JP5353241B2 - Multilayer printed wiring board and semiconductor device - Google Patents

Multilayer printed wiring board and semiconductor device Download PDF

Info

Publication number
JP5353241B2
JP5353241B2 JP2008538666A JP2008538666A JP5353241B2 JP 5353241 B2 JP5353241 B2 JP 5353241B2 JP 2008538666 A JP2008538666 A JP 2008538666A JP 2008538666 A JP2008538666 A JP 2008538666A JP 5353241 B2 JP5353241 B2 JP 5353241B2
Authority
JP
Japan
Prior art keywords
weight
resin
printed wiring
multilayer printed
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008538666A
Other languages
Japanese (ja)
Other versions
JPWO2008044552A1 (en
Inventor
道生 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008538666A priority Critical patent/JP5353241B2/en
Publication of JPWO2008044552A1 publication Critical patent/JPWO2008044552A1/en
Application granted granted Critical
Publication of JP5353241B2 publication Critical patent/JP5353241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/287Adhesive compositions including epoxy group or epoxy polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides a resin composition which can produce a multilayer printed wiring board not causing peeling and crack in a thermal shock test such as a cooling/heating cycle, and having high heat resistance and low-thermal expansion characteristics, when the resin composition is used for an insulating layer of the multilayer printed wiring board; and also an insulating sheet provided on a base, a prepreg, a multilayer printed wiring board and a semiconductor device using thereof. The resin composition is used for forming an insulating layer of the multilayer printed wiring board, wherein a surface roughness parameter Rvk value of the insulating layer is from 0.1 μm to 0.8 μm, measured after the insulating layer being formed with the resin composition, and subject to roughening treatment.

Description

本発明は、樹脂組成物、基材付き絶縁シート、プリプレグ、多層プリント配線板および半導体装置に関するものである。   The present invention relates to a resin composition, an insulating sheet with a substrate, a prepreg, a multilayer printed wiring board, and a semiconductor device.

近年、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型化かつ高密度化が進んでいる。このプリント配線板等の高密度化への対応として、ビルドアップ方式による多層プリント配線板が多く採用されている(例えば、特開平07-106767号公報を参照。)。   In recent years, with the demand for higher functionality of electronic devices, etc., high-density integration of electronic components, and further high-density mounting, etc. are progressing. Compared to the conventional technology, miniaturization and high density are progressing. As a measure for increasing the density of the printed wiring board and the like, a multi-layer printed wiring board using a build-up method is often employed (for example, see Japanese Patent Application Laid-Open No. 07-106767).

ビルドアップ方式による多層プリント配線板は、通常、樹脂組成物で構成される厚さ100μm以下の絶縁層と導体回路層とを積層成形して製造される。また、導体回路層間の接続方法としては、従来のドリル加工に代わって、レーザー法、フォト法等によるビアホールの形成が挙げられる。これらの方法は、小径のビアホールを自由に配置することで高密度化を達成するものであり、各々の方法に対応した各種ビルドアップ用層間絶縁材料が提案されている。   A multilayer printed wiring board by a build-up method is usually manufactured by laminating an insulating layer made of a resin composition and having a thickness of 100 μm or less and a conductor circuit layer. Moreover, as a connection method between conductor circuit layers, the formation of a via hole by a laser method, a photo method, or the like can be cited instead of the conventional drilling process. These methods achieve high density by freely arranging small-diameter via holes, and various build-up interlayer insulating materials corresponding to each method have been proposed.

さらに、高密度化のためには微細回路形成が必要になるが、それを達成する技術としてはセミアディティブ法が広く知られている。セミアディティブ法は、内層回路板の回路パターン面上に絶縁性樹脂からなる絶縁層を被覆し、絶縁層表面の粗化処理に続き、下地となる無電解めっき処理を施し、めっきレジストにより非回路形成部を保護した後、電気めっきにより回路形成部の銅厚付け(厚く堆積させること)を行い、レジスト除去とソフトエッチングにより絶縁層上に導体回路を形成する方法である。
このとき、絶縁層を粗化処理した後の表面形状の凹凸(表面粗度)が大きすぎると、銅表面を流れる電流速度の遅延の原因となったり、吸湿半田耐熱性(吸湿環境負荷後の半田耐熱性)が低下する原因となったりするため好ましくない。しかし、絶縁層の表面粗度を小さくすると、めっき金属と絶縁層の密着力が低下し、めっき金属の膨れや冷熱サイクル等の熱衝撃試験による剥離などの不具合が起こりやすくなるという問題があった。
Furthermore, fine circuit formation is necessary for increasing the density, and a semi-additive method is widely known as a technique for achieving this. In the semi-additive method, an insulating layer made of an insulating resin is coated on the circuit pattern surface of the inner layer circuit board, followed by a roughening treatment on the surface of the insulating layer, followed by an electroless plating treatment as a base, and a non-circuit using a plating resist. In this method, after the formation portion is protected, the circuit formation portion is thickened (deposited thick) by electroplating, and a conductor circuit is formed on the insulating layer by resist removal and soft etching.
At this time, if the unevenness (surface roughness) of the surface shape after the roughening treatment of the insulating layer is too large, it may cause a delay in the current speed flowing on the copper surface, or may absorb moisture resistance solder heat (after moisture absorption environmental load) This is not preferable because it may cause a decrease in solder heat resistance. However, when the surface roughness of the insulating layer is reduced, the adhesion between the plating metal and the insulating layer is reduced, and there is a problem that defects such as swelling of the plating metal and peeling due to a thermal shock test such as a thermal cycle are likely to occur. .

本発明は、多層プリント配線板の絶縁層に用いた場合に、高密着性、高耐熱性、低熱膨張性とともに、難燃性を有し、高密度な微細回路形成が可能な多層プリント配線板を製造することができる樹脂組成物と、これを用いた基材付き絶縁シート、プリプレグ、多層プリント配線板、及び、半導体装置を提供するものである。   The present invention is a multilayer printed wiring board having high adhesion, high heat resistance, low thermal expansion, flame retardancy, and capable of forming a high-density microcircuit when used in an insulating layer of a multilayer printed wiring board. And an insulating sheet with a base material, a prepreg, a multilayer printed wiring board, and a semiconductor device using the resin composition.

このような目的は、下記の本発明[1]〜[]により達成される。
[1] 内層回路板の片面または両面に、樹脂組成物の硬化物からなる絶縁層を備えた多層プリント配線板であって、前記樹脂組成物は、平均粒子径が0.01μm以上0.45μm以下である無機充填材を20重量%以上80重量%以下、重量平均分子量500以上5000以下のエポキシ樹脂を5重量%以上50重量%以下、重量平均分子量5000以上70000以下のフェノキシ樹脂を1重量%以上40重量%以下、及びシアネート樹脂及び/又はそのプレポリマーを含有し、前記絶縁層は、前記樹脂組成物を加熱硬化した厚さ10〜100μmの硬化物を、ジエチレングリコールモノブチルエーテル20〜60wt%と水酸化ナトリウム0.1〜1.0wt%とを含む水溶液からなり且つ温度が50℃以上90℃以下の膨潤液に3〜20分間浸漬した後、過マンガン酸塩5.0〜15.0wt%と水酸化ナトリウム1.0〜10.0wt%とを含む水溶液からなり且つ温度が60℃以上90℃以下の粗化液に3〜40分間浸漬する、粗化処理条件内の少なくとも1つの条件によって粗化処理してなるものであり、該粗化処理後の表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とする、多層プリント配線板。
[2] 内層回路板の片面または両面に、樹脂組成物を繊維基材に含浸させてなるプリプレグの硬化物からなる絶縁層を備えた多層プリント配線板であって、
前記樹脂組成物は、平均粒子径が0.01μm以上0.45μm以下である無機充填材を20重量%以上80重量%以下、重量平均分子量500以上5000以下のエポキシ樹脂を5重量%以上50重量%以下、重量平均分子量5000以上70000以下のフェノキシ樹脂を1重量%以上40重量%以下、及びシアネート樹脂及び/又はそのプレポリマーを含有し、
前記絶縁層は、前記プリプレグを加熱硬化した厚さ10〜100μmの硬化物を、ジエチレングリコールモノブチルエーテル20〜60wt%と水酸化ナトリウム0.1〜1.0wt%とを含む水溶液からなり且つ温度が50℃以上90℃以下の膨潤液に3〜20分間浸漬した後、過マンガン酸塩5.0〜15.0wt%と水酸化ナトリウム1.0〜10.0wt%とを含む水溶液からなり且つ温度が60℃以上90℃以下の粗化液に3〜40分間浸漬する、粗化処理条件内の少なくとも1つの条件によって粗化処理してなるものであり、該粗化処理後の表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とする、多層プリント配線板。
[3] 前記無機充填材の比表面積が8m /g以上200m /g以下である請求項1または2に記載の多層プリント配線板
[4] 前記無機充填材が球状シリカである請求項1から3のいずれかに記載の多層プリント配線板
[5] 前記樹脂組成物が、エポキシシランカップリング剤、アミノフェニルシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤およびビニルシランカップリング剤の中から選択される1種以上のシランカップリング剤を含有してなる請求項1から4のいずれかに記載の多層プリント配線板
[6] 前記樹脂組成物が、硬化促進剤としてイミダゾール化合物を含有してなる請求項1から5のいずれかに記載の多層プリント配線板
[7] [1]から[6]項のいずれかに記載の多層プリント配線板をパッケージ用基板として用いてなる半導体装置
Such an object is achieved by the following present inventions [1] to [ 7 ].
[1] A multilayer printed wiring board comprising an insulating layer made of a cured resin composition on one or both surfaces of an inner circuit board, wherein the resin composition has an average particle diameter of 0.01 μm or more and 0.45 μm. The following inorganic filler is 20% by weight to 80% by weight, epoxy resin having a weight average molecular weight of 500 to 5000 is 5% by weight to 50% by weight, and phenoxy resin having a weight average molecular weight of 5000 to 70,000 is 1% by weight. More than 40% by weight and a cyanate resin and / or a prepolymer thereof, and the insulating layer is a cured product having a thickness of 10 to 100 μm obtained by heating and curing the resin composition, and diethylene glycol monobutyl ether 20 to 60 wt%. 3 to 2 of a swelling liquid comprising an aqueous solution containing 0.1 to 1.0 wt% of sodium hydroxide and having a temperature of 50 ° C. After soaking for 3 minutes, a roughening solution composed of an aqueous solution containing 5.0 to 15.0 wt% permanganate and 1.0 to 10.0 wt% sodium hydroxide and having a temperature of 60 ° C. or higher and 90 ° C. or lower is used. The surface roughness parameter Rvk value after the roughening treatment is 0.1 μm or more and 0.8 μm or less after being roughened by at least one of the roughening treatment conditions immersed for ˜40 minutes. A multilayer printed wiring board characterized by that.
[2] A multilayer printed wiring board comprising an insulating layer made of a cured product of a prepreg formed by impregnating a fiber base material with a resin composition on one side or both sides of an inner layer circuit board,
The resin composition comprises an inorganic filler having an average particle size of 0.01 μm or more and 0.45 μm or less, 20 wt% or more and 80 wt% or less, and an epoxy resin having a weight average molecular weight of 500 or more and 5000 or less 5 wt% or more and 50 wt%. 1% by weight to 40% by weight of a phenoxy resin having a weight average molecular weight of 5,000 to 70,000, and a cyanate resin and / or a prepolymer thereof,
The insulating layer is made of an aqueous solution containing 20 to 60% by weight of diethylene glycol monobutyl ether and 0.1 to 1.0% by weight of sodium hydroxide as a cured product having a thickness of 10 to 100 μm obtained by heat-curing the prepreg. After being immersed for 3 to 20 minutes in a swelling liquid at a temperature of not lower than 90 ° C. and lower than or equal to 90 ° C., it is composed of an aqueous solution containing 5.0 to 15.0 wt% permanganate and 1.0 to 10.0 wt% sodium hydroxide, and the temperature is The surface roughness parameter Rvk after the roughening treatment is obtained by performing a roughening treatment under at least one of the roughening treatment conditions, which is immersed in a roughening solution at 60 ° C or higher and 90 ° C or lower for 3 to 40 minutes. A multilayer printed wiring board having a value of 0.1 μm or more and 0.8 μm or less.
[3] The multilayer printed wiring board according to claim 1 or 2, wherein the inorganic filler has a specific surface area of 8 m 2 / g or more and 200 m 2 / g or less .
[4] The multilayer printed wiring board according to any one of claims 1 to 3, wherein the inorganic filler is spherical silica .
[5] One or more silane couplings in which the resin composition is selected from an epoxy silane coupling agent, an aminophenyl silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent, and a vinyl silane coupling agent. The multilayer printed wiring board according to any one of claims 1 to 4, comprising an agent .
[6] The multilayer printed wiring board according to any one of claims 1 to 5, wherein the resin composition contains an imidazole compound as a curing accelerator .
[7] A semiconductor device using the multilayer printed wiring board according to any one of items [1] to [6] as a package substrate .

本発明は、多層プリント配線板の絶縁層を形成するために用いられる樹脂組成物であって、絶縁層とした場合の粗化処理後の表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とする樹脂組成物である。
本発明の樹脂組成物を多層プリント配線板の絶縁層に用いることにより、高密着性、高耐熱性、低熱膨張性とともに、難燃性を有し、高密度な微細回路形成が可能な多層プリント配線板を製造することができる。
The present invention is a resin composition used for forming an insulating layer of a multilayer printed wiring board, and the surface roughness parameter Rvk value after the roughening treatment when the insulating layer is formed is 0.1 μm or more and 0.8 μm. The resin composition is characterized by the following.
By using the resin composition of the present invention for an insulating layer of a multilayer printed wiring board, the multilayer printed circuit has high adhesion, high heat resistance, low thermal expansion, flame retardancy, and high-density microcircuit formation. A wiring board can be manufactured.

以下に、本発明の樹脂組成物、基材付き絶縁シート、プリプレグ、多層プリント配線板及び半導体装置について詳細に説明する。
本発明の樹脂組成物は、多層プリント配線板の絶縁層を形成するために用いられる樹脂組成物であって、当該樹脂組成物を用いて絶縁層を形成し、粗化処理した後に測定される表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とするものである。
また、本発明の基材付き絶縁シートは、上記本発明の樹脂組成物を、基材に担持させてなることを特徴とするものである。
さらに、本発明のプリプレグは、上記本発明の樹脂組成物を、繊維基材に含浸させてなることを特徴とするものである。
そして、本発明の多層プリント配線板は、上記本発明の基材付き絶縁シートまたは本発明のプリプレグを、内層回路板の片面または両面に重ね合わせて加熱加圧成形してなることを特徴とするものである。
さらに、本発明の半導体装置は、上記本発明の多層プリント配線板をパッケージ用基板として使用することを特徴とするものである。
Below, the resin composition of this invention, the insulating sheet with a base material, a prepreg, a multilayer printed wiring board, and a semiconductor device are demonstrated in detail.
The resin composition of the present invention is a resin composition used for forming an insulating layer of a multilayer printed wiring board, and is measured after the insulating layer is formed using the resin composition and roughened. The surface roughness parameter Rvk value is 0.1 μm or more and 0.8 μm or less.
Moreover, the insulating sheet with a base material of the present invention is characterized in that the resin composition of the present invention is supported on a base material.
Furthermore, the prepreg of the present invention is characterized in that a fiber base material is impregnated with the resin composition of the present invention.
The multilayer printed wiring board of the present invention is characterized in that the insulating sheet with a base material of the present invention or the prepreg of the present invention is overlaid on one or both sides of an inner layer circuit board and heated and pressed. Is.
Furthermore, the semiconductor device of the present invention is characterized in that the multilayer printed wiring board of the present invention is used as a package substrate.

まず、本発明の樹脂組成物について説明する。なお、樹脂組成物に含有される各成分の含有量百分率は、固形分を全量(100重量%)としたときの割合であり、固形分とは溶剤を除く全成分であって、溶剤ではない液状成分も固形分に含まれる。
本発明の樹脂組成物は、当該樹脂組成物を用いて絶縁層を形成し、粗化処理した後に測定される表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とする。さらにRvk値が0.15μm以上0.6μm以下であることが好ましく、0.2μm以上0.5μm以下が最も好ましい。ここで、樹脂組成物を絶縁層とした場合の粗化処理後の表面粗さパラメータRvk値は、樹脂組成物に含まれる無機充填材の粒子特性、樹脂の種類や配合量、および粗化処理の条件などによって決まる。したがって、これらの条件を制御することにより、Rvk値を上記範囲内することができる。
表面粗さパラメータRvkの測定はVeeco社製WYKO NT1100を用いて行うことができる。Rvkとは突出谷部深さと呼ばれ、粗さ曲線のコア部の下にある突出谷部の平均深さとして、JIS B0671−2:2002(ISO 13565−2:1996)に規定されている。表面粗さを示すパラメータとしてはRa(算術平均粗さ)が良く知られているが、Raは粗さの算術平均であるため、実際の材料特性と結びつけるのは困難であり、多層プリント板用樹脂組成物から形成された絶縁層の粗化後形状を比較するためには、Rvkが最も適している。
Rvkが上記上限値を超えると、銅表面を流れる電流速度の遅延の原因となったり、吸湿半田耐熱性低下の原因となったりするため好ましくなく、上記下限値未満であると、めっき金属との十分な密着力を得ることができないため好ましくない。
First, the resin composition of the present invention will be described. In addition, the content percentage of each component contained in the resin composition is a ratio when the solid content is the total amount (100% by weight), and the solid content is all components except the solvent, not the solvent. Liquid components are also included in the solid content.
The resin composition of the present invention is characterized in that an insulating layer is formed using the resin composition and a surface roughness parameter Rvk value measured after roughening treatment is 0.1 μm or more and 0.8 μm or less. To do. Furthermore, the Rvk value is preferably from 0.15 μm to 0.6 μm, and most preferably from 0.2 μm to 0.5 μm. Here, the surface roughness parameter Rvk value after the roughening treatment when the resin composition is an insulating layer is the particle characteristics of the inorganic filler contained in the resin composition, the type and blending amount of the resin, and the roughening treatment. It depends on the conditions. Therefore, by controlling these conditions, the Rvk value can be within the above range.
The surface roughness parameter Rvk can be measured using WYKO NT1100 manufactured by Veeco. Rvk is called protrusion valley depth, and is defined in JIS B0671-2: 2002 (ISO 13565-2: 1996) as the average depth of the protrusion valley below the core portion of the roughness curve. Ra (arithmetic average roughness) is well known as a parameter indicating the surface roughness, but since Ra is the arithmetic average of roughness, it is difficult to combine with actual material characteristics, and for multilayer printed boards. Rvk is most suitable for comparing the roughened shapes of the insulating layers formed from the resin composition.
If Rvk exceeds the above upper limit value, it is not preferable because it causes a delay in the current speed flowing on the copper surface or causes a decrease in heat resistance of the hygroscopic solder, and if it is less than the lower limit value, This is not preferable because sufficient adhesion cannot be obtained.

本発明の樹脂組成物は、平均粒子径0.01μm以上0.45μm以下の無機充填材を含有することが好ましい。さらに好ましくは平均粒子径0.1μm以上0.4μm以下の無機充填材である。平均粒子径が上記上限値を超えると、粒子が粗いために粗化処理後の表面粗さが大きくなりすぎることがあり好ましくなく、上記下限値未満であると粒子が小さすぎるために樹脂組成物中に分散安定化させることが困難になる。
なお、平均粒子径は、体積基準粒子径のメディアン径であり、レーザー回折・散乱法によって測定できる。
The resin composition of the present invention preferably contains an inorganic filler having an average particle size of 0.01 μm or more and 0.45 μm or less. More preferred is an inorganic filler having an average particle size of 0.1 μm or more and 0.4 μm or less. When the average particle diameter exceeds the upper limit, the surface roughness after the roughening treatment may be excessively large because the particles are coarse, and when the average particle diameter is less than the lower limit, the resin composition is excessively small. It becomes difficult to stabilize the dispersion.
The average particle diameter is the median diameter of the volume reference particle diameter, and can be measured by a laser diffraction / scattering method.

上記無機充填材は、比表面積が8m/g以上200m/g以下であることが好ましい。さらに好ましくは10m/g以上50m/g以下の無機充填材である。比表面積が上記上限値を超えると無機充填材どうしが凝集しやすくなり、樹脂組成物の構造が不安定になるため好ましくなく、上記下限値未満であると樹脂組成物中に無機充填材を充填しにくくなるため好ましくない。
なお、比表面積は、BET比表面積であり、気体吸着法(BET法)によって測定できる。
The inorganic filler preferably has a specific surface area of 8 m 2 / g or more and 200 m 2 / g or less. More preferably, the inorganic filler is 10 m 2 / g or more and 50 m 2 / g or less. If the specific surface area exceeds the above upper limit value, the inorganic fillers tend to aggregate and the structure of the resin composition becomes unstable, which is not preferable. If the specific surface area is less than the lower limit value, the inorganic filler is filled in the resin composition. Since it becomes difficult to do, it is not preferable.
The specific surface area is a BET specific surface area and can be measured by a gas adsorption method (BET method).

上記無機充填材はシリカであることが好ましい。さらに好ましくは溶融シリカである。溶融シリカは他の無機充填材と比較して低膨張性に優れている。
シリカの形状としては例えば、破砕状、球状などがあるが、球状であるものが好ましい。球状であると樹脂組成物中における無機充填材含有量を多くすることができ、その場合でも流動性に優れている。また、本発明の樹脂組成物には、必要に応じて、タルク、アルミナ、ガラス、マイカ、水酸化アルミニウム等の他の無機充填材も含有させることができる。
The inorganic filler is preferably silica. More preferred is fused silica. Fused silica is superior in low expansion compared to other inorganic fillers.
Examples of the shape of silica include a crushed shape and a spherical shape, and a spherical shape is preferable. When it is spherical, the content of the inorganic filler in the resin composition can be increased, and even in that case, the fluidity is excellent. In addition, the resin composition of the present invention can contain other inorganic fillers such as talc, alumina, glass, mica, aluminum hydroxide, if necessary.

上記無機充填材は、本発明の樹脂組成物中に20重量%以上80重量%以下の割合で含有されることが好ましい。さらに好ましい含有量は、25重量%以上70重量%以下であり、最も好ましくは30重量%以上60重量%以下である。無機充填材含有量が上記上限値を超えると樹脂組成物の流動性が極めて悪くなるため好ましくなく、上記下限値未満であると樹脂組成物が強度を十分強くすることができないため好ましくない。   The inorganic filler is preferably contained in the resin composition of the present invention in a proportion of 20 wt% to 80 wt%. A more preferable content is 25% by weight or more and 70% by weight or less, and most preferably 30% by weight or more and 60% by weight or less. If the content of the inorganic filler exceeds the above upper limit, the fluidity of the resin composition becomes extremely poor. This is not preferable, and if it is less than the lower limit, the resin composition cannot sufficiently increase the strength.

本発明の樹脂組成物は、エポキシシランカップリング剤、アミノフェニルシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤およびビニルシランカップリング剤の中から選択される1種以上のシランカップリング剤を含有することが好ましい。これにより、樹脂成分と無機充填材や配線金属との密着力を高めることができ、樹脂組成物の信頼性を向上させることができる。   The resin composition of the present invention comprises at least one silane coupling agent selected from an epoxy silane coupling agent, an aminophenyl silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent, and a vinyl silane coupling agent. It is preferable to contain. Thereby, the adhesive force of a resin component, an inorganic filler, and a wiring metal can be improved, and the reliability of a resin composition can be improved.

上記カップリング剤の含有量としては特に限定されないが、無機充填材100重量部に対して0.05重量部以上5重量部以下であることが好ましい。さらに好ましくは0.1重量部以上2重量部以下である。
カップリング剤の含有量が上記上限値を超えると、樹脂組成物にクラックが入りやすくなるため好ましくなく、上記下限値未満であると、樹脂成分と無機充填材や配線金属との密着力を向上させる効果が十分に得られない場合がある。
Although it does not specifically limit as content of the said coupling agent, It is preferable that it is 0.05 to 5 weight part with respect to 100 weight part of inorganic fillers. More preferably, it is 0.1 to 2 parts by weight.
If the content of the coupling agent exceeds the above upper limit, cracks are likely to occur in the resin composition, which is not preferable. If the content is less than the above lower limit, the adhesion between the resin component and the inorganic filler or wiring metal is improved. In some cases, sufficient effects cannot be obtained.

本発明の樹脂組成物は、分子量5000以下のエポキシ樹脂を1種類以上含有することが好ましい。これにより、耐熱性、難熱分解性を付与することができるとともに、基材付き絶縁シートを製造する時の製膜性や、多層プリント配線板製造時に内層回路基板への密着性を向上させることができる。   The resin composition of the present invention preferably contains one or more epoxy resins having a molecular weight of 5000 or less. As a result, heat resistance and low heat decomposability can be imparted, and film forming properties when manufacturing an insulating sheet with a base material and adhesion to an inner circuit board when manufacturing a multilayer printed wiring board are improved. Can do.

本発明の樹脂組成物で用いられるエポキシ樹脂としては特に限定されないが、例えば、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂等が挙げられる。これらの中でも、アリールアルキレン型エポキシ樹脂が好ましい。これにより、難燃性、吸湿半田耐熱性を向上させることができる。
ここで、アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂を指し、例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂等が挙げられる。これらの中でも、ビフェニルジメチレン型エポキシ樹脂が好ましい。これにより、更に難燃性を向上させることができる。
ビフェニルジメチレン型エポキシ樹脂は、例えば下記一般式(I)で示されるものを用いることができる。
Although it does not specifically limit as an epoxy resin used with the resin composition of this invention, For example, a phenol novolak type epoxy resin, a bisphenol type epoxy resin, a naphthalene type epoxy resin, an aryl alkylene type epoxy resin etc. are mentioned. Among these, aryl alkylene type epoxy resins are preferable. Thereby, a flame retardance and moisture absorption solder heat resistance can be improved.
Here, the aryl alkylene type epoxy resin refers to an epoxy resin having one or more aryl alkylene groups in the repeating unit, and examples thereof include a xylylene type epoxy resin and a biphenyl dimethylene type epoxy resin. Among these, a biphenyl dimethylene type epoxy resin is preferable. Thereby, a flame retardance can be improved further.
As the biphenyldimethylene type epoxy resin, for example, those represented by the following general formula (I) can be used.

Figure 0005353241
Figure 0005353241

上記一般式(I)で示されるビフェニルジメチレン型エポキシ樹脂のnは、特に限定されないが、0〜10が好ましく、特に0〜2が好ましい。
上記nの数がこれより多いと、エポキシ樹脂の流動性が低下し、成形性が低下することがあり、好ましくない。
Although n of the biphenyl dimethylene type | mold epoxy resin shown by the said general formula (I) is not specifically limited, 0-10 are preferable and 0-2 are especially preferable.
When the number of n is larger than this, the fluidity of the epoxy resin is lowered, and the moldability may be lowered, which is not preferable.

上記エポキシ樹脂の重量平均分子量としては5,000以下であることが好ましい。さらに好ましくは500〜4,000であり、特に好ましくは800〜3,000である。
重量平均分子量が上記下限値未満であると、基材付き絶縁シートを製造した場合、絶縁樹脂層表面にタック性を生じ、取り扱い性が低下することがある。一方、上記上限値を超えるとエポキシ樹脂の流動性が低下し、成形性が低下することがあり、好ましくない。エポキシ樹脂の分子量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
The weight average molecular weight of the epoxy resin is preferably 5,000 or less. More preferably, it is 500-4,000, Most preferably, it is 800-3,000.
When the weight average molecular weight is less than the above lower limit, when an insulating sheet with a substrate is produced, tackiness may be generated on the surface of the insulating resin layer, and the handleability may be reduced. On the other hand, when the above upper limit is exceeded, the fluidity of the epoxy resin is lowered and the moldability may be lowered, which is not preferable. By making the molecular weight of the epoxy resin within the above range, it is possible to achieve an excellent balance of these characteristics.

上記エポキシ樹脂の含有量としては特に限定されないが、樹脂組成物全体に対して5〜50重量%であることが好ましい。さらに好ましくは10〜40重量%である。
エポキシ樹脂の含有量が上記下限値未満であると、吸湿半田耐熱性、密着性を向上させる効果が低下する場合がある。また、上記上限値を超えると、無機充填材の分散性が悪くなることがあるため好ましくない。エポキシ樹脂の含有量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
Although it does not specifically limit as content of the said epoxy resin, It is preferable that it is 5 to 50 weight% with respect to the whole resin composition. More preferably, it is 10 to 40% by weight.
If the content of the epoxy resin is less than the lower limit, the effect of improving moisture-absorbing solder heat resistance and adhesion may be reduced. Moreover, since the dispersibility of an inorganic filler may worsen when it exceeds the said upper limit, it is unpreferable. By setting the content of the epoxy resin within the above range, it is possible to achieve an excellent balance of these characteristics.

本発明の樹脂組成物は、分子量5000以上のフェノキシ樹脂を1種類以上含有することが好ましい。これにより、基材付き絶縁シートを製造する際の製膜性をさらに向上させることができる。   The resin composition of the present invention preferably contains one or more phenoxy resins having a molecular weight of 5000 or more. Thereby, the film formability at the time of manufacturing the insulating sheet with a base material can be further improved.

上記フェノキシ樹脂として、特に限定はされないが、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、フルオレン骨格を有するフェノキシ樹脂、ジシクロペンタジエン骨格を有するフェノキシ樹脂、ノルボルネン骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂、アダマンタン骨格を有するフェノキシ樹脂等が挙げられる。
上記ビスフェノール骨格を有するフェノキシ樹脂としては、ビスフェノールA骨格を有するフェノキシ樹脂、ビスフェノールF骨格を有するフェノキシ樹脂、ビスフェノールS骨格を有するフェノキシ樹脂、ビスフェノールM骨格を有するフェノキシ樹脂、ビスフェノールP骨格を有するフェノキシ樹脂、ビスフェノールZ骨格を有するフェノキシ樹脂等が挙げられる。
またフェノキシ樹脂として、これらの骨格のうちから複数種類を有した構造を用いることもできるし、それぞれの骨格の比率が異なるフェノキシ樹脂を用いることができる。さらに異なる骨格のフェノキシ樹脂を複数種類用いることもできるし、異なる重量平均分子量を有するフェノキシ樹脂を複数種類用いたり、それらのプレポリマーを併用したりすることもできる。
The phenoxy resin is not particularly limited.For example, a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a novolac skeleton, a phenoxy resin having an anthracene skeleton, a phenoxy resin having a fluorene skeleton, a phenoxy resin having a dicyclopentadiene skeleton, Examples thereof include a phenoxy resin having a norbornene skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having a biphenyl skeleton, and a phenoxy resin having an adamantane skeleton.
Examples of the phenoxy resin having a bisphenol skeleton include a phenoxy resin having a bisphenol A skeleton, a phenoxy resin having a bisphenol F skeleton, a phenoxy resin having a bisphenol S skeleton, a phenoxy resin having a bisphenol M skeleton, a phenoxy resin having a bisphenol P skeleton, Examples thereof include phenoxy resin having a bisphenol Z skeleton.
As the phenoxy resin, a structure having a plurality of types of these skeletons can be used, and phenoxy resins having different ratios of the skeletons can be used. Furthermore, a plurality of types of phenoxy resins having different skeletons can be used, a plurality of types of phenoxy resins having different weight average molecular weights can be used, or prepolymers thereof can be used in combination.

これらの中でも、ビフェニル骨格と、ビスフェノールS骨格とを有するものを用いることができる。これにより、ビフェニル骨格が有する剛直性によりガラス転移温度を高くすることができるとともに、ビスフェノールS骨格により、多層プリント配線板を製造する際のメッキ金属の付着性を向上させることができる。
また、ビスフェノールA骨格とビスフェノールF骨格とを有するものを用いることができる。これにより、多層プリント配線板の製造時に内層回路基板への密着性を向上させることができる。
さらに、上記ビフェニル骨格とビスフェノールS骨格とを有するフェノキシ樹脂と、ビスフェノールA骨格とビスフェノールF骨格とを有するフェノキシ樹脂とを併用してもよい。
Among these, those having a biphenyl skeleton and a bisphenol S skeleton can be used. Thereby, the glass transition temperature can be increased due to the rigidity of the biphenyl skeleton, and the adhesion of the plated metal when the multilayer printed wiring board is manufactured can be improved by the bisphenol S skeleton.
Further, those having a bisphenol A skeleton and a bisphenol F skeleton can be used. Thereby, the adhesiveness to an inner-layer circuit board can be improved at the time of manufacture of a multilayer printed wiring board.
Further, the phenoxy resin having the biphenyl skeleton and the bisphenol S skeleton and the phenoxy resin having the bisphenol A skeleton and the bisphenol F skeleton may be used in combination.

上記フェノキシ樹脂の分子量としては特に限定されないが、重量平均分子量が5000〜70000であることが好ましい。さらに好ましくは10000〜60000である。
フェノキシ樹脂の重量平均分子量が上記下限値未満であると、製膜性を向上させる効果が充分でない場合がある。一方、上記上限値を超えると、フェノキシ樹脂の溶解性が低下する場合がある。フェノキシ樹脂の重量平均分子量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
Although it does not specifically limit as molecular weight of the said phenoxy resin, It is preferable that a weight average molecular weight is 5000-70000. More preferably, it is 10,000 to 60000.
If the weight average molecular weight of the phenoxy resin is less than the lower limit, the effect of improving the film forming property may not be sufficient. On the other hand, when the above upper limit is exceeded, the solubility of the phenoxy resin may decrease. By making the weight average molecular weight of the phenoxy resin within the above range, it is possible to achieve an excellent balance of these characteristics.

フェノキシ樹脂の含有量としては特に限定されないが、樹脂組成物全体の1〜40重量%であることが好ましい。さらに好ましくは5〜30重量%である。
フェノキシ樹脂の含有量が上記下限値未満であると、製膜性を向上させる効果が十分でないことがある。一方、上記上限値を超えると、相対的にシアネート樹脂の含有量が少なくなるため、低熱膨張性を付与する効果が低下することがある。フェノキシ樹脂の含有量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
Although it does not specifically limit as content of a phenoxy resin, It is preferable that it is 1 to 40 weight% of the whole resin composition. More preferably, it is 5 to 30% by weight.
If the content of the phenoxy resin is less than the lower limit, the effect of improving the film forming property may not be sufficient. On the other hand, when the above upper limit is exceeded, the content of the cyanate resin is relatively reduced, and thus the effect of imparting low thermal expansion may be reduced. By making content of a phenoxy resin into the said range, it can be excellent in the balance of these characteristics.

本発明の組成物で用いられる上記エポキシ樹脂、及び、フェノキシ樹脂は、いずれも、実質的にハロゲン原子を含まないものであることが好ましい。これにより、ハロゲン化合物を用いることなく、難燃性を付与することができる。
ここで、実質的にハロゲン原子を含まないとは、例えば、エポキシ樹脂あるいはフェノキシ樹脂中のハロゲン原子の含有量が1重量%以下のものをいう。
It is preferable that both the epoxy resin and the phenoxy resin used in the composition of the present invention are substantially free of halogen atoms. Thereby, a flame retardance can be provided, without using a halogen compound.
Here, “substantially free of halogen atoms” means, for example, those in which the content of halogen atoms in the epoxy resin or phenoxy resin is 1% by weight or less.

本発明の樹脂組成物は、シアネート樹脂及び/又はそのプレポリマーを含有することが好ましい。これにより、樹脂組成物の難燃性を向上させることができる。
シアネート樹脂及び/又はそのプレポリマーの入手方法としては特に限定されないが、例えば、ハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。また、このようにして調製された市販品を用いることもできる。
The resin composition of the present invention preferably contains a cyanate resin and / or a prepolymer thereof. Thereby, the flame retardance of a resin composition can be improved.
The method for obtaining the cyanate resin and / or its prepolymer is not particularly limited. For example, the cyanate resin can be obtained by reacting a cyanogen halide with a phenol and prepolymerizing it by a method such as heating as necessary. it can. Moreover, the commercial item prepared in this way can also be used.

シアネート樹脂の種類としては特に限定されないが、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。
これらの中でも、ノボラック型シアネート樹脂が好ましい。これにより、架橋密度の増加により耐熱性を向上させることができるとともに、難燃性をさらに向上させることができる。ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。
なお、ノボラック型シアネート樹脂は、例えばノボラック型フェノール樹脂と、塩化シアン、臭化シアン等の化合物とを反応させることにより得ることができる。また、このようにして調製された市販品を用いることもできる。
Although it does not specifically limit as a kind of cyanate resin, For example, bisphenol-type cyanate resin, such as a novolak-type cyanate resin, bisphenol A-type cyanate resin, bisphenol E-type cyanate resin, tetramethylbisphenol F-type cyanate resin, etc. can be mentioned.
Among these, a novolak type cyanate resin is preferable. Thereby, while being able to improve heat resistance by the increase in a crosslinking density, a flame retardance can further be improved. The novolak-type cyanate resin is considered to have a high proportion of benzene rings due to its structure and easily carbonize.
The novolak type cyanate resin can be obtained, for example, by reacting a novolak type phenol resin with a compound such as cyanogen chloride or cyanogen bromide. Moreover, the commercial item prepared in this way can also be used.

ここでノボラック型シアネート樹脂としては、例えば、下記一般式(II)で示されるものを用いることができる。   Here, as the novolac-type cyanate resin, for example, those represented by the following general formula (II) can be used.

Figure 0005353241
Figure 0005353241

上記一般式(II)で示されるノボラック型シアネート樹脂の重量平均分子量としては特に限定されないが、500〜4,500であることが好ましい。さらに好ましくは600〜3,000である。
重量平均分子量が上記下限値未満であると、機械的強度が低下する場合がある。また、上記上限値を超えると、樹脂組成物の硬化速度が速くなるため、保存性が低下する場合がある。
Although it does not specifically limit as a weight average molecular weight of the novolak-type cyanate resin shown by the said general formula (II), It is preferable that it is 500-4,500. More preferably, it is 600-3,000.
If the weight average molecular weight is less than the lower limit, the mechanical strength may be lowered. Moreover, when the said upper limit is exceeded, since the cure rate of a resin composition will become quick, preservability may fall.

なお、上記シアネート樹脂としては、これをプレポリマー化したものも用いることができる。
ここでプレポリマーとは、通常、上記シアネート樹脂を加熱反応などにより、例えば3量化することで得られるものであり、樹脂組成物の成形性、流動性を調整するために好ましく使用されるものである。
ここでプレポリマーとしては特に限定されないが、例えば、3量化率が20〜50重量%であるものを用いることができる。この3量化率は、例えば赤外分光分析装置を用いて求めることができる。
In addition, as said cyanate resin, what prepolymerized this can also be used.
Here, the prepolymer is usually obtained by, for example, trimerizing the cyanate resin by a heat reaction or the like, and is preferably used for adjusting the moldability and fluidity of the resin composition. is there.
Although it does not specifically limit as a prepolymer here, For example, what a trimerization rate is 20 to 50 weight% can be used. This trimerization rate can be determined using, for example, an infrared spectroscopic analyzer.

このように、ノボラック型シアネート樹脂としては、1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。   Thus, as a novolac type cyanate resin, one kind can be used alone, two or more kinds having different weight average molecular weights are used together, or one kind or two kinds or more and those prepolymers are used together. You can also do it.

本発明の組成物において、上記シアネート樹脂の含有量は特に限定されないが、樹脂組成物全体に対して5〜50重量%であることが好ましい。さらに好ましくは10〜40重量%である。これにより、シアネート樹脂が有する耐熱性、難燃性向上作用をより効果的に発現させることができる。
シアネート樹脂の含有量が上記下限値未満であると、高耐熱性化する効果が低下することがある。また、上記上限値を超えると、架橋密度が高くなり自由体積が増えるため、耐湿性が低下する場合がある。
In the composition of the present invention, the content of the cyanate resin is not particularly limited, but is preferably 5 to 50% by weight with respect to the entire resin composition. More preferably, it is 10 to 40% by weight. Thereby, the heat resistance which a cyanate resin has, and the flame retardance improvement effect | action can be expressed more effectively.
If the content of the cyanate resin is less than the lower limit, the effect of increasing the heat resistance may be reduced. On the other hand, when the above upper limit is exceeded, the crosslinking density increases and the free volume increases, so that the moisture resistance may decrease.

本発明の樹脂組成物は、硬化促進剤としてイミダゾール化合物を含有することが好ましい。さらに好ましくは、樹脂組成物に含有される樹脂成分と相溶性のあるイミダゾール化合物である。このようなイミダゾール化合物を用いることにより、シアネート樹脂やエポキシ樹脂の反応を効果的に促進させることができ、また、イミダゾール化合物の配合量を少なくしても同等の特性を付与することができる。
さらに、このようなイミダゾール化合物を用いた樹脂組成物は、樹脂成分との間で微小なマトリックス単位から高い均一性で硬化させることができる。これにより、多層プリント配線板に形成された樹脂層の絶縁性、耐熱性を高めることができる。
The resin composition of the present invention preferably contains an imidazole compound as a curing accelerator. More preferably, it is an imidazole compound compatible with the resin component contained in the resin composition. By using such an imidazole compound, the reaction of a cyanate resin or an epoxy resin can be effectively promoted, and equivalent characteristics can be imparted even if the amount of the imidazole compound is reduced.
Furthermore, a resin composition using such an imidazole compound can be cured with high uniformity from a minute matrix unit with a resin component. Thereby, the insulation of the resin layer formed in the multilayer printed wiring board, and heat resistance can be improved.

本発明の樹脂組成物で用いられる上記イミダゾール化合物としては、例えば、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6-〔2'-メチルイミダゾリル-(1')〕-エチル-s-トリアジン、2,4-ジアミノ-6-(2'-ウンデシルイミダゾリル)-エチル-s-トリアジン、2,4-ジアミノ-6-〔2'-エチル-4-メチルイミダゾリル-(1')〕-エチル-s-トリアジン、などを挙げることができる。   Examples of the imidazole compound used in the resin composition of the present invention include 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4- Methylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- (2'-undecylimidazolyl) -ethyl-s -Triazine, 2,4-diamino-6- [2'-ethyl-4-methylimidazolyl- (1 ')]-ethyl-s-triazine, and the like.

これらの中でも、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、及び、2-エチル-4-メチルイミダゾールから選ばれるイミダゾール化合物であることが好ましい。これらのイミダゾール化合物は、特に優れた相溶性を有することで、均一性の高い硬化物が得られるとともに、微細かつ均一な粗化面を形成することができるので、微細な導体回路を容易に形成することができるとともに、多層プリント配線板に高い耐熱性を発現させることができる。   Among these, an imidazole compound selected from 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, and 2-ethyl-4-methylimidazole is preferable. These imidazole compounds have particularly excellent compatibility, so that a highly uniform cured product can be obtained and a fine and uniform roughened surface can be formed, so that a fine conductor circuit can be easily formed. In addition, the multilayer printed wiring board can exhibit high heat resistance.

上記イミダゾール化合物の含有量としては特に限定されないが、上記シアネート樹脂とエポキシ樹脂との合計に対して、0.01〜5重量%が好ましく、特に0.05〜3重量%が好ましい。これにより、特に耐熱性を向上させることができる。   Although it does not specifically limit as content of the said imidazole compound, 0.01 to 5 weight% is preferable with respect to the sum total of the said cyanate resin and an epoxy resin, and 0.05 to 3 weight% is especially preferable. Thereby, especially heat resistance can be improved.

本発明の樹脂組成物は、以上に説明した成分のほか、必要に応じて、消泡剤、レベリング剤などの添加剤を含有することができる。
本発明の樹脂組成物が、主要成分として無機充填材、エポキシ樹脂、フェノキシ樹脂及びシアネート樹脂を含有する場合には、無機充填材を20〜75重量%、エポキシ樹脂を10〜20重量%、フェノキシ樹脂を5〜25重量%、及び、シアネート樹脂を10〜35重量%の割合で含有することが好ましい。
In addition to the components described above, the resin composition of the present invention can contain additives such as an antifoaming agent and a leveling agent as necessary.
When the resin composition of the present invention contains an inorganic filler, an epoxy resin, a phenoxy resin, and a cyanate resin as main components, the inorganic filler is 20 to 75% by weight, the epoxy resin is 10 to 20% by weight, and the phenoxy. It is preferable to contain 5 to 25% by weight of the resin and 10 to 35% by weight of the cyanate resin.

本発明の樹脂組成物から絶縁層または絶縁膜を形成する方法について詳しく説明すると、例えば、樹脂組成物を溶剤などに溶解・分散させて樹脂ワニスを調製して、各種コーター装置を用いて樹脂ワニスを基材に塗工した後、これを乾燥して基材付き絶縁シートを作成し、この基材付き絶縁シートの絶縁シート側と内層回路板とを合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形させ、その後、熱風乾燥装置等で加熱硬化させることにより得ることができる。基材付き絶縁シートの基材については、加熱硬化前に剥離させても良いし、加熱硬化後に剥離させても良い。
ここで樹脂組成物から構成される絶縁層または絶縁膜の厚さとしては特に限定されないが、10〜100μmであることが好ましい。さらに好ましくは20〜80μmである。加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度60〜160℃、圧力0.2〜3MPaで実施することができる。また、加熱硬化させる条件としては特に限定されないが、温度140〜240℃、時間30〜120分間で実施することができる。
The method for forming an insulating layer or insulating film from the resin composition of the present invention will be described in detail. For example, a resin varnish is prepared by dissolving and dispersing the resin composition in a solvent or the like, and using various coater devices. This is dried to create an insulating sheet with a base material, and the insulating sheet side of this insulating sheet with a base material is combined with the inner circuit board to use a vacuum pressure laminator device, etc. And then heat-curing with a hot air drying device or the like. About the base material of an insulating sheet with a base material, you may peel before heat-hardening, and may peel after heat-hardening.
Although it does not specifically limit as thickness of the insulating layer or insulating film comprised from a resin composition here, It is preferable that it is 10-100 micrometers. More preferably, it is 20-80 micrometers. Although it does not specifically limit as conditions to heat-press-mold, If an example is given, it can implement at the temperature of 60-160 degreeC, and the pressure of 0.2-3 MPa. Moreover, it is although it does not specifically limit as conditions to heat-harden, It can implement in temperature 140-240 degreeC and time 30-120 minutes.

そして、このような本発明の樹脂組成物から形成された絶縁樹脂層は、例えば過マンガン酸塩、重クロム酸塩等の酸化剤を用いて表面の粗化処理を行うと、粗化処理後の絶縁層表面に均一性の高い微小な凹凸形状を多数形成することができる。
このような粗化処理後の絶縁樹脂層表面に金属メッキ処理を行うと、粗化処理面の平滑性が高いため、微細な導体回路を精度よく形成することができる。また、微小な凹凸形状によりアンカー効果を高め、絶縁樹脂層とメッキ金属との間に高い密着性を付与することができる。
And the insulating resin layer formed from such a resin composition of the present invention is subjected to a roughening treatment on the surface using an oxidizing agent such as permanganate or dichromate, after the roughening treatment. A large number of minute uneven shapes with high uniformity can be formed on the surface of the insulating layer.
When a metal plating process is performed on the surface of the insulating resin layer after such a roughening process, the smoothness of the roughened surface is high, so that a fine conductor circuit can be accurately formed. Further, the anchor effect can be enhanced by the minute uneven shape, and high adhesion can be imparted between the insulating resin layer and the plated metal.

前記粗化処理を詳しく説明すると、本発明の樹脂組成物から形成された絶縁層又は絶縁膜を、ジエチレングリコールモノブチルエーテルと水酸化ナトリウムを含む水溶液からなる膨潤液に浸漬した後に、過マンガン酸塩と水酸化ナトリウムを含む粗化液に浸漬することにより行うことが好ましい。膨潤液および粗化液には必要に応じて、他の溶剤や添加剤を加えることができる。また、粗化液に浸漬した後、酸による中和を行うことが好ましい。中和を行わないと過マンガン酸塩が十分に除去されず、発熱や発火の恐れがある。   Explaining in detail the roughening treatment, after immersing the insulating layer or insulating film formed from the resin composition of the present invention in a swelling solution comprising an aqueous solution containing diethylene glycol monobutyl ether and sodium hydroxide, permanganate and It is preferable to immerse in a roughening solution containing sodium hydroxide. If necessary, other solvents and additives can be added to the swelling liquid and the roughening liquid. Moreover, after immersing in a roughening liquid, it is preferable to neutralize with an acid. If neutralization is not performed, permanganate is not sufficiently removed, and there is a risk of heat generation and ignition.

前記粗化処理は温度が50℃以上90℃以下の膨潤液と、温度が60℃以上90℃以下の粗化液を用いて行うことが好ましい。さらに好ましくは、温度が65℃以上80℃以下の膨潤液と、温度が70℃以上85℃以下の粗化液である。温度が上記上限値以上であると、粗化が進行しすぎるため目的の表面粗さにすることができず、上記下限値以下であると粗化が十分進行しないため、めっき金属との密着力が弱くなるため好ましくない。   The roughening treatment is preferably performed using a swelling liquid having a temperature of 50 ° C. or higher and 90 ° C. or lower and a roughening liquid having a temperature of 60 ° C. or higher and 90 ° C. or lower. More preferably, a swelling liquid having a temperature of 65 ° C. or more and 80 ° C. or less and a roughening liquid having a temperature of 70 ° C. or more and 85 ° C. or less. If the temperature is equal to or higher than the above upper limit value, the target surface roughness cannot be achieved because the roughening proceeds too much, and if the temperature is equal to or lower than the lower limit value, the roughening does not sufficiently proceed, so that the adhesion strength with the plating metal is reduced. Is not preferable because it becomes weak.

前記粗化処理は膨潤液浸漬時間が3分以上20分以下、粗化液浸漬時間が3分以上40分以下で行うことが好ましい。さらに好ましくは、膨潤液浸漬時間が5分以上15分以下、粗化液浸漬時間が5分以上25分以下で行うことが好ましい。浸漬時間が上記上限値以上であると、粗化が進行しすぎるため目的の表面粗さにすることができず、上記下限値以下であると粗化が十分進行しないため、めっき金属との密着力が弱くなるため好ましくない。   The roughening treatment is preferably performed with a swelling liquid immersion time of 3 minutes to 20 minutes and a roughening liquid immersion time of 3 minutes to 40 minutes. More preferably, the swelling liquid immersion time is 5 minutes to 15 minutes and the roughening liquid immersion time is 5 minutes to 25 minutes. If the immersion time is equal to or greater than the above upper limit value, the target surface roughness cannot be achieved because the roughening proceeds too much. This is not preferable because the force is weakened.

本発明の樹脂組成物を用いて形成した絶縁層または絶縁膜は、上記説明した粗化処理の条件の全範囲またはほとんどの範囲において、表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることが好ましいが、上記粗化処理の条件の少なくとも一つの条件で粗化処理したときに表面粗さパラメータRvk値が上記範囲内に入っていれば良い。
すなわち、本発明の樹脂組成物を用いて樹脂層を形成し、それを加熱硬化させて得られた絶縁層または絶縁膜は、下記範囲内の少なくとも一つの条件で粗化処理した後に測定される表面粗さパラメータRvk値が、0.1μm以上0.8μm以下であれば良い。
<粗化処理手順>
厚さ10〜100μmの絶縁層を、ジエチレングリコールモノブチルエーテル20〜60wt%と水酸化ナトリウム0.1〜1.0wt%を含む水溶液からなり、温度が50℃以上90℃以下の膨潤液に3分〜20分浸漬した後に、過マンガン酸塩5.0〜15.0wt%と水酸化ナトリウム1.0〜10.0wt%を含む水溶液からなり、温度が60℃以上90℃以下の粗化液に3分〜40分浸漬する。
The insulating layer or insulating film formed using the resin composition of the present invention has a surface roughness parameter Rvk value of 0.1 μm or more and 0.8 μm or less in the entire range or most of the conditions of the roughening treatment described above. However, it is only necessary that the surface roughness parameter Rvk value be within the above range when the roughening treatment is performed under at least one of the roughening treatment conditions.
That is, an insulating layer or an insulating film obtained by forming a resin layer using the resin composition of the present invention and curing it by heating is measured after roughening treatment under at least one condition within the following range. The surface roughness parameter Rvk value may be 0.1 μm or more and 0.8 μm or less.
<Roughening procedure>
An insulating layer having a thickness of 10 to 100 μm is composed of an aqueous solution containing 20 to 60 wt% of diethylene glycol monobutyl ether and 0.1 to 1.0 wt% of sodium hydroxide, and is applied to a swelling liquid having a temperature of 50 ° C. or more and 90 ° C. or less for 3 minutes to After soaking for 20 minutes, it consists of an aqueous solution containing 5.0 to 15.0 wt% permanganate and 1.0 to 10.0 wt% sodium hydroxide. Immerse for 40 minutes.

ここで、「絶縁層を、下記範囲内の少なくとも一つの条件で粗化処理した後に測定される表面粗さパラメータRvk値が、0.1μm以上0.8μm以下である」とは、特定された粗化処理手順に含まれる条件設定が可能な範囲のうち一つの条件設定において、0.1μm以上0.8μm以下の範囲の表面粗さパラメータRvk値が測定されればよいことを意味する。
言い換えると、ある特定の組成を持つ樹脂組成物を用いて絶縁層を形成し、その絶縁層を上記粗化処理する場合に、粗化処理の条件の全範囲でRvk値が0.1μm以上0.8μm以下の範囲であることは必要とされず、粗化処理の条件範囲内の少なくとも一つの具体的な条件設定の下で粗化処理を行ったときにRvk値が0.1μm以上0.8μm以下の範囲でありさえすればよい。
Here, “the surface roughness parameter Rvk value measured after roughening the insulating layer under at least one condition within the following range is 0.1 μm or more and 0.8 μm or less” is specified. This means that the surface roughness parameter Rvk value in the range of 0.1 μm or more and 0.8 μm or less may be measured in one condition setting within the range in which the condition setting included in the roughening treatment procedure is possible.
In other words, when an insulating layer is formed using a resin composition having a specific composition and the insulating layer is subjected to the above roughening treatment, the Rvk value is 0.1 μm or more and 0 over the entire range of roughening treatment conditions. The Rvk value is not less than 0.1 μm and not more than 0.1 μm when the roughening treatment is performed under at least one specific condition setting within the condition range of the roughening treatment. It only needs to be in the range of 8 μm or less.

次に、本発明の基材付き絶縁シートについて説明する。
本発明の基材付き絶縁シートは、上記本発明の樹脂組成物を基材に担持させてなるものであり、樹脂組成物から形成される絶縁シートと、これを担持し且つ担持した絶縁シートを他の表面へ転写することが可能な基材とから構成されているものである。
Next, the insulating sheet with a substrate of the present invention will be described.
The insulating sheet with a base material of the present invention is formed by supporting the resin composition of the present invention on a base material, and includes an insulating sheet formed from the resin composition, and an insulating sheet that supports and supports the insulating sheet. It is comprised from the base material which can be transcribe | transferred to another surface.

ここで、樹脂組成物を基材に担持させる方法としては特に限定されないが、例えば、樹脂組成物を溶剤などに溶解・分散させて樹脂ワニスを調製して、各種コーター装置を用いて樹脂ワニスを基材に塗工した後、これを乾燥する方法、樹脂ワニスをスプレー装置を用いて基材に噴霧塗工した後、これを乾燥する方法、などが挙げられる。
これらの中でも、コンマコーター、ダイコーターなどの各種コーター装置を用いて、樹脂ワニスを基材に塗工した後、これを乾燥する方法が好ましい。これにより、ボイドがなく、均一な絶縁シート層の厚みを有する基材付き絶縁シートを効率よく製造することができる。
Here, the method of supporting the resin composition on the substrate is not particularly limited. For example, the resin varnish is prepared by dissolving and dispersing the resin composition in a solvent or the like, and using various coater devices. The method of drying this after apply | coating to a base material, the method of spraying the resin varnish to a base material using a spray apparatus, and drying this are mentioned.
Among these, it is preferable to apply a resin varnish to a substrate using various coaters such as a comma coater and a die coater and then dry the resin varnish. Thereby, the insulating sheet with a base material which has no void and has a uniform thickness of the insulating sheet layer can be efficiently produced.

上記樹脂ワニスの調製に用いられる溶剤としては特に限定されないが、例えば、アルコール類、エーテル類、アセタール類、ケトン類、エステル類、アルコールエステル類、ケトンアルコール類、エーテルアルコール類、ケトンエーテル類、ケトンエステル類、及び、エステルエーテル類などを用いることができる。
上記樹脂ワニス中の固形分含有量としては特に限定されないが、30〜80重量%が好ましく、特に40〜70重量%が好ましい。
The solvent used for the preparation of the resin varnish is not particularly limited. For example, alcohols, ethers, acetals, ketones, esters, alcohol esters, ketone alcohols, ether alcohols, ketone ethers, ketones Esters and ester ethers can be used.
Although it does not specifically limit as solid content in the said resin varnish, 30 to 80 weight% is preferable and especially 40 to 70 weight% is preferable.

本発明の基材付き絶縁シートにおいて、樹脂組成物から構成される絶縁シートの厚さとしては特に限定されないが、10〜100μmであることが好ましい。さらに好ましくは20〜80μmである。これにより、この基材付き絶縁シートを用いて多層プリント配線板を製造する際に、内層回路の凹凸を充填して成形することができるとともに、好適な絶縁層厚みを確保することができる。また、基材付き絶縁シートにおいては、絶縁シートの割れ発生を抑え、裁断時の粉落ちを少なくすることができる。   In the insulating sheet with a substrate of the present invention, the thickness of the insulating sheet composed of the resin composition is not particularly limited, but is preferably 10 to 100 μm. More preferably, it is 20-80 micrometers. Thereby, when manufacturing a multilayer printed wiring board using this insulating sheet with a base material, while being able to fill and shape the unevenness | corrugation of an inner-layer circuit, suitable insulating layer thickness can be ensured. Moreover, in an insulating sheet with a base material, generation | occurrence | production of the crack of an insulating sheet can be suppressed and powder fall at the time of cutting can be decreased.

本発明の基材付き絶縁シートに用いられる基材としては特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂、フッ素系樹脂、ポリイミド樹脂などの耐熱性を有した熱可塑性樹脂フィルム、あるいは、銅及び/又は銅系合金、アルミ及び/又はアルミ系合金、鉄及び/又は鉄系合金、銀及び/又は銀系合金等の金属箔などを用いることができる。
上記基材の厚みとしては特に限定されないが、10〜70μmのものを用いると、基材付き絶縁シートを製造する際の取り扱い性が良好であり好ましい。
なお、本発明の基材付き絶縁シートを製造するにあたっては、絶縁シートと接合される側の基材表面の凹凸は極力小さいものであることが好ましい。これにより、本発明の作用を効果的に発現させることができる。
Although it does not specifically limit as a base material used for the insulating sheet with a base material of this invention, For example, polyester resin, such as a polyethylene terephthalate and a polybutylene terephthalate, a fluororesin, a thermoplastic resin film with heat resistance, such as a polyimide resin Alternatively, copper and / or a copper-based alloy, aluminum and / or an aluminum-based alloy, iron and / or an iron-based alloy, silver and / or a metal foil of a silver-based alloy, or the like can be used.
Although it does not specifically limit as thickness of the said base material, When the thing of 10-70 micrometers is used, the handleability at the time of manufacturing an insulating sheet with a base material is favorable, and it is preferable.
In addition, when manufacturing the insulating sheet with a base material of the present invention, it is preferable that the unevenness on the surface of the base material to be bonded to the insulating sheet is as small as possible. Thereby, the effect | action of this invention can be expressed effectively.

次に、本発明のプリプレグについて説明する。本発明のプリプレグは、上記本発明の樹脂組成物を、繊維基材に含浸させてなるものである。
本発明のプリプレグで用いられる繊維基材としては特に限定されないが、例えば、ガラス繊布、ガラス不繊布等のガラス繊維基材、ガラス以外の無機化合物から形成される繊布又は不繊布等の無機繊維基材、芳香族ポリアミド樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等の有機繊維から形成される有機繊維基材等が挙げられる。
これらの繊維基材の中でも、機械的強度が高く、吸水率が小さいことから、ガラス織布に代表されるガラス繊維基材が好ましい。
Next, the prepreg of the present invention will be described. The prepreg of the present invention is obtained by impregnating a fiber base material with the resin composition of the present invention.
Although it does not specifically limit as a fiber base material used by the prepreg of this invention, For example, inorganic fiber groups, such as glass fiber base materials, such as a glass fiber cloth and a glass non-woven cloth, a fiber cloth formed from inorganic compounds other than glass, or a non-fiber cloth Examples thereof include organic fiber base materials formed from organic fibers such as materials, aromatic polyamide resins, polyamide resins, aromatic polyester resins, polyester resins, polyimide resins, and fluororesins.
Among these fiber base materials, glass fiber base materials represented by glass woven fabric are preferable because of high mechanical strength and low water absorption.

本発明の樹脂組成物を繊維基材に含浸させる方法としては、例えば、樹脂組成物を溶媒に溶解あるいは分散させて樹脂ワニスを調製し、繊維基材を樹脂ワニスに浸漬する方法、各種コーター装置により樹脂ワニスを繊維基材に塗布する方法、樹脂ワニスをスプレー装置により繊維基材に吹き付け塗工する方法等が挙げられる。
これらの中でも、繊維基材を樹脂ワニスに浸漬する方法が好ましい。これにより、繊維基材に対する樹脂組成物の含浸性を向上させることができる。
なお、繊維基材を樹脂ワニスに浸漬する場合は、通常の含浸塗布装置を使用することができる。
Examples of the method of impregnating the fiber base material with the resin composition of the present invention include a method of preparing a resin varnish by dissolving or dispersing the resin composition in a solvent and immersing the fiber base material in the resin varnish, and various coater apparatuses. The method of apply | coating a resin varnish to a fiber base material by this, the method of spraying and applying a resin varnish to a fiber base material with a spray device, etc. are mentioned.
Among these, the method of immersing the fiber base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to the fiber base material can be improved.
In addition, when a fiber base material is immersed in a resin varnish, a normal impregnation coating device can be used.

上記樹脂ワニスに用いられる溶媒は特に限定されず、上記基材絶縁シートを作製する際と同じものを、ここでも用いることができる。
樹脂ワニス中の固形分濃度は特に限定されないが、40〜80重量%が好ましく、特に50〜70重量%が好ましい。これにより、樹脂ワニスの粘度を好適な水準とすることができ、繊維基材への含浸性を更に向上させることができる。
The solvent used for the resin varnish is not particularly limited, and the same solvent as used for producing the base insulating sheet can be used here.
The solid content concentration in the resin varnish is not particularly limited, but is preferably 40 to 80% by weight, and particularly preferably 50 to 70% by weight. Thereby, the viscosity of a resin varnish can be made into a suitable level, and the impregnation property to a fiber base material can further be improved.

本発明のプリプレグは、上記繊維基材に樹脂ワニスを含浸させ、必要に応じて樹脂組成物の含浸量を調整した後、所定温度、例えば80〜200℃で乾燥させることにより製造することができる。   The prepreg of the present invention can be produced by impregnating the fiber base with a resin varnish, adjusting the amount of impregnation of the resin composition as necessary, and then drying at a predetermined temperature, for example, 80 to 200 ° C. .

次に、本発明の多層プリント配線板について説明する。
上記多層プリント配線板は、内層回路板の片面又は両面に、本発明の基材付き絶縁シートから絶縁シートを転写して形成した絶縁層または本発明のプリプレグを積層し硬化させて形成した絶縁層を介して、導体回路を積層形成してなるものである。
上記基材付き絶縁シートを用いる場合の多層プリント配線板は、上記基材付き絶縁シートを内層回路板の片面又は両面に重ね合わせて加熱加圧成形してなるものである。
具体的には、上記本発明の基材付き絶縁シートの絶縁シート側と内層回路板とを合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形させてから、基材を剥離し、且つ、基材を剥離する前または後に絶縁シートを熱風乾燥装置等で加熱硬化させることにより得ることができる。
ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度60〜160℃、圧力0.2〜3MPaで実施することができる。また、加熱硬化させる条件としては特に限定されないが、温度140〜240℃、時間30〜120分間で実施することができる。
あるいは、上記本発明の基材付き絶縁シートの絶縁シート側を内層回路板に重ね合わせ、これを平板プレス装置などを用いて加熱加圧成形することにより得ることができる。ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度140〜240℃、圧力1〜4MPaで実施することができる。
なお、上記多層プリント配線板を得る際に用いられる内層回路板は、例えば、銅貼積層板の両面に、エッチング等により所定の導体回路を形成し、導体回路部分を黒化処理したものを好適に用いることができる。
Next, the multilayer printed wiring board of the present invention will be described.
The multilayer printed wiring board is an insulating layer formed by laminating and curing an insulating layer formed by transferring an insulating sheet from the insulating sheet with a base material of the present invention or a prepreg of the present invention on one or both surfaces of the inner circuit board. The conductor circuit is formed by stacking via.
In the case of using the insulating sheet with a base material, the multilayer printed wiring board is formed by heating and press-molding the insulating sheet with a base material on one or both surfaces of an inner layer circuit board.
Specifically, the insulating sheet side of the insulating sheet with a base material of the present invention and the inner circuit board are combined, vacuum-pressed using a vacuum pressure laminator device, etc., and then the base material is peeled off. And it can obtain by heat-hardening an insulating sheet with a hot air dryer etc. before or after peeling a base material.
Although it does not specifically limit as conditions to heat-press form here, if an example is given, it can implement at the temperature of 60-160 degreeC, and the pressure of 0.2-3 MPa. Moreover, it is although it does not specifically limit as conditions to heat-harden, It can implement in temperature 140-240 degreeC and time 30-120 minutes.
Alternatively, it can be obtained by superposing the insulating sheet side of the insulating sheet with a substrate of the present invention on an inner layer circuit board and heating and pressing it using a flat plate press or the like. Although it does not specifically limit as conditions to heat-press form here, For example, it can implement at the temperature of 140-240 degreeC, and the pressure of 1-4 MPa.
The inner layer circuit board used when obtaining the multilayer printed wiring board is preferably, for example, one in which a predetermined conductor circuit is formed by etching or the like on both surfaces of a copper-clad laminate and the conductor circuit portion is blackened. Can be used.

上記で得られた多層プリント配線板は、さらに、基材を剥離除去して絶縁層(すなわち絶縁シートが内層回路板に積層接着して形成された絶縁層)を露出させ、当該絶縁層の表面を過マンガン酸塩、重クロム酸塩等の酸化剤などにより粗化処理した後、金属メッキにより新たな導電配線回路を形成することができる。本発明の樹脂組成物から形成された絶縁層は、上記粗化処理工程において、微細な凹凸形状を高い均一性で多数形成することができ、また、絶縁層表面の平滑性が高いため、微細な配線回路を精度よく形成することができるものである。   The multilayer printed wiring board obtained above further peels and removes the substrate to expose the insulating layer (that is, the insulating layer formed by laminating and bonding the insulating sheet to the inner circuit board), and the surface of the insulating layer After roughening with an oxidizing agent such as permanganate or dichromate, a new conductive wiring circuit can be formed by metal plating. The insulating layer formed from the resin composition of the present invention can form a large number of fine irregularities with high uniformity in the roughening treatment step, and the insulating layer surface has high smoothness. A simple wiring circuit can be formed with high accuracy.

上記プリプレグを用いる場合の多層プリント配線板は、上記プリプレグを内層回路板の片面または両面に重ね合わせて加熱加圧成形してなるものである。
具体的には、内層回路板の内層回路面にプリプレグを重ね合わせて加熱加圧成形することにより、絶縁層を形成し、当該絶縁層の表面を過マンガン酸塩、重クロム酸塩等の酸化剤などにより粗化処理した後、金属メッキにより新たな導電配線回路を形成することができる。この方法は、絶縁層の積層とパターン状の金属メッキを行なう、いわゆるセミアディティブ法に準じた方法である。
In the case of using the prepreg, the multilayer printed wiring board is formed by superposing the prepreg on one side or both sides of the inner circuit board and heating and pressing.
Specifically, an insulating layer is formed by overlaying a prepreg on the inner layer circuit surface of the inner layer circuit board and heating and pressing, and the surface of the insulating layer is oxidized with permanganate, dichromate, etc. After roughening with an agent or the like, a new conductive wiring circuit can be formed by metal plating. This method is a method according to a so-called semi-additive method in which an insulating layer is laminated and patterned metal plating is performed.

プリプレグを用いる場合、いわゆるサブトラクティブ法に準じた方法で、プリプレグからなる絶縁層上に非パターン状の導体層を設け、それを所定の回路パターン状にエッチングすることにより導体回路を形成しても良い。
例えば、内層回路板の回路パターン上に、プリプレグからなる絶縁層を介して、片面銅貼り積層板又は銅箔そのものを、銅箔層が外側を向くように重ね合わせて加熱加圧成形して銅箔層を形成し、当該銅箔層の回路形成部をレジストにより保護した後、エッチングを行うことにより絶縁層上に導体回路を形成する。また、2枚の片面銅貼り積層板又は2枚の両面銅貼り積層板(但し積層体の内側を向く銅箔層はあらかじめ導体回路のパターン状に形成されている。)の間にプリプレグからなる絶縁層を介して非パターン状の銅箔層が外側を向くように接着積層した後、銅箔層のエッチングを行うことにより絶縁層上に導体回路を形成する方法もある。
When a prepreg is used, a conductor circuit may be formed by providing a non-patterned conductor layer on an insulating layer made of prepreg and etching it into a predetermined circuit pattern by a method according to a so-called subtractive method. good.
For example, on a circuit pattern of an inner layer circuit board, a single-sided copper-clad laminate or copper foil itself is superposed on a circuit pattern of a prepreg so that the copper foil layer faces outside, and then heated and pressed to form a copper After forming a foil layer and protecting the circuit forming part of the copper foil layer with a resist, a conductor circuit is formed on the insulating layer by etching. Further, it is made of a prepreg between two single-sided copper-clad laminates or two double-sided copper-clad laminates (however, the copper foil layer facing the inside of the laminate is formed in a conductor circuit pattern in advance). There is also a method in which a conductor circuit is formed on an insulating layer by etching the copper foil layer after bonding and laminating so that the non-patterned copper foil layer faces outward through the insulating layer.

さらに、内層回路板の基板としてプリプレグを用いてもよい。この場合、プリプレグの両面または片面に銅箔を積層し、加熱加圧成形することにより、片面または両面銅貼り積層板を形成し、銅箔層の回路形成部をレジストにより保護した後、エッチングを行うことにより内層回路を形成する。
そして、本発明のプリプレグを用いて作製した内層回路板上に、上記基材付き絶縁シートまたはプリプレグを用いて絶縁層と導体回路を形成することにより、多層プリント配線板が得られる。
Furthermore, you may use a prepreg as a board | substrate of an inner layer circuit board. In this case, the copper foil is laminated on both sides or one side of the prepreg, and heated and pressed to form a single-sided or double-sided copper-clad laminate, and the circuit formation part of the copper foil layer is protected with a resist, and then etching is performed. By doing so, an inner layer circuit is formed.
And a multilayer printed wiring board is obtained by forming an insulating layer and a conductor circuit using the said insulating sheet with a base material or a prepreg on the inner-layer circuit board produced using the prepreg of this invention.

本発明によれば上述したとおり、内層回路板の片面または両面に、本発明の樹脂組成物の硬化物からなるか、または、本発明の樹脂組成物を繊維基材に含浸させてなるプリプレグの硬化物からなる絶縁層を備えた多層プリント配線板が得られる。内層回路板に形成された絶縁層は、上述した粗化処理を行なうことにより、表面粗さパラメータRvk値を0.1μm以上0.8μm以下の範囲に調節することができるので、めっき金属からなる導体回路を密着性よく形成することができ、且つ、電流速度の遅延や吸湿半田耐熱性の低下といった表面粗さが粗すぎる場合に生じる問題がない。   According to the present invention, as described above, a prepreg made of a cured product of the resin composition of the present invention or impregnating a fiber base material with the resin composition of the present invention on one surface or both surfaces of the inner layer circuit board. A multilayer printed wiring board having an insulating layer made of a cured product is obtained. The insulating layer formed on the inner circuit board is made of plated metal because the surface roughness parameter Rvk value can be adjusted in the range of 0.1 μm to 0.8 μm by performing the above-described roughening treatment. The conductor circuit can be formed with good adhesion, and there is no problem that occurs when the surface roughness is too rough, such as a delay in current speed and a decrease in moisture-absorbing solder heat resistance.

次に、本発明の多層プリント配線板を用いた半導体装置について説明する。
上記半導体装置は、上記多層プリント配線板に半導体チップを実装し、封止樹脂によって封止することによって製造する。半導体チップの実装方法、封止方法は特に限定されない。本発明の多層プリント配線板をパッケージ用基板として使用することにより、高密度実装が可能なうえ、信頼性に優れた半導体装置を製造することができる。
Next, a semiconductor device using the multilayer printed wiring board of the present invention will be described.
The semiconductor device is manufactured by mounting a semiconductor chip on the multilayer printed wiring board and sealing with a sealing resin. The semiconductor chip mounting method and sealing method are not particularly limited. By using the multilayer printed wiring board of the present invention as a substrate for a package, it is possible to manufacture a semiconductor device that can be mounted at high density and has excellent reliability.

以下、本発明を実施例および比較例により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

実施例及び比較例において用いた原材料は以下の通りである。
(1)無機充填材A/球状溶融シリカ:アドマテックス社製・「SO-C1」、平均粒子径0.3μm、比表面積17m/g
(2)無機充填材B/球状溶融シリカ:アドマテックス社製・「SO-25H」、平均粒子径0.5μm、比表面積6.25m/g
(3)カップリング剤A/エポキシシランカップリング剤:日本ユニカー社製・「A-187」
(4)カップリング剤B/アミノフェニルシランカップリング剤:信越シリコーン製・「KBM573」
(5)カップリング剤C/メルカプトシランカップリング剤:信越シリコーン製・「KBM803」
(6)エポキシ樹脂/ビフェニルジメチレン型エポキシ樹脂:日本化薬社製・「NC-3000」、エポキシ当量275、重量平均分子量1000
(7)フェノキシ樹脂A/ビフェニルエポキシ樹脂とビスフェノールSエポキシ樹脂との共重合体であり、末端部はエポキシ基を有している:ジャパンエポキシレジン社製・「YX-8100H30」、重量平均分子量30000)
(8)フェノキシ樹脂B/ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有している:ジャパンエポキシレジン社製・「jER4275」、重量平均分子量60000)
(9)シアネート樹脂/ノボラック型シアネート樹脂:ロンザ社製・「プリマセットPT-30」、重量平均分子量700
(10)硬化触媒/イミダゾール化合物:四国化成工業社製・「キュアゾール1B2PZ(1-ベンジル-2-フェニルイミダゾール)」
The raw materials used in Examples and Comparative Examples are as follows.
(1) Inorganic filler A / spherical fused silica: “SO-C1” manufactured by Admatechs, average particle size 0.3 μm, specific surface area 17 m 2 / g
(2) Inorganic filler B / spherical fused silica: “SO-25H” manufactured by Admatechs, average particle diameter of 0.5 μm, specific surface area of 6.25 m 2 / g
(3) Coupling agent A / epoxy silane coupling agent: Nippon Unicar Co., Ltd. “A-187”
(4) Coupling agent B / aminophenylsilane coupling agent: Shin-Etsu Silicone "KBM573"
(5) Coupling agent C / mercaptosilane coupling agent: Shin-Etsu Silicone "KBM803"
(6) Epoxy resin / biphenyl dimethylene type epoxy resin: Nippon Kayaku Co., Ltd. “NC-3000”, epoxy equivalent 275, weight average molecular weight 1000
(7) A copolymer of phenoxy resin A / biphenyl epoxy resin and bisphenol S epoxy resin, and the terminal portion has an epoxy group: “YX-8100H30” manufactured by Japan Epoxy Resin Co., Ltd., weight average molecular weight 30000 )
(8) Copolymer of phenoxy resin B / bisphenol A type epoxy resin and bisphenol F type epoxy resin, having terminal epoxy groups: “JER4275” manufactured by Japan Epoxy Resin Co., Ltd., weight average molecular weight 60000)
(9) Cyanate resin / Novolac type cyanate resin: “Primaset PT-30” manufactured by Lonza Corporation, weight average molecular weight 700
(10) Curing catalyst / imidazole compound: "Scazole 1B2PZ (1-benzyl-2-phenylimidazole)" manufactured by Shikoku Kasei Kogyo Co., Ltd.

<実施例1>
(1)樹脂ワニスの調製
エポキシ樹脂20重量部、フェノキシ樹脂A15重量部、シアネート樹脂25重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A40重量部とカップリング剤A0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
<Example 1>
(1) Preparation of resin varnish 20 parts by weight of epoxy resin, 15 parts by weight of phenoxy resin A, 25 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Furthermore, 40 parts by weight of inorganic filler A and 0.2 part by weight of coupling agent A were added and stirred for 10 minutes using a high-speed stirring device to prepare a resin varnish having a solid content of 50% by weight.

(2)基材付き絶縁シートの製造
上記で得られた樹脂ワニスを、厚さ25μmのPET(ポリエチレンテレフタレート)フィルムの片面に、コンマコーター装置を用いて乾燥後の絶縁フィルムの厚さが60μmとなるように塗工し、これを160℃の乾燥装置で10分間乾燥して、基材付き絶縁シートを製造した。
(2) Production of Insulating Sheet with Substrate The resin varnish obtained above is applied to one side of a PET (polyethylene terephthalate) film having a thickness of 25 μm, and the thickness of the insulating film after drying using a comma coater device is 60 μm. It coated so that it might become, and this was dried for 10 minutes with a 160 degreeC drying apparatus, and the insulating sheet with a base material was manufactured.

(3)多層プリント配線板1の製造
所定の内層回路が両面に形成された内層回路基板の表裏に、上記で得られた基材付き絶縁シートの絶縁シート面を内側にして重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させ、その後、熱風乾燥装置にて170℃で60分間加熱硬化行った。
なお、内層回路基板としては、下記のものを使用した。
・絶縁層:ハロゲンフリー FR-4材、厚さ0.4mm
・導体層:銅箔厚み18μm、L/S=120/180μm、クリアランスホール1mmφ、3mmφ、スリット2mm
(3) Manufacture of multilayer printed wiring board 1 On the front and back of the inner layer circuit board on which the predetermined inner layer circuit is formed on both sides, the insulating sheet surface of the insulating sheet with the base material obtained above is overlapped, and this is laminated. Then, using a vacuum pressurizing laminator apparatus, vacuum heating and pressing were performed at a temperature of 100 ° C. and a pressure of 1 MPa, and then heat curing was performed at 170 ° C. for 60 minutes in a hot air drying apparatus.
In addition, the following were used as the inner layer circuit board.
-Insulating layer: Halogen-free FR-4 material, thickness 0.4mm
Conductor layer: copper foil thickness 18 μm, L / S = 120/180 μm, clearance holes 1 mmφ, 3 mmφ, slit 2 mm

(4)多層プリント配線板2の製造
上記で得られた多層プリント配線板1から基材を剥離し、70℃の膨潤液(アトテックジャパン社製・「スウェリングディップ セキュリガント P」)に10分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製・「コンセントレート コンパクト CP」)に20分浸漬後、中和して粗化処理を行った。このときVeeco社製WYKO NT1100で表面粗さを測定したところ、Rvkは0.33μmであった。
これを脱脂、触媒付与、活性化の工程を経た後、無電解銅メッキ皮膜を厚さ約1μm、電気メッキ銅を厚さ30μm形成させ、熱風乾燥装置にて200℃で60分間アニール処理を行い、多層プリント配線板を得た。
(4) Manufacture of multilayer printed wiring board 2 A base material is peeled from the multilayer printed wiring board 1 obtained as described above, and the swelling liquid at 70 ° C. (manufactured by Atotech Japan, “Swelling Dip Securigant P”) is used for 10 minutes. It was immersed and further immersed in an aqueous potassium permanganate solution (manufactured by Atotech Japan, “Concentrate Compact CP”) at 80 ° C. for 20 minutes, followed by neutralization and roughening treatment. At this time, when the surface roughness was measured with WYKO NT1100 manufactured by Veeco, Rvk was 0.33 μm.
After passing through the steps of degreasing, applying a catalyst, and activating this, an electroless copper plating film is formed to a thickness of about 1 μm, and electroplated copper is formed to a thickness of 30 μm. A multilayer printed wiring board was obtained.

<実施例2>
エポキシ樹脂15重量部、フェノキシ樹脂B20重量部、シアネート樹脂25重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A40重量部とカップリング剤B0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは0.25μmであった。
<Example 2>
15 parts by weight of epoxy resin, 20 parts by weight of phenoxy resin B, 25 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Furthermore, 40 parts by weight of inorganic filler A and 0.2 part by weight of coupling agent B were added and stirred for 10 minutes using a high-speed stirring device to prepare a resin varnish having a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 0.25 μm.

<実施例3>
エポキシ樹脂20重量部、フェノキシ樹脂A20重量部、シアネート樹脂35重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A25重量部とカップリング剤C0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは0.35μmであった。
<Example 3>
20 parts by weight of epoxy resin, 20 parts by weight of phenoxy resin A, 35 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Furthermore, 25 parts by weight of inorganic filler A and 0.2 part by weight of coupling agent C were added and stirred for 10 minutes using a high-speed stirring device to prepare a resin varnish with a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 0.35 μm.

<実施例4>
エポキシ樹脂15重量部、フェノキシ樹脂B15重量部、シアネート樹脂20重量部、硬化触媒0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A50重量部とカップリング剤A0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは0.55μmであった。
<Example 4>
15 parts by weight of epoxy resin, 15 parts by weight of phenoxy resin B, 20 parts by weight of cyanate resin, and 0.2 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Further, 50 parts by weight of inorganic filler A and 0.2 part by weight of coupling agent A were added and stirred for 10 minutes using a high-speed stirring device to prepare a resin varnish having a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 0.55 μm.

<実施例5>
エポキシ樹脂10重量部、フェノキシ樹脂B5重量部、シアネート樹脂10重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A50重量部とカップリング剤A0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは0.75μmであった。
<Example 5>
10 parts by weight of epoxy resin, 5 parts by weight of phenoxy resin B, 10 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Further, 50 parts by weight of inorganic filler A and 0.2 part by weight of coupling agent A were added and stirred for 10 minutes using a high-speed stirring device to prepare a resin varnish having a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 0.75 μm.

<比較例1>
エポキシ樹脂25重量部、フェノキシ樹脂A10重量部、シアネート樹脂25重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材B40重量部とカップリング剤A0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは0.95μmであった。
<Comparative Example 1>
25 parts by weight of epoxy resin, 10 parts by weight of phenoxy resin A, 25 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Furthermore, 40 parts by weight of inorganic filler B and 0.2 part by weight of coupling agent A were added and stirred for 10 minutes using a high-speed stirring device to prepare a resin varnish having a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 0.95 μm.

<比較例2>
エポキシ樹脂20重量部、フェノキシ樹脂B30重量部、シアネート樹脂40重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A10重量部とカップリング剤0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは0.05μmであった。
<Comparative example 2>
20 parts by weight of epoxy resin, 30 parts by weight of phenoxy resin B, 40 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Furthermore, 10 parts by weight of the inorganic filler A and 0.2 parts by weight of the coupling agent were added, and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish having a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 0.05 μm.

<比較例3>
エポキシ樹脂5重量部、フェノキシ樹脂A5重量部、シアネート樹脂15重量部、硬化触媒0.05重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材A75重量部とカップリング剤0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
この樹脂ワニスを用い、実施例1と同様にして、基材付き絶縁シート及び多層プリント配線板1、2を得た。粗化処理後の表面粗さRvkは1.15μmであった。
<Comparative Example 3>
5 parts by weight of epoxy resin, 5 parts by weight of phenoxy resin A, 15 parts by weight of cyanate resin, and 0.05 parts by weight of curing catalyst were dissolved and dispersed in methyl ethyl ketone. Furthermore, 75 parts by weight of the inorganic filler A and 0.2 parts by weight of the coupling agent were added and stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish having a solid content of 50% by weight.
Using this resin varnish, an insulating sheet with a base material and multilayer printed wiring boards 1 and 2 were obtained in the same manner as in Example 1. The surface roughness Rvk after the roughening treatment was 1.15 μm.

実施例および比較例で得られた基材付き絶縁シート、及び、多層プリント配線板について、特性の評価を行った。結果を表1に示す。   The characteristics of the insulating sheets with base materials and multilayer printed wiring boards obtained in the examples and comparative examples were evaluated. The results are shown in Table 1.

Figure 0005353241
Figure 0005353241

評価方法は下記のとおりである。
(1)めっき剥離強度
多層プリント配線板2より、めっき銅の引き剥がし強度をJIS C-6481−1996に基づいて測定した。
(2)めっき膨れ
多層プリント配線板2を作成する際の無電解銅メッキ工程、電気メッキ銅形成工程、アニール処理工程のいずれの工程でも膨れを発生しなかったものを○、膨れの発生したものを×とした。
(3)吸湿半田耐熱性
多層プリント配線板2より、50mm×50mmの試料を採取し、片面全面と、もう片面の1/2の銅箔をエッチングして除去した。これを、125℃のプレッシャークッカーで2時間処理した後、260℃の半田槽に銅箔面を下にして180秒間浮かべ、膨れ・はがれの有無を確認した。膨れやはがれのないものを○、膨れやはがれの発生したものを×とした。
The evaluation method is as follows.
(1) Plating Peel Strength From the multilayer printed wiring board 2, the peel strength of the plated copper was measured based on JIS C-6481-1996.
(2) Plating bulges ○ Those that did not bulge in any of the electroless copper plating process, electroplated copper formation process, and annealing treatment process when creating the multilayer printed wiring board 2, those that swelled Was marked with x.
(3) Moisture-absorbing solder heat resistance A 50 mm x 50 mm sample was taken from the multilayer printed wiring board 2, and the entire surface on one side and 1/2 copper foil on the other side were removed by etching. This was treated with a 125 ° C. pressure cooker for 2 hours and then floated in a solder bath at 260 ° C. for 180 seconds with the copper foil face down to confirm the presence or absence of swelling / peeling. A sample without bulging or peeling was marked with ◯, and a sample with swelling or peeling was marked with ×.

実施例1〜5は、粗化処理後に表面粗さRvkが0.1μm以上0.8μm以下となる本発明の樹脂組成物と、これを用いた基材付き絶縁シート及び多層プリント配線板である。
実施例1〜5はいずれも、吸湿半田耐熱性が良く、メッキ金属のピール強度も良好でめっき膨れの発生しないものであった。
比較例1〜3は、粗化処理後の表面粗さRvkが0.8μmを超えたり、0.1μmに満たなかったりするため、めっきピール強度、めっき膨れ、及び吸湿半田耐熱性に問題があった。
Examples 1 to 5 are the resin composition of the present invention having a surface roughness Rvk of 0.1 μm or more and 0.8 μm or less after the roughening treatment, an insulating sheet with a substrate and a multilayer printed wiring board using the resin composition. .
In each of Examples 1 to 5, the moisture-absorbing solder heat resistance was good, the peel strength of the plated metal was good, and plating swelling did not occur.
In Comparative Examples 1 to 3, since the surface roughness Rvk after the roughening treatment exceeds 0.8 μm or less than 0.1 μm, there is a problem in plating peel strength, plating swelling, and moisture-absorbing solder heat resistance. It was.

Claims (7)

内層回路板の片面または両面に、樹脂組成物の硬化物からなる絶縁層を備えた多層プリント配線板であって、
前記樹脂組成物は、平均粒子径が0.01μm以上0.45μm以下である無機充填材を20重量%以上80重量%以下、重量平均分子量500以上5000以下のエポキシ樹脂を5重量%以上50重量%以下、重量平均分子量5000以上70000以下のフェノキシ樹脂を1重量%以上40重量%以下、及びシアネート樹脂及び/又はそのプレポリマーを含有し、
前記絶縁層は、前記樹脂組成物を加熱硬化した厚さ10〜100μmの硬化物を、ジエチレングリコールモノブチルエーテル20〜60wt%と水酸化ナトリウム0.1〜1.0wt%とを含む水溶液からなり且つ温度が50℃以上90℃以下の膨潤液に3〜20分間浸漬した後、過マンガン酸塩5.0〜15.0wt%と水酸化ナトリウム1.0〜10.0wt%とを含む水溶液からなり且つ温度が60℃以上90℃以下の粗化液に3〜40分間浸漬する、粗化処理条件内の少なくとも1つの条件によって粗化処理してなるものであり、該粗化処理後の表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とする、多層プリント配線板
A multilayer printed wiring board comprising an insulating layer made of a cured product of a resin composition on one or both surfaces of an inner layer circuit board ,
The resin composition comprises an inorganic filler having an average particle size of 0.01 μm or more and 0.45 μm or less, 20 wt% or more and 80 wt% or less, and an epoxy resin having a weight average molecular weight of 500 or more and 5000 or less 5 wt% or more and 50 wt%. 1% by weight to 40% by weight of a phenoxy resin having a weight average molecular weight of 5,000 to 70,000, and a cyanate resin and / or a prepolymer thereof,
The insulating layer is made of an aqueous solution containing 20 to 60 wt% diethylene glycol monobutyl ether and 0.1 to 1.0 wt% sodium hydroxide, and a temperature of a cured product having a thickness of 10 to 100 μm obtained by heat curing the resin composition. Is made of an aqueous solution containing 5.0 to 15.0 wt% permanganate and 1.0 to 10.0 wt% sodium hydroxide after being immersed in a swelling solution of 50 to 90 ° C for 3 to 20 minutes, The surface roughness after the roughening treatment is obtained by performing a roughening treatment under at least one of the roughening treatment conditions, which is immersed in a roughening solution having a temperature of 60 ° C or higher and 90 ° C or lower for 3 to 40 minutes. A multilayer printed wiring board having a parameter Rvk value of 0.1 μm or more and 0.8 μm or less .
内層回路板の片面または両面に、樹脂組成物を繊維基材に含浸させてなるプリプレグの硬化物からなる絶縁層を備えた多層プリント配線板であって、
前記樹脂組成物は、平均粒子径が0.01μm以上0.45μm以下である無機充填材を20重量%以上80重量%以下、重量平均分子量500以上5000以下のエポキシ樹脂を5重量%以上50重量%以下、重量平均分子量5000以上70000以下のフェノキシ樹脂を1重量%以上40重量%以下、及びシアネート樹脂及び/又はそのプレポリマーを含有し、
前記絶縁層は、前記プリプレグを加熱硬化した厚さ10〜100μmの硬化物を、ジエチレングリコールモノブチルエーテル20〜60wt%と水酸化ナトリウム0.1〜1.0wt%とを含む水溶液からなり且つ温度が50℃以上90℃以下の膨潤液に3〜20分間浸漬した後、過マンガン酸塩5.0〜15.0wt%と水酸化ナトリウム1.0〜10.0wt%とを含む水溶液からなり且つ温度が60℃以上90℃以下の粗化液に3〜40分間浸漬する、粗化処理条件内の少なくとも1つの条件によって粗化処理してなるものであり、該粗化処理後の表面粗さパラメータRvk値が0.1μm以上0.8μm以下であることを特徴とする、多層プリント配線板。
A multilayer printed wiring board comprising an insulating layer made of a cured product of a prepreg formed by impregnating a fiber base material with a resin composition on one side or both sides of an inner layer circuit board ,
The resin composition comprises an inorganic filler having an average particle size of 0.01 μm or more and 0.45 μm or less, 20 wt% or more and 80 wt% or less, and an epoxy resin having a weight average molecular weight of 500 or more and 5000 or less 5 wt% or more and 50 wt%. 1% by weight to 40% by weight of a phenoxy resin having a weight average molecular weight of 5,000 to 70,000, and a cyanate resin and / or a prepolymer thereof,
The insulating layer is made of an aqueous solution containing 20 to 60% by weight of diethylene glycol monobutyl ether and 0.1 to 1.0% by weight of sodium hydroxide as a cured product having a thickness of 10 to 100 μm obtained by heat-curing the prepreg. After being immersed for 3 to 20 minutes in a swelling liquid at a temperature of not lower than 90 ° C. and lower than or equal to 90 ° C., it is composed of an aqueous solution containing 5.0 to 15.0 wt% permanganate and 1.0 to 10.0 wt% sodium hydroxide and the temperature is The surface roughness parameter Rvk after the roughening treatment is obtained by performing a roughening treatment under at least one of the roughening treatment conditions, which is immersed in a roughening solution at 60 ° C or higher and 90 ° C or lower for 3 to 40 minutes. A multilayer printed wiring board having a value of 0.1 μm or more and 0.8 μm or less.
前記無機充填材の比表面積が8m/g以上200m/g以下である請求項1または2に記載の多層プリント配線板The multilayer printed wiring board according to claim 1 or 2 , wherein the inorganic filler has a specific surface area of 8 m 2 / g or more and 200 m 2 / g or less. 前記無機充填材が球状シリカである請求項1から3のいずれかに記載の多層プリント配線板The multilayer printed wiring board according to claim 1, wherein the inorganic filler is spherical silica. 前記樹脂組成物が、エポキシシランカップリング剤、アミノフェニルシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤およびビニルシランカップリング剤の中から選択される1種以上のシランカップリング剤を含有してなる請求項1から4のいずれかに記載の多層プリント配線板 The resin composition contains one or more silane coupling agents selected from epoxy silane coupling agents, aminophenyl silane coupling agents, amino silane coupling agents, mercapto silane coupling agents, and vinyl silane coupling agents. The multilayer printed wiring board according to any one of claims 1 to 4. 前記樹脂組成物が、硬化促進剤としてイミダゾール化合物を含有してなる請求項1から5のいずれかに記載の多層プリント配線板The multilayer printed wiring board according to claim 1 , wherein the resin composition contains an imidazole compound as a curing accelerator. 請求項1から6のいずれかに記載の多層プリント配線板をパッケージ用基板として用いてなる半導体装置。 A semiconductor device using the multilayer printed wiring board according to claim 1 as a package substrate.
JP2008538666A 2006-10-06 2007-10-02 Multilayer printed wiring board and semiconductor device Expired - Fee Related JP5353241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538666A JP5353241B2 (en) 2006-10-06 2007-10-02 Multilayer printed wiring board and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006274666 2006-10-06
JP2006274666 2006-10-06
JP2008538666A JP5353241B2 (en) 2006-10-06 2007-10-02 Multilayer printed wiring board and semiconductor device
PCT/JP2007/069303 WO2008044552A1 (en) 2006-10-06 2007-10-02 Resin composition, insulating sheet with base, prepreg, multilayer printed wiring board and semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2008044552A1 JPWO2008044552A1 (en) 2010-02-12
JP5353241B2 true JP5353241B2 (en) 2013-11-27

Family

ID=39282761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538666A Expired - Fee Related JP5353241B2 (en) 2006-10-06 2007-10-02 Multilayer printed wiring board and semiconductor device

Country Status (7)

Country Link
US (1) US8216668B2 (en)
JP (1) JP5353241B2 (en)
KR (1) KR101386373B1 (en)
CN (1) CN101522812B (en)
MY (1) MY154599A (en)
TW (1) TWI405805B (en)
WO (1) WO2008044552A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008087972A1 (en) 2007-01-16 2010-05-06 住友ベークライト株式会社 Insulating resin sheet laminate, multilayer printed wiring board formed by laminating the insulating resin sheet laminate
WO2009028493A1 (en) * 2007-08-28 2009-03-05 Sumitomo Bakelite Company, Ltd. Insulating resin composition for multilayer printed wiring board, insulating resin sheet with base material, multilayer printed wiring board, and semiconductor device
US20110205721A1 (en) * 2008-10-29 2011-08-25 Tadasuke Endo Resin composition, resin sheet, prepreg, laminate, multilayer printed wiring board, and semiconductor device
TWI477549B (en) * 2009-02-06 2015-03-21 Ajinomoto Kk Resin composition
JP5732729B2 (en) * 2009-03-31 2015-06-10 住友ベークライト株式会社 Resin composition for wiring board and resin sheet for wiring board
KR101708941B1 (en) * 2009-10-14 2017-02-21 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device
TWI560223B (en) 2009-12-25 2016-12-01 Hitachi Chemical Co Ltd Thermal curable resin composition, fabricating method of resin composition varnish, perpreg and laminated board
TW201204548A (en) * 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
JP5545983B2 (en) * 2010-05-10 2014-07-09 電気化学工業株式会社 Substrate manufacturing method and circuit board manufacturing method
JP5429054B2 (en) * 2010-06-01 2014-02-26 住友ベークライト株式会社 Resin composition, metal foil with resin, and metal base substrate
TW201220977A (en) * 2010-07-01 2012-05-16 Sumitomo Bakelite Co Preppreg, circuit board, and semiconductor device
CN103052501B (en) * 2010-07-30 2015-08-26 京瓷株式会社 Insulating trip, its manufacture method and have employed the manufacture method of structure of this insulating trip
WO2012017571A1 (en) * 2010-08-05 2012-02-09 住友ベークライト株式会社 Functional particle, group of functional particles, filler, resin composition for electronic part, electronic part, and semiconductor device
JP2012089750A (en) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd Thermosetting resin composition for sealing and filling semiconductor, and semiconductor device
JP2012153814A (en) * 2011-01-26 2012-08-16 Sumitomo Bakelite Co Ltd Epoxy resin composition
JP5891644B2 (en) * 2011-08-05 2016-03-23 日立化成株式会社 Adhesive film, multilayer printed wiring board using the adhesive film, and method for producing the multilayer printed wiring board
WO2013005847A1 (en) 2011-07-07 2013-01-10 日立化成工業株式会社 Adhesive film, multilayer printed wiring board using adhesive film, and method for manufacturing multilayer printed wiring board
JP6343884B2 (en) * 2012-09-03 2018-06-20 味の素株式会社 Hardened body, laminate, printed wiring board, and semiconductor device
KR102116962B1 (en) 2013-06-25 2020-05-29 삼성전자주식회사 A semiconductor package
CN103342037B (en) * 2013-07-17 2015-07-22 广东生益科技股份有限公司 Production method for improving roughness of one surface of reinforcement plate
JP5881179B2 (en) * 2013-08-28 2016-03-09 信越化学工業株式会社 Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
KR20150037114A (en) * 2013-09-30 2015-04-08 삼성전기주식회사 Surface modified inorganic filler, method for manufacturing the same, epoxy resin composition and insulating film including the same
JP6528352B2 (en) * 2014-03-13 2019-06-12 住友ベークライト株式会社 Method of manufacturing laminated board, method of manufacturing printed wiring board
JP6156479B2 (en) * 2015-12-21 2017-07-05 日立化成株式会社 Adhesive film, multilayer printed wiring board using the adhesive film, and method for producing the multilayer printed wiring board
KR101910332B1 (en) * 2016-01-27 2018-10-19 카부시기가이샤 신키쥬쯔 겐규죠 Copper or copper alloy articles comprising a surface-modified polyester-based resin and manufacturing method thereof
TWI611069B (en) * 2016-02-16 2018-01-11 聖高拜塑膠製品公司 Composite and method for making
KR102245529B1 (en) * 2016-03-30 2021-04-30 아사히 가세이 가부시키가이샤 Resin composite film containing cellulose fine fiber layer
KR102608521B1 (en) * 2016-05-27 2023-12-04 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same
KR102478431B1 (en) * 2017-03-30 2022-12-15 쇼와덴코머티리얼즈가부시끼가이샤 Prepreg manufacturing method, prepreg, laminated board, printed wiring board and semiconductor package
JP6511614B2 (en) 2017-08-02 2019-05-15 株式会社新技術研究所 Composite of metal and resin
JP6879981B2 (en) * 2018-08-30 2021-06-02 第一工業製薬株式会社 Insulating sheet and battery pack
CN109536254B (en) * 2018-11-27 2021-09-14 苏州金钼润成润滑科技有限公司 Adamantane nitrogen molybdenum lubricant and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111547A (en) * 1997-04-17 1999-01-06 Ajinomoto Co Inc Epoxy resin composition and production of multi-layered printed-wiring board using the same
JPH1187927A (en) * 1996-12-26 1999-03-30 Ajinomoto Co Inc Inter-layer adhesive film for multilayered printed wiring board and multilayered printed wiring board using the same
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
WO2003047324A1 (en) * 2001-11-30 2003-06-05 Ajinomoto Co., Inc. Method of laminating circuit board and method of forming insulation layer, multilayer printed wiring board and production method therefor and adhesion film for multilayer printed wiring board
JP2005154727A (en) * 2003-05-27 2005-06-16 Ajinomoto Co Inc Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
WO2005092945A1 (en) * 2004-03-29 2005-10-06 Sumitomo Bakelite Co., Ltd. Resin composition, metal foil with resin, insulating sheet with base material and multilayer printed wiring board
JP2005285540A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Insulation sheet, insulation sheet with base material, and multilayer printed circuit board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993065B2 (en) * 1990-07-27 1999-12-20 三菱瓦斯化学株式会社 Metal foil-clad laminate with smooth surface
JP3166442B2 (en) 1993-10-01 2001-05-14 株式会社日立製作所 Multilayer wiring board and method of manufacturing the same
ID19337A (en) * 1996-12-26 1998-07-02 Ajinomoto Kk INTER-PLATIN ADHESIVE FILM FOR MANUFACTURING BOARDS OF MOLD PLATED CABLES AND MANY MOLD PLATE CABLES USING THIS FILM
JP2002241473A (en) * 2001-02-16 2002-08-28 Taiyo Ink Mfg Ltd Thermosetting epoxy resin composition and its molding and multilayer printed wiring board
JP2004134693A (en) * 2002-10-15 2004-04-30 Toppan Printing Co Ltd Manufacturing method of multilayer printed circuit board
TWI335347B (en) * 2003-05-27 2011-01-01 Ajinomoto Kk Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP2005244150A (en) * 2004-01-28 2005-09-08 Ajinomoto Co Inc Resin composition, adhesive film using it, and multi-layer printed wiring board
JP5011641B2 (en) * 2004-01-28 2012-08-29 味の素株式会社 Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187927A (en) * 1996-12-26 1999-03-30 Ajinomoto Co Inc Inter-layer adhesive film for multilayered printed wiring board and multilayered printed wiring board using the same
JPH111547A (en) * 1997-04-17 1999-01-06 Ajinomoto Co Inc Epoxy resin composition and production of multi-layered printed-wiring board using the same
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
WO2003047324A1 (en) * 2001-11-30 2003-06-05 Ajinomoto Co., Inc. Method of laminating circuit board and method of forming insulation layer, multilayer printed wiring board and production method therefor and adhesion film for multilayer printed wiring board
JP2005154727A (en) * 2003-05-27 2005-06-16 Ajinomoto Co Inc Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
WO2005092945A1 (en) * 2004-03-29 2005-10-06 Sumitomo Bakelite Co., Ltd. Resin composition, metal foil with resin, insulating sheet with base material and multilayer printed wiring board
JP2005285540A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Insulation sheet, insulation sheet with base material, and multilayer printed circuit board

Also Published As

Publication number Publication date
TW200833755A (en) 2008-08-16
US20100065315A1 (en) 2010-03-18
TWI405805B (en) 2013-08-21
MY154599A (en) 2015-06-30
JPWO2008044552A1 (en) 2010-02-12
CN101522812B (en) 2013-07-03
KR101386373B1 (en) 2014-04-16
US8216668B2 (en) 2012-07-10
KR20090075810A (en) 2009-07-09
WO2008044552A1 (en) 2008-04-17
CN101522812A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
JP5090635B2 (en) Resin composition, insulating sheet with substrate, and multilayer printed wiring board
JP5234195B2 (en) Prepreg, laminated board, printed wiring board, and semiconductor device
JP5085125B2 (en) Resin composition, metal foil with resin, insulating sheet with substrate and multilayer printed wiring board
JP2010174242A (en) Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
JP5130698B2 (en) Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP5703570B2 (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP2010031263A (en) Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2012153752A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2008258335A (en) Multilayer wiring board, and semiconductor package
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5594128B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5740941B2 (en) Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP4993031B2 (en) Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP2012019240A (en) Resin composite, insulation sheet with substrate and multilayer printed wiring board
JP2012153755A (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed circuit board and semiconductor device
JP2012158637A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2008143971A (en) Insulation resin composition, insulation resin sheet with substrate, multi-layer printed wiring board and semiconductor device
JP5929639B2 (en) Cyanate ester compound, resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP2012054573A (en) Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP5252109B2 (en) Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP2012131948A (en) Resin composition, prepreg, laminate plate, resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees