法。
本発明のアルミニウム合金線は、耐屈曲疲労特性、引張強度、及び導電率に優れ、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線として有用である。また非常に高い耐屈曲疲労特性が求められるドアやトランク、ボンネットなどにも好適に用いることができる。
本発明のアルミニウム合金線の製造方法は、前記アルミニウム合金線を製造する方法として好適である。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、実施例で行った繰り返し破断回数を測定する試験の説明図である。
本発明のアルミニウム合金線(以下、アルミニウム線材もしくはアルミニウム合金導体ともいう)は、アルミニウム合金母材の結晶粒径、該アルミニウム合金中のMgSi針状析出物を以下のように規定することにより、優れた耐屈曲疲労特性、引張強度、及び導電率を具備したものとすることができる。
本発明のアルミニウム合金線は、その母材のアルミニウム合金の結晶粒径が1〜30μmである。ここで、結晶粒径とは、アルミニウム線材の伸線方向に垂直な断面における結晶粒径をいう。粗大すぎる結晶粒組織を形成すると変形挙動が不均一となり、引張強度、伸び、そして、耐屈曲疲労特性が著しく低下する。結晶粒径の下限には特に制限はないが、加工材と区別するため1μm以上が好ましい。結晶粒径は、好ましくは1〜20μmである。
なお、本発明における「結晶粒径」は光学顕微鏡により観察して交差法により粒径測定を行った平均粒径であり、50〜100個の結晶粒の平均値とする。
本発明では、アルミニウム合金中に生成するMgSi針状析出物の分散密度を、10〜200個/μmとする。MgSi針状析出物とは、アルミニウム合金中に溶け切れなかった添加元素のMg及びSiが集合して生成された化合物である。均一な結晶から母結晶とは異なる結晶が生ずることを析出と呼ぶため、その化合物のことを析出物と呼ぶ。針状とはその析出物の形状を表しており、長さ40〜500nm、好ましくは40〜400nm、最大の横幅(厚み)1〜20nmの細長い形状をした析出物をいう。アルミニウム合金中にMgSi針状析出物を析出させることによって、耐屈曲疲労特性及び引張強度を向上させること、並びに、導電率の低下を防ぐことができる。MgSi針状析出物の分散密度が低すぎる場合は、これらの効果が不十分であり、高すぎる場合は、析出過剰による伸びの低下、又は伸線加工中に断線するなどの恐れがある。また、時効熱処理条件にもよるが、同一時効熱処理条件の場合には、Mg及びSiの添加量が多い場合には、MgSi針状析出物は多くなる傾向があるが、固溶したMg及びSiも多くなるため、導電率を低下させる。MgSi針状析出物は、導電率の観点からは少ない方がよく、高強度・高耐屈曲の観点からは多い方がよい。以上を踏まえると、MgSi針状析出物の分散密度は、好ましくは25〜150個/μmであり、更に好ましくは40〜125個/μmである。
(合金組成と性状)
本発明の好ましい第1の実施態様の成分構成は、Alに、Feを0.01〜1.2質量%と、Mgを0.1〜1.0質量%と、Siを0.1〜1.0質量%とを含有する。さらに不可避不純物を含んでいてもよい。
本実施態様において、Feの含有量を0.01〜1.2質量%とする。Feは主にAl−Fe系の金属間化合物を形成することによる様々な効果を利用するため添加する。Feはアルミニウム中には655℃において0.05質量%しか固溶せず、室温では更に少ない。残りはAl−Fe、Al−Fe−Si、Al−Fe−Si−Mgなどの金属間化合物として晶出又は析出する。この晶出物又は析出物は結晶粒の微細化材として働くと共に、引張強度、及び耐屈曲疲労特性を向上させる。一方、Feの固溶によっても引張強度が上昇する。Feの含有量が少なすぎるとこれらの効果が不十分であり、多すぎると晶出物の粗大化により伸線加工性が悪く、目的の耐屈曲疲労特性が得られない。また導電率も低下する。Feの含有量は好ましくは0.15〜0.9質量%、更に好ましくは0.15〜0.45質量%である。
本実施態様において、Mgの含有量を0.1〜1.0質量%とする。Mgはアルミニウム母材中に固溶して強化すると共に、その一部はSiと析出物を形成して引張強度、耐屈曲疲労特性、及び耐熱性を向上させることができる。Mgの含有量が少なすぎると上記の作用効果が不十分であり、多すぎると導電率を低下させる。Mgの含有量は、高強度を重視すれば好ましくは0.5〜1.0質量%であり、導電率を重視すれば好ましくは0.1〜0.5質量%、更に好ましくは0.3〜0.5質量%である。なお、導電率を更に低くすることが許容されれば含有量の上限は1.0質量%に限ったものではない。
本実施態様において、Siの含有量を0.1〜1.0質量%とする。上記したようにSiはMgと化合物を形成して引張強度、耐屈曲疲労特性、及び耐熱性を向上させる働きを示すためである。Siの含有量が少なすぎると効果が不十分であり、多すぎると導電率が低下する。Siの含有量は、高強度を重視すれば好ましくは0.5〜1.0質量%であり、導電率を重視すれば好ましくは0.1〜0.5質量%、更に好ましくは0.3〜0.5質量%である。なお、導電率を更に低くすることが許容されれば含有量の上限は1.0質量%に限ったものではない。
本発明のAl合金組成において、本発明の好ましい第2の実施態様は、第1の実施態様の合金成分中のAlの一部を置き換えてCu0.01〜0.5質量%を更に含有させる。
この実施態様において、Cuの含有量を0.01〜0.5質量%とすることによって、Cuをアルミニウム母材中に固溶させ強化することができる。これにより、耐クリープ性、耐屈曲疲労特性、耐熱性の向上に寄与する。Cuの含有量が少なすぎると効果が不十分であり、多すぎると耐食性及び導電率の低下を招く。Cuの含有量は、高強度を重視すれば好ましくは0.25〜0.5質量%であり、導電率を重視すれば好ましくは0.01〜0.25質量%である。また、導電率を更に低くすることが許容されれば含有量の上限は0.5質量%に限ったものではない。
なお、その他の成分組成とその作用に関しては、第1の実施態様と同様である。
本発明のAl合金組成において、本発明の好ましい第3の実施態様は、第1の実施態様又は第2の実施態様の合金成分中のAlの一部を置き換えて、Ti及びBの少なくとも1つを合計で0.001〜0.03質量%含有させる。
本実施態様において、Ti及びBの少なくとも1つを合計で0.001〜0.03質量%含有させる。Ti又はBは鋳造時の結晶粒微細化材として働き、引張強度及び耐屈曲疲労特性を向上させることができる。Ti又はBの含有量が少なすぎる場合はその効果を十分に発揮することができず、結晶粒が粗大化する。一方で、Ti又はBの含有量が多すぎる場合は導電率の低下を招く。Ti又はBの含有量は、結晶粒微細化の効果を期待するならば好ましくは0.015〜0.03質量%であり、導電率をあまり低下させたくないならば好ましくは0.001〜0.015質量%である。
なお、その他の成分組成とその作用に関しては、第1又は第2の実施態様と同様である。
上述の不可避不純物は製造工程上含まれる含有レベルである。不可避不純物は導電率を若干低下させる要因にはなるが、製造工程上含まれるものであるため、導電率の低下を加味して考えておく必要がある。不可避不純物は、Siは0.20質量%以下、Feは0.25質量%以下、Mgは0.03質量%以下、Cuは0.04質量%以下、Mnは0.03質量%以下、Znは0.04質量%以下、Vは0.05質量%以下、Tiは0.03質量%以下であり、その他の元素に関しては0.03質量%以下を不可避不純物とした。なお、一般的に電気用アルミニウム合金に使用されるJIS規格合金番号1070の材料を参照して不可避不純物の含有量を決定した。
このような結晶粒やMgSi針状析出物を有するアルミニウム合金線は、合金組成や溶体化熱処理条件、時効熱処理の条件などを組み合わせて制御することにより実現できる。好ましい製造方法を以下に述べる。
(本発明のアルミニウム合金線の製造方法)
本発明のアルミニウム合金線は、[1]溶解、[2]鋳造、[3]熱間加工(溝ロール加工など)、[4]第1伸線加工、[5]第1熱処理(中間焼鈍)、[6]第2伸線加工、[7]第2熱処理、[8]時効熱処理の各工程を経て製造することができる。以下に、この工程について説明する。
[1]溶解
溶解は、上述したアルミニウム合金組成のそれぞれの実施態様の濃度となるような分量で溶製する。
[2]鋳造、[3]熱間加工(溝ロール加工など)
次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で鋳造し、連続して圧延を行い、好ましくは直径8〜13mmφの適宜の太さの棒材、例えば、約10mmφの棒材とする。このときの鋳造冷却速度はFe系晶出物の粗大化の防止とFeの強制固溶による導電率低下の防止の上から、好ましくは1〜20℃/秒であるが、これに制限されるものではない。鋳造及び熱間圧延は、前記連続鋳造圧延のように連続して行ってもよいし、あるいは、ビレット鋳造及び熱間押出法などにより別工程で行ってもよい。
[4]第1伸線加工
次いで、必要により表面の皮むきを実施して、好ましくは直径7.5〜12.5mmφの適宜の太さの棒材、例えば、約9.5mmφとした後に、伸線加工する。加工度は、1以上6以下が好ましい。ここで加工度ηは、伸線加工前の線材断面積をA、伸線加工後の線材断面積をAとすると、η=ln(A/A)で表される。このときの加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し引張強度及び伸びが著しく低下し、断線の原因にもなることがある。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずることがある。表面の皮むきは、行うことによって表面の清浄化がなされるが、行わなくてもよい。
[5]第1熱処理(中間焼鈍)
冷間伸線した加工材に第1熱処理を施す。第1熱処理は主に伸線加工で硬くなった線材の柔軟性を取り戻すために行う。中間焼鈍温度が高すぎても低すぎても、後の伸線加工で断線を起こし、線材が得られなくなる。中間焼鈍温度は好ましくは300〜450℃、より好ましくは350〜450℃である。中間焼鈍の時間は、10分以上とする。10分未満であると、再結晶粒形成及び成長に必要な時間が足りず、線材の柔軟性を取り戻すことができないためである。好ましくは1〜6時間である。また、中間焼鈍時の熱処理温度から100℃までの平均冷却速度は特に規定しないが、0.1〜10℃/分が望ましい。
[6]第2伸線加工
さらに伸線加工を施す。この際の加工度は1.6〜6.0とする。加工度は再結晶粒形成及び成長に多大に影響を及ぼす。加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し引張強度及び伸びが著しく低下し、断線の原因にもなることがある。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずることがある。更に結晶粒径を微細にし、かつ、断線などのトラブルを避けるためには、第2伸線加工の加工度は特に3〜6.0が好ましい。
[7]第2熱処理
冷間伸線した加工材に第2熱処理を行う。第2熱処理は、連続通電熱処理、連続走間熱処理のいずれでも行うことができる。また、この熱処理は溶体化熱処理であることが好ましい。溶体化熱処理とはアルミニウム合金中に前段階で晶出又は析出された化合物を、アルミニウム合金中に溶かし材料内の組成濃度分布を均一化する熱処理である。
従来の溶体化熱処理は、バッチ式熱処理で溶体化するため、結晶粒径が粗大であった。溶体化熱処理の温度を低めに設定すれば、ある程度の微細化は達成できたが、それでも所望の結晶粒径を得ることが困難であった。また、温度が低すぎた場合には、溶体化が不完全となり、後の時効熱処理における時効析出による強化が不足していた。本発明では、好ましくは溶体化熱処理を高温短時間で制御することにより、結晶粒微細化及び溶体化を達成することができ、析出強化が可能なアルミニウム合金線を得ることができる。
連続通電熱処理は、2つの電極輪を連続的に通過する線材に電流を流すことによって自身から発生するジュール熱により焼鈍するものである。急熱、急冷の工程を含み、線材温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。通常は時間0.03秒〜0.73秒の範囲で適切な温度を設定し焼鈍する。好ましくは溶体化するため、連続通電熱処理においては線材温度をy(℃)、焼鈍時間をx(秒)とすると、以下の関係を満たすように熱処理を行うことができる。
0.03≦x≦0.73、かつ
22x−0.4+500≦y≦18x−0.4+560
(左辺と右辺のxは同値である。)
y(℃)は通常525〜633(℃)の範囲内である。
このような式で規定される関係に基づいて、軟化処理(焼鈍)のみを行う通常の連続通電熱処理に対して、熱処理温度と時間を非常に狭い領域にて制御した連続通電熱処理によって溶体化熱処理を施すことが好ましい。
線材温度又は焼鈍時間の一方又は両方が上記で定義される条件より低い又は短い場合は、溶体化が不完全になり後工程の時効熱処理時に析出するMgSi針状析出物が少なくなり、引張強度、耐屈曲疲労特性、導電率の向上幅が小さくなる。ただし、MgSi針状析出物の分散密度が所定の範囲に有れば本発明に適合する。一方、線材温度又は焼鈍時間の一方又は両方が上記で定義される条件より高い又は長い場合は、結晶粒が粗大化すると共に、アルミニウム合金線中の化合物相の部分溶融(共晶融解)が起こり、引張強度、伸びが低下し、導体の取り扱い時に断線が起こりやすくなる。
なお、線材温度y(℃)は、線材として温度が最も高くなる、冷却工程に通過する直前の温度を表す。
連続走間熱処理は、高温に保持した焼鈍炉中を線材を連続的に通過させることによって焼鈍させるものである。急熱、急冷の工程を含み、焼鈍炉温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。通常は時間1.5秒〜5.0秒の範囲で適切な温度を設定し焼鈍する。好ましくは溶体化するため、連続走間熱処理においては焼鈍炉温度をz(℃)、焼鈍時間をx(秒)とすると、以下の関係を満たすように熱処理を行うことができる。
1.5≦x≦5、かつ
−8.5x+612≦z≦−8.5x+667
(左辺と右辺のxは同値である。)
z(℃)は通常570〜654(℃)の範囲内である。
このような式で規定される関係に基づいて、軟化処理のみを行う通常の連続走間熱処理に対して、熱処理温度と時間を非常に狭い領域にて制御した連続走間熱処理によって溶体化熱処理を施すことが好ましい。
焼鈍炉温度又は焼鈍時間の一方又は両方が上記で定義される条件より低い又は短い場合は、溶体化が不完全になり後工程の時効熱処理時に析出するMgSi針状析出物が少なくなり、引張強度、耐屈曲疲労特性、導電率の向上幅が小さくなる。ただし、MgSi針状析出物の分散密度が所定の範囲に有れば本発明に適合する。一方、焼鈍炉温度又は焼鈍時間の一方又は両方が上記で定義される条件より高い又は長い場合は、結晶粒が粗大化すると共に、アルミニウム合金線中の化合物相の部分溶融(共晶融解)が起こり、引張強度、伸びが低下し、導体の取り扱い時に断線が起こりやすくなる。
また、溶体化熱処理は上記2つの方法の他に、磁場中を線材が連続的に通過して焼鈍させる連続誘導加熱方式でもよい。この場合でも、急熱、急冷の工程を含み、線材温度と焼鈍時間で制御し線材を焼鈍することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。
第2熱処理の昇温速度は、好ましくは20℃/s以上とする。20℃/s未満であると、昇温途中にMgSi化合物が析出し温度が高いほど粗大化するため、所定の第2熱処理温度、時間では溶体化が不完全になり、後工程の時効熱処理時に析出するMgSi針状析出物が少なくなり、引張強度、耐屈曲疲労特性、導電率の向上幅が小さくなるためである。よって、昇温速度は速ければ速い方が良い。好ましくは50℃/s以上であり、より好ましくは100℃/s以上である。連続通電熱処理、連続走間熱処理、連続誘導加熱方式ならば上記昇温速度での作製が可能である。
第2熱処理の冷却速度は、好ましくは20℃/s以上とする。20℃/s未満であると、冷却途中にMgSi化合物が析出するため溶体化が不完全になり、後工程の時効熱処理時に析出するMgSi針状析出物が少なくなり、引張強度、耐屈曲疲労特性、導電率の向上幅が小さくなるためである。よって、冷却速度は速ければ速い方が良い。好ましくは100℃/s以上であり、より好ましくは250℃/sである。連続通電熱処理、連続走間熱処理、連続誘導加熱方式ならば上記冷却速度での作製が可能である。
[8]時効熱処理
次いで、時効熱処理を施す。時効熱処理は、MgSi針状析出物を析出させるために行う。その温度は好ましくは140〜220℃である。140℃未満であると、MgSi針状析出物を十分に析出させることができず耐屈曲疲労特性、導電率が不足する。220℃超であると、MgSi析出物が大きくなり、導電率は上昇するが、耐屈曲疲労特性が不足する。本発明では、例えば球状や板状などの他の形状のMgSiが併存していても、少なくともMgSi針状析出物が上記の密度で析出して母材中に分散していればよい。時効熱処理温度は、耐屈曲疲労特性を重視すれば好ましくは140〜200℃であり、導電率を重視すれば好ましくは175〜220℃である。なお、時効熱処理時間は温度によって好ましい時間が変化するため特に限定しないが、生産性を考慮すると短時間が良く、15時間以下が好ましい。更に好ましくは、10時間以下である。
時効熱処理の昇温速度は1℃/s以上とする。
なお、時効熱処理後の冷却速度は特性のバラつきを防止するために、可能な限り速い方が好ましい。好ましくは1℃/s以上である。しかし、製造工程上、あまり速く冷却できない場合は、冷却中にMgSi針状析出物の増加や減少が起こることも考慮に入れて時効条件を設定する必要がある。
本発明のアルミニウム合金線(導体)の線径は、特に制限はなく用途に応じて適宜定めることができるが、細物線の場合は0.10〜0.55mmφ、中細物線の場合は0.8〜1.5mmφが好ましい。本発明のアルミニウム合金線は線材として、単線で細くして使用できることが利点の一つであるが、複数本束ねて使用することもでき、複数本に束ねて撚り合わせた後で、前記[7]第2熱処理と[8]時効熱処理の工程を行ってもよい。
以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例、比較例
Fe、Mg、Si、Cu、Ti、B及びAlが表1に示す量(質量%)になるように溶解([1]溶解)した銅合金の原料を、プロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造([2]鋳造)しながら圧延([3]熱間加工)を行い、約10mmφの棒材とした。このときの鋳造冷却速度は1〜20℃/秒である。
次いで、表面の皮むきを実施して、約9.5mmφとし、これを所定の加工度が得られるように伸線加工([4]第1伸線加工)した。次に、この冷間伸線した加工材に温度300〜450℃で0.5〜4時間の中間焼鈍([5]第1熱処理)を施し、さらに、0.43mmφ、0.31mmφ、0.14mmφのいずれかの線径まで伸線加工([6]第2伸線加工)を行った。
次いで表1に示す条件で熱処理([7]第2熱処理)を行った。この第2熱処理を連続通電熱処理で行った場合には、ファイバ型放射温度計(ジャパンセンサ社製)で線材の温度が最も高くなる水中を通過する直前の線材温度y(℃)を測定した。一方、この第2熱処理を連続走間熱処理で行った場合には、焼鈍炉温度z(℃)を測定し、下記表に記載した。また、従来法に従って、この第2熱処理をバッチ式加熱処理で行った場合には、焼鈍炉温度(℃)を測定し、下記表に記載した。
最後に時効熱処理([8]時効熱処理)を温度140〜220℃、時間1〜15時間の条件で施した。時効熱処理後は、炉から試料を取り出し空冷した。
作製した各々の実施例及び比較例の線材について以下に記す方法により各特性を測定した。その結果を表1に示す。
(a)MgSi針状析出物の分散密度
実施例及び比較例の線材をFIB法にて薄膜にし、透過電子顕微鏡(TEM)を用いて電子線をアルミニウム母相に対して<001>方向に入射し、任意の範囲を観察した。MgSi針状析出物は、撮影された写真から上記で規定する、長さ40nm以上の針状析出物をカウントした。このようにすることで球状に析出するAl−Fe系の析出物を除外した。また、撮影された写真に垂直に析出している針状析出物もカウント対象外とした。析出物が測定範囲外にまたがるとき、長さ40nm以上が測定範囲内に含まれていれば、析出物数にカウントした。MgSi針状析出物の分散密度は40個以上をカウントできる範囲を設定して、MgSi針状析出物の分散密度(個/μm)=MgSi針状析出物の個数(個)/カウント対象範囲(μm)の式を用いて算出した。カウント対象範囲は場合によっては複数枚の写真を用いた。40個以上カウントできないほど析出物が少ない場合は、1μmを指定してその範囲の分散密度を算出した。
MgSi針状析出物の分散密度は、上記薄膜の試料厚さを、0.15μmを基準厚さとして算出している。試料厚さが基準厚さと異なる場合、試料厚さを基準厚さに換算して、つまり、(基準厚さ/試料厚さ)を撮影された写真を基に算出した分散密度にかけることによって、分散密度を算出できる。本実施例及び比較例では、FIB法によりすべての試料において試料厚さを約0.15μmに設定し作製した。
(b)結晶粒径(GS)
伸線方向に垂直に切り出した供試材の横断面を樹脂で埋め、機械研磨後、電解研磨を行った。電解研磨条件は、研磨液が過塩素酸20%のエタノール溶液、液温は0〜5℃、電圧は10V、電流は10mA、時間は30〜60秒である。次いで、結晶粒コントラストを得るため、2%ホウフッ化水素酸を用いて、電圧20V、電流20mA、時間2〜3分の条件でアノーダイジング仕上げを行った。この組織を200〜400倍の光学顕微鏡で撮影し、交差法による粒径測定を行った。具体的には、撮影された写真に任意に直線を引いて、その直線の長さと粒界が交わる数を測定して平均粒径を求めた。なお、粒径は50〜100個が数えられるように直線の長さと本数を変えて評価した。
(c)引張強度(TS)及び柔軟性(引張破断伸び、El)
JIS Z 2241に準じて各3本ずつ試験し、その平均値を求めた。引張強度は電線と端子の接続部における圧着部の引張強度を保つため、また、車体への取付け作業時に不意に負荷される荷重に耐えられるためにも100MPa以上が好ましい。
(d)導電率(EC)
長さ300mmの試験片を20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて比抵抗を各3本ずつ測定し、その平均導電率を算出した。端子間距離は200mmとした。導電率は特に限定しないが、45%IACS以上が好ましく、更に好ましくは50%以上である。また、引張強度よりも導電率を重視する電線では55IACS%以上が好ましい。
(e)繰返破断回数
耐屈曲疲労特性の基準として、常温におけるひずみ振幅は±0.17%とした。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
藤井精機株式会社(現株式会社フジイ)製の両振屈曲疲労試験機を用い、0.17%の曲げ歪みが与えられる治具を使用して、繰り返し曲げを実施することにより、繰返破断回数を測定した。繰返破断回数は各4本ずつ測定し、その平均値を求めた。図1の説明図に示すように、線材1を、曲げ治具2及び3の間を1mm空けて挿入し、冶具2及び3に沿わせるような形で繰り返し運動をさせた。線材の一端は繰り返し曲げが実施できるよう押さえ冶具5に固定し、もう一端には約10gの重り4をぶら下げた。試験中は押さえ冶具5が動くため、それに固定されている線材1も動き、繰り返し曲げが実施できる。繰り返しは1秒間に100回の条件で行い、線材の試験片1が破断すると、重り4が落下し、カウントを停止する仕組みになっている。繰返破断回数は、20万回以上を合格とした。好ましくは40万回以上であり、更に好ましくは80万回以上である。
Figure 0005367926
Figure 0005367926
Figure 0005367926
上記表1の結果より、次のことが明らかである。
実施例の実験No.1〜21のアルミニウム合金線は、MgSi針状析出物の分散密度が10〜200個/μmの範囲にあり、かつ、結晶粒径が1〜30μmであった。そしてこれらの本発明の実施例のアルミニウム合金線は、極めて大きな繰返破断回数を示し耐屈曲疲労特性の優れるとともに、引張強度、伸び、導電率も良好なものであった。
これに対し、各比較例では、合金組成、結晶粒径、MgSi針状析出物の分散密度、または製造条件のいずれかが本発明で規定する条件の範囲外であり、少なくとも1つの結果に劣った。以下、詳述する。
比較例の実験No.1は、Mgが本発明で規定する合金組成の範囲外にあり、比較例の実験No.2は、Siが本発明で規定する合金組成の範囲外にあり、それぞれこの条件ではMgSi針状析出物が十分に得られず、粗大結晶粒が形成し、引張強度が低く、繰返破断回数が少なかった。比較例の実験No.3は、第2伸線加工度が低すぎてその後の第2熱処理で粗大結晶粒が形成し、繰返破断回数が少なかった。比較例の実験No.4は、第2伸線加工度が高すぎて伸線中に断線した。比較例の実験No.5は、連続通電熱処理の温度が高すぎて粗大結晶粒が形成し、引張強度が低く、繰返破断回数が少なかった。比較例の実験No.6、7は、時効硬化処理温度が低すぎるか、もしくは高すぎて、MgSi針状析出物が十分な個数生成せず、繰返破断回数が少なかった。比較例の実験No.8は、連続走間熱処理の温度が高すぎて粗大結晶粒が形成し、引張強度が低く、繰返破断回数が少なかった。
比較例の実験No.9は、特許5155464号の試験例1の試料No.14を模した比較例であるが、溶体化熱処理(第2熱処理[7]工程)は該公報の記載に倣ってバッチ式加熱で行ったため、本発明で規定する熱処理ではない。この比較例の実験No.9は、この条件では、粗大結晶粒が形成し、繰返破断回数が少なかった。
比較例の実験No.10は、特許5155464号の試験例2の試料No.2−2を模した比較例であるが、溶体化熱処理(第2熱処理[7]工程)での熱処理時間が長すぎ、また、該公報には冷却底度が記載されていないために本発明の規定範囲外である従来通常用いられていた遅すぎる条件とした。この比較例の実験No.10は、この条件では、粗大結晶粒が形成し、繰返破断回数が少なかった。
比較例の実験No.11は、特許5128109号の実施例1を模した比較例であるが、該公報には溶体化熱処理(第2熱処理[7]工程)に相当する熱処理条件の詳細が記載されていないために、高周波連続軟化機について従来通常用いられていた条件とした。この比較例の実験No.11は、Cuを含有しない点で本発明で規定する合金組成の範囲外にあり、この条件では、粗大結晶粒が形成し、繰返破断回数が少なかった。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2012年3月29日に日本国で特許出願された特願2012−075579に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 試験片(線材)
2、3 曲げ治具
4 重り
5 押さえ冶具

Claims (7)

  1. Feを0.01〜1.2質量%、Mgを0.1〜1.0質量%、及びSiを0.1〜1.0質量%含有し、残部がAlと不可避的不純物からなる合金組成を有するアルミニウム合金線であって、結晶粒径が1〜30μmであり、かつ該アルミニウム合金中のMgSi針状析出物の分散密度が10〜200個/μmであるアルミニウム合金線。
  2. さらにCuを0.01〜0.5質量%含有してなる請求項1に記載のアルミニウム合金線。
  3. Ti及びBの少なくとも1つを合計で0.001〜0.03質量%含有してなる請求項1又は2に記載のアルミニウム合金線。
  4. 溶解、鋳造、熱間加工、第1伸線加工、第1熱処理、第2伸線加工、第2熱処理、及び時効熱処理の各工程をこの順で含む請求項1〜3のいずれか1項に記載のアルミニウム合金線の製造方法であって、
    前記第2熱処理が連続通電熱処理によって行う溶体化熱処理であり、その条件が下記式の関係を満たすアルミニウム合金線の製造方法。
    0.03≦x≦0.73、かつ
    22x−0.4+500≦y≦18x−0.4+560
    (式中、xは焼鈍時間(秒)、yは線材温度(℃)を示す。左辺と右辺のxは同値である。)
  5. 溶解、鋳造、熱間加工、第1伸線加工、第1熱処理、第2伸線加工、第2熱処理、及び時効熱処理の各工程をこの順で含む請求項1〜3のいずれか1項に記載のアルミニウム合金線の製造方法であって、
    前記第2熱処理が連続走間熱処理によって行う溶体化熱処理であり、その条件が下記式の関係を満たすアルミニウム合金線の製造方法。
    1.5≦x≦5、かつ
    −8.5x+612≦z≦−8.5x+667
    (式中、xは焼鈍時間(秒)、zは焼鈍炉温度(℃)を示す。左辺と右辺のxは同値である。)
  6. 前記時効熱処理の処理温度が140〜220℃である請求項4又は5に記載のアルミニウム合金線の製造方法。
  7. 前記第2伸線加工の加工度が3〜6である請求項4〜6のいずれか1項に記載のアルミニウム合金線の製造方法。
JP2013527211A 2012-03-29 2013-03-29 アルミニウム合金線およびその製造方法 Active JP5367926B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013527211A JP5367926B1 (ja) 2012-03-29 2013-03-29 アルミニウム合金線およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012075579 2012-03-29
JP2012075579 2012-03-29
JP2013527211A JP5367926B1 (ja) 2012-03-29 2013-03-29 アルミニウム合金線およびその製造方法
PCT/JP2013/059758 WO2013147270A1 (ja) 2012-03-29 2013-03-29 アルミニウム合金線およびその製造方法

Publications (2)

Publication Number Publication Date
JP5367926B1 true JP5367926B1 (ja) 2013-12-11
JPWO2013147270A1 JPWO2013147270A1 (ja) 2015-12-14

Family

ID=49260508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013527211A Active JP5367926B1 (ja) 2012-03-29 2013-03-29 アルミニウム合金線およびその製造方法

Country Status (5)

Country Link
US (1) US9580784B2 (ja)
EP (1) EP2832874B1 (ja)
JP (1) JP5367926B1 (ja)
CN (1) CN104114725B (ja)
WO (1) WO2013147270A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133004A1 (ja) * 2014-03-06 2015-09-11 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法およびアルミニウム合金線材の測定方法
WO2016003068A1 (ko) * 2014-07-03 2016-01-07 엘에스전선 주식회사 알루미늄 합금 도체 전선 및 이의 제조방법
KR20170090412A (ko) * 2014-12-05 2017-08-07 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 선재, 알루미늄 합금연선, 피복전선, 와이어 하네스, 및 알루미늄 합금 선재의 제조방법
KR20170130468A (ko) * 2015-04-28 2017-11-28 가부시키가이샤 오토네트웍스 테크놀로지스 알루미늄 합금 소선, 알루미늄 합금 연선 및 그 제조 방법, 자동차용 전선 및 와이어 하네스
US9870841B2 (en) 2014-09-22 2018-01-16 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod
US20180197650A1 (en) * 2015-07-29 2018-07-12 Fujikura Ltd. Aluminum alloy conductive wire, and electrical wire and wire harness using the same
JP2020186449A (ja) * 2019-05-16 2020-11-19 株式会社フジクラ アルミニウム合金導電線の製造方法、これを用いた電線の製造方法及びワイヤハーネスの製造方法
JP7506552B2 (ja) 2020-08-06 2024-06-26 鹿島建設株式会社 コンクリート打設管

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180002792A1 (en) * 2013-03-29 2018-01-04 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod
JP6147167B2 (ja) * 2013-11-15 2017-06-14 古河電気工業株式会社 アルミニウム合金導体、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
JP6368087B2 (ja) * 2013-12-26 2018-08-01 住友電気工業株式会社 アルミニウム合金線材、アルミニウム合金線材の製造方法、及びアルミニウム合金部材
CN103757501A (zh) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 一种汽车线用Al-Fe-Mg-Ti铝合金及其线束
JP6420553B2 (ja) * 2014-03-03 2018-11-07 住友電気工業株式会社 アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材
JP6396067B2 (ja) 2014-04-10 2018-09-26 株式会社Uacj バスバー用アルミニウム合金板及びその製造方法
CN103952605B (zh) * 2014-04-30 2016-05-25 国家电网公司 一种中强度铝合金单丝的制备方法
KR101982913B1 (ko) * 2014-05-26 2019-05-27 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 도체선, 알루미늄 합금 연선, 피복 전선, 와이어 하니스 및 알루미늄 합금 도체선의 제조 방법
US10553327B2 (en) * 2014-05-26 2020-02-04 Furukawa Electric Co., Ltd. Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire
KR101716645B1 (ko) * 2014-07-03 2017-03-15 엘에스전선 주식회사 알루미늄 합금 도체 전선 및 이의 제조방법
KR101908871B1 (ko) 2014-08-19 2018-10-16 가부시키가이샤 오토네트웍스 테크놀로지스 알루미늄 전선의 제조 방법
KR20170057243A (ko) 2014-09-22 2017-05-24 후루카와 덴키 고교 가부시키가이샤 단자 부가 전선
KR102474538B1 (ko) * 2014-12-05 2022-12-06 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 선재, 알루미늄 합금연선, 피복전선 및 와이어 하네스 및 알루미늄 합금 선재의 제조방법
US20160271688A1 (en) * 2015-03-17 2016-09-22 Juergen Wuest Low cost high ductility cast aluminum alloy
JP6102987B2 (ja) 2015-06-12 2017-03-29 株式会社オートネットワーク技術研究所 アルミニウム合金線、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
JP6631051B2 (ja) * 2015-06-30 2020-01-15 住友電気工業株式会社 リード導体、及び電力貯蔵デバイス
JP6243875B2 (ja) * 2015-06-30 2017-12-06 昭和電線ケーブルシステム株式会社 アルミニウム合金線の製造方法及びアルミニウム合金線
JP2017214652A (ja) * 2016-05-30 2017-12-07 株式会社フジクラ ガドリニウム線材、その製造方法、それを用いた金属被覆ガドリニウム線材、熱交換器及び磁気冷凍装置
JP6214727B1 (ja) * 2016-06-20 2017-10-18 株式会社フジクラ アルミニウム合金導電線、これを用いた電線及びワイヤハーネス
CN109072355A (zh) * 2016-07-13 2018-12-21 古河电气工业株式会社 铝合金材料及使用其的导电构件、电池用构件、紧固零件、弹簧用零件和结构用零件
JP6315114B2 (ja) * 2017-01-17 2018-04-25 株式会社オートネットワーク技術研究所 アルミニウム合金撚線、自動車用電線およびワイヤーハーネス
JP2018141209A (ja) * 2017-02-28 2018-09-13 アイシン精機株式会社 アルミニウム合金線の製造方法
JP6277299B1 (ja) * 2017-03-15 2018-02-07 株式会社フジクラ アルミニウム合金線、これを用いた電線及びワイヤハーネス
EP3604580A4 (en) * 2017-03-29 2021-01-13 Furukawa Electric Co., Ltd. ALUMINUM ALLOY MATERIAL, USER CONDUCTIVE ELEMENT, BATTERY ELEMENT, FIXING COMPONENT, SPRING COMPONENT AND STRUCTURAL COMPONENT
CN107267819A (zh) * 2017-07-04 2017-10-20 合肥市大卓电力有限责任公司 一种用于电线电缆的合金材料及其制备方法
CN108913960B (zh) * 2018-07-23 2020-06-02 铜陵金力铜材有限公司 一种铝合金线及其制备方法
US20220152749A1 (en) * 2019-03-13 2022-05-19 Nippon Micrometal Corporation Al bonding wire
CN110669951B (zh) * 2019-10-31 2021-08-31 武汉电缆有限公司 一种架空输电导线用高伸长率硬铝线及其制备方法
CN113817942A (zh) * 2021-09-28 2021-12-21 广东金铝轻合金股份有限公司 一种高强度耐弯曲的铝合金及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052644A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 アルミニウム合金線
WO2012008588A1 (ja) * 2010-07-15 2012-01-19 古河電気工業株式会社 アルミニウム合金導体
JP2012229485A (ja) * 2011-04-11 2012-11-22 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2013044038A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686657B1 (ko) * 2002-03-01 2007-02-27 쇼와 덴코 가부시키가이샤 Al-Mg-Si계 합금판의 제조 방법 및Al-Mg-Si계 합금판 및 Al-Mg-Si계 합금재
JP5128109B2 (ja) 2006-10-30 2013-01-23 株式会社オートネットワーク技術研究所 電線導体およびその製造方法
JP4646998B2 (ja) * 2008-08-11 2011-03-09 住友電気工業株式会社 アルミニウム合金線
JP2010163676A (ja) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The アルミニウム合金線材
WO2010082670A1 (ja) * 2009-01-19 2010-07-22 古河電気工業株式会社 アルミニウム合金線材
CN102803530B (zh) * 2010-02-26 2014-08-20 古河电气工业株式会社 铝合金导体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052644A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 アルミニウム合金線
WO2012008588A1 (ja) * 2010-07-15 2012-01-19 古河電気工業株式会社 アルミニウム合金導体
JP2012229485A (ja) * 2011-04-11 2012-11-22 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2013044038A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899118B2 (en) 2014-03-06 2018-02-20 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, alluminum alloy stranded wire, coated wire, wire harness, method of manufacturing aluminum alloy wire rod, and method of measuring aluminum alloy wire rod
JPWO2015133004A1 (ja) * 2014-03-06 2017-04-06 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法およびアルミニウム合金線材の測定方法
WO2015133004A1 (ja) * 2014-03-06 2015-09-11 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法およびアルミニウム合金線材の測定方法
KR101927596B1 (ko) * 2014-03-06 2018-12-10 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 선재, 알루미늄 합금연선, 피복전선, 와이어 하네스, 알루미늄 합금 선재의 제조방법 및 알루미늄 합금 선재의 측정방법
WO2016003068A1 (ko) * 2014-07-03 2016-01-07 엘에스전선 주식회사 알루미늄 합금 도체 전선 및 이의 제조방법
US9870841B2 (en) 2014-09-22 2018-01-16 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod
KR20170090412A (ko) * 2014-12-05 2017-08-07 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 선재, 알루미늄 합금연선, 피복전선, 와이어 하네스, 및 알루미늄 합금 선재의 제조방법
KR101990225B1 (ko) * 2014-12-05 2019-06-17 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 선재, 알루미늄 합금연선, 피복전선, 와이어 하네스, 및 알루미늄 합금 선재의 제조방법
KR20170130468A (ko) * 2015-04-28 2017-11-28 가부시키가이샤 오토네트웍스 테크놀로지스 알루미늄 합금 소선, 알루미늄 합금 연선 및 그 제조 방법, 자동차용 전선 및 와이어 하네스
KR101959655B1 (ko) 2015-04-28 2019-03-18 가부시키가이샤 오토네트웍스 테크놀로지스 알루미늄 합금 소선, 알루미늄 합금 연선 및 그 제조 방법, 자동차용 전선 및 와이어 하네스
US20180197650A1 (en) * 2015-07-29 2018-07-12 Fujikura Ltd. Aluminum alloy conductive wire, and electrical wire and wire harness using the same
JP2020186449A (ja) * 2019-05-16 2020-11-19 株式会社フジクラ アルミニウム合金導電線の製造方法、これを用いた電線の製造方法及びワイヤハーネスの製造方法
JP7506552B2 (ja) 2020-08-06 2024-06-26 鹿島建設株式会社 コンクリート打設管

Also Published As

Publication number Publication date
JPWO2013147270A1 (ja) 2015-12-14
CN104114725B (zh) 2016-08-24
EP2832874B1 (en) 2018-04-25
US20150007910A1 (en) 2015-01-08
CN104114725A (zh) 2014-10-22
EP2832874A1 (en) 2015-02-04
US9580784B2 (en) 2017-02-28
WO2013147270A1 (ja) 2013-10-03
EP2832874A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5367926B1 (ja) アルミニウム合金線およびその製造方法
JP5607855B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP5193374B2 (ja) アルミニウム合金導体及びその製造方法
JP5193375B2 (ja) アルミニウム合金導体の製造方法
JP4986251B2 (ja) アルミニウム合金導体
KR101813772B1 (ko) 알루미늄 합금 도체, 알루미늄 합금 연선, 피복 전선, 와이어하네스 및 알루미늄 합금 도체의 제조 방법
US8951370B2 (en) Aluminum alloy wire material
JP5607854B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP5184719B2 (ja) アルミニウム合金導体
JP4986252B2 (ja) アルミニウム合金導体
KR101982913B1 (ko) 알루미늄 합금 도체선, 알루미늄 합금 연선, 피복 전선, 와이어 하니스 및 알루미늄 합금 도체선의 제조 방법
JP2013044038A (ja) アルミニウム合金導体
JP6440476B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法
JP5939530B2 (ja) アルミニウム合金導体
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP5846360B2 (ja) アルミニウム合金導体
JP4986253B2 (ja) アルミニウム合金導体
US10553327B2 (en) Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R151 Written notification of patent or utility model registration

Ref document number: 5367926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350