JP5353383B2 - ルーツ式流体機械 - Google Patents

ルーツ式流体機械 Download PDF

Info

Publication number
JP5353383B2
JP5353383B2 JP2009089127A JP2009089127A JP5353383B2 JP 5353383 B2 JP5353383 B2 JP 5353383B2 JP 2009089127 A JP2009089127 A JP 2009089127A JP 2009089127 A JP2009089127 A JP 2009089127A JP 5353383 B2 JP5353383 B2 JP 5353383B2
Authority
JP
Japan
Prior art keywords
rotor
radius
rotors
chamber
roots type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009089127A
Other languages
English (en)
Other versions
JP2010242513A (ja
Inventor
貴之 平野
一穂 山田
真理 曽和
俊郎 藤井
勉 奈須田
勝俊 城丸
文博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009089127A priority Critical patent/JP5353383B2/ja
Priority to EP10158762.4A priority patent/EP2236830B1/en
Priority to US12/751,719 priority patent/US8784087B2/en
Publication of JP2010242513A publication Critical patent/JP2010242513A/ja
Application granted granted Critical
Publication of JP5353383B2 publication Critical patent/JP5353383B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

本発明はルーツ式流体機械に関する。
ルーツ式流体機械は、ロータ室、吸入ポート及び吐出ポートが形成されたハウジングと、ロータ室内で回転可能に設けられ、互いに平行な2本の回転軸と、ロータ室内で各回転軸と一体回転可能に設けられ、互いに噛み合う山歯及び谷歯を有するロータとを備えている。両ロータとロータ室の内面との間にはポンプ室が形成される。ポンプ室は、両ロータの回転により、吸入ポートと連通した状態から、吸入ポート及び吐出ポートに連通しない閉じ込められた状態とされた後、吐出ポートに連通する状態になる。ポンプ室は、吸入ポートと連通した状態では容積が徐々に大きくなり、閉じ込められた状態及び吐出ポートに連通する状態では容積が徐々に小さくなることから、ポンプ作用を生じる。つまり、ポンプ室は、吸入ポートから流体を吸入した後、流体を内部圧縮し、この流体を吐出ポートから吐出する。
図13に一般的なルーツ式流体機械を示す。図13では、軸方向に直交する断面において、軸心O1、O2を中心とする二つの円71、72が結合された内面をもつロータ室73を仮定し、軸心O1、O2を結ぶ直線L1と、軸心O1と円71、72の交点(カスプ)S、Dの一方とを結ぶ直線L2とがなす角度をx°としている。
ロータ98、99は面対称の外形を有しているため、一方のロータ98だけについて説明する(以下、同様。)。ロータ98は、回転軸91の軸心O1と、その軸心O1から山歯92の数(谷歯93の数、ローブ数)nだけ互いが等しい角度で隣り合うように放射方向に延びている仮想線Liと、山歯92の頂端Tから谷歯93の底端Bに向かう周方向に沿って描かれた外形線Leと、外形線Leを軸心O1方向にロータ98の軸長だけ移動させて規定される外形面Fとにより画定される。ロータ98の外形線Leを全てインボリュート曲線で画定すると、相手のロータ99の歯の先端が干渉してしまう。このため、ロータ98の外形線Leにはアンダーカット(切り下げ)が行われる。アンダーカットはデッドボリュームを小さくするように設定される。このため、一般的なルーツ式流体機械では、外形線Leは、インボリュート曲線と、相手側ロータの山歯の歯先の軌跡からなる包絡線(エンベロープ曲線)とからなる。図13に示すルーツ式流体機械は、n=6であり、山歯及び谷歯がそれぞれ六つである6葉型である。
このルーツ式流体機械においては、ロータ98における山歯92の歯先がその先端に向かうに従って細くなるため、ロータ98の慣性モーメントが小さく、ロータ98を高速で回転させることが容易である。また、このルーツ式流体機械においては、ロータ室73内におけるロータ98の占有率を小さくすることができるため、ポンプ室96を大きく確保でき、体格が小型でありながら、ロータ98の一回転当たりの吐出容量を大きくすることができる。
しかし、このルーツ式流体機械においては、両ロータ98、99間に大きなデッドボリューム30を生じてしまっている。このため、このルーツ式流体機械においては、流体の漏れによる動力損失が比較的大きいとともに、流体の再膨張によって騒音を生じやすい。
このため、出願人は特許文献1のルーツ式流体機械を提案した。このルーツ式流体機械のロータは、n=2又は3であり、山歯及び谷歯がそれぞれ二つである2葉型又は山歯及び谷歯がそれぞれ三つである3葉型である。このルーツ式流体機械において、図14に示すように、ロータ88、89の外形線Leは、円弧81a、インボリュート曲線82a及び包絡線83からなる。
円弧81aは、外形線Leの頂端Tから第1切替点C1までを構成しており、仮想線Li上に中心Q1を有する半径Rの円81の一部である。軸心O1から中心Q1までの距離はR1とされている。インボリュート曲線82aは、外形線Leの第1切替点C1から第2切替点C2までを構成しており、軸心O1に中心Q2を有する半径rの基礎円82に基づいている。インボリュート曲線82aは円弧81aに連続している。包絡線83は、外形線Leの第2切替点C2から底端Bまでを構成しており、相手側のロータ89における山歯の円弧81aが辿る軌跡の外側を辿ったものである。包絡線83はインボリュート曲線82aに連続している。このルーツ式流体機械は、特許文献1に記載されているように、動力損失や騒音を小さくすることができ、安定した容積効率を発揮できる。
特開2007−162476号公報
しかし、現在よりさらに動力損失や騒音を小さくすることができ、安定した体積効率ηvを発揮でき、かつ確実に優れた全熱効率ηtadを発揮可能なより優れたルーツ式流体機械が求められている。
本発明は、上記従来の実情に鑑みてなされたものであって、動力損失や騒音を小さくすることができ、安定した体積効率ηvを発揮でき、かつ確実に優れた全熱効率ηtadを発揮可能なルーツ式流体機械を提供することを解決すべき課題としている。
本発明のルーツ式流体機械は、ロータ室、吸入ポート及び吐出ポートが形成されたハウジングと、該ロータ室内で回転可能に設けられ、互いに平行な2本の回転軸と、該ロータ室内で各該回転軸と一体回転可能に設けられ、互いに噛み合う山歯及び谷歯を有するロータとを備え、両該ロータの回転により、両該ロータと該ロータ室の内面との間に形成されるポンプ室がポンプ作用を生じ、該ポンプ室が流体を該吸入ポートから吸入した後、該吐出ポートから吐出するルーツ式流体機械において、
前記ロータは、前記回転軸の軸心と、該軸心から前記山歯の数nだけ互いが等しい角度で隣り合うように放射方向に延びている仮想線と、該山歯の頂端から前記谷歯の底端に向かう周方向に沿って描かれた外形線と、該外形線を該軸心方向に移動させて規定される外形面とにより画定され、
該外形線は、該頂端から第1切替点までが該仮想線上に中心を有する半径Rの円弧からなり、該第1切替点から第2切替点までが該円弧に連続する、該軸心に中心を有する半径rの基礎円に基づくインボリュート曲線からなり、該第2切替点から該底端までが該インボリュート曲線に連続する、該円弧の包絡線からなり、
上記数nは4以上であり、
上記外形面のねじれ角βは360°/nを超え
両前記回転軸のピッチ間距離をLとすると、
前記半径rは、r<nL/(π 2 +4n 2 1/2 を満たし、
前記半径Rは、R<πr/2nを満たしていることを特徴とする(請求項1)。
本発明のルーツ式流体機械では、ロータの外形線Leを円弧、インボリュート曲線及び包絡線により構成している。包絡線は、相手側のロータにおける山歯の円弧が辿る軌跡の外側を辿ったものである。このため、このルーツ式流体機械では、ロータの外形線Leをインボリュート曲線及び包絡線で構成したルーツ式流体機械よりも、両ロータ間のデッドボリュームが小さくなっている。このため、流体に漏れが生じにくく、動力損失を生じ難い。また、流体が再膨張し難く、騒音も生じ難い。
また、このルーツ式流体機械では、ねじれ角βを有する外形面によってポンプ室内の流体が内部圧縮を生じる。ポンプ室は、両ロータとロータ室の内面との間に形成される。ねじれ角とは、ロータにおいて、前端面に対して後端面が回転している角度をいい、ロータの軸長に無関係なものである。ここで、このルーツ式流体機械では、山歯の数nが4以上であり、外形面のねじれ角βが360°/nを超えている。山歯の数nが4以上のルーツ式流体機械では、経験的に、ねじれ角度βが360°/nにおいて、吐出ポートに連通し始めたポンプ室の容積が減少し始め、ポンプ室内の流体は内部圧縮を生じる寸前となっている。ねじれ角度βが360°/nを超えると、吐出ポートに連通し始めたポンプ室は、その容積が減少しており、ポンプ室内の流体が内部圧縮を生じている。ねじれ角度βが360°/n未満では、ポンプ室の容積が減少する前にポンプ室が吐出ポートに連通してしまう。このため、このルーツ式流体機械では、ロータの外形線Leをインボリュート曲線及び包絡線で構成したルーツ式流体機械よりも、全熱効率ηtadが向上する。
山歯の数nが3であれば、ねじれ角βが120°を超えなければ圧縮比が1.0を超えない。n=3のとき、最大の圧縮比を実現可能なねじれ角βmaxは、特開2006−32191号公報に記載されているように、140°である。ねじれ角βがこれ以上であれば、吐出側のバックフローポートとポンプ室と吸入側のバックフローポートとがそれぞれ連通することによって、吐出ポートと吸入ポートとが間接的に連通してしまうため、ルーツ式流体機械のポンプ作用が損なわれてしまう。ねじれ角βmaxが140°であれば、圧縮比が1.0に近いとともに、吸入ポート及び吐出ポートを確保し難い。一方、n=4以上であれば、ねじれ角βmaxは360°/nよりもかなり大きいため、圧縮比を1.0よりも高い値にできるとともに、吸入ポート及び吐出ポートを確保しやすい。
したがって、本発明のルーツ式流体機械では、動力損失や騒音を小さくすることができ、安定した体積効率ηvを発揮でき、かつ確実に優れた全熱効率ηtadを発揮することが可能である。
また、本発明のルーツ式流体機械において、両回転軸のピッチ間距離をLとすると、半径rは、r<nL/(π2+4n21/2を満たし、半径Rは、R<πr/2nを満たしている。この場合、半径rがnL/(π2+4n21/2<r<L/2を満たし、半径Rがπr/2n<Rを満たす場合よりも、デッドボリュームは大きくなるものの、容積効率が良くなり、体格が小さくなる。但し、nL/(π2+4n21/2やπr/2nという値は設計の基準である。
実施例のルーツ式圧縮機の軸方向断面図である。 実施例のルーツ式圧縮機に係り、ハウジング及び両ロータの軸直角断面を示す線図である。 実施例のルーツ式圧縮機に係り、基礎円とインボリュート曲線との関係を示す線図である。 実施例のルーツ式圧縮機に係り、ロータの側面図である。 実施例のルーツ式圧縮機に係り、ロータの前端面及び後端面を表した図である。 実施例のルーツ式圧縮機におけるロータ室内での両ロータの展開図である。 比較例1のルーツ式圧縮機におけるロータ室内での両ロータの展開図である。 実施例のルーツ式圧縮機におけるロータ室内での両ロータの展開図である。 比較例2のルーツ式圧縮機におけるロータ室内での両ロータの展開図である。 実施例のルーツ式圧縮機におけるロータ室内での両ロータの展開図と、ロータの軸方向断面図との位置関係を示す図である。 ルーツ式圧縮機におけるねじれ角と論理最大圧縮比との関係を示すグラフである。 図(A)は実施例のルーツ式圧縮機におけるロータ室内での両ロータの軸方向断面図、図(B)は比較例3のルーツ式圧縮機におけるロータ室内での両ロータの軸方向断面図である。 従来及び比較例3のルーツ式圧縮機に係り、ハウジング及び両ロータの軸直角断面を示す線図である。 他の従来のルーツ式圧縮機に係り、ハウジング及び両ロータの軸直角断面を示す線図である。
以下、本発明のルーツ式流体機械をルーツ式圧縮機に具体化した実施例を図面を参照しつつ説明する。
実施例のルーツ式圧縮機は、図1に示すように、ロータハウジング1、エンドプレート2、ギヤハウジング3、モータハウジング4及びエンドカバー5を備えている。これらがハウジングである。
ロータハウジング1には複数本のボルト6によってエンドプレート2が接合されており、ロータハウジング1及びエンドプレート2によって繭形状のロータ室1a(図2参照)が形成されている。ロータ室1aは、図2に示すように、軸心O1、O2を中心とする二つの円71、72が結合された内面をもっている。軸心O1、O2を結ぶ直線L1と、軸心O1と円71、72の交点(カスプ)S、Dの一方とを結ぶ直線L2とがなす角度xは50°である。角度50°は多くのルーツ式圧縮機で共通している。
また、ロータハウジング1には、吸入ポート1b及び吐出ポート1cが形成されている。吸入ポート1bは交点Sに開口して図1の紙面の裏側に位置し、吐出ポート1cは図2の交点Dに開口して図1の紙面の手前に位置している。
図1に示すように、ロータハウジング1及びエンドプレート2にはそれぞれ2個の軸孔1d、1e、2a、2bが形成されている。軸孔1d、2aにはそれぞれ軸封装置7a、7b及び軸受装置8a、8bを介して回転軸9が回転可能に設けられている。また、軸孔1e、2bにもそれぞれ軸封装置10a、10b及び軸受装置11a、11bを介して回転軸12が回転可能に設けられている。回転軸9と回転軸12とは互いに平行であり、図2に示すように、回転軸9の軸心O1と回転軸12の軸心O2との間の距離はLに設定されている。
ロータ室1a内では、回転軸9にロータ13が一体回転可能に固定され、回転軸12にロータ14が一体回転可能に固定されている。両ロータ13、14は互いに噛み合う山歯13a、14a及び谷歯13b、14bを有している。山歯13a、14aの数(谷歯13b、14bの数、ローブ数)nは6であり、山歯及び谷歯がそれぞれ六つである6葉型である。両ロータ13、14の表面には間隙を調整するためのコーティングが施されている。
図1に示すように、ロータハウジング1には複数本のボルト15によってエンドカバー5が固定されており、エンドカバー5は一方側の軸受装置8a、11a及び回転軸9、12を覆っている。また、他方側の軸受装置8b、11b等が位置するエンドプレート2には図示しない複数本のボルトによってギヤハウジング3が接合されており、エンドプレート2及びギヤハウジング3によってギヤ室3aが形成されている。さらに、ギヤハウジング3には図示しない複数本のボルトによってモータハウジング4が接合されており、ギヤハウジング3及びモータハウジング4によってモータ室4aが形成されている。
ギヤハウジング3にはギヤ室3aと連通する軸孔3bが形成されており、軸孔3bには軸封装置16が設けられている。回転軸12は、ロータ室1aからギヤ室3a及び軸封装置16を経てモータ室4a内まで延びており、モータ室4a内に設けられたモータ17によって回転駆動されるようになっている。
この回転軸12には、ギヤ室3a内において、駆動ギヤ18が固定されている。回転軸9はロータ室1aからギヤ室3a内まで延びている。回転軸9には、ギヤ室3a内において、従動ギヤ19が固定されている。駆動ギヤ18と従動ギヤ19とは噛み合っている。駆動ギヤ18及び従動ギヤ19が両ロータ13、14を駆動する歯車列を構成している。そして、図2に示すように、両ロータ13、14とロータ室1aの内面との間にポンプ室20が形成されている。
次に、ロータ13、14の形状について詳細に説明する。なお、ロータ13、14は面対称であるため、以下、ロータ13の形状のみを説明し、ロータ14の形状の説明を省略する。
ロータ13は、回転軸9の軸心O1と、その軸心O1から山歯13aの数n(=6)だけ互いが60°で隣り合うように放射方向に延びている仮想線Liと、山歯13aの頂端Tから谷歯13bの底端Bに向かう周方向に沿って描かれた外形線Leと、外形線Leを軸心O1方向に移動させて規定される外形面F(図1参照)とにより画定されている。
ロータ13の外形線Leは、円弧21a、インボリュート曲線22a及び包絡線23からなる。円弧21aは、外形線Leの頂端Tから第1切替点C1までを構成しており、仮想線Li上に中心Q1を有する半径Rの円21の一部である。軸心O1から中心Q1までの距離はR1とされている。インボリュート曲線22aは、外形線Leの第1切替点C1から第2切替点C2までを構成しており、図3にも示すように、軸心O1に中心Q2を有する半径rの基礎円22に基づいている。図2に示すように、インボリュート曲線22aは円弧21aに連続している。包絡線23は、外形線Leの第2切替点C2から底端Bまでを構成しており、相手側のロータ14における山歯14aの円弧21aが辿る軌跡の外側を辿ったものである。包絡線23はインボリュート曲線22aに連続している。
上記円弧21a、インボリュート曲線22a及び包絡線23を描くときに必要な円21の半径R及び基礎円22の半径rは、次のように設定されている。
まず、図2に示す位置において、軸心O1から相手側のロータ14の円弧21aに接線L3を引く。直線L1と接線L3とがなす角度をα°とする。接線L3と円弧21aとの交点をP1とする。円弧21aの中心Q3はピッチ間距離(両回転軸9、12の軸心O1、O2間の距離)Lの1/2の位置に存在する。接線L3は交点P1と中心Q3とを結ぶ直線と直交するから、
R=Lsinα/2…(1−1)式
が得られる。(1−1)式を変形し、
sinα=2R/L…(1−2)式
cosα=r/L…(1−3)式
が得られる。図3に示すように、基礎円22の半径をrとし、この基礎円22に基づいて点P2からインボリュート曲線22aを引くと、
tanα=P4P3/O1P3=rθ/r=θ…(1−4)式
θ=invα+α…(1−5)式
が得られる。(1−4)式及び(1−5)式より、
invα=tanα−α…(1−6)式
が得られる。山歯の数がnで、左右対称形状である場合の連続条件は、
θ=2π/4n
=π/2n…(1−7)式
であるから、(1−4)式及び(1−7)式より、
θ=tanα=π/2n…(1−8)式
が得られる。(1−2)式、(1−3)式及び(1−8)式より、
R=πr/2n…(1−9)式
sin2α+cos2α=1であるから、
r=nL/(π2+4n21/2(1−10)式
基礎円22の半径rがnL/(π2+4n21/2であり、円21の半径Rがπr/2nであるロータ13は、実施例の基礎となる。
半径rがnL/(π2+4n21/2<r<L/2を満たし、半径Rがπr/2n<Rを満たせば、ロータ13の包絡線23がロータ14の円弧21aと同じになる。この場合、デッドボリューム30(図13参照)が無くなり、動力損失や騒音の低減をより図ることができる。また、半径rがr<nL/(π2+4n21/2を満たし、半径RがR<πr/2nを満たす場合よりも、なだらかな山及び谷となり、脈動に伴う動力損失や騒音が低減する。また、図12(A)に示すように、バックフローポート40も小さくなり、内部圧縮が高まる。
他方、半径rがr<nL/(π2+4n21/2を満たし、半径RがR<πr/2nを満たせば、半径rがnL/(π2+4n21/2<r<L/2を満たし、半径Rがπr/2n<Rを満たす場合よりも、デッドボリュームは大きくなるものの、容積効率が良くなり、体格が小さくなる。
また、このルーツ式圧縮機では、外形線Leを軸心O1方向に移動させてロータ13の外形面Fを規定する際、以下に示すように、60°を超えたねじれ角βを付与している。
すなわち、図4及び図5に示すように、ロータ13は、外形線Leを軸心O1方向に軸長mだけ移動させて外形面Fを画定するに際し、前端面13dに対して後端面13eがねじれ角βだけ回転している。図4はロータ13の側面図であるが、ロータ13の周面を展開し、併せてロータ14の周面を展開すると、図6〜9が得られる。図6及び図8はねじれ角βが120°の場合(実施例)であり、図7はねじれ角βが60°の場合(比較例1)であり、図9はねじれ角βが200°以上の場合(比較例2)である。なお、図6及び図7に示す角度γは、各ロータ13、14の山歯13a、14aを周方向の展開図で示した直線の傾き(螺旋角度)である。各ロータ13、14は軸心O1方向に均等に捩れているため、展開図において山歯13a、14aは直線で表される。図8に示すように、ねじれ角βが120°であれば、ポンプ室20が吐出ポート1c又は吸入ポート1bに対して閉じ込められた状態となり、ポンプ作用を生じる。しかし、図9に示すように、ねじれ角βが200°以上であれば、ポンプ室20がバックフローポート経由で吐出ポート1c及び吸入ポート1bに連通する状態となり、ポンプ作用を生じない。さらに、ねじれ角βを120°としたロータ13、14の展開図と、ロータ13、14の軸方向断面図との位置関係を図10に示す。図10に示すように、ロータ13、14のポンプ室20はバックフローポート40によって連通している。
さて、図11に示すように、このルーツ式圧縮機では、6葉(n=6)のロータ13、14を採用しているため、ねじれ角βが60°を超えれば論理最大圧縮比が1.0を超える。論理上、最大の圧縮比を実現可能なねじれ角βmaxは、下記(2)式において、x=50、n=6であることから、200°である。ねじれ角βが200°であれば、圧縮比が2.0を超える。
β=360−2x−360/n…(2)式
仮に、ロータが3葉(n=3)であれば、ねじれ角βが120°を超えなければ圧縮比が1.0を超えない。また、ねじれ角βmaxは、上記(2)式において、x=50、n=3であることから、140°である。ねじれ角βが140°であれば、圧縮比が1.0に近く、かつロータハウジング1に吸入ポート1b及び吐出ポート1cを確保し難い。ねじれ角βが140°を超えれば、バックフローポート40やポンプ室20によって吸入ポート1bと吐出ポート1cとが連通してしまい、全熱効率ηtadが十分に向上しない。
これに対し、ロータが4葉(n=4)であれば、ねじれ角βが90°を超えなければ圧縮比が1.0を超えない。また、ねじれ角βmaxは、上記(2)式において、x=50、n=4であることから、170°である。ねじれ角βが170°であれば、圧縮比が1.4程度となり、かつロータハウジング1に吸入ポート1b及び吐出ポート1cを確保することも可能になる。
また、ロータが5葉(n=5)であれば、ねじれ角βが75°を超えなければ圧縮比が1.0を超えない。また、ねじれ角βmaxは、上記(2)式において、x=50、n=5であることから、188°である。ねじれ角βが188°であれば、圧縮比が1.7程度となり、かつロータハウジング1に吸入ポート1b及び吐出ポート1cを確保することもより容易になる。
以上のように構成されたルーツ式圧縮機では、図1に示すモータ17が回転軸12を回転駆動すれば、駆動ギヤ18及び従動ギヤ19の噛み合いによって回転軸9が従動回転する。このため、ロータ13、14が互いに噛み合いながらロータ室1a内で回転する。このため、ポンプ室20は、吸入ポート1bと連通した状態から、吸入ポート1b及び吐出ポート1cに連通しない閉じ込められた状態とされた後、吐出ポート1cに連通する状態になる。ポンプ室20は、吸入ポート1bと連通した状態では容積が徐々に大きくなり、閉じ込められた状態及び吐出ポート1cに連通する状態では容積が徐々に小さくなることから、ポンプ作用を生じる。つまり、このルーツ式圧縮機においては、吸入ポート1bから流体を吸入した後、流体を内部圧縮し、この流体を吐出ポート1cから吐出する。
この間、実施例のルーツ式圧縮機においては、図2に示すように、隣あう山歯13a間にできるポンプ室20は、ロータ13、14の回転により、図6に示す矢印Aの方向に移動する。ここで、吐出ポート1cの面積は、吐出ポート1cのみで生じる圧損がガス配送システム自身によって生じる圧損と同じとなるように調整される。それより小さいと圧損となり、それより大きくても流体を内部圧縮し難い。したがって、nや環境にかかわらず、吐出ポート1cの面積はそれほど変わらない。吐出ポート1cの形状は、その斜辺の角度がロータ13、14の螺旋角度γと同じとなるように求められる。これにより、ポンプ室20が限界まで吐出ポート1cにつながらず、その分だけ流体を内部圧縮するからである。
そして、両ロータ13、14間にデッドボリューム30(図13参照)を無くしたり、小さくしている。ポンプ室20は、カスプSに接したあたりから、矢印Cに示すように、相手側のポンプ室20にバックフローポート40によって連通しつつも、容積が減りはじめ、流体の内部圧縮が始まる。内部圧縮は吐出ポート1cに連通するまで行われる。
これに対し、図13に示すように、ロータ98、99の外形線Leをインボリュート曲線及び包絡線で構成したルーツ式圧縮機においては、両ロータ98、99間に大きなデッドボリューム30を生じてしまっている。このため、実施例のルーツ式圧縮機は、流体に漏れが生じにくく、動力損失を生じ難いことがわかる。また、実施例のルーツ式圧縮機は、流体が再膨張し難く、騒音も生じ難いことがわかる。
また、実施例のルーツ式圧縮機では、図2に示すように、ロータ13、14の外形線Leの第2切替点C2から底端Bまでが包絡線23で構成されているため、両ロータ13、14間のクリアランスを好適に維持できる。このため、組付け時や運転中において、駆動ギヤ18及び従動ギヤ19のバックラッシや位相ずれ等が発生しても、ロータ13、14の表面のコーティングが剥がれ難く、安定した体積効率ηvを発揮することができる。
さらに、このルーツ式圧縮機では、ねじれ角βを60〜200°で設定することが可能であるため、外形面Fによってポンプ室20内の流体が大きな内部圧縮を生じる。実施例のルーツ式圧縮機において、両ロータ13、14が重なった部分の断面を図12(A)に示す。実施例のルーツ式圧縮機においては、同図より、バックフローポート40が比較的小さいことがわかる。
これに対し、図13に示すように、ロータ98、99の外形線Leをインボリュート曲線及び包絡線で構成した比較例3のルーツ式圧縮機においては、図12(B)に示すように、バックフローポート40が比較的大きい。このため、実施例のルーツ式圧縮機においては、ポンプ室20が吐出ポート1cに連通し難く、全熱効率ηtadが確実に向上することがわかる。
したがって、実施例のルーツ式圧縮機では、動力損失や騒音を小さくすることができ、安定した体積効率ηvを発揮でき、かつ確実に優れた全熱効率ηtadを発揮することが可能である。
以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。例えば、本発明のルーツ式流体機械は、ルーツ式圧縮機ばかりでなく、ルーツ式ポンプ、ルーツ式ブロワ等に具体化可能である。
本発明は、空調装置、ターボチャージャー、燃料電池システム等に利用可能である。
1a、73…ロータ室
1b…吸入ポート
1c…吐出ポート
1、2、3、4、5…ハウジング(1…ロータハウジング、2…エンドプレート、3…ギヤハウジング、4…モータハウジング、5…エンドカバー)
9、12…回転軸
13a…山歯
13b…谷歯
13、14…ロータ
20…ポンプ室
O1、O2…軸心
n…山歯の数(谷歯の数、ローブ数)
Li…仮想線
T…頂端
B…底端
Le…外形線
F…外形面
C1…第1切替点
Q1…中心
21a…円弧
C2…第2切替点
Q2…中心
22…基礎円
22a…インボリュート曲線
23…包絡線
β…ねじれ角
L…ピッチ間距離

Claims (1)

  1. ロータ室、吸入ポート及び吐出ポートが形成されたハウジングと、該ロータ室内で回転可能に設けられ、互いに平行な2本の回転軸と、該ロータ室内で各該回転軸と一体回転可能に設けられ、互いに噛み合う山歯及び谷歯を有するロータとを備え、両該ロータの回転により、両該ロータと該ロータ室の内面との間に形成されるポンプ室がポンプ作用を生じ、該ポンプ室が流体を該吸入ポートから吸入した後、該吐出ポートから吐出するルーツ式流体機械において、
    前記ロータは、前記回転軸の軸心と、該軸心から前記山歯の数nだけ互いが等しい角度で隣り合うように放射方向に延びている仮想線と、該山歯の頂端から前記谷歯の底端に向かう周方向に沿って描かれた外形線と、該外形線を該軸心方向に移動させて規定される外形面とにより画定され、
    該外形線は、該頂端から第1切替点までが該仮想線上に中心を有する半径Rの円弧からなり、該第1切替点から第2切替点までが該円弧に連続する、該軸心に中心を有する半径rの基礎円に基づくインボリュート曲線からなり、該第2切替点から該底端までが該インボリュート曲線に連続する、該円弧の包絡線からなり、
    上記数nは4以上であり、
    上記外形面のねじれ角βは360°/nを超え
    両前記回転軸のピッチ間距離をLとすると、
    前記半径rは、r<nL/(π 2 +4n 2 1/2 を満たし、
    前記半径Rは、R<πr/2nを満たしていることを特徴とするルーツ式流体機械。
JP2009089127A 2009-04-01 2009-04-01 ルーツ式流体機械 Active JP5353383B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009089127A JP5353383B2 (ja) 2009-04-01 2009-04-01 ルーツ式流体機械
EP10158762.4A EP2236830B1 (en) 2009-04-01 2010-03-31 Roots type fluid machine
US12/751,719 US8784087B2 (en) 2009-04-01 2010-03-31 Roots type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089127A JP5353383B2 (ja) 2009-04-01 2009-04-01 ルーツ式流体機械

Publications (2)

Publication Number Publication Date
JP2010242513A JP2010242513A (ja) 2010-10-28
JP5353383B2 true JP5353383B2 (ja) 2013-11-27

Family

ID=42313063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089127A Active JP5353383B2 (ja) 2009-04-01 2009-04-01 ルーツ式流体機械

Country Status (3)

Country Link
US (1) US8784087B2 (ja)
EP (1) EP2236830B1 (ja)
JP (1) JP5353383B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791248A (zh) * 2015-02-15 2015-07-22 赵玉喜 一种空气压缩机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012010401U1 (de) * 2012-10-31 2014-02-03 Hugo Vogelsang Maschinenbau Gmbh Drehkolbenpumpe mit Direktantrieb
CN103195704B (zh) * 2013-04-10 2016-06-29 兰州理工大学 一种恒定流量的凸轮泵转子型线设计方法
EP3337979B1 (en) * 2015-08-17 2022-03-09 Eaton Intelligent Power Limited Hybrid profile for supercharger rotors
JP2017133392A (ja) 2016-01-26 2017-08-03 株式会社豊田自動織機 流体機械
WO2019141766A1 (en) * 2018-01-17 2019-07-25 Eaton Intelligent Power Limited Egr pump system and control method of egr pump
DE102019100404B4 (de) * 2018-01-22 2023-06-22 Kabushiki Kaisha Toyota Jidoshokki Motorgetriebene Wälzkolbenpumpe
US11174858B2 (en) * 2018-01-26 2021-11-16 Waterblasting, Llc Pump for melted thermoplastic materials
CN109555681B (zh) * 2018-12-28 2019-12-24 江南大学 一种确定罗茨泵转子型线合理设计区域的方法及其应用
JP7213423B2 (ja) * 2019-07-24 2023-01-27 株式会社豊田自動織機 電動ルーツポンプ
CN113550900B (zh) * 2021-08-19 2022-12-06 爱景节能科技(上海)有限公司 一种异齿数比的扭叶罗茨转子型线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349308A (en) * 1976-10-18 1978-05-04 Tokico Ltd Two-shaft multiblade fluid mechanics
JPH0648432B2 (ja) 1984-01-11 1994-06-22 関西日本電気株式会社 El駆動方法
JPS60147790U (ja) * 1984-03-13 1985-10-01 アイシン精機株式会社 ル−ツ型ブロア
US4859158A (en) 1987-11-16 1989-08-22 Weinbrecht John F High ratio recirculating gas compressor
JP4767625B2 (ja) * 2005-08-24 2011-09-07 樫山工業株式会社 多段ルーツ式ポンプ
JP4613811B2 (ja) * 2005-12-09 2011-01-19 株式会社豊田自動織機 ルーツ式流体機械
US20080181803A1 (en) * 2007-01-26 2008-07-31 Weinbrecht John F Reflux gas compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791248A (zh) * 2015-02-15 2015-07-22 赵玉喜 一种空气压缩机

Also Published As

Publication number Publication date
US20100254846A1 (en) 2010-10-07
EP2236830A2 (en) 2010-10-06
EP2236830B1 (en) 2017-08-02
US8784087B2 (en) 2014-07-22
EP2236830A3 (en) 2014-07-09
JP2010242513A (ja) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5353383B2 (ja) ルーツ式流体機械
US7479000B2 (en) Gear pump
WO2005005835A1 (ja) 内接歯車式ポンプ及びそのポンプのインナ−ロ−タ
WO2007034888A1 (ja) オイルポンプロータ
JP2008196390A (ja) 容積変動型流体機械
US5704774A (en) Pump with twin cylindrical impellers
JP2007162476A (ja) ルーツ式流体機械
JP2002257052A (ja) トロコイドギヤポンプ
JP2000506587A (ja) 双円筒インペラ型ポンプ
JP4289155B2 (ja) ギヤポンプ
WO1999046507A1 (fr) Compresseur a gaz de type a dents complexes
JP4900270B2 (ja) スクリュポンプ
KR100964517B1 (ko) 오일 펌프 로터
CN113530818B (zh) 一种单头扭叶罗茨泵转子及罗茨泵
WO2008023417A1 (fr) Structure d'accouplement oldham de machine hydraulique à vis
JP2005315149A (ja) スクリュー式流体機械
JP3132631B2 (ja) 内接型オイルポンプロータ
JP3860125B2 (ja) オイルポンプロータ
WO2005064163A1 (ja) 内接型ギアポンプ
JP2002138968A (ja) らせん状噛み合いを有する歯車ポンプ
JP4255768B2 (ja) オイルポンプロータ
JPH04370379A (ja) ドライ真空ポンプ
JP3596063B2 (ja) スクロール圧縮機
JP4255771B2 (ja) オイルポンプロータ
JPH08312539A (ja) 内接歯車ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151