JP5011641B2 - Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board - Google Patents

Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board Download PDF

Info

Publication number
JP5011641B2
JP5011641B2 JP2004355092A JP2004355092A JP5011641B2 JP 5011641 B2 JP5011641 B2 JP 5011641B2 JP 2004355092 A JP2004355092 A JP 2004355092A JP 2004355092 A JP2004355092 A JP 2004355092A JP 5011641 B2 JP5011641 B2 JP 5011641B2
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
aromatic
melt viscosity
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004355092A
Other languages
Japanese (ja)
Other versions
JP2005240019A (en
Inventor
茂雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2004355092A priority Critical patent/JP5011641B2/en
Publication of JP2005240019A publication Critical patent/JP2005240019A/en
Application granted granted Critical
Publication of JP5011641B2 publication Critical patent/JP5011641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、電気絶縁材料として有用な熱硬化性樹脂組成物、該熱硬化性樹脂組成物からなら接着フィルム及び該熱硬化性樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板に関する。   The present invention relates to a thermosetting resin composition useful as an electrical insulating material, an adhesive film made of the thermosetting resin composition, and a multilayer printed wiring board in which an insulating layer is formed from a cured product of the thermosetting resin composition About.

近年、電子機器、通信機器等に用いられるプリント配線板には、演算処理速度の高速化、配線の高密度化の要求が強まっている。それに伴い多層プリント配線板の製造方法として、回路基板の導体層上に有機絶縁層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。現在ビルトアップ方式で使用されている絶縁樹脂としては、芳香族系エポキシ樹脂に活性水素を持つ硬化剤(例えば、フェノール系硬化剤、アミン系硬化剤、カルボン酸系硬化剤)を組み合わせたものが主に用いられている。これらの硬化剤で硬化させて得られる硬化物は、物性面でバランス良く優れるものの、エポキシ基と活性水素の反応によって極性の高いヒドロキシル基が発生することにより、耐湿性や誘電率、誘電正接などの電気特性の低下を招くというマイナス面がある。特に高周波領域で使用される多層プリント配線板では誘電正接の低い絶縁材料が求められているが、従来のエポキシ系樹脂を主成分とする絶縁材料では誘電正接(1GHz、23℃)の値が0.03〜0.02程度とするのが限界であった。   In recent years, printed wiring boards used in electronic devices, communication devices, and the like have been increasingly demanded for higher processing speed and higher wiring density. Accordingly, as a method for manufacturing a multilayer printed wiring board, a build-up manufacturing technique in which organic insulating layers are alternately stacked on a conductor layer of a circuit board has attracted attention. Insulating resins that are currently used in the built-up method include a combination of an aromatic epoxy resin and a curing agent having active hydrogen (for example, a phenolic curing agent, an amine curing agent, or a carboxylic acid curing agent). Mainly used. Cured products obtained by curing with these curing agents are excellent in physical properties, but with a highly polar hydroxyl group generated by the reaction of epoxy groups and active hydrogen, moisture resistance, dielectric constant, dielectric loss tangent, etc. There is a downside that this leads to a decrease in electrical characteristics. In particular, an insulating material having a low dielectric loss tangent is required for a multilayer printed wiring board used in a high frequency region, but a dielectric loss tangent (1 GHz, 23 ° C.) is 0 for an insulating material mainly composed of an epoxy resin. The limit was about 0.03 to 0.02.

一方、熱硬化性のシアナト基を有するシアネート化合物が誘電特性に優れた硬化物を与えることは古くから知られており、シアネート化合物を含有する熱硬化性樹脂組成物を回路基板の絶縁層に適用した例も知られている(例えば、特許文献1参照)。しかしながら、シアネート化合物を含む熱硬化性樹脂組成物で回路基板上に絶縁層を形成した場合、回路パターンの凹凸に由来する絶縁層表面の凹凸差が大きくなり、微細な回路形成が困難となっていた(図1参照)。従って、回路基板上に絶縁層を形成した際の絶縁層表面の平滑性に優れるシアネート化合物を含む熱硬化性樹脂組成物が求められていた。
国際公開第WO03/099952号パンフレット
On the other hand, it has long been known that a cyanate compound having a thermosetting cyanato group gives a cured product having excellent dielectric properties, and a thermosetting resin composition containing a cyanate compound is applied to an insulating layer of a circuit board. Such an example is also known (see, for example, Patent Document 1). However, when an insulating layer is formed on a circuit board with a thermosetting resin composition containing a cyanate compound, the unevenness of the surface of the insulating layer due to the unevenness of the circuit pattern becomes large, making it difficult to form a fine circuit. (See FIG. 1). Therefore, there has been a demand for a thermosetting resin composition containing a cyanate compound that is excellent in the smoothness of the insulating layer surface when an insulating layer is formed on a circuit board.
International Publication No. WO03 / 099952 Pamphlet

本発明は誘電特性に優れるシアネート化合物を含む熱硬化性樹脂組成物において、該組成物の硬化物により形成された絶縁層表面の平滑性を改善することにある。   An object of the present invention is to improve the smoothness of the surface of an insulating layer formed of a cured product of a thermosetting resin composition containing a cyanate compound having excellent dielectric properties.

本発明者らは、上記課題を解決するため鋭意検討した結果、シアネート化合物を含む熱硬化性樹脂組成物の硬化特性と硬化物(絶縁層)表面の平滑性に相関関係があることを見出し、該硬化特性は樹脂組成物の溶融粘度値で表すことができ、該溶融粘度値を特定の値に制御することにより、表面平滑性に優れる絶縁層が得られること見出し本発明を完成させた。すなわち本発明は以下の内容を含むものである。   As a result of intensive studies to solve the above problems, the present inventors have found that there is a correlation between the curing characteristics of the thermosetting resin composition containing the cyanate compound and the smoothness of the cured product (insulating layer) surface, The curing characteristics can be expressed by the melt viscosity value of the resin composition, and by controlling the melt viscosity value to a specific value, an insulating layer having excellent surface smoothness can be obtained, and the present invention has been completed. That is, the present invention includes the following contents.

[1] 1分子中に2以上の芳香族系シアネート化合物を含有する熱硬化性樹脂組成物であって、測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
[2] 1分子中に2以上の芳香族系シアネート化合物及び1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂を含有する熱硬化性樹脂組成物であって、測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
[3] 1分子中に2以上の芳香族系シアネート化合物、1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂及び重量平均分子量が5000乃至100000のフェノキシ樹脂を含有する熱硬化性樹脂組成物であって、測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
[4] 1分子中に2以上の芳香族系シアネート化合物、1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂及び重量平均分子量が5000乃至100000のビフェニル骨格を有するフェノキシ樹脂を含有する熱硬化性樹脂組成物であって、測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
[5] 熱硬化樹脂組成物中の芳香族系エポキシ樹脂のエポキシ基と芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3である上記[2]記載の熱硬化性樹脂組成物。
[6] 熱硬化樹脂組成物中の芳香族系エポキシ樹脂のエポキシ基と芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、芳香族系エポキシ樹脂と芳香族系シアネート化合物の合計量100重量部に対し、フェノキシ樹脂が3乃至40重量部の割合で配合されている上記[3]乃至[4]記載の熱硬化性樹脂組成物。
[7] 最低溶融粘度が10000(poise)未満であり、160℃における溶融粘度が20000(poise)以上である請求項1乃至6記載の熱硬化性樹脂組成物。
[8] 最低溶融粘度が8000(poise)未満であり、160℃における溶融粘度が50000(poise)以上である上記[1]乃至[6]記載の熱硬化性樹脂組成物。
[9] 最低溶融粘度を示す温度が80〜150℃である上記[1]乃至[8]記載の熱硬化性樹脂組成物。
[10] 最低溶融粘度を示す温度が90〜140℃である上記[1]乃至[8]記載の熱硬化性樹脂組成物。
[11] 最低溶融粘度を示す温度が90〜130℃である上記[1]乃至[8]記載の熱硬化性樹脂組成物。
[12] 上記[1]乃至[11]記載の熱硬化性樹脂組成物が支持フィルム上に層形成されていることを特徴とする接着フィルム。
[13] 下記工程(1)乃至(6);
(1)上記[12]記載の接着フィルムを回路基板の片面又は両面にラミネートする工程、
(2)支持フィルムを除去するか又はしないで、熱硬化性樹脂組成物を熱硬化し絶縁層を形成する工程、
(3)工程(2)で支持フィルムを除去しない場合に、これを除去するか又はしないで、回路基板に穴開けする工程、
(4)工程(2)及び(3)で支持フィルムを除去しない場合に、これを除去し、絶縁層表面を粗化する工程、
(5)絶縁層に導体層を形成する工程、及び
(6)導体層を回路形成する工程、
を経て得られる多層プリント配線板。
[14] 熱硬化が150℃〜220℃で20分〜180分の範囲で行われる上記[13]記載の多層プリント配線板。
[15] 熱硬化性樹脂組成物を熱硬化して得られた絶縁層表面の凹凸差が4.5μm以下である上記[13]又は[14]記載の多層プリント配線板。
[16] 下記工程(1)乃至(6);
(1)上記[12]記載の接着フィルムを回路基板の片面又は両面にラミネートする工程、
(2)支持フィルムを除去するか又はしないで、熱硬化性樹脂組成物を熱硬化し絶縁層を形成する工程、
(3)工程(2)で支持フィルムを除去しない場合に、これを除去するか又はしないで、回路基板に穴開けする工程、
(4)工程(2)及び(3)で支持フィルムを除去しない場合に、これを除去し、絶縁層表面を粗化する工程、
(5)絶縁層に導体層を形成する工程、及び
(6)導体層を回路形成する工程、
を経ることを特徴とする多層プリント配線板の製造方法。
[17] 熱硬化が150℃〜220℃で20分〜180分の範囲で行われる上記[16]記載の多層プリント配線板の製造方法。
[18] 熱硬化性樹脂組成物を熱硬化して得られた絶縁層表面の凹凸差が4.5μm以下である上記[16]又は[17]記載の多層プリント配線板の製造方法。
[1] A thermosetting resin composition containing two or more aromatic cyanate compounds in one molecule, under the conditions of a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg. A thermosetting resin composition having a minimum melt viscosity of less than 15000 (poise) and a melt viscosity at 160 ° C. of 15000 (poise) or more when dynamic viscoelasticity measurement is performed.
[2] A thermosetting resin composition containing two or more aromatic cyanate compounds in one molecule and an aromatic epoxy resin having two or more epoxy groups in one molecule, and a measurement start temperature of 60 ° C. When the dynamic viscoelasticity measurement was performed under the conditions of a heating rate of 5 ° C./min and a frequency of 1 Hz / deg, the minimum melt viscosity was less than 15000 (poise), and the melt viscosity at 160 ° C. was 15000 (poise). The thermosetting resin composition as described above.
[3] Thermosetting resin containing two or more aromatic cyanate compounds in one molecule, an aromatic epoxy resin having two or more epoxy groups in one molecule, and a phenoxy resin having a weight average molecular weight of 5000 to 100,000 The composition has a minimum melt viscosity of less than 15000 (poise) when dynamic viscoelasticity measurement is performed under the conditions of a measurement start temperature of 60 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg. A thermosetting resin composition having a melt viscosity at 160 ° C. of 15000 (poise) or more.
[4] Contains two or more aromatic cyanate compounds in one molecule, an aromatic epoxy resin having two or more epoxy groups in one molecule, and a phenoxy resin having a biphenyl skeleton having a weight average molecular weight of 5000 to 100,000. A thermosetting resin composition having a minimum melt viscosity of 15000 (poise) when dynamic viscoelasticity measurement is performed under conditions of a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg. ) And a thermosetting resin composition having a melt viscosity at 160 ° C. of 15000 (poise) or more.
[5] The thermosetting property according to the above [2], wherein the ratio of the epoxy group of the aromatic epoxy resin to the cyanate group of the aromatic cyanate compound in the thermosetting resin composition is 1: 0.5 to 1: 3. Resin composition.
[6] The ratio of the epoxy group of the aromatic epoxy resin to the cyanate group of the aromatic cyanate compound in the thermosetting resin composition is 1: 0.5 to 1: 3, and the aromatic epoxy resin and aromatic The thermosetting resin composition according to the above [3] to [4], wherein the phenoxy resin is blended at a ratio of 3 to 40 parts by weight with respect to 100 parts by weight of the total amount of the cyanate compound.
[7] The thermosetting resin composition according to any one of claims 1 to 6, wherein the minimum melt viscosity is less than 10,000 (poise) and the melt viscosity at 160 ° C is 20000 (poise) or more.
[8] The thermosetting resin composition according to any one of [1] to [6], wherein the minimum melt viscosity is less than 8000 (poise), and the melt viscosity at 160 ° C. is 50000 (poise) or more.
[9] The thermosetting resin composition according to the above [1] to [8], wherein the temperature showing the minimum melt viscosity is 80 to 150 ° C.
[10] The thermosetting resin composition according to the above [1] to [8], wherein the temperature showing the minimum melt viscosity is 90 to 140 ° C.
[11] The thermosetting resin composition according to the above [1] to [8], wherein the temperature showing the minimum melt viscosity is 90 to 130 ° C.
[12] An adhesive film, wherein the thermosetting resin composition according to the above [1] to [11] is layered on a support film.
[13] The following steps (1) to (6);
(1) A step of laminating the adhesive film according to the above [12] on one side or both sides of a circuit board,
(2) A step of thermosetting the thermosetting resin composition to form an insulating layer with or without removing the support film;
(3) If the support film is not removed in the step (2), a step of making a hole in the circuit board without removing the support film;
(4) a step of removing the support film in the steps (2) and (3), and removing the support film to roughen the surface of the insulating layer;
(5) a step of forming a conductor layer on the insulating layer, and (6) a step of forming a circuit of the conductor layer,
Multilayer printed wiring board obtained through
[14] The multilayer printed wiring board according to [13], wherein the thermosetting is performed at 150 to 220 ° C. for 20 to 180 minutes.
[15] The multilayer printed wiring board according to the above [13] or [14], wherein the unevenness of the surface of the insulating layer obtained by thermosetting the thermosetting resin composition is 4.5 μm or less.
[16] The following steps (1) to (6);
(1) A step of laminating the adhesive film according to the above [12] on one side or both sides of a circuit board,
(2) A step of thermosetting the thermosetting resin composition to form an insulating layer with or without removing the support film;
(3) If the support film is not removed in the step (2), a step of making a hole in the circuit board without removing the support film;
(4) a step of removing the support film in the steps (2) and (3), and removing the support film to roughen the surface of the insulating layer;
(5) a step of forming a conductor layer on the insulating layer, and (6) a step of forming a circuit of the conductor layer,
The manufacturing method of the multilayer printed wiring board characterized by passing through.
[17] The method for producing a multilayer printed wiring board according to the above [16], wherein the thermosetting is performed at 150 to 220 ° C. for 20 to 180 minutes.
[18] The method for producing a multilayer printed wiring board according to the above [16] or [17], wherein the unevenness of the surface of the insulating layer obtained by thermosetting the thermosetting resin composition is 4.5 μm or less.

本発明の熱硬化性樹脂組成物の硬化物は誘電特性に優れ、回路基板上に絶縁層を形成した場合、絶縁層表面の平滑性にも優れたものとなる。従って、本発明の熱硬化性樹脂組成物及びそれよりなる接着フィルムを用いれば、誘電特性に優れファインパターンの回路形成が可能な絶縁層を回路基板上に導入することができる。   The cured product of the thermosetting resin composition of the present invention has excellent dielectric properties, and when an insulating layer is formed on a circuit board, the smoothness of the insulating layer surface is also excellent. Therefore, if the thermosetting resin composition of the present invention and the adhesive film comprising the same are used, an insulating layer having excellent dielectric characteristics and capable of forming a fine pattern circuit can be introduced onto the circuit board.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」とは、1分子中に2以上のシアナト基を有し、かつ分子中に芳香環骨格を有するシアネート化合物をいう。1分子中に2以上のシアナト基を有する芳香族系シアネート化合物の好ましい例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、それらが一部トリアジン化したプレポリマー等を挙げることが出来る。これらのシアネート化合物は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。   The “aromatic cyanate compound having two or more cyanato groups in one molecule” in the present invention refers to a cyanate compound having two or more cyanato groups in one molecule and having an aromatic ring skeleton in the molecule. . Preferable examples of the aromatic cyanate compound having two or more cyanato groups in one molecule include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′- Examples thereof include methylene bis (2,6-dimethylphenyl cyanate), 4,4′-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, and prepolymers in which they are partially triazine. Or may be used in combination of two or more.

熱硬化性樹脂組成物中の、「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」の配合割合は、25重量%以上が好ましく、35〜90重量%の範囲が更に好ましい。   The blending ratio of the “aromatic cyanate compound having two or more cyanato groups in one molecule” in the thermosetting resin composition is preferably 25% by weight or more, and more preferably in the range of 35 to 90% by weight.

熱硬化性樹脂組成物中に含まれる熱硬化性樹脂としては、例えば、1分子中に2以上のエポキシ基を有するエポキシ樹脂、ビスマレイミド化合物とジアミン化合物の重合物、シアネートエステル化合物、ビスマレイミド化合物、ビスアリルナジド樹脂、ベンゾオキサジン化合物、ビニルベンジルエーテル化合物等の熱硬化樹脂を挙げることができる。熱硬化性樹脂は2種以上を混合して用いてもよい。   Examples of the thermosetting resin contained in the thermosetting resin composition include an epoxy resin having two or more epoxy groups in one molecule, a polymer of a bismaleimide compound and a diamine compound, a cyanate ester compound, and a bismaleimide compound. And thermosetting resins such as bisallyl nazide resin, benzoxazine compound and vinyl benzyl ether compound. Two or more thermosetting resins may be mixed and used.

なお、シアナト化合物は高温で比較的長時間の硬化を必要とするため、硬化温度を下げるためエポキシ樹脂と併用するのが好ましい。エポキシ樹脂のエポキシ基はシアネート化合物のシアナト基と反応しオキサゾリン環を形成する反応が主反応となるため、熱硬化後に誘電正接を損ねるヒドロキシル基の発生や、同じく誘電正接を損ねるシアナト基の残存も抑制される。エポキシ樹脂としては、1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂を好ましく用いることができる。   Since cyanate compounds require curing at a high temperature for a relatively long time, they are preferably used in combination with an epoxy resin in order to lower the curing temperature. Since the epoxy group of the epoxy resin reacts with the cyanate group of the cyanate compound to form an oxazoline ring, the main reaction is the occurrence of hydroxyl groups that impair the dielectric loss tangent after thermosetting, and the residual cyanate groups that also impair the dielectric loss tangent. It is suppressed. As the epoxy resin, an aromatic epoxy resin having two or more epoxy groups in one molecule can be preferably used.

「1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂」とは、1分子中に2以上のエポキシ基を有し、かつ分子中に芳香環骨格を有するエポキシ樹脂をいう。1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、さらにはこれらの臭素化エポキシ樹脂やリン変性エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。   “Aromatic epoxy resin having two or more epoxy groups in one molecule” refers to an epoxy resin having two or more epoxy groups in one molecule and an aromatic ring skeleton in the molecule. Preferred examples of the aromatic epoxy resin having two or more epoxy groups in one molecule include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and alkylphenol novolac. Type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, epoxidized product of condensate of phenols and aromatic aldehyde having phenolic hydroxyl group, naphthalene type epoxy resin, triglycidyl isocyanurate, and these Examples thereof include brominated epoxy resins and phosphorus-modified epoxy resins. These epoxy resins may be used alone or in combination of two or more.

熱硬化性樹脂組成物中のエポキシ樹脂とシアネート化合物の配合割合は、エポキシ樹脂1分子中に存在するエポキシ基とシアネート化合物1分子中に存在するシアナト基の割合が1:0.5乃至1:3とするのが好ましい。この範囲を外れると硬化後に残存する未反応のエポキシ基またはシアナト基により、十分に低い誘電正接値が得られない場合がある。なお、熱硬化性樹脂組成物中に「1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂」以外のエポキシ基を有する化合物、「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」以外のシアナト基を有する化合物が含まれる場合は、これらの成分も含めてエポキシ基とシアナト基の割合を上記の範囲内とする。すなわち、熱硬化性樹脂組成物中に存在するエポキシ基とシアナト基の割合を1:0.5乃至1:3とするのが好ましい。   The blending ratio of the epoxy resin and the cyanate compound in the thermosetting resin composition is such that the ratio of the epoxy group present in one molecule of the epoxy resin and the cyanate group present in one molecule of the cyanate compound is 1: 0.5 to 1: 3 is preferred. Outside this range, a sufficiently low dielectric loss tangent value may not be obtained due to unreacted epoxy groups or cyanate groups remaining after curing. In addition, compounds having an epoxy group other than “aromatic epoxy resin having two or more epoxy groups in one molecule” in the thermosetting resin composition, “aromatic having two or more cyanato groups in one molecule” In the case where a compound having a cyanate group other than the “system cyanate compound” is included, the ratio of the epoxy group and the cyanate group including these components is within the above range. That is, it is preferable that the ratio of epoxy groups and cyanato groups present in the thermosetting resin composition is 1: 0.5 to 1: 3.

熱硬化性樹脂組成物中の、「1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂」及び「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」の合計の配合割合は、25重量%以上が好ましく、30〜90重量%の範囲が更に好ましい。   Total formulation of “aromatic epoxy resin having two or more epoxy groups in one molecule” and “aromatic cyanate compound having two or more cyanato groups in one molecule” in the thermosetting resin composition The proportion is preferably 25% by weight or more, and more preferably in the range of 30 to 90% by weight.

なおシアネート化合物とエポキシ樹脂からなる樹脂組成物において、更にフェノキシ樹脂を配合することにより、硬化が促進され、熱硬化性樹脂組成物のポットライフが安定する。フェノキシ樹脂は2官能エポキシ樹脂とビスフェノール化合物の反応生成物からなるポリマーであり、分子中に存在するヒドロキシル基がエポキシ基とシアナト基の硬化促進作用を示すため、比較的低い硬化温度で十分な硬化物性(耐熱性、低誘電正接等)を発揮することが可能になると考えられる。なお、エポキシ樹脂がヒドロキシル基を有する場合は硬化促進作用が見られるものの、このようなヒドロキシル基は樹脂組成物のポットライフを悪化させることが知られている。またフェノキシ樹脂の配合により、エポキシ樹脂硬化物の酸化剤による粗化性が向上し、メッキにより形成された導体層の密着性も向上する。フェノキシ樹脂としては、「重量平均分子量が5000乃至100000のフェノキシ樹脂」を好ましく用いることができる。   In addition, in the resin composition which consists of a cyanate compound and an epoxy resin, hardening | curing is accelerated | stimulated by mix | blending a phenoxy resin further, and the pot life of a thermosetting resin composition will be stabilized. Phenoxy resin is a polymer composed of a reaction product of a bifunctional epoxy resin and a bisphenol compound, and the hydroxyl group present in the molecule exhibits a curing accelerating action of the epoxy group and cyanato group. It is considered that physical properties (heat resistance, low dielectric loss tangent, etc.) can be exhibited. In addition, although the hardening acceleration | stimulation effect is seen when an epoxy resin has a hydroxyl group, it is known that such a hydroxyl group will worsen the pot life of a resin composition. Further, the blending of the phenoxy resin improves the roughening property of the cured epoxy resin with an oxidizing agent, and also improves the adhesion of the conductor layer formed by plating. As the phenoxy resin, “phenoxy resin having a weight average molecular weight of 5000 to 100,000” can be preferably used.

重平均分子量が5000乃至100000であるフェノキシ樹脂の好ましい例としては、例えばビスフェノールAタイプのフェノトートYP50(東都化成(株)製)、E−1256(ジャパンエポキシレジン(株)製)の他、臭素化されたフェノキシ樹脂であるフェノトートYPB40(東都化成(株)製)などが挙げられる。特にビフェニル骨格を有する重量平均分子量が5000乃至100000であるフェノキシ樹脂が、耐熱性、耐湿性および硬化促進作用の点で好ましい。このようなフェノキシ樹脂の具体例としては、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製YX4000)と各種ビスフェノール化合物との反応生成物からなるフェノキシ樹脂である、YL6742BH30、YL6835BH40、YL6953BH30、YL6954BH30、YL6974BH30、YX8100BH30を挙げることができる。これらのフェノキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。   Preferable examples of the phenoxy resin having a weight average molecular weight of 5,000 to 100,000 are, for example, bisphenol A type phenototo YP50 (manufactured by Toto Kasei Co., Ltd.), E-1256 (manufactured by Japan Epoxy Resin Co., Ltd.), Phenototoy YPB40 (manufactured by Toto Kasei Co., Ltd.), which is a modified phenoxy resin. In particular, a phenoxy resin having a biphenyl skeleton and a weight average molecular weight of 5,000 to 100,000 is preferable in terms of heat resistance, moisture resistance, and curing acceleration. Specific examples of such phenoxy resins include YL6742BH30, YL6835BH40, YL6953BH30, YL6954BH30, and YL6974BH30, which are phenoxy resins composed of reaction products of biphenyl type epoxy resins (YX4000 manufactured by Japan Epoxy Resin Co., Ltd.) and various bisphenol compounds. , YX8100BH30. These phenoxy resins may be used alone or in combination of two or more.

重量平均分子量が5000乃至100000のフェノキシ樹脂は、硬化促進作用のほか接着フィルム及びプリプレグの可とう性を向上させこれらの取り扱いを容易にするとともに硬化物の機械的強度、可とう性も向上させる。また硬化物の酸化剤による粗化も可能となる。なお、フェノキシ樹脂の樹脂の重量平均分子量が5000未満であると、上記の効果が十分でなく、100000を超えるとエポキシ樹脂及び有機溶剤への溶解性が著しく低下し、実際上の使用が困難となる。   A phenoxy resin having a weight average molecular weight of 5,000 to 100,000 improves the flexibility of the adhesive film and the prepreg by facilitating the curing, and facilitates the handling thereof, and also improves the mechanical strength and flexibility of the cured product. Moreover, the roughening by the oxidizing agent of hardened | cured material is also attained. If the weight average molecular weight of the resin of the phenoxy resin is less than 5000, the above effect is not sufficient, and if it exceeds 100,000, the solubility in the epoxy resin and the organic solvent is remarkably lowered, and the practical use is difficult. Become.

フェノキシ樹脂の配合量については、その種類によっても異なるが、好ましくはエポキシ樹脂とシアネート化合物との合計量100重量部に対し3〜40重量部の範囲で配合される。特に5〜25重量部の範囲で配合するのが好ましい。3重量部未満であると樹脂組成物の硬化促進作用が十分でない場合が生じ、樹脂組成物を回路基板にラミネート(積層)する際、あるいはラミネートした樹脂組成物を熱硬化する際、樹脂の流動性が大きくなりすぎて絶縁層厚が不均一となる傾向にある。また導体層形成のための硬化物の粗化性も得られ難い傾向にある。一方、40重量部を超えると、フェノキシ樹脂の官能基が過剰に存在することになり、十分に低い誘電正接値が得られない傾向にあり、更には樹脂組成物を回路基板にラミネートする際の流動性が低すぎて回路基板に存在するビアホールやスルーホール内の樹脂充填が十分に行えなくなる傾向にある。   About the compounding quantity of a phenoxy resin, although it changes also with the kind, Preferably it mix | blends in 3-40 weight part with respect to 100 weight part of total amounts of an epoxy resin and a cyanate compound. It is particularly preferable to blend in the range of 5 to 25 parts by weight. If it is less than 3 parts by weight, the resin composition may not be sufficiently cured to promote curing. When the resin composition is laminated (laminated) on a circuit board or when the laminated resin composition is thermally cured, the resin flow Therefore, the insulating layer thickness tends to be non-uniform. In addition, the roughening property of the cured product for forming the conductor layer tends to be difficult to obtain. On the other hand, when the amount exceeds 40 parts by weight, the functional group of the phenoxy resin is excessively present, and there is a tendency that a sufficiently low dielectric loss tangent value cannot be obtained. Further, when the resin composition is laminated on a circuit board. The fluidity is too low, and there is a tendency that resin filling in via holes and through holes existing in the circuit board cannot be sufficiently performed.

熱硬化性樹脂組成物中の、「1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂」、「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」及び「重量平均分子量が5000乃至100000のフェノキシ樹脂」の3成分の合計の配合割合は、好ましくは25重量%以上、更に好ましくは30〜90重量%である。   “Aromatic epoxy resin having two or more epoxy groups in one molecule”, “Aromatic cyanate compound having two or more cyanato groups in one molecule” and “weight average” in the thermosetting resin composition The total blending ratio of the three components “phenoxy resin having a molecular weight of 5000 to 100,000” is preferably 25% by weight or more, more preferably 30 to 90% by weight.

本発明の熱硬化性樹脂組成物は、測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise:ポイズ)未満となるよう調整される。15000(poise)以上になると、接着フィルムの形態で回路基板に熱硬化性樹脂組成物をラミネートする際、樹脂の流動性が悪くなり、真空ラミネーターでの積層が困難となる。より好ましくは10000(poise)未満、更に好ましくは8000(poise)未満となるよう調整される。下限値は特に限定されないが、通常300(poise)以上、好ましくは500(poise)以上である。最低溶融粘度をこの範囲とするには、シアネート化合物の溶融粘度、及びエポキシ樹脂、フェノキシ樹脂等の併用する他の熱硬化性樹脂の溶融粘度、無機充填材の粒径及び配合量、並びにフィルム化する際の乾燥条件及び残留溶剤量等の条件を適宜調整することにより行われる。本発明の熱硬化性樹脂組成物が上記最低溶融粘度値を示す温度域は通常80〜150℃、好ましくは90〜140℃、更に好ましくは90〜130℃となる。   The thermosetting resin composition of the present invention has a minimum melt viscosity of 15000 (when the dynamic viscoelasticity measurement is performed under the conditions of a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg. It is adjusted to be less than (poise). When it becomes 15000 (poise) or more, when the thermosetting resin composition is laminated on the circuit board in the form of an adhesive film, the fluidity of the resin is deteriorated, and the lamination with the vacuum laminator becomes difficult. More preferably, it is adjusted to be less than 10,000 (poise), more preferably less than 8000 (poise). Although a lower limit is not specifically limited, Usually, 300 (poise) or more, Preferably it is 500 (poise) or more. In order to set the minimum melt viscosity within this range, the melt viscosity of the cyanate compound, the melt viscosity of other thermosetting resins used in combination such as epoxy resin and phenoxy resin, the particle size and blending amount of the inorganic filler, and film formation It is carried out by appropriately adjusting conditions such as drying conditions and residual solvent amount. The temperature range in which the thermosetting resin composition of the present invention exhibits the above-mentioned minimum melt viscosity value is usually 80 to 150 ° C, preferably 90 to 140 ° C, more preferably 90 to 130 ° C.

また、本発明の熱硬化性樹脂組成物は、開始温度60℃、昇温速度5℃/分で加熱した場合に、測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、160℃における溶融粘度が15000(poise)以上となるよう調整される。15000(poise)未満であると、熱硬化性樹脂組成物を回路基板にラミネート後、熱硬化した際に、表面の平滑性が著しく悪化する。より好ましくは20000(poise)以上、更に好ましくは50000(poise)以上なるように調整される。上限値は特に限定されないが、通常500万(poise)以下、好ましくは300万(poise)以下である。   In addition, when the thermosetting resin composition of the present invention is heated at a start temperature of 60 ° C. and a temperature increase rate of 5 ° C./min, the measurement start temperature is 60 ° C., the temperature increase rate is 5 ° C./min and the frequency is 1 Hz / deg. When the dynamic viscoelasticity measurement is performed under the above conditions, the melt viscosity at 160 ° C. is adjusted to be 15000 (poise) or more. When the temperature is less than 15000 (poise), the surface smoothness is significantly deteriorated when the thermosetting resin composition is laminated on the circuit board and then thermoset. More preferably, it is adjusted to 20000 (poise) or more, and more preferably 50000 (poise) or more. Although an upper limit is not specifically limited, Usually, it is 5 million (poise) or less, Preferably it is 3 million (poise) or less.

溶融粘度は動的粘弾性測定装置を使用して測定することができる。市販されている動的粘弾性測定装置としては、例えば、株式会社ユー・ビー・エム製 動的粘弾性測定装置Rheosol−G3000が挙げられる。   The melt viscosity can be measured using a dynamic viscoelasticity measuring device. Examples of the commercially available dynamic viscoelasticity measuring device include a dynamic viscoelasticity measuring device Rheosol-G3000 manufactured by UBM Co., Ltd.

160℃における溶融粘度の調整方法は特に限定されず、熱硬化性樹脂の硬化促進剤や硬化触媒等の添加量をコントロールすることにより調整することができる。硬化促進剤としては、例えばトリフェニルホスフィンなどの有機ホスフィン系化合物、2−エチル4−メチルイミダゾールなどのイミダゾール系化合物が挙げられる。硬化触媒としては、例えば有機金属化合物が挙げられる。本発明の熱硬化性樹脂がエポキシ樹脂を含む場合は、エポキシ樹脂組成物とシアネート化合物を併用した系で硬化触媒として用いられる有機金属化合物を好適に用いることができる。硬化促進剤又は硬化触媒の添加量が大きくなるほど硬化速度が速まり、160℃における溶融粘度値は増大する傾向にある。なお本発明においては熱硬化性樹脂組成物の最低溶融粘度が15000(poise)未満、好ましくは10000(poise)未満、更に好ましくは8000(poise)未満に調整されるが、シアネート化合物を主要成分とする熱硬化性樹脂組成物は硬化速度が遅いため、このように最低溶融粘度を低く設定した場合、160℃における溶融粘度の値も15000(poise)を下回る低い値を示す。従って、溶融粘度を15000(poise)以上とするには硬化促進剤や硬化触媒を添加するなどして硬化速度を速めることが必要である。一方、これらを必要以上に添加すると、最低溶融粘度も上昇する傾向にあるため、最低溶融粘度を15000(poise)未満の条件に保てなくなる。硬化促進剤又は硬化触媒の添加量は熱硬化性樹脂組成物の溶融粘度特性に応じて、上記条件を満たすよう適宜調整される。   The method for adjusting the melt viscosity at 160 ° C. is not particularly limited, and can be adjusted by controlling the addition amount of a curing accelerator or a curing catalyst of the thermosetting resin. Examples of the curing accelerator include organic phosphine compounds such as triphenylphosphine and imidazole compounds such as 2-ethyl 4-methylimidazole. Examples of the curing catalyst include organometallic compounds. When the thermosetting resin of the present invention contains an epoxy resin, an organometallic compound used as a curing catalyst in a system in which an epoxy resin composition and a cyanate compound are used in combination can be suitably used. The curing rate increases as the addition amount of the curing accelerator or the curing catalyst increases, and the melt viscosity value at 160 ° C. tends to increase. In the present invention, the minimum melt viscosity of the thermosetting resin composition is adjusted to less than 15000 (poise), preferably less than 10000 (poise), more preferably less than 8000 (poise). Since the thermosetting resin composition to be cured has a low curing rate, when the minimum melt viscosity is set to be low as described above, the value of the melt viscosity at 160 ° C. also shows a low value lower than 15000 (poise). Therefore, in order to increase the melt viscosity to 15000 (poise) or more, it is necessary to increase the curing rate by adding a curing accelerator or a curing catalyst. On the other hand, if these are added more than necessary, the minimum melt viscosity tends to increase, so that the minimum melt viscosity cannot be maintained under a condition of less than 15000 (poise). The addition amount of the curing accelerator or the curing catalyst is appropriately adjusted so as to satisfy the above conditions according to the melt viscosity characteristics of the thermosetting resin composition.

有機金属化合物としては、銅(II)アセチルアセトナート等の有機銅化合物、亜鉛(II)アセチルアセトナート等の有機亜鉛化合物、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト化合物などが挙げられる。   Organic metal compounds include organic copper compounds such as copper (II) acetylacetonate, organic zinc compounds such as zinc (II) acetylacetonate, organic compounds such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate. A cobalt compound etc. are mentioned.

本発明の熱硬化性樹脂組成物においては、必要により形成される絶縁層の熱膨張率を低下させるため、無機充填材を添加してもよい。無機充填材を添加する場合の添加量は、本発明におけるエポキシ樹脂組成物の特性や求める機能によっても異なるが、該熱硬化性樹脂組成物を100重量%とした場合、通常10〜75重量%、好ましくは20〜65重量%の範囲で配合される。   In the thermosetting resin composition of the present invention, an inorganic filler may be added in order to reduce the coefficient of thermal expansion of the insulating layer formed as necessary. The amount of the inorganic filler added depends on the properties of the epoxy resin composition and the desired function in the present invention. However, when the thermosetting resin composition is 100% by weight, it is usually 10 to 75% by weight. , Preferably 20 to 65% by weight.

無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。特にシリカが好ましい。無機充填材は平均粒径5μm以下のものが好ましい。平均粒径が5μmを超える場合、導体層に回路パターンを形成する際にファインパターンの形成を安定的行うのが困難になる場合がある。また無機充填材は耐湿性を向上させるため、シランカップリング剤等の表面処理剤で表面処理してあるものが好ましい。   Inorganic fillers include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, titanate Examples include strontium, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Silica is particularly preferable. The inorganic filler preferably has an average particle size of 5 μm or less. When the average particle diameter exceeds 5 μm, it may be difficult to stably form the fine pattern when forming the circuit pattern on the conductor layer. The inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance.

更に本発明の熱硬化性樹脂組成物には成分の他に、本発明の効果を阻害しない範囲で必要に応じて他の熱硬化性樹脂や熱可塑性樹脂、添加剤を用いることができる。熱硬化性樹脂としては、希釈剤としての単官能エポキシ樹脂の他、脂環式多官能エポキシ樹脂、ゴム変性エポキシ樹脂、エポキシ樹脂用硬化剤としての酸無水物系化合物、ブロックイソシアネート樹脂、キシレン樹脂、ラジカル発生剤と重合性樹脂などが挙げられる。熱可塑性樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂などが挙げられる。添加剤としては、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   Furthermore, in addition to the components, other thermosetting resins, thermoplastic resins, and additives can be used in the thermosetting resin composition of the present invention as necessary within a range that does not impair the effects of the present invention. Thermosetting resins include monofunctional epoxy resins as diluents, alicyclic polyfunctional epoxy resins, rubber-modified epoxy resins, acid anhydride compounds as curing agents for epoxy resins, block isocyanate resins, xylene resins , Radical generators and polymerizable resins. Examples of the thermoplastic resin include polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Additives include organic fillers such as silicon powder, nylon powder and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, polymer-based antifoaming or leveling agents, imidazole-based, thiazole-based additives Examples thereof include adhesion imparting agents such as triazoles and silane coupling agents, and coloring agents such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.

本発明における熱硬化硬化性樹脂組成物はシアネート化合物が主要成分として配合されるため、耐熱性及び電気特性に優れた硬化物を形成する。例えば、高周波領域に用いられるプリント配線板で求められる誘電正接の条件(例えば、測定周波数1GHz及び温度23℃の条件で0.015以下)を満足させる硬化物を形成させることが可能である。   Since the cyanate compound is mix | blended as a main component, the thermosetting resin composition in this invention forms the hardened | cured material excellent in heat resistance and an electrical property. For example, it is possible to form a cured product that satisfies a dielectric loss tangent condition (for example, 0.015 or less under the conditions of a measurement frequency of 1 GHz and a temperature of 23 ° C.) required for a printed wiring board used in a high frequency region.

本発明の接着フィルムは、熱硬化性樹脂組成物を有機溶剤に溶解して樹脂ワニスとした後、これを支持体であるベースフィルム(支持フィルム)上に塗布し、熱風吹き付け等の手段で溶剤を乾燥させることにより、本発明の接着フィルムを製造することができる。   The adhesive film of the present invention is obtained by dissolving a thermosetting resin composition in an organic solvent to form a resin varnish, and then applying the resin varnish onto a base film (support film) as a support, and then applying a solvent by means such as hot air spraying. By drying the adhesive film, the adhesive film of the present invention can be produced.

有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。有機溶剤は2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. And aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Two or more organic solvents may be used in combination.

当業者、簡単な実験により適宜、好適な乾燥条件を設定することができる。例えば30〜60重量%の有機溶剤を含むワニスを80〜100℃で3〜10分程度乾燥させることができる。エポキシ樹脂組成物に残存する有機溶剤の量は通常10重量%以下、好ましくは5重量%以下とする。   Those skilled in the art can appropriately set suitable drying conditions through simple experiments. For example, a varnish containing 30 to 60% by weight of an organic solvent can be dried at 80 to 100 ° C. for about 3 to 10 minutes. The amount of the organic solvent remaining in the epoxy resin composition is usually 10% by weight or less, preferably 5% by weight or less.

本発明の接着フィルムにおいては、好ましくは10〜200μm厚の支持フィルムに、エポキシ樹脂組成物層の厚みをラミネートする回路基板の導体厚以上で、好ましくは10〜150μmの範囲で層形成させる。   In the adhesive film of the present invention, the layer is preferably formed on a support film having a thickness of 10 to 200 [mu] m, not less than the conductor thickness of the circuit board on which the epoxy resin composition layer is laminated, preferably in the range of 10 to 150 [mu] m.

熱硬化性樹脂組成物層の支持フィルムが密着していない面には支持フィルムに準じた保護フィルムをさらに層形成することができる。保護フィルムの厚みは1〜40μmとするのが好ましい。保護フィルムで保護することにより、エポキシ樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。接着フィルムはロール状に巻きとって貯蔵することもできる。   A protective film according to the support film can be further formed on the surface of the thermosetting resin composition layer on which the support film is not adhered. The thickness of the protective film is preferably 1 to 40 μm. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the epoxy resin composition layer and scratches. The adhesive film can also be stored in a roll.

支持フィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。支持フィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   Support films include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes referred to as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, release paper, copper foil, aluminum A metal foil such as a foil can be used. The support film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

なおワニスの調製に用いる有機溶剤としては、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素、ジメチルホルムアミド、ジメチルアセトアミド等を挙げることができる。これらの有機溶剤は各々単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the organic solvent used for the preparation of the varnish include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, cellosolve, butyl cellosolve, and the like. Cellosolves, carbitols such as carbitol and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide and the like. These organic solvents may be used alone or in combination of two or more.

回路基板に用いられる基板としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用することができる。なお、本発明において回路基板とは上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層が交互に層形成してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも本発明にいう回路基板に含まれる。なお導体層表面は黒化処理等により予め粗化処理が施されていてもよい。   As the substrate used for the circuit substrate, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, or the like can be used. In the present invention, the circuit board refers to a circuit board formed with a patterned conductor layer (circuit) on one or both sides of the board. Further, the present invention also relates to a multilayer printed wiring board in which conductor layers and insulating layers are alternately formed, wherein one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned conductors (circuits). It is included in the circuit board. The surface of the conductor layer may be previously roughened by blackening or the like.

本発明の接着フィルムは真空ラミネーターにより好適に回路基板にラミネートすることができる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、日立テクノエンジニアリング(株)製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   The adhesive film of the present invention can be suitably laminated on a circuit board with a vacuum laminator. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination. Examples of commercially available vacuum laminators include a vacuum applicator manufactured by Nichigo-Morton, a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Techno-Engineering Co., Ltd., and Hitachi IC Corporation. Examples thereof include a vacuum laminator.

ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、接着フィルムを加圧及び加熱しながら回路基板に圧着する。ラミネートの条件は、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。ラミネート後、室温付近に冷却してから必要により支持フィルムを除去し、回路基板にラミネートされたエポキシ樹脂組成物を加熱硬化させる。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましい条件は160℃〜200℃で30〜120分である。離型処理の施された支持フィルムを使用した場合には、加熱硬化させた後に支持フィルムを除去してもよい。一方、金属箔を使用した場合は支持フィルムがそのまま導体層としても使用できることもあるため剥離する必要がない場合がある。 In the lamination, when the adhesive film has a protective film, the protective film is removed, and then the adhesive film is pressure-bonded to the circuit board while being pressurized and heated. The laminating condition is that the pressure is preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ), and the laminating is performed under a reduced pressure of 20 mmHg (26.7 hPa) or less. It is preferable to do this. After lamination, the support film is removed if necessary after cooling to near room temperature, and the epoxy resin composition laminated on the circuit board is cured by heating. The conditions for heat curing are selected in the range of 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, and more preferable conditions are 160 ° C. to 200 ° C. for 30 to 120 minutes. When a support film subjected to a release treatment is used, the support film may be removed after heat curing. On the other hand, when a metal foil is used, the support film may be used as it is as a conductor layer, so there is a case where it is not necessary to peel off.

このようにして本発明の接着フィルムを回路基板にラミネートし、熱硬化性樹脂組成物層を硬化して得られる絶縁層の表面は、その凹凸差を4.5μm以下とすることができ、平滑性に優れた絶縁層形成が可能である。なお絶縁層表面に導体層を形成するビルドアップ方式による回路パターン形成においては、その凹凸差が4.5μmを超えるとパターン形成用のドライフィルムがその凹凸に追従し難くなり、パターン形成が困難となる。   Thus, the surface of the insulating layer obtained by laminating the adhesive film of the present invention on the circuit board and curing the thermosetting resin composition layer can have an unevenness difference of 4.5 μm or less, and is smooth. It is possible to form an insulating layer with excellent properties. In the circuit pattern formation by the build-up method in which the conductor layer is formed on the surface of the insulating layer, if the unevenness difference exceeds 4.5 μm, it becomes difficult for the dry film for pattern formation to follow the unevenness, and the pattern formation is difficult. Become.

このように熱硬化性樹脂組成物の硬化物として絶縁層が形成された後、必要に応じて該絶縁層にドリル、レーザー等により穴開けを行いビアホールやスルーホールを形成してもよい。離型処理の施された支持フィルムを使用した場合には、穴開け工程後に支持フィルムを除去してもよい。   After the insulating layer is formed as a cured product of the thermosetting resin composition in this manner, a via hole or a through hole may be formed by drilling the insulating layer with a drill or a laser as necessary. When a support film that has been subjected to a mold release treatment is used, the support film may be removed after the perforating step.

次いで乾式メッキ又は湿式メッキにより導体層を形成する。乾式メッキとしては蒸着、スパッタリング、イオンプレーティング等の公知の方法が使用できる。湿式法の場合は、まず過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で硬化したエポキシ樹脂組成物層(絶縁層)の表面を粗化処理し、凸凹のアンカーを形成する。酸化剤としては特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として具体的には、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。   Next, a conductor layer is formed by dry plating or wet plating. As the dry plating, known methods such as vapor deposition, sputtering and ion plating can be used. In the case of the wet method, first, an epoxy resin composition layer cured with an oxidizing agent such as permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, etc. The surface of the (insulating layer) is roughened to form uneven anchors. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. Specifically, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used as a pattern forming method thereafter.

以下、実施例を示して本発明を具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to this.

ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)BA230S75、シアネート当量約232、不揮発分75%のメチルエチルケトン(MEK)ワニス)40重量部、ビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製 エピコート828EL)15重量部、ビフェニル骨格含有フェノキシ樹脂ワニス(ジャパンエポキシレジン(株)製 YL6954BH30、重量平均分子量38000、不揮発分30%のMEK/シクロヘキサノンワニス)30重量部、コバルト(II)アセチルアセトナートの1%N,N−ジメチルホルムアミド溶液4重量部、さらに球型シリカを40重量部添加し熱硬化性樹脂組成物ワニスを作製した。そのワニスを厚さ38μmのPETフィルム上に、乾燥後の厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た。   Prepolymer of bisphenol A dicyanate (Lonza Japan Co., Ltd. BA230S75, cyanate equivalent of about 232, methyl ethyl ketone (MEK) varnish with 75% non-volatile content), bisphenol A type epoxy resin (epoxy equivalent of 185, Japan Epoxy Resin Co., Ltd.) Epicoat 828EL) 15 parts by weight, biphenyl skeleton-containing phenoxy resin varnish (Japan Epoxy Resin Co., Ltd. YL6954BH30, weight average molecular weight 38000, nonvolatile content 30% MEK / cyclohexanone varnish) 30 parts by weight, cobalt (II) acetylacetonate A thermosetting resin composition varnish was prepared by adding 4 parts by weight of a 1% N, N-dimethylformamide solution and 40 parts by weight of spherical silica. The varnish was applied to a 38 μm thick PET film with a die coater so that the thickness after drying was 40 μm, and dried at 80 to 120 ° C. for 10 minutes to obtain an adhesive film.

実施例1記載のコバルト(II)アセチルアセトナートの1%N,N−ジメチルホルムアミド溶液を2重量部に変更する以外は全く同じ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た。   Except for changing the 1% N, N-dimethylformamide solution of cobalt (II) acetylacetonate described in Example 1 to 2 parts by weight, the exact same resin composition was dried on a PET film having a thickness of 38 μm after drying. It apply | coated with the die-coater so that thickness might be set to 40 micrometers, It was made to dry at 80-120 degreeC for 10 minutes, and the adhesive film was obtained.

参考例3>
ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)BA230S75、シアネート当量約232、不揮発分75%のMEKワニス)40重量部、Xylok型フェノール樹脂のビニルベンジルエーテル化物(昭和高分子(株)製SA−1X、不揮発分75%のトルエンワニス)40重量部、コバルト(II)アセチルアセトナートの1%N、N−ジメチルホルムアミド溶液4重量部、さらに球型シリカを40重量部添加し熱硬化性樹脂組成物ワニスを作製した。そのワニスを厚さ38μmのPETフィルム上に、乾燥後の厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た。
< Reference Example 3>
Prepolymer of bisphenol A dicyanate (Lonza Japan Co., Ltd. BA230S75, MEK varnish with cyanate equivalent of about 232, non-volatile content of 75%), vinylbenzyl etherified product of Xylok type phenol resin (SA-made by Showa High Polymer Co., Ltd.) 1X, toluene varnish with a non-volatile content of 75%) 40 parts by weight, 1% N of cobalt (II) acetylacetonate, 4 parts by weight of N-dimethylformamide solution, and 40 parts by weight of spherical silica are added to form a thermosetting resin composition. A product varnish was prepared. The varnish was applied to a 38 μm thick PET film with a die coater so that the thickness after drying was 40 μm, and dried at 80 to 120 ° C. for 10 minutes to obtain an adhesive film.

<比較例1>
実施例1記載のコバルト(II)アセチルアセトナートの1%N,N−ジメチルホルムアミド溶液を1重量部に変更する以外は全く同じ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た。
<Comparative Example 1>
Except that the 1% N, N-dimethylformamide solution of cobalt (II) acetylacetonate described in Example 1 was changed to 1 part by weight, the same resin composition was dried on a PET film having a thickness of 38 μm after drying. It apply | coated with the die-coater so that thickness might be set to 40 micrometers, and it was made to dry at 80-120 degreeC for 10 minutes, and the adhesive film was obtained.

<比較例2>
参考例3記載のコバルト(II)アセチルアセトナートの1%N,N−ジメチルホルムアミド溶液を1.5重量部に変更する以外は全く同じ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た。
<Comparative example 2>
Except that the 1% N, N-dimethylformamide solution of cobalt (II) acetylacetonate described in Reference Example 3 was changed to 1.5 parts by weight, the exact same resin composition was dried on a PET film having a thickness of 38 μm. It apply | coated with the die-coater so that latter thickness might be set to 40 micrometers, It was made to dry at 80-120 degreeC for 10 minutes, and the adhesive film was obtained.

<樹脂組成物の硬化挙動測定>
実施例1、2、参考例3及び比較例1、2で得られた接着フィルムの熱硬化性樹脂組成物層を(株)ユー・ビー・エム社製型式Rheosol-G3000を用いて、動的粘弾性を測定した。実施例1、2、及び比較例1の測定結果を図2に、参考例3及び比較例2の測定結果を図3に示す。測定は開始温度60℃から昇温速度5℃/分で、測定間隔温度2.5℃、振動数1Hz/degで測定した。最低溶融粘度値と160℃における溶融粘度値を表1に示す
<Measurement of curing behavior of resin composition>
The thermosetting resin composition layers of the adhesive films obtained in Examples 1 and 2 and Reference Example 3 and Comparative Examples 1 and 2 were dynamically obtained using model Rheosol-G3000 manufactured by UBM Co., Ltd. Viscoelasticity was measured. The measurement results of Examples 1 and 2 and Comparative Example 1 are shown in FIG. 2, and the measurement results of Reference Example 3 and Comparative Example 2 are shown in FIG. The measurement was performed at a temperature increase rate of 5 ° C./min from a starting temperature of 60 ° C., a measurement interval temperature of 2.5 ° C., and a frequency of 1 Hz / deg. Table 1 shows the minimum melt viscosity value and the melt viscosity value at 160 ° C.

Figure 0005011641
Figure 0005011641

<樹脂組成物の表面平坦性評価>
導体厚35μm、ライン/スペース=160μm/160μmの櫛歯パターンのテストクーポンに実施例1、2、参考例3及び比較例1、2で得られた接着フィルムを熱プレス付き真空ラミネーターにより、温度110℃、圧力5kgf/cm(49×10N/m)、気圧5mmHg(6.7hPa)以下、加圧時間が30秒の条件で真空ラミネートし、その後温度110℃、圧力5kgf/cm(49×10N/m)で60秒間熱プレスを行った。次いでPETフィルムを剥離し、170℃で30分間加熱硬化させた。その回路パターン上の絶縁層表面をレーザー干渉式表面形状測定器(Veeco社製、NT3300)により表面凹凸差を測定した。またIPC−TM650 2.5.5.9に準じて誘電率、誘電正接を測定した(23℃、測定周波数1GHz)。凹凸差(平均値:n=3)、誘電率及び誘電正接の測定結果を表2に示す。
<Evaluation of surface flatness of resin composition>
The adhesive films obtained in Examples 1, 2, Reference Example 3 and Comparative Examples 1 and 2 were applied to a test coupon having a comb-teeth pattern having a conductor thickness of 35 μm and a line / space = 160 μm / 160 μm, and a temperature of 110 ° C., a pressure 5kgf / cm 2 (49 × 10 4 N / m 2), pressure 5mmHg (6.7hPa) hereinafter, pressing time is vacuum laminated under conditions of 30 seconds, and then the temperature 110 ° C., a pressure 5 kgf / cm 2 Hot pressing was performed at (49 × 10 4 N / m 2 ) for 60 seconds. Next, the PET film was peeled off and cured by heating at 170 ° C. for 30 minutes. The surface unevenness difference of the insulating layer surface on the circuit pattern was measured by a laser interference type surface shape measuring instrument (Veeco, NT3300). The dielectric constant and dielectric loss tangent were measured according to IPC-TM650 2.5.5.9 (23 ° C., measurement frequency 1 GHz). Table 2 shows the measurement results of the unevenness difference (average value: n = 3), dielectric constant, and dielectric loss tangent.

Figure 0005011641
Figure 0005011641

表2から、本発明の接着フィルムを用いて回路基板上に形成された絶縁層は表面平滑性に優れ、かつ誘電特性にも優れることが分かる。   From Table 2, it can be seen that the insulating layer formed on the circuit board using the adhesive film of the present invention has excellent surface smoothness and excellent dielectric properties.

<実施例4>
銅箔35μm、板厚0.2mmのFR4両面銅張積層板から回路基板を作製し、実施例1で得られた接着フィルムを熱プレス付き真空ラミネーターにより、温度110℃、圧力5kgf/cm(49×10N/m)、気圧5mmHg(6.7hPa)以下、加圧時間が30秒の条件で真空ラミネートし、次いで温度110℃、圧力5kgf/cm(49×10N/m)で60秒間熱プレスを行い回路基板両面にラミネートした。その後、PETフィルムを剥離し、170℃で30分加熱硬化させた後、レーザーにより穴開けを行いビアホールを形成させ、次いで過マンガン酸塩のアルカリ性酸化剤で硬化したエポキシ樹脂組成物表面を粗化処理し、無電解及び電解メッキしサブトラクティブ法に従って4層プリント配線板を得た。その後、さらに180℃で90分アニール処理を行った。得られた導体層のピール強度は0.7kgf/cm(6.9×10N/m)であった。なお、ピール強度測定は日本工業規格(JIS) C6481に準じて評価し、導体メッキ厚は約30μmとした。得られた多層プリント配線板を260℃で60秒間はんだ浸漬し、はんだ耐熱性を観察したところ樹脂のデラミネーション、導体の剥がれ等の異常はなかった。
<Example 4>
A circuit board was produced from an FR4 double-sided copper clad laminate having a copper foil of 35 μm and a thickness of 0.2 mm, and the adhesive film obtained in Example 1 was heated at 110 ° C. under a pressure of 5 kgf / cm 2 (by a vacuum laminator with a hot press). 49 × 10 4 N / m 2 ), atmospheric pressure 5 mmHg (6.7 hPa) or less, and pressure lamination for 30 seconds, followed by vacuum lamination, then temperature 110 ° C., pressure 5 kgf / cm 2 (49 × 10 4 N / m In 2 ), heat pressing was performed for 60 seconds to laminate on both sides of the circuit board. After that, the PET film was peeled off and heated and cured at 170 ° C. for 30 minutes, then drilled with a laser to form via holes, and then the surface of the epoxy resin composition cured with a permanganate alkaline oxidizer was roughened. It processed, electrolessly and electroplated, and obtained the 4-layer printed wiring board according to the subtractive method. Thereafter, annealing was further performed at 180 ° C. for 90 minutes. The peel strength of the obtained conductor layer was 0.7 kgf / cm (6.9 × 10 2 N / m). The peel strength measurement was evaluated according to Japanese Industrial Standard (JIS) C6481, and the conductor plating thickness was about 30 μm. The obtained multilayer printed wiring board was immersed in solder at 260 ° C. for 60 seconds and the solder heat resistance was observed, and there was no abnormality such as resin delamination and conductor peeling.

本発明の熱硬化性樹脂組成物はシアネート化合物を主要成分とし、硬化物の誘電特性に優れるとともに、回路基板上に絶縁層を形成した場合、絶縁層表面の平滑性にも優れている。従って、本発明の熱硬化性樹脂組成物及びそれよりなる接着フィルムを用いれば、誘電特性に優れファインパターンの回路形成が可能な絶縁層を回路基板上に導入することができ、多層プリント配線板用の絶縁材料として極めて有用である。   The thermosetting resin composition of the present invention has a cyanate compound as a main component and is excellent in the dielectric properties of the cured product, and when the insulating layer is formed on the circuit board, it is also excellent in the smoothness of the surface of the insulating layer. Therefore, if the thermosetting resin composition of the present invention and the adhesive film comprising the same are used, an insulating layer having excellent dielectric characteristics and capable of forming a fine pattern circuit can be introduced on the circuit board, and the multilayer printed wiring board It is extremely useful as an insulating material for use.

回路基板上に形成された絶縁層の凹凸差を示す概念図である。It is a conceptual diagram which shows the uneven | corrugated difference of the insulating layer formed on the circuit board. 実施例1、2、及び比較例1の動的粘弾性測定の結果である(○:実施例1、□:実施例2、△:比較例1)。It is the result of the dynamic viscoelasticity measurement of Examples 1, 2 and Comparative Example 1 (◯: Example 1, □: Example 2, Δ: Comparative Example 1). 参考例3及び比較例2の動的粘弾性測定の結果である(□:参考例3、○:比較例2)。It is a result of the dynamic viscoelasticity measurement of Reference Example 3 and Comparative Example 2 (□: Reference Example 3, ○: Comparative Example 2).

Claims (16)

1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、重量平均分子量が5000乃至100000のフェノキシ樹脂及び有機コバルト化合物を含有する熱硬化性樹脂組成物であって、熱硬化性樹脂組成物中の芳香族系エポキシ樹脂のエポキシ基と芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、芳香族系エポキシ樹脂と芳香族系シアネート化合物の合計量100重量部に対し、フェノキシ樹脂が3乃至40重量部の割合で配合され、
熱硬化性樹脂組成物中の有機コバルト化合物が芳香族系シアネート化合物に対して金属換算で152〜306ppmの割合で配合され、
測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
Contains an aromatic cyanate compound having two or more cyanato groups in one molecule, an aromatic epoxy resin having two or more epoxy groups in one molecule, a phenoxy resin having a weight average molecular weight of 5000 to 100,000 and an organic cobalt compound The ratio of the epoxy group of the aromatic epoxy resin to the cyanate group of the aromatic cyanate compound in the thermosetting resin composition is 1: 0.5 to 1: 3. The phenoxy resin is blended at a ratio of 3 to 40 parts by weight with respect to 100 parts by weight of the total amount of the aromatic epoxy resin and the aromatic cyanate compound,
The organocobalt compound in the thermosetting resin composition is blended at a ratio of 152 to 306 ppm in terms of metal with respect to the aromatic cyanate compound,
When dynamic viscoelasticity measurement is performed under the conditions of a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min and a frequency of 1 Hz / deg, the minimum melt viscosity is less than 15000 (poise), and the melt viscosity at 160 ° C. Is a thermosetting resin composition having 15000 (poise) or more.
1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、重量平均分子量が5000乃至100000のビフェニル骨格を有するフェノキシ樹脂及び有機コバルト化合物を含有する熱硬化性樹脂組成物であって、熱硬化性樹脂組成物中の芳香族系エポキシ樹脂のエポキシ基と芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、芳香族系エポキシ樹脂と芳香族系シアネート化合物の合計量100重量部に対し、フェノキシ樹脂が3乃至40重量部の割合で配合され、
熱硬化性樹脂組成物中の有機コバルト化合物が芳香族系シアネート化合物に対して金属換算で152〜306ppmの割合で配合され、
測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
Aromatic cyanate compounds having two or more cyanato groups in one molecule, aromatic epoxy resins having two or more epoxy groups in one molecule, phenoxy resins having a biphenyl skeleton having a weight average molecular weight of 5000 to 100,000, and organic A thermosetting resin composition containing a cobalt compound , wherein the ratio of the epoxy group of the aromatic epoxy resin to the cyanate group of the aromatic cyanate compound in the thermosetting resin composition is 1: 0.5 to 1 : 3, and the total amount of aromatic epoxy resin and aromatic cyanate compound is 100 parts by weight, the phenoxy resin is blended in a proportion of 3 to 40 parts by weight,
The organocobalt compound in the thermosetting resin composition is blended at a ratio of 152 to 306 ppm in terms of metal with respect to the aromatic cyanate compound,
When dynamic viscoelasticity measurement is performed under the conditions of a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min and a frequency of 1 Hz / deg, the minimum melt viscosity is less than 15000 (poise), and the melt viscosity at 160 ° C. Is a thermosetting resin composition having 15000 (poise) or more.
1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、重量平均分子量が5000乃至100000のビフェニル骨格を有するフェノキシ樹脂及び、絶縁層表面の平滑性を改善するための有機コバルト化合物を含有する熱硬化性樹脂組成物であって、熱硬化性樹脂組成物中の芳香族系エポキシ樹脂のエポキシ基と芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、芳香族系エポキシ樹脂と芳香族系シアネート化合物の合計量100重量部に対し、フェノキシ樹脂が3乃至40重量部の割合で配合され、
熱硬化性樹脂組成物中の有機コバルト化合物が芳香族系シアネート化合物に対して金属換算で152〜306ppmの割合で配合され、
測定開始温度60℃、昇温速度5℃/分及び振動数1Hz/degの条件で動的粘弾性測定を行った場合に、最低溶融粘度が15000(poise)未満であり、160℃における溶融粘度が15000(poise)以上である熱硬化性樹脂組成物。
An aromatic cyanate compound having two or more cyanato groups in one molecule, an aromatic epoxy resin having two or more epoxy groups in one molecule, a phenoxy resin having a biphenyl skeleton having a weight average molecular weight of 5000 to 100,000, and A thermosetting resin composition containing an organocobalt compound for improving the smoothness of the insulating layer surface, the epoxy group of the aromatic epoxy resin in the thermosetting resin composition and the aromatic cyanate compound The ratio of the cyanato group is 1: 0.5 to 1: 3, and the phenoxy resin is blended at a ratio of 3 to 40 parts by weight with respect to 100 parts by weight of the total amount of the aromatic epoxy resin and the aromatic cyanate compound. ,
The organocobalt compound in the thermosetting resin composition is blended at a ratio of 152 to 306 ppm in terms of metal with respect to the aromatic cyanate compound,
When dynamic viscoelasticity measurement is performed under the conditions of a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min and a frequency of 1 Hz / deg, the minimum melt viscosity is less than 15000 (poise), and the melt viscosity at 160 ° C. Is a thermosetting resin composition having 15000 (poise) or more.
有機コバルト化合物が、コバルト(II)アセチルアセトナートである請求項1乃至3のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the organic cobalt compound is cobalt (II) acetylacetonate . 最低溶融粘度が10000(poise)未満であり、160℃における溶融粘度が20000(poise)以上である請求項1乃至4のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 4, wherein the minimum melt viscosity is less than 10,000 (poise) and the melt viscosity at 160 ° C is 20000 (poise) or more. 最低溶融粘度が8000(poise)未満であり、160℃における溶融粘度が50000(poise)以上である請求項1乃至5のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 5, wherein the minimum melt viscosity is less than 8000 (poise), and the melt viscosity at 160 ° C is 50000 (poise) or more. 最低溶融粘度を示す温度が80〜150℃である請求項1乃至6のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 6, wherein the temperature showing the lowest melt viscosity is 80 to 150 ° C. 最低溶融粘度を示す温度が90〜140℃である請求項1乃至7のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 7, wherein the temperature showing the lowest melt viscosity is 90 to 140 ° C. 最低溶融粘度を示す温度が90〜130℃である請求項1乃至8のいずれか1項記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 8, wherein a temperature showing a minimum melt viscosity is 90 to 130 ° C. 請求項1乃至9のいずれか1項記載の熱硬化性樹脂組成物が支持フィルム上に層形成されていることを特徴とする接着フィルム。 An adhesive film, wherein the thermosetting resin composition according to any one of claims 1 to 9 is layered on a support film. 下記工程(1)乃至(6);
(1)請求項10記載の接着フィルムを回路基板の片面又は両面にラミネートする工程、
(2)支持フィルムを除去するか又はしないで、熱硬化性樹脂組成物を熱硬化し絶縁層を形成する工程、
(3)工程(2)で支持フィルムを除去しない場合に、これを除去するか又はしないで、回路基板に穴開けする工程、
(4)工程(2)及び(3)で支持フィルムを除去しない場合に、これを除去し、絶縁層表面を粗化する工程、
(5)絶縁層に導体層を形成する工程、及び
(6)導体層を回路形成する工程、
を経て得られる多層プリント配線板。
The following steps (1) to (6);
(1) The step of laminating the adhesive film according to claim 10 on one or both sides of a circuit board,
(2) A step of thermosetting the thermosetting resin composition to form an insulating layer with or without removing the support film;
(3) If the support film is not removed in the step (2), a step of making a hole in the circuit board without removing the support film;
(4) a step of removing the support film in the steps (2) and (3), and removing the support film to roughen the surface of the insulating layer;
(5) a step of forming a conductor layer on the insulating layer, and (6) a step of forming a circuit of the conductor layer,
Multilayer printed wiring board obtained through
熱硬化が150℃〜220℃で20分〜180分の範囲で行われる請求項11記載の多層プリント配線板。 The multilayer printed wiring board according to claim 11, wherein the thermosetting is performed at 150 to 220 ° C. for 20 to 180 minutes. 熱硬化性樹脂組成物を熱硬化して得られた絶縁層表面の凹凸差が4.5μm以下である請求項11又は12記載の多層プリント配線板。 The multilayer printed wiring board according to claim 11 or 12, wherein the unevenness of the surface of the insulating layer obtained by thermosetting the thermosetting resin composition is 4.5 µm or less. 下記工程(1)乃至(6);
(1)請求項10記載の接着フィルムを回路基板の片面又は両面にラミネートする工程、
(2)支持フィルムを除去するか又はしないで、熱硬化性樹脂組成物を熱硬化し絶縁層を形成する工程、
(3)工程(2)で支持フィルムを除去しない場合に、これを除去するか又はしないで、
回路基板に穴開けする工程、
(4)工程(2)及び(3)で支持フィルムを除去しない場合に、これを除去し、絶縁層表面を粗化する工程、
(5)絶縁層に導体層を形成する工程、及び
(6)導体層を回路形成する工程、
を経ることを特徴とする多層プリント配線板の製造方法。
The following steps (1) to (6);
(1) The step of laminating the adhesive film according to claim 10 on one or both sides of a circuit board,
(2) A step of thermosetting the thermosetting resin composition to form an insulating layer with or without removing the support film;
(3) If the support film is not removed in step (2), do not remove it,
The process of drilling holes in the circuit board,
(4) a step of removing the support film in the steps (2) and (3), and removing the support film to roughen the surface of the insulating layer;
(5) a step of forming a conductor layer on the insulating layer, and (6) a step of forming a circuit of the conductor layer,
The manufacturing method of the multilayer printed wiring board characterized by passing through.
熱硬化が150℃〜220℃で20分〜180分の範囲で行われる請求項14記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to claim 14, wherein the thermosetting is performed at 150 to 220 ° C. for 20 to 180 minutes. 熱硬化性樹脂組成物を熱硬化して得られた絶縁層表面の凹凸差が4.5μm以下である請求項14又は15記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to claim 14 or 15, wherein the unevenness of the surface of the insulating layer obtained by thermosetting the thermosetting resin composition is 4.5 µm or less.
JP2004355092A 2004-01-28 2004-12-08 Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board Active JP5011641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355092A JP5011641B2 (en) 2004-01-28 2004-12-08 Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004019923 2004-01-28
JP2004019923 2004-01-28
JP2004355092A JP5011641B2 (en) 2004-01-28 2004-12-08 Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2005240019A JP2005240019A (en) 2005-09-08
JP5011641B2 true JP5011641B2 (en) 2012-08-29

Family

ID=35022073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355092A Active JP5011641B2 (en) 2004-01-28 2004-12-08 Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP5011641B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867642B2 (en) * 2005-12-28 2012-02-01 住友ベークライト株式会社 Solder resist resin composition, solder resist resin sheet, circuit board, circuit board manufacturing method, and semiconductor package using the circuit board.
JP2007294902A (en) * 2006-03-28 2007-11-08 Ngk Spark Plug Co Ltd Method for manufacturing wiring substrate
US8216668B2 (en) 2006-10-06 2012-07-10 Sumitomo Bakelite Company, Ltd. Resin composition, insulating sheet with base, prepreg, multilayer printed wiring board and semiconductor device
TWI455988B (en) * 2006-10-13 2014-10-11 Ajinomoto Kk Resin composition
JP4888147B2 (en) * 2007-02-13 2012-02-29 住友ベークライト株式会社 Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, method for producing multilayer printed wiring board, and semiconductor device
JP4464990B2 (en) 2007-05-22 2010-05-19 トヨタ自動車株式会社 Wiring board and manufacturing method thereof
JP2008294077A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Method of manufacturing wiring substrate and wiring substrate
CN101977984B (en) 2008-03-25 2014-03-26 住友电木株式会社 Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board and semiconductor device
KR20110009676A (en) * 2008-05-22 2011-01-28 에바라 유지라이토 가부시키가이샤 Method for conditioning insulating resin and its use
JP5545222B2 (en) 2008-12-25 2014-07-09 住友ベークライト株式会社 Resin composition, prepreg, resin sheet, metal-clad laminate, printed wiring board, multilayer printed wiring board, and semiconductor device
JP5540559B2 (en) * 2009-05-11 2014-07-02 デクセリアルズ株式会社 Method for producing film adhesive for circuit connection
TWI540170B (en) * 2009-12-14 2016-07-01 Ajinomoto Kk Resin composition
JP5303524B2 (en) * 2010-08-11 2013-10-02 積水化学工業株式会社 Epoxy resin material, laminated film and multilayer substrate
WO2012176423A1 (en) * 2011-06-21 2012-12-27 住友ベークライト株式会社 Laminated plate manufacturing method
KR101908166B1 (en) * 2011-06-21 2018-10-15 스미토모 베이클리트 컴퍼니 리미티드 Method for manufacturing laminated board
JP2013168395A (en) * 2012-02-14 2013-08-29 Taiyo Holdings Co Ltd Resin composition for plating resist, multilayer printed wiring board, and manufacturing method of multilayer printed wiring board
JP6225422B2 (en) * 2012-12-27 2017-11-08 味の素株式会社 Cured body, manufacturing method of cured body, laminate, printed wiring board, and semiconductor device
JP6229402B2 (en) * 2013-09-25 2017-11-15 味の素株式会社 Manufacturing method of multilayer printed wiring board
JP6459279B2 (en) * 2014-07-31 2019-01-30 味の素株式会社 Resin sheet
CN113528071B (en) * 2021-08-23 2022-09-06 黑龙江省科学院石油化学研究院 Low-dielectric epoxy adhesive and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848241B2 (en) * 1993-10-29 1999-01-20 松下電工株式会社 Epoxy resin composition for laminate and method for producing the same
JP2000345119A (en) * 1999-06-02 2000-12-12 Ajinomoto Co Inc Adhesive film and production of multilayered printed circuit board by using the same
JP2001303011A (en) * 2000-04-18 2001-10-31 Ajinomoto Co Inc Adhesive film and method for producing multilayered printed wiring board using the same
JPWO2003047324A1 (en) * 2001-11-30 2005-04-14 味の素株式会社 Adhesive film for multilayer printed wiring board and method for producing multilayer printed wiring board
JPWO2003099952A1 (en) * 2002-05-27 2005-10-20 味の素株式会社 Adhesive film and prepreg
JP2005244150A (en) * 2004-01-28 2005-09-08 Ajinomoto Co Inc Resin composition, adhesive film using it, and multi-layer printed wiring board

Also Published As

Publication number Publication date
JP2005240019A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4725704B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5605259B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP6024783B2 (en) Resin composition
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JP4983228B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP5505435B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP4992396B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5396805B2 (en) Epoxy resin composition
JP4423779B2 (en) Epoxy resin composition, adhesive film and prepreg using the composition, multilayer printed wiring board using the same, and method for producing the same
JP5573869B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5381764B2 (en) Resin composition
JP2018111827A (en) Epoxy resin composition
JP5029093B2 (en) Resin composition
JP5298852B2 (en) Resin composition
JPWO2003047324A1 (en) Adhesive film for multilayer printed wiring board and method for producing multilayer printed wiring board
JP5636962B2 (en) Resin composition
JP2010090237A (en) Epoxy resin composition
JPWO2008087890A1 (en) Thermosetting resin composition
WO2007097209A1 (en) Epoxy resin composition
US20050129895A1 (en) Adhesive film and prepreg
JPWO2003099952A1 (en) Adhesive film and prepreg
JP5293065B2 (en) Resin composition
JP2013234328A (en) Epoxy resin composition
US20050186434A1 (en) Thermosetting resin composition, adhesive film and multilayer printed wiring board using same
JP2002241590A (en) Flame-retardant epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5011641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250