JP4983228B2 - Resin composition for insulating layer of multilayer printed wiring board - Google Patents

Resin composition for insulating layer of multilayer printed wiring board Download PDF

Info

Publication number
JP4983228B2
JP4983228B2 JP2006320769A JP2006320769A JP4983228B2 JP 4983228 B2 JP4983228 B2 JP 4983228B2 JP 2006320769 A JP2006320769 A JP 2006320769A JP 2006320769 A JP2006320769 A JP 2006320769A JP 4983228 B2 JP4983228 B2 JP 4983228B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
insulating layer
curing agent
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006320769A
Other languages
Japanese (ja)
Other versions
JP2007254709A (en
Inventor
賢司 川合
茂雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2006320769A priority Critical patent/JP4983228B2/en
Publication of JP2007254709A publication Critical patent/JP2007254709A/en
Application granted granted Critical
Publication of JP4983228B2 publication Critical patent/JP4983228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多層プリント配線板の絶縁層形成に好適な、エポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition suitable for forming an insulating layer of a multilayer printed wiring board.

近年、電子機器の小型化、高性能化が進み、多層プリント配線板においては、ビルドアップ層が複層化され、配線の微細化及び高密度化も一層進んでいる。高密度の微細配線を形成するのに適した導体形成方法として、絶縁層表面を粗化処理後、無電解メッキで導体層を形成するアディティブ法と、無電解メッキと電解メッキで導体層を形成するセミアディティブ法が知られている。これらの方法においては、絶縁層とメッキ導体層(メッキ銅)との密着性は主に粗化処理によって形成された絶縁層表面(樹脂表面)の凹凸によって確保している(つまり、絶縁層表面(樹脂表面)が凹凸を有することでメッキ層との間にアンカー効果が得られる。)。従って、密着力を高めるには、絶縁層表面の凹凸の程度(粗度)をより大きくすることが考えられる。   In recent years, electronic devices have become smaller and higher in performance, and in multilayer printed wiring boards, the build-up layer has been multilayered, and the miniaturization and higher density of the wiring are further advanced. As a conductor formation method suitable for forming high-density fine wiring, the additive method of forming a conductor layer by electroless plating after roughening the surface of the insulating layer, and forming the conductor layer by electroless plating and electrolytic plating A semi-additive method is known. In these methods, the adhesion between the insulating layer and the plated conductor layer (plated copper) is ensured mainly by the unevenness of the insulating layer surface (resin surface) formed by the roughening treatment (that is, the insulating layer surface). An anchor effect is obtained between the plating layer and the (resin surface) having irregularities. Therefore, to increase the adhesion, it is conceivable to increase the degree of roughness (roughness) on the surface of the insulating layer.

しかしながら、配線のさらなる高密度化のためには絶縁層表面(樹脂表面)の粗度は小さいのが好ましい。即ち、無電解メッキ、電解メッキにより導体層(メッキ層)を形成後、フラッシュエッチングにより薄膜のメッキ層を取り除いて配線形成を完了させる際、絶縁層表面(樹脂表面)の粗度が大きいと、凹部に潜り込んだメッキ残渣(スミア)を取り除くために長時間のフラッシュエッチが必要となり、フラッシュエッチを長時間行うと、その影響で微細配線が損傷または断線する危険性が高くなってしまう。従って、高信頼性の高密度配線を形成するためには、絶縁層表面には粗化処理後の粗度が小さくてもメッキ導体との密着性に優れることが要求されるが、これまでこのような性状の粗化面を形成できる絶縁材料は開発されていない。   However, the roughness of the insulating layer surface (resin surface) is preferably small in order to further increase the wiring density. That is, after forming a conductor layer (plating layer) by electroless plating or electrolytic plating, and removing the thin plating layer by flash etching to complete wiring formation, if the roughness of the insulating layer surface (resin surface) is large, In order to remove the plating residue (smear) that has entered the recess, a long flash etching is required. If the flash etching is performed for a long time, the risk of damage or disconnection of the fine wiring increases. Therefore, in order to form a highly reliable high-density wiring, the insulating layer surface is required to have excellent adhesion to the plated conductor even if the roughness after the roughening treatment is small. An insulating material capable of forming such a roughened surface has not been developed.

特許文献1には、特定の2種類のエポキシ樹脂と、フェノール系硬化剤、特定の熱可塑性樹脂(ポリビニルアセタール、フェノキシ樹脂等)及び無機充填材を特定の割合で含むエポキシ樹脂組成物が、多層プリント配線板の絶縁層に使用した場合に、熱膨張率が低く、メッキにより形成される導体層のピール強度に優れることが開示されている。   Patent Document 1 discloses an epoxy resin composition containing two specific types of epoxy resins, a phenolic curing agent, a specific thermoplastic resin (polyvinyl acetal, phenoxy resin, etc.) and an inorganic filler in a specific ratio. It is disclosed that when used for an insulating layer of a printed wiring board, the coefficient of thermal expansion is low and the peel strength of a conductor layer formed by plating is excellent.

特許文献2には、エポキシ樹脂、多価ヒドロキシ樹脂硬化剤、ビスフェノールA型又はF型フェノキシ樹脂、特定のゴム成分および硬化促進剤を特定量含むエポキシ樹脂組成物が、多層プリント配線板の絶縁層等に使用した場合に、耐熱性、機械的強度、フィルム支持性等に優れることが開示されている。   Patent Document 2 discloses an epoxy resin composition containing a specific amount of an epoxy resin, a polyvalent hydroxy resin curing agent, a bisphenol A type or F type phenoxy resin, a specific rubber component and a curing accelerator, and an insulating layer of a multilayer printed wiring board. It is disclosed that it is excellent in heat resistance, mechanical strength, film supportability, and the like.

特許文献3には、エポキシ樹脂、特定のフェノールビフェニルアラルキル型樹脂硬化剤、特定のフェノキシ樹脂、特定のゴム成分、硬化促進剤を特定量含むエポキシ樹脂組成物が、多層プリント配線板の絶縁層等に使用した場合に、耐熱性、機械的強度、フィルム支持性等に優れることが開示されている。   Patent Document 3 includes an epoxy resin, a specific phenol biphenyl aralkyl type resin curing agent, a specific phenoxy resin, a specific rubber component, and an epoxy resin composition including a specific amount of a curing accelerator, an insulating layer of a multilayer printed wiring board, etc. It is disclosed that it is excellent in heat resistance, mechanical strength, film supportability, etc.

しかしながら、これら各種の樹脂組成物を開示する特許文献においても、絶縁層に用いた場合に、低粗度かつ高ピール強度となる樹脂組成物は開示されておらず、またそのような解決課題も提示されていない。   However, even in the patent documents disclosing these various resin compositions, a resin composition having low roughness and high peel strength when used in an insulating layer is not disclosed, and such a problem to be solved is also disclosed. Not presented.

特開2005−154727号公報JP 2005-154727 A 特開2003−286390号公報JP 2003-286390 A 特開2004−286391号公報JP 2004-286391 A

本発明は、上記のような事情に鑑みなされたもので、その解決しようとする課題は、多層プリント配線板の絶縁層としての使用に好適なエポキシ樹脂組成物であって、粗化処理後の粗化面の粗度が比較的小さいにもかかわらず、該粗化面がメッキ導体に対して高い密着力を示す絶縁層(層間絶縁層)を達成し得るエポキシ樹脂組成物を提供することである。   The present invention has been made in view of the above circumstances, and the problem to be solved is an epoxy resin composition suitable for use as an insulating layer of a multilayer printed wiring board, and after roughening treatment By providing an epoxy resin composition capable of achieving an insulating layer (interlayer insulating layer) in which the roughened surface exhibits high adhesion to the plated conductor even though the roughness of the roughened surface is relatively small is there.

本発明は、上記課題を解決すべく鋭意研究した結果、エポキシ樹脂に、フェノキシ樹脂、特定のフェノール系硬化剤及びゴム粒子を配合したエポキシ樹脂組成物において、該エポキシ樹脂を硬化して得られる硬化物を粗化処理すると、得られる粗化面は粗度が比較的小さくてもメッキ導体と高い密着力で密着し得るものとなることを見出し、本発明を完成するに至った。   The present invention, as a result of earnest research to solve the above problems, results in curing obtained by curing the epoxy resin in an epoxy resin composition in which an epoxy resin is blended with a phenoxy resin, a specific phenolic curing agent and rubber particles. When roughening the product, it was found that the roughened surface obtained can be in close contact with the plated conductor even with a relatively small roughness, and the present invention has been completed.

すなわち、本発明は以下の通りである。
[1] (A)1分子中に2個以上のエポキシ基を有するエポキシ樹脂、(B)1分子中の平均水酸基含有率P((総水酸基数/総ベンゼン環数)の平均値)が0<P<1であるフェノール系硬化剤、(C)フェノキシ樹脂、及び(D)ゴム粒子を含有することを特徴とする、エポキシ樹脂組成物。
[2] 成分(B)のフェノール系硬化剤が、下式(1)又は(2)で表されるフェノール系硬化剤である、上記[1]記載のエポキシ樹脂組成物。
(式中、R1〜R4は各々独立して、水素原子又はアルキル基を示し、X1はそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環、ナフタレン環又はヒドロキシナフタレン環を示し、Yはそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環又はビフェニル環を示し、j及びkはそれぞれ平均値で1〜15の数を示す。)
(式中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基又はチオアルキル基を示し、X2はそれぞれアルキル基で置換されていてもよい、ベンゼン環又はナフタレン環を示し、j及びkはそれぞれ平均値で1〜15の数を示し、mは1〜5の整数を示す。)
[3] 成分(B)のフェノール系硬化剤が、下式(1’)又は(2’)で表されるフェノール系硬化剤である、上記[1]記載のエポキシ樹脂組成物。
(式中、R1〜R4は各々独立して、水素原子又はアルキル基を示し、X1はそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環、ナフタレン環又はヒドロキシナフタレン環を示し、Yはそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環又はビフェニル環を示し、nは平均値で1〜15の数を示す。)
(式中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基又はチオアルキル基を示し、X2はそれぞれアルキル基で置換されていてもよい、ベンゼン環又はナフタレン環を示し、nは平均値で1〜15の数を示す、mは1〜5の整数を示す。)
[4] 成分(B)のフェノール系硬化剤が、下式(3)〜(5)のいずれかで表されるフェノール系硬化剤である、上記[1]記載のエポキシ樹脂組成物。
(式中、R7は水素原子又はメチル基を示し、Zはナフタレン環を示し、nは平均値で1〜15の数を示す。)
(式中、R8およびR9はそれぞれ独立して水素原子又はメチル基を示し、nは平均値で1〜15の数を示す。)
(式中、R10は水素原子又はメチル基を示し、nは平均値で1〜15の数を示す。)
[5] 成分(B)のフェノール系硬化剤が下式(6)で表されるフェノール系硬化剤である、[1]記載のエポキシ樹脂組成物。
(式中、R11は水素原子、メチル基又はチオメチル基を示し、nは平均値で1〜15の数を示す。)
[6] 成分(B)のフェノール系硬化剤が下式(7)で表されるフェノール系硬化剤である、上記[1]記載のエポキシ樹脂組成物。
(式中、R12は水素原子、メチル基又は水酸基を示し、R13は水素原子又はメチル基を示し、Zはナフタレン環を示し、nは平均値で1〜15の数を示す。)
[7] 成分(A)のエポキシ樹脂が、(A1)1分子中に2以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂である、第1のエポキシ樹脂、および(A2)1分子中に3以上エポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂である、第2のエポキシ樹脂を含有する、上記[1]〜[6]いずれかに記載のエポキシ樹脂組成物。
[8] 成分(A2)の第2のエポキシ樹脂のエポキシ当量が230以下である、上記[7]記載のエポキシ樹脂組成物。
[9] 成分(A2)の第2のエポキシ樹脂のエポキシ当量が150〜230の範囲である、上記[7]記載のエポキシ樹脂組成物。
[10] 第1のエポキシ樹脂(A1)と第2のエポキシ樹脂(A2)の配合割合(A1:A2)が、質量比で1:0.3〜1:2の範囲である、上記[7]〜[9]いずれかに記載のエポキシ樹脂組成物。
[11] エポキシ樹脂組成物の不揮発成分を100質量%とした場合、成分(A)の含有量が10〜50質量%、成分(C)の含有量が1〜20質量%、及び成分(D)の含有量が1〜10質量%であり、エポキシ樹脂組成物中に存在するエポキシ基に対するフェノール系硬化剤のフェノール性水酸基の割合が1:0.5〜1:1.5である、上記[1]〜[10]いずれかに記載のエポキシ樹脂組成物。
[12] エポキシ樹脂組成物が更に無機充填材を含有する、上記[1]〜[11]いずれかに記載のエポキシ樹脂組成物。
[13] エポキシ樹脂組成物の不揮発成分を100質量%とした場合、無機充填材を10〜75質量%含有する、上記[12]記載のエポキシ樹脂組成物。
[14] 上記[1]〜[13]いずれかに記載のエポキシ樹脂組成物が支持フィルム上に層形成されている接着フィルム。
[15] 上記[1]〜[13]いずれかに記載のエポキシ樹脂組成物が繊維からなるシート状補強基材中に含浸されていることを特徴とするプリプレグ。
[16] 上記[1]〜[13]いずれかに記載のエポキシ樹脂組成物の硬化物により絶縁層が形成されている、多層プリント配線板。
[17] 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、該絶縁層が、上記[1]〜[13]いずれかに記載のエポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面に銅メッキにより形成されることを特徴とする、多層プリント配線板の製造方法。
[18] 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層が、上記[14]記載の接着フィルムを内層回路基板上にラミネートし、支持フィルムを剥離するか又はしないで、エポキシ樹脂組成物を熱硬化し、硬化後に支持フィルムが存在する場合に支持フィルムを剥離して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面に銅メッキにより形成されることを特徴とする、多層プリント配線板の製造方法。
[19] 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層が、上記[15]記載のプリプレグを内層回路基板上にラミネートし、エポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面に銅メッキにより形成されることを特徴とする、多層プリント配線板の製造方法。
[20] 粗化処理が、酸化剤を使用して行われる、上記[17]〜[19]のいずれかに記載の製造方法。
[21] 粗化処理が、アルカリ性過マンガン酸溶液を使用して行われる、上記[17]〜[19]のいずれかに記載の製造方法。
That is, the present invention is as follows.
[1] (A) Epoxy resin having two or more epoxy groups in one molecule, (B) Average hydroxyl group content P (average value of (total number of hydroxyl groups / total number of benzene rings)) in one molecule is 0 An epoxy resin composition comprising a phenolic curing agent satisfying <P <1, (C) a phenoxy resin, and (D) rubber particles.
[2] The epoxy resin composition according to the above [1], wherein the phenolic curing agent of the component (B) is a phenolic curing agent represented by the following formula (1) or (2).
(Wherein R1 to R4 each independently represent a hydrogen atom or an alkyl group, X1 represents a benzene ring, a hydroxybenzene ring, a naphthalene ring or a hydroxynaphthalene ring, each of which may be substituted with an alkyl group, Y represents a benzene ring, a hydroxybenzene ring or a biphenyl ring, each of which may be substituted with an alkyl group, and j and k each represent an average value of 1 to 15)
(Wherein R5 represents a hydrogen atom or an alkyl group, R6 represents a hydrogen atom, an alkyl group or a thioalkyl group, X2 represents a benzene ring or a naphthalene ring each optionally substituted by an alkyl group, j and (k represents an average value of 1 to 15 and m represents an integer of 1 to 5)
[3] The epoxy resin composition according to the above [1], wherein the phenolic curing agent of the component (B) is a phenolic curing agent represented by the following formula (1 ′) or (2 ′).
(Wherein R1 to R4 each independently represent a hydrogen atom or an alkyl group, X1 represents a benzene ring, a hydroxybenzene ring, a naphthalene ring or a hydroxynaphthalene ring, each of which may be substituted with an alkyl group, Y represents a benzene ring, a hydroxybenzene ring or a biphenyl ring, each of which may be substituted with an alkyl group, and n represents an average value of 1 to 15.)
(Wherein R5 represents a hydrogen atom or an alkyl group, R6 represents a hydrogen atom, an alkyl group or a thioalkyl group, X2 represents a benzene ring or a naphthalene ring each optionally substituted with an alkyl group, and n represents (The average value represents a number from 1 to 15, m represents an integer from 1 to 5.)
[4] The epoxy resin composition according to the above [1], wherein the phenolic curing agent of the component (B) is a phenolic curing agent represented by any of the following formulas (3) to (5).
(In the formula, R7 represents a hydrogen atom or a methyl group, Z represents a naphthalene ring, and n represents an average value of 1 to 15)
(In the formula, R8 and R9 each independently represent a hydrogen atom or a methyl group, and n represents an average value of 1 to 15)
(In the formula, R10 represents a hydrogen atom or a methyl group, and n represents an average value of 1 to 15)
[5] The epoxy resin composition according to [1], wherein the phenolic curing agent of component (B) is a phenolic curing agent represented by the following formula (6).
(In the formula, R11 represents a hydrogen atom, a methyl group or a thiomethyl group, and n represents an average value of 1 to 15)
[6] The epoxy resin composition according to the above [1], wherein the phenolic curing agent of the component (B) is a phenolic curing agent represented by the following formula (7).
(Wherein R12 represents a hydrogen atom, a methyl group or a hydroxyl group, R13 represents a hydrogen atom or a methyl group, Z represents a naphthalene ring, and n represents an average value of 1 to 15)
[7] The first epoxy resin, wherein the epoxy resin of component (A) is (A1) an aromatic epoxy resin that has two or more epoxy groups in one molecule and is liquid at a temperature of 20 ° C .; A2) Any one of [1] to [6] above, which contains a second epoxy resin that has 3 or more epoxy groups in one molecule and is a solid aromatic epoxy resin at a temperature of 20 ° C. Epoxy resin composition.
[8] The epoxy resin composition according to the above [7], wherein the epoxy equivalent of the second epoxy resin of the component (A2) is 230 or less.
[9] The epoxy resin composition according to the above [7], wherein the epoxy equivalent of the second epoxy resin of the component (A2) is in the range of 150 to 230.
[10] The above [7], wherein the blending ratio (A1: A2) of the first epoxy resin (A1) and the second epoxy resin (A2) is in the range of 1: 0.3 to 1: 2 by mass ratio. ] The epoxy resin composition in any one of [9].
[11] When the nonvolatile component of the epoxy resin composition is 100% by mass, the content of the component (A) is 10 to 50% by mass, the content of the component (C) is 1 to 20% by mass, and the component (D ) Is 1 to 10% by mass, and the ratio of the phenolic hydroxyl group of the phenol-based curing agent to the epoxy group present in the epoxy resin composition is 1: 0.5 to 1: 1.5. The epoxy resin composition according to any one of [1] to [10].
[12] The epoxy resin composition according to any one of the above [1] to [11], wherein the epoxy resin composition further contains an inorganic filler.
[13] The epoxy resin composition according to the above [12], which contains 10 to 75% by mass of an inorganic filler when the nonvolatile component of the epoxy resin composition is 100% by mass.
[14] An adhesive film in which the epoxy resin composition according to any one of [1] to [13] is layered on a support film.
[15] A prepreg characterized in that the epoxy resin composition according to any one of [1] to [13] is impregnated in a sheet-like reinforcing substrate made of fibers.
[16] A multilayer printed wiring board in which an insulating layer is formed of a cured product of the epoxy resin composition according to any one of [1] to [13].
[17] A method for producing a multilayer printed wiring board, comprising a step of forming an insulating layer on an inner circuit board and a step of forming a conductor layer on the insulating layer, wherein the insulating layer comprises the above [1] to [ 13] A multilayer which is formed by thermosetting the epoxy resin composition according to any one of the above, and the conductor layer is formed by copper plating on a roughened surface obtained by roughening the surface of the insulating layer. Manufacturing method of printed wiring board.
[18] A method for producing a multilayer printed wiring board, comprising a step of forming an insulating layer on an inner circuit board and a step of forming a conductor layer on the insulating layer, wherein the insulating layer is an adhesive according to the above [14] The conductor layer is formed by laminating a film on an inner circuit board and thermally curing the epoxy resin composition with or without peeling the support film, and peeling the support film when a support film is present after curing. Is formed by copper plating on a roughened surface obtained by roughening the surface of the insulating layer.
[19] A method for manufacturing a multilayer printed wiring board, comprising a step of forming an insulating layer on an inner circuit board and a step of forming a conductor layer on the insulating layer, wherein the insulating layer is the prepreg according to the above [15] The conductive layer is formed by copper plating on the roughened surface obtained by roughening the surface of the insulating layer. The manufacturing method of a multilayer printed wiring board.
[20] The production method according to any one of [17] to [19], wherein the roughening treatment is performed using an oxidizing agent.
[21] The production method according to any one of [17] to [19], wherein the roughening treatment is performed using an alkaline permanganate solution.

本発明によれば、粗化処理後の粗化面の粗度が比較的小さいにもかかわらず、メッキで形成される導体層との密着強度に優れる絶縁層を多層プリント配線板に簡便に導入することが可能となる。すなわち、本発明の樹脂組成物の硬化物からなる絶縁層を導入して、多層プリント配線板の製造を行うと、絶縁層を酸化剤で粗化処理して得られる粗化面は粗度が比較的小さいにもかかわらず、メッキ導体(導体層)を高い密着力にて保持し得るものとなり、その結果、メッキ導体層の不要部分をフラッシュエッチングで取り除いて配線形成を完了させる際のフラッシュエッチングを短時間で行うことができる。よって、高密着強度(ピール強度)で絶縁層に密着し、しかも、損傷や断線のない、信頼性の高い高密度配線を再現性よく形成することができる。   According to the present invention, an insulating layer having excellent adhesion strength with a conductor layer formed by plating is introduced into a multilayer printed wiring board in spite of the fact that the roughness of the roughened surface after the roughening treatment is relatively small. It becomes possible to do. That is, when an insulating layer made of a cured product of the resin composition of the present invention is introduced to produce a multilayer printed wiring board, the roughened surface obtained by roughening the insulating layer with an oxidizing agent has a roughness. Despite being relatively small, the plated conductor (conductor layer) can be held with high adhesion. As a result, unnecessary etching of the plated conductor layer is removed by flash etching to complete wiring formation. Can be performed in a short time. Therefore, a highly reliable high-density wiring that adheres to the insulating layer with high adhesion strength (peel strength) and is free from damage or disconnection can be formed with high reproducibility.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

[成分(A)のエポキシ樹脂]
本発明における成分(A)の「1分子中に2個以上のエポキシ基を有するエポキシ樹脂」は特に限定はされず、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。
[Epoxy resin of component (A)]
The “epoxy resin having two or more epoxy groups in one molecule” of the component (A) in the present invention is not particularly limited, and examples thereof include cresol novolac type epoxy resins, phenol novolac type epoxy resins, and tert-butyl-catechol. Type epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, heterocyclic epoxy resin , Spiro ring-containing epoxy resins, halogenated epoxy resins and the like.

成分(A)のエポキシ樹脂は1種を単独で用いても、2種以上を併用してもよいが、「(A1)1分子中に2以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂である、第1のエポキシ樹脂」および「(A2)1分子中に3以上エポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂である、第2のエポキシ樹脂」を併用する態様が好ましい。第2のエポキシ樹脂としては、エポキシ当量が230以下であるがの更に好ましく、エポキシ当量が150〜230の範囲にあるものが特に好ましい。なお、本発明でいう芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。またエポキシ当量(g/eq)は、エポキシ基1個当たりの分子量のことである。   The component (A) epoxy resin may be used alone or in combination of two or more. However, “(A1) one molecule has two or more epoxy groups and is liquid at a temperature of 20 ° C. The first epoxy resin ”and“ (A2) a second aromatic epoxy resin having 3 or more epoxy groups in one molecule and a solid aromatic epoxy resin at a temperature of 20 ° C. ” A mode in which an “epoxy resin” is used in combination is preferred. As the second epoxy resin, an epoxy equivalent of 230 or less is more preferable, and an epoxy equivalent of 150 to 230 is particularly preferable. The aromatic epoxy resin in the present invention means an epoxy resin having an aromatic ring skeleton in the molecule. The epoxy equivalent (g / eq) is the molecular weight per epoxy group.

エポキシ樹脂(A)として、第1のエポキシ樹脂(A1)と第2のエポキシ樹脂(A2)を使用することで、樹脂組成物を接着フィルムの形態で使用する場合に、十分な可撓性を示す(取扱い性に優れた)接着フィルムを形成できると同時に、樹脂組成物の硬化物の破断強度が向上し、多層プリント配線板の耐久性が向上する。   By using the first epoxy resin (A1) and the second epoxy resin (A2) as the epoxy resin (A), sufficient flexibility can be obtained when the resin composition is used in the form of an adhesive film. The adhesive film shown (excellent in handleability) can be formed, and at the same time, the breaking strength of the cured product of the resin composition is improved, and the durability of the multilayer printed wiring board is improved.

本発明において、「(A1)1分子中に2以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂である、第1のエポキシ樹脂」としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。なお、本発明において、当該第1のエポキシ樹脂(A1)は1種を使用しても、2種以上を組み合わせて使用してもよい。また、当該第1のエポキシ樹脂(A1)は、20℃未満の温度で液状であってもよい。   In the present invention, “(A1) a first epoxy resin which is an aromatic epoxy resin having two or more epoxy groups in one molecule and liquid at a temperature of 20 ° C.” includes a bisphenol A type epoxy resin, Examples thereof include bisphenol F type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin and the like. In the present invention, the first epoxy resin (A1) may be used alone or in combination of two or more. Moreover, the said 1st epoxy resin (A1) may be liquefied at the temperature below 20 degreeC.

このようなエポキシ樹脂としては、具体的には、HP4032(大日本インキ化学工業(株)製)、HP4032D(大日本インキ化学工業(株)製)、エピコート807(ジャパンエポキシレジン(株)製)、エピコート828EL(ジャパンエポキシレジン(株)製)、エピコート152(ジャパンエポキシレジン(株)製)等が挙げられる。   Specific examples of such an epoxy resin include HP4032 (manufactured by Dainippon Ink and Chemicals), HP4032D (manufactured by Dainippon Ink and Chemicals), and Epicoat 807 (manufactured by Japan Epoxy Resin). Epicoat 828EL (made by Japan Epoxy Resin Co., Ltd.), Epicoat 152 (made by Japan Epoxy Resin Co., Ltd.) and the like.

一方、(A2)1分子中に3以上エポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂である、第2のエポキシ樹脂」としては、例えば、ナフタレン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂)等が挙げられる。また、当該第2のエポキシ樹脂(A2)は、樹脂組成物のガラス転移温度等の物性向上のため、エポキシ当量が230以下のものが好ましく、エポキシ当量が150〜230の範囲にあるものがさらに好ましい。従って、本発明において、当該第2のエポキシ樹脂(A2)は、「1分子中に3以上のエポキシ基を有し、エポキシ当量が230以下であり、温度20℃で固体状の芳香族系エポキシ樹脂」であるのが好ましく、「1分子中に3以上のエポキシ基を有し、エポキシ当量が150〜230であり、温度20℃で固体状の芳香族系エポキシ樹脂」であるのがより好ましい。当該第2のエポキシ樹脂(A2)は1種を使用しても、2種以上を組み合わせて使用してもよい。また、当該第2のエポキシ樹脂(A2)は、20℃を超える温度で固体状であってもよい。 On the other hand, (A2) “second epoxy resin that has 3 or more epoxy groups in one molecule and is a solid aromatic epoxy resin at a temperature of 20 ° C.” includes, for example, naphthalene type epoxy resins and phenols And an epoxidized product (trisphenol type epoxy resin) of a condensate of an aromatic aldehyde having a phenolic hydroxyl group and the like. In addition, the second epoxy resin (A2) preferably has an epoxy equivalent of 230 or less, and further has an epoxy equivalent in the range of 150 to 230 in order to improve physical properties such as the glass transition temperature of the resin composition. preferable. Therefore, in the present invention, the second epoxy resin (A2) is “a liquid aromatic epoxy having 3 or more epoxy groups in one molecule and having an epoxy equivalent of 230 or less and a temperature of 20 ° C. It is preferably “resin”, more preferably “aromatic epoxy resin having 3 or more epoxy groups in one molecule, epoxy equivalent of 150 to 230, and solid at 20 ° C.” . The second epoxy resin (A2) may be used alone or in combination of two or more. The second epoxy resin (A2) may be solid at a temperature exceeding 20 ° C.

このようなエポキシ樹脂としては、具体的には、大日本インキ化学工業(株)製のHP4700(EXA4700)(4官能ナフタレン型エポキシ樹脂、エポキシ当量163、固形)、N−690(クレゾールノボラックエポキシ樹脂、エポキシ当量208、固形)、N−695(クレゾールノボラックエポキシ樹脂、エポキシ当量208、固形)、日本化薬(株)のEPPN−502H(トリスフェノールエポキシ樹脂、エポキシ当量168、固形)、NC7000L(ナフトールノボラックエポキシ樹脂、エポキシ当量228、固形)、NC3000H(ビフェニル型エポキシ樹脂、エポキシ当量290、固形)、東都化成(株)製のESN185(ナフトールノボラック型エポキシ樹脂、エポキシ当量275、固形)、ESN475(ナフトールノボラック型エポキシ樹脂、エポキシ当量350、固形)等が挙げられる。   Specifically, as such an epoxy resin, HP4700 (EXA4700) (tetrafunctional naphthalene type epoxy resin, epoxy equivalent 163, solid) manufactured by Dainippon Ink and Chemicals, Inc., N-690 (cresol novolac epoxy resin) , Epoxy equivalent 208, solid), N-695 (cresol novolak epoxy resin, epoxy equivalent 208, solid), Nippon Kayaku's EPPN-502H (trisphenol epoxy resin, epoxy equivalent 168, solid), NC7000L (naphthol) Novolac epoxy resin, epoxy equivalent 228, solid), NC3000H (biphenyl type epoxy resin, epoxy equivalent 290, solid), ESN185 manufactured by Tohto Kasei Co., Ltd. (naphthol novolac type epoxy resin, epoxy equivalent 275, solid), ESN475 (solid) Off tall novolak type epoxy resin, epoxy equivalent 350, solid), and the like.

また、エポキシ樹脂(A)として、第1のエポキシ樹脂(A1)と第2のエポキシ樹脂(A2)を併用する場合、第1のエポキシ樹脂(A1)と第2のエポキシ樹脂(A2)の配合割合(A1:A2)は質量比で1:0.3〜2の範囲が好ましく、1:0.5〜1の範囲がより好ましい。かかる範囲を超えて第1のエポキシ樹脂(A1)の割合が多すぎると、樹脂組成物の粘着性が高くなり、接着フィルムの形態で使用する場合に、真空ラミネート時の脱気性が低下しボイドが発生しやすくなる傾向にある。また真空ラミネート時に保護フィルムや支持フィルムの剥離性の低下や、硬化後の耐熱性が低下する傾向にある。また、樹脂組成物の硬化物において十分な破断強度が得られにくい傾向にある。一方、かかる範囲を超えて第2のエポキシ樹脂(A2)の割合が多すぎると、接着フィルムの形態で使用する場合に、十分な可撓性が得られず、取り扱い性が低下する、ラミネートの際の十分な流動性が得られにくいなどの傾向がある。   Moreover, when using together 1st epoxy resin (A1) and 2nd epoxy resin (A2) as an epoxy resin (A), the combination of 1st epoxy resin (A1) and 2nd epoxy resin (A2) The ratio (A1: A2) is preferably in the range of 1: 0.3-2 by mass ratio, more preferably in the range of 1: 0.5-1. If the ratio of the first epoxy resin (A1) is too large beyond this range, the adhesiveness of the resin composition increases, and when used in the form of an adhesive film, the deaeration during vacuum lamination decreases and voids. Tends to occur. Moreover, there exists a tendency for the peelability of a protective film and a support film to fall at the time of vacuum lamination, and the heat resistance after hardening to fall. Moreover, it exists in the tendency for sufficient breaking strength to be hard to be obtained in the hardened | cured material of a resin composition. On the other hand, if the ratio of the second epoxy resin (A2) is too large beyond this range, sufficient flexibility cannot be obtained when the adhesive film is used in the form of an adhesive film, and the handleability is lowered. There is a tendency that it is difficult to obtain sufficient fluidity.

本発明のエポキシ樹脂組成物において、エポキシ樹脂組成物の不揮発成分を100質量%とした場合、成分(A)のエポキシ樹脂含有量は10〜50質量%であるのが好ましく、より好ましくは20〜40質量%であり、とりわけ好ましくは20〜35質量%である。エポキシ樹脂(A)の含有量がこの範囲から外れると、樹脂組成物の硬化性が低下する傾向にある。また、本発明のエポキシ樹脂組成物は、本発明の効果が発揮される範囲(通常、エポキシ樹脂組成物の不揮発成分を100質量%とした場合に50質量%以下)で、成分(A)以外の、他のエポキシ樹脂を含んでいてもよい。   In the epoxy resin composition of the present invention, when the nonvolatile component of the epoxy resin composition is 100% by mass, the epoxy resin content of the component (A) is preferably 10 to 50% by mass, more preferably 20 to 20% by mass. It is 40 mass%, Most preferably, it is 20-35 mass%. When the content of the epoxy resin (A) is out of this range, the curability of the resin composition tends to decrease. Further, the epoxy resin composition of the present invention is within the range in which the effects of the present invention are exhibited (usually 50% by mass or less when the nonvolatile component of the epoxy resin composition is 100% by mass), except for the component (A) Other epoxy resins may be included.

[成分(B)のフェノール系硬化剤]
本発明で使用するフェノール系硬化剤は、1分子中の平均水酸基含有率P(総水酸基数/総ベンゼン環数)が0<P<1のフェノ-ル系硬化剤である。すなわち、1分子中の平均水酸基含有率P(総水酸基数/総ベンゼン環数)が0<P<1であれば公知のフェノール系硬化剤を制限なく使用できる。1分子中の平均水酸基含有率Pは1/4<P<9/10の範囲であるのが好ましく、さらには1/3≦P≦4/5の範囲であるのが好ましい。なお、ここで、「フェノール系硬化剤」とは、1分子中に2以上のフェノール性水酸基を有し、エポキシ樹脂(A)の硬化剤として作用する化合物のことである。
「1分子中の平均水酸基含有率P((総水酸基数/総ベンゼン環数)の平均値)が0<P<1であるフェノール系硬化剤」としては、下式(1)又は(2)で表されるフェノール系硬化剤が好ましい。
(式中、R1〜R4は各々独立して、水素原子又はアルキル基を示し、X1はそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環、ナフタレン環又はヒドロキシナフタレン環を示し、Yはそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環又はビフェニル環を示し、j及びkはそれぞれ平均値で1〜15の数を示す。)
(式中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基又はチオアルキル基を示し、X2はそれぞれアルキル基で置換されていてもよい、ベンゼン環又はナフタレン環を示し、j及びkはそれぞれ平均値で1〜15の数を示し、mは1〜5の整数を示す。)
式(2)中、mが2〜5のとき、複数のR6は同一である必要はなく、各々独立して、水素原子、アルキル基又はチオアルキル基から選択される基であってよい。
式(1)及び(2)で表されるフェノール系硬化剤において、カッコ内の各ユニットの配列は、j、kが平均値で1〜15の数である限り任意であり、同じユニットが必ずしも連続して結合されている必要はなく、例えば各ユニットが交互または不規則に結合されていてもよい。
なお、アルキル基としては炭素数1〜3のアルキル基が好ましく、特にメチル基が好ましい。また、チオアルキル基としては、炭素数1〜3のチオアルキル基が好ましく、特にチオメチル基が好ましい。
[Phenolic curing agent of component (B)]
The phenolic curing agent used in the present invention is a phenolic curing agent having an average hydroxyl group content P (total number of hydroxyl groups / total number of benzene rings) in one molecule of 0 <P <1. That is, if the average hydroxyl group content P (total number of hydroxyl groups / total number of benzene rings) in one molecule is 0 <P <1, a known phenolic curing agent can be used without limitation. The average hydroxyl group content P in one molecule is preferably in the range of 1/4 <P <9/10, and more preferably in the range of 1/3 ≦ P ≦ 4/5. Here, the “phenolic curing agent” is a compound having two or more phenolic hydroxyl groups in one molecule and acting as a curing agent for the epoxy resin (A).
As the “phenolic curing agent having an average hydroxyl group content P per molecule (average value of (total number of hydroxyl groups / total number of benzene rings)” of 0 <P <1, ”the following formula (1) or (2) A phenolic curing agent represented by
(Wherein R1 to R4 each independently represent a hydrogen atom or an alkyl group, X1 represents a benzene ring, a hydroxybenzene ring, a naphthalene ring or a hydroxynaphthalene ring, each of which may be substituted with an alkyl group, Y represents a benzene ring, a hydroxybenzene ring or a biphenyl ring, each of which may be substituted with an alkyl group, and j and k each represent an average value of 1 to 15)
(Wherein R5 represents a hydrogen atom or an alkyl group, R6 represents a hydrogen atom, an alkyl group or a thioalkyl group, X2 represents a benzene ring or a naphthalene ring each optionally substituted by an alkyl group, j and (k represents an average value of 1 to 15 and m represents an integer of 1 to 5)
In the formula (2), when m is 2 to 5, the plurality of R6 are not necessarily the same, and each may be independently a group selected from a hydrogen atom, an alkyl group, or a thioalkyl group.
In the phenolic curing agent represented by the formulas (1) and (2), the arrangement of each unit in parentheses is arbitrary as long as j and k are an average value of 1 to 15, and the same unit is not necessarily used. It is not necessary to be connected continuously, for example, each unit may be connected alternately or irregularly.
In addition, as an alkyl group, a C1-C3 alkyl group is preferable, and especially a methyl group is preferable. Moreover, as a thioalkyl group, a C1-C3 thioalkyl group is preferable, and especially a thiomethyl group is preferable.

さらに「1分子中の平均水酸基含有率P((総水酸基数/総ベンゼン環数)の平均値)が0<P<1であるフェノール系硬化剤」としては、下式(1’)又は(2’)で表されるフェノール系硬化剤が好ましい。   Furthermore, as the “phenolic curing agent in which the average hydroxyl group content P per molecule (average value of (total number of hydroxyl groups / total number of benzene rings)) is 0 <P <1,” the following formula (1 ′) or ( A phenolic curing agent represented by 2 ′) is preferred.

(式中、R1〜R4は各々独立して、水素原子又はアルキル基を示し、X1はそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環、ナフタレン環又はヒドロキシナフタレン環を示し、Yはそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環又はビフェニル環を示し、nは平均値で1〜15の数を示す。) (Wherein R1 to R4 each independently represent a hydrogen atom or an alkyl group, X1 represents a benzene ring, a hydroxybenzene ring, a naphthalene ring or a hydroxynaphthalene ring, each of which may be substituted with an alkyl group, Y represents a benzene ring, a hydroxybenzene ring or a biphenyl ring, each of which may be substituted with an alkyl group, and n represents an average value of 1 to 15.)

(式中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基又はチオアルキル基を示し、X2はそれぞれアルキル基で置換されていてもよいベンゼン環又はナフタレン環を示し、nは平均値で1〜15の数を示し、mは1〜5の整数を示す。)
なお、式(2)中、mが2〜5のとき、複数のR6は同一である必要はなく、各々独立して、水素原子、アルキル基又はチオアルキル基から選択される基であってよい。
(Wherein R5 represents a hydrogen atom or an alkyl group, R6 represents a hydrogen atom, an alkyl group or a thioalkyl group, X2 represents a benzene ring or a naphthalene ring each optionally substituted with an alkyl group, and n represents an average value. (The value represents a number from 1 to 15, and m represents an integer from 1 to 5.)
In the formula (2), when m is 2 to 5, the plurality of R6 need not be the same, and each may be independently a group selected from a hydrogen atom, an alkyl group, or a thioalkyl group.

式(1’)及び(2’)中のアルキル基としては炭素数1〜3のアルキル基が好ましく、特にメチル基が好ましい。また、式(2’)中のチオアルキル基としては、炭素数1〜3のチオアルキル基が好ましく、特にチオメチル基が好ましい。   The alkyl group in the formulas (1 ') and (2') is preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group. Moreover, as a thioalkyl group in Formula (2 '), a C1-C3 thioalkyl group is preferable and a thiomethyl group is especially preferable.

さらに「1分子中の平均水酸基含有率P((総水酸基数/総ベンゼン環数)の平均値)が0<P<1であるフェノール系硬化剤」としては、特に下式(3)〜(7)で表されるフェノール系硬化剤が好ましい。   Furthermore, as the “phenolic curing agent having an average hydroxyl group content P per molecule (average value of (total number of hydroxyl groups / total number of benzene rings)” of 0 <P <1, especially the following formulas (3) to (3) The phenolic curing agent represented by 7) is preferred.

(式中、R7は水素原子又はメチル基を示し、Zはナフタレン環を示し、nは平均値で1〜15の数を示す。) (In the formula, R7 represents a hydrogen atom or a methyl group, Z represents a naphthalene ring, and n represents an average value of 1 to 15)

(式中、R8およびR9はそれぞれ独立して水素原子又はメチル基を示し、nは平均値で1〜15の数を示す。) (In the formula, R8 and R9 each independently represent a hydrogen atom or a methyl group, and n represents an average value of 1 to 15)

(式中、R10は水素原子又はメチル基を示し、nは平均値で1〜15の数を示す。) (In the formula, R10 represents a hydrogen atom or a methyl group, and n represents an average value of 1 to 15)

(式中、R11は水素原子、メチル基又はチオメチル基を示し、nは平均値で1〜15の数を示す。) (In the formula, R11 represents a hydrogen atom, a methyl group or a thiomethyl group, and n represents an average value of 1 to 15)

(式中、R12は水素原子、メチル基又は水酸基を示し、R13は水素原子又はメチル基を示し、Zはナフタレン環を示し、nは平均値で1〜15の数を示す。) (Wherein R12 represents a hydrogen atom, a methyl group or a hydroxyl group, R13 represents a hydrogen atom or a methyl group, Z represents a naphthalene ring, and n represents an average value of 1 to 15)

当該フェノール系硬化剤の好ましい具体例は以下の通りである。式(3)で表されるフェノール系硬化剤として、日本化薬(株)製のNHN(Z:ナフタレン環、R7:メチル基、平均水酸基含有量:3/5〜2/3、下図参照)、CBN(Z:ナフタレン環、R7:メチル基、平均水酸基含有量は3/5〜2/3、下図参照)が挙げられる。式(4)で表されるフェノール系硬化剤として、日本化薬(株)製のGPH103(R8及びR9:水素原子、平均水酸基含有量:1/3〜1/2)、明和化成(株)のMEH7851(R8及びR9:水素原子、平均水酸基含有量:1/3〜1/2)が挙げられる。式(5)で表されるフェノール系硬化剤として、明和化成(株)のMEH7800(R10:水素原子、平均水酸基含有量:1/3〜1/2)、三井化学(株)製のXL225(R10:水素原子、平均水酸基含有量:1/3〜1/2)が挙げられる。式(6)で表されるフェノール系硬化剤として、ジャパンエポキシレジン(株)のYLH1027(R11:水素原子、平均水酸基含有量:1/3〜1/2)、YLH1110L(R11:チオメチル基、平均水酸基含有量:1/3〜1/2)が挙げられる。式(7)で表されるフェノール系硬化剤として、東都化成(株)製のSN170、SN180、SN190(R12及びR13:水素原子、平均水酸基含有量:1/3〜2/5、下図参照、軟化点はそれぞれ70℃、80℃、90℃)、SN475、SN485、SN495(R12及びR13:水素原子、平均水酸基含有量:1/3〜2/5、下図参照、軟化点はそれぞれ75℃、85℃、95℃)、SN375、SN395(R12:水酸基、R13:水素原子、平均水酸基含有量:2/3〜4/5、下図参照、軟化点はそれぞれ75℃、95℃、)が挙げられる。本発明において、成分(B)のフェノール系硬化剤は1種を使用しても2種以上を併用してもよい。   Preferred specific examples of the phenolic curing agent are as follows. As a phenolic curing agent represented by the formula (3), NHN manufactured by Nippon Kayaku Co., Ltd. (Z: naphthalene ring, R7: methyl group, average hydroxyl group content: 3/5 to 2/3, see the following figure) , CBN (Z: naphthalene ring, R7: methyl group, average hydroxyl group content is 3/5 to 2/3, see the figure below). As the phenolic curing agent represented by the formula (4), GPH103 (R8 and R9: hydrogen atom, average hydroxyl group content: 1/3 to 1/2) manufactured by Nippon Kayaku Co., Ltd., Meiwa Kasei Co., Ltd. MEH7851 (R8 and R9: hydrogen atom, average hydroxyl group content: 1/3 to 1/2). As a phenol type hardening | curing agent represented by Formula (5), Meiwa Kasei Co., Ltd. MEH7800 (R10: Hydrogen atom, average hydroxyl group content: 1/3 to 1/2), Mitsui Chemicals Co., Ltd. XL225 ( R10: hydrogen atom, average hydroxyl group content: 1/3 to 1/2). As a phenol type hardening | curing agent represented by Formula (6), Japan Epoxy Resin Co., Ltd. YLH1027 (R11: a hydrogen atom, average hydroxyl group content: 1/3 to 1/2), YLH1110L (R11: Thiomethyl group, average) Hydroxyl group content: 1/3 to 1/2). As the phenolic curing agent represented by the formula (7), SN170, SN180, SN190 (R12 and R13: hydrogen atoms, average hydroxyl group content: 1/3 to 2/5, manufactured by Tohto Kasei Co., Ltd., see the figure below. Softening points are 70 ° C., 80 ° C., 90 ° C., SN475, SN485, SN495 (R12 and R13: hydrogen atoms, average hydroxyl group content: 1/3 to 2/5, see below, softening points are 75 ° C., respectively) 85 ° C, 95 ° C), SN375, SN395 (R12: hydroxyl group, R13: hydrogen atom, average hydroxyl group content: 2/3 to 4/5, see the figure below, softening points are 75 ° C and 95 ° C, respectively). . In this invention, the phenol type hardening | curing agent of a component (B) may use 1 type, or may use 2 or more types together.

本発明の樹脂組成物には、上記フェノール系硬化剤(B)以外の他のフェノール系硬化剤を配合してもよい。この場合、本発明の効果を十分発揮する上で、組成物中の全フェノール系硬化剤のうちの50質量%以上がフェノール系硬化剤(B)であるのが好ましく、より好ましくは70質量%以上、特に90質量%以上がフェノール系硬化剤(B)であるのが好ましい。   You may mix | blend phenolic hardening | curing agents other than the said phenolic hardening | curing agent (B) with the resin composition of this invention. In this case, it is preferable that 50% by mass or more of the total phenolic curing agent in the composition is the phenolic curing agent (B), more preferably 70% by mass, in order to sufficiently exhibit the effects of the present invention. As mentioned above, it is preferable that 90 mass% or more is a phenol type hardening | curing agent (B) especially.

本発明において、樹脂組成物中のフェノール系硬化剤の量(フェノール系硬化剤(B)のみを使用する場合のフェノール系硬化剤(B)の全量、または、フェノール系硬化剤(B)とフェノール系硬化剤(B)以外の他のフェノール系硬化剤とを併用する場合のそれらの合計量)は、通常、樹脂組成物中に存在するエポキシ基の合計数とフェノール系硬化剤のフェノール性水酸基の合計数の比率が1:0.5〜1.5となる量にするのが好ましく、当該比率が1:0.5〜1.0となる量にするのがより好ましい。なお樹脂組成物中に存在するエポキシ基の合計数とは,各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、フェノール系硬化剤のフェノール性水酸基の合計数とは、各フェノール系硬化剤の固形分質量をそのフェノール性水酸基当量で除した値をすべてのフェノール系硬化剤について合計した値である。フェノール系硬化剤の含有量がかかる好ましい範囲を外れると、樹脂組成物を硬化して得られる硬化物の耐熱性が不十分となる場合がある。   In the present invention, the amount of the phenolic curing agent in the resin composition (the total amount of the phenolic curing agent (B) when only the phenolic curing agent (B) is used, or the phenolic curing agent (B) and phenol. The total amount of those in combination with other phenol-based curing agents other than the system-based curing agent (B) is usually the total number of epoxy groups present in the resin composition and the phenolic hydroxyl group of the phenol-based curing agent. It is preferable that the ratio of the total number is 1: 0.5 to 1.5, and more preferable that the ratio is 1: 0.5 to 1.0. The total number of epoxy groups present in the resin composition is a value obtained by dividing the solid mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the phenolic hydroxyl group of the phenolic curing agent. The total number of is a value obtained by dividing the value obtained by dividing the solid mass of each phenolic curing agent by its phenolic hydroxyl group equivalent for all phenolic curing agents. If the content of the phenolic curing agent is out of the preferable range, the heat resistance of the cured product obtained by curing the resin composition may be insufficient.

[成分(C)のフェノキシ樹脂]
本発明におけるフェノキシ樹脂は特に限定されず、公知のフェノキシ樹脂等を用いることができる。フェノキシ樹脂の配合により、接着フィルムの可撓性を向上させることもできる。エポキシ樹脂組成物の不揮発成分を100質量%とした場合、当該フェノキシ樹脂の含有割合は3〜30質量%の範囲であることが好ましい。フェノキシ樹脂の具体例としては東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YX8100、YX6954(YL6954)、YL6974等が挙げられる。
[Phenoxy resin of component (C)]
The phenoxy resin in this invention is not specifically limited, A well-known phenoxy resin etc. can be used. By blending the phenoxy resin, the flexibility of the adhesive film can be improved. When the nonvolatile component of the epoxy resin composition is 100% by mass, the content ratio of the phenoxy resin is preferably in the range of 3 to 30% by mass. Specific examples of the phenoxy resin include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954 (YL6954), and YL6974 manufactured by Japan Epoxy Resin Co., Ltd.

[成分(D)のゴム粒子]
本発明におけるゴム粒子は、エポキシ樹脂組成物を調製する際の有機溶媒にも溶解せず、エポキシ樹脂等の樹脂組成物中の成分とも相溶しないものである。従って、本発明におけるゴム粒子はエポキシ樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。例えば、溶媒に溶解し、樹脂組成物中でエポキシ樹脂等の他の成分と相溶するゴム成分を配合した場合、粗化処理後の粗度が大きく増大し、また硬化物の耐熱性も低下する。
[Rubber particles of component (D)]
The rubber particles in the present invention are not dissolved in an organic solvent when preparing an epoxy resin composition, and are not compatible with components in the resin composition such as an epoxy resin. Accordingly, the rubber particles in the present invention exist in a dispersed state in the varnish of the epoxy resin composition. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles. For example, when a rubber component that dissolves in a solvent and is compatible with other components such as an epoxy resin in the resin composition is added, the roughness after the roughening treatment is greatly increased, and the heat resistance of the cured product is also reduced. To do.

本発明におけるゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、(ガンツ化成(株)商品名)、メタブレンKW−4426(三菱レイヨン(株)商品名)が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91(平均粒径0.5μm、JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)(三菱レイヨン(株)製)を挙げることができる。なお、このようなゴム粒子は、硬化物の機械強度を高める、硬化物の応力緩和などの効果を付与することもできる。   Preferable examples of the rubber particles in the present invention include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, the outer shell layer is a glassy polymer and the inner core layer is a rubbery polymer. Examples include a three-layer structure in which the shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer. The glass layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, (Ganz Kasei Co., Ltd. trade name), and Metabrene KW-4426 (Mitsubishi Rayon Co., Ltd. trade name). Specific examples of the acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm) and W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.). In addition, such rubber particles can impart effects such as stress relaxation of the cured product that increase the mechanical strength of the cured product.

配合するゴム粒子の平均粒径は0.005〜1μmの範囲が好ましく、さらに0.2〜0.6μmの範囲が好ましい。本発明におけるゴム粒子の平均粒径は、動的光散乱法を用いて測定することが出来る。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、FPRA−1000(大塚電子(株)社製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。   The average particle size of the rubber particles to be blended is preferably in the range of 0.005 to 1 μm, and more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of the rubber particles in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and the particle size distribution of the rubber particles is created on a mass basis using FPRA-1000 (manufactured by Otsuka Electronics Co., Ltd.). The average particle size can be measured.

当該ゴム粒子を配合する場合の、樹脂組成物(不揮発分100質量%)に対する含有割合は、樹脂組成物に要求される特性によっても異なるが、1〜10質量%であるのが好ましく、更には、2〜5質量%がより好ましい。   When the rubber particles are blended, the content ratio with respect to the resin composition (non-volatile content: 100% by mass) varies depending on the properties required for the resin composition, but is preferably 1 to 10% by mass, 2 to 5% by mass is more preferable.

本発明のエポキシ樹脂組成物は、熱膨張率を低下させる等の目的で無機充填材を含有してもよい。無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でもシリカが特に好適である。無機充填材の平均粒径は1μm以下であるのが好ましく、0.8μm以下がより好ましく、0.7μm以下がとりわけ好ましい。平均粒径が1μmを超える場合、メッキにより形成される導体層のピール強度が低下する傾向にある。なお、無機充填材の平均粒径が小さくなりすぎると、エポキシ樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下する傾向にあるため、平均粒径は0.05μm以上であるのが好ましい。なお、無機充填材は耐湿性を向上させるため、シランカップリング剤等の表面処理剤で表面処理してあるものが好ましい。   The epoxy resin composition of the present invention may contain an inorganic filler for the purpose of reducing the coefficient of thermal expansion. Examples of the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, Examples include strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Among these, silica is particularly suitable. The average particle size of the inorganic filler is preferably 1 μm or less, more preferably 0.8 μm or less, and particularly preferably 0.7 μm or less. When the average particle diameter exceeds 1 μm, the peel strength of the conductor layer formed by plating tends to decrease. If the average particle size of the inorganic filler is too small, when the epoxy resin composition is used as a resin varnish, the viscosity of the varnish tends to increase and the handleability tends to decrease. It is preferable that it is 05 μm or more. The inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance.

上記無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、株式会社堀場製作所製 LA−500等を使用することができる。   The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

当該無機充填材を配合する場合の、樹脂組成物(不揮発分100質量%)に対する含有割合は樹脂組成物に要求される特性によっても異なるが、10〜75質量%であるのが好ましく、20〜50質量%がより好ましく、20〜40質量%がとりわけ好ましい。   When blending the inorganic filler, the content ratio with respect to the resin composition (non-volatile content: 100% by mass) varies depending on the properties required for the resin composition, but is preferably from 10 to 75% by mass. 50 mass% is more preferable, and 20-40 mass% is especially preferable.

本発明のエポキシ樹脂組成物は、硬化時間を調整する等の目的で硬化促進剤を含有してもよい。硬化促進剤としては、例えば、有機フォスフィン化合物、イミダゾール化合物、アミンアダクト化合物、3級アミン化合物などが挙げられる。有機フォスフィン化合物の具体例としては、TPP、TPP−K、TPP−S、TPTP−S(北興化学工業(株)商品名)などが挙げられる。イミダゾール化合物の具体例としては、キュアゾール2MZ、2E4MZ、C11Z、C11Z−CN、C11Z−CNS、C11Z−A、2MZ−OK、2MA−OK、2PHZ(四国化成工業(株)商品名)などが挙げられる。アミンアダクト化合物の具体例としては、ノバキュア(旭化成工業(株)商品名)、フジキュア(富士化成工業(株)商品名)などが挙げられる。3級アミン化合物の具体例としては、DBU(1,8-diazabicyelo[5,4,0]undec-7-ene)などが挙げられる。本発明のエポキシ樹脂組成物において、硬化促進剤の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂とフェノール性硬化剤の総量を100質量%(固形分)とした場合、通常0.1〜5質量%の範囲で使用される。   The epoxy resin composition of the present invention may contain a curing accelerator for the purpose of adjusting the curing time. Examples of the curing accelerator include organic phosphine compounds, imidazole compounds, amine adduct compounds, and tertiary amine compounds. Specific examples of the organic phosphine compound include TPP, TPP-K, TPP-S, and TPTP-S (trade name of Hokuko Chemical Co., Ltd.). Specific examples of the imidazole compound include Curazole 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZ-OK, 2MA-OK, and 2PHZ (trade names of Shikoku Kasei Kogyo Co., Ltd.). . Specific examples of the amine adduct compound include Novacure (trade name of Asahi Kasei Kogyo Co., Ltd.) and Fuji Cure (trade name of Fuji Kasei Kogyo Co., Ltd.). Specific examples of the tertiary amine compound include DBU (1,8-diazabicyelo [5,4,0] undec-7-ene). In the epoxy resin composition of the present invention, the content of the curing accelerator is usually 0.1 when the total amount of the epoxy resin and the phenolic curing agent contained in the epoxy resin composition is 100% by mass (solid content). Used in the range of ˜5% by mass.

本発明のエポキシ樹脂組成物は、難燃性を付与する目的で難燃剤を含有しても良い。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。   The epoxy resin composition of the present invention may contain a flame retardant for the purpose of imparting flame retardancy. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.

有機リン系難燃剤としては、三光(株)製のHCA、HCA−HQ、HCA−NQ等のフォスフィン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX310等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。   Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and Rheophos 30, 50, 65, 90, 110 manufactured by Ajinomoto Fine Techno Co., TPP, RPD. , BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, PPQ manufactured by Hokuko Chemical Co., Ltd., OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd. And phosphorus-containing epoxy resins such as FX289 and FX310 manufactured by Toto Kasei Co., Ltd., and phosphorus-containing phenoxy resins such as ERF001 manufactured by Toto Kasei Co., Ltd. and the like.

有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルミド化合物、大塚化学(株)社製のSPB100、SPE100等のホスファゼン化合物等が挙げられる。   Examples of the organic nitrogen-containing phosphorus compound include phosphate ester compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., and phosphazene compounds such as SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd.

金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)社製のB−30、B−325、B−315、B−308、B−303、UFH−20等の水酸化アルミニウム等が挙げられる。   As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308 manufactured by Sakai Kogyo Co., Ltd. Examples thereof include aluminum hydroxide such as B-303 and UFH-20.

難燃剤を配合する場合、樹脂組成物(不揮発分100質量%)に対する含有割合は、20質量%以下が好ましく、15質量%以下がより好ましい。   When a flame retardant is blended, the content ratio with respect to the resin composition (non-volatile content: 100% by mass) is preferably 20% by mass or less, and more preferably 15% by mass or less.

本発明のエポキシ樹脂組成物は、本発明の効果が発揮される範囲で、上述した以外の他の樹脂添加剤を含有しても良い。樹脂添加剤としては、例えばシリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   The epoxy resin composition of the present invention may contain other resin additives other than those described above as long as the effects of the present invention are exhibited. Examples of the resin additive include organic fillers such as silicon powder, nylon powder, and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, polymer-based antifoaming agents or leveling agents, imidazole-based, Examples thereof include adhesion imparting agents such as thiazole, triazole, and silane coupling agents, and coloring agents such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.

本発明の樹脂組成物は、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとするか、または繊維からなるシート状補強基材中に該樹脂組成物を含浸させて多層プリント配線板の層間絶縁層用のプリプレグとすることができる。本発明の樹脂組成物は回路基板に塗布して絶縁層を形成することもできるが、工業的には、一般に、接着フィルムまたはプリプレグの形態として絶縁層形成に用いられる。   The resin composition of the present invention is applied on a support film to form a resin composition layer to form an adhesive film for a multilayer printed wiring board, or the resin composition is contained in a sheet-like reinforcing substrate made of fibers. It can be impregnated to form a prepreg for an interlayer insulating layer of a multilayer printed wiring board. The resin composition of the present invention can be applied to a circuit board to form an insulating layer, but industrially, it is generally used for forming an insulating layer in the form of an adhesive film or a prepreg.

本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、支持フィルムを支持体として、この樹脂ワニスを塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。   The adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, applying the resin varnish using the support film as a support, and further heating or hot air. The organic solvent can be dried by spraying or the like to form a resin composition layer.

有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。有機溶剤は2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. And aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Two or more organic solvents may be used in combination.

乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有割合が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶媒量によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることができる。当業者、簡単な実験により適宜、好適な乾燥条件を設定することができる。   The drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. Depending on the amount of organic solvent in the varnish, for example, a varnish containing 30 to 60% by mass of an organic solvent can be dried at 50 to 150 ° C. for about 3 to 10 minutes. Those skilled in the art can appropriately set suitable drying conditions through simple experiments.

接着フィルムにおいて形成される樹脂組成物層の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。樹脂組成物層は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   The thickness of the resin composition layer formed in the adhesive film is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm. The resin composition layer may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

本発明における支持フィルム及び保護フィルムとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   Examples of the support film and protective film in the present invention include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, Can include release paper, copper foil, metal foil such as aluminum foil, and the like. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さも特に制限されないが、通常1〜40μm、好ましくは10〜30μmの範囲で用いられる。なお、後述するように、接着フィルムの製造工程で支持体として用いる支持フィルムを、樹脂組成物層表面を保護する保護フィルムとして使用することもできる。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. The thickness of the protective film is not particularly limited, but is usually 1 to 40 μm, preferably 10 to 30 μm. In addition, as will be described later, a support film used as a support in the production process of the adhesive film can also be used as a protective film for protecting the resin composition layer surface.

本発明における支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができ、また硬化後の絶縁層の表面平滑性を向上させることができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。なお、支持フィルム上に形成される樹脂組成物層は、層の面積が支持フィルムの面積より小さくなるように形成するのが好ましい。また接着フィルムは、ロール状に巻き取って、保存、貯蔵することができる。   The support film in the present invention is peeled after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing step can be prevented, and the surface smoothness of the insulating layer after curing can be improved. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance. In addition, it is preferable to form the resin composition layer formed on a support film so that the area of a layer may become smaller than the area of a support film. The adhesive film can be wound up in a roll shape and stored and stored.

次に、本発明の接着フィルムを用いて本発明の多層プリント配線板を製造する方法について説明する。樹脂組成物層が保護フィルムで保護されている場合はこれらを剥離した後、樹脂組成物層を回路基板に直接接するように、回路基板の片面又は両面にラミネートする。本発明の接着フィルムにおいては真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, a method for producing the multilayer printed wiring board of the present invention using the adhesive film of the present invention will be described. When the resin composition layer is protected with a protective film, the resin composition layer is peeled and then laminated on one or both sides of the circuit board so that the resin composition layer is in direct contact with the circuit board. In the adhesive film of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。 The laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C. and a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ). Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.

真空ラミネートは市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、(株)日立インダストリイズ製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.

本発明における回路基板とは、主として、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層が交互に層形成され、片面又は両面がパターン加工された導体層(回路)となっている多層プリント配線板も本発明にいう回路基板に含まれる。なお導体回路層表面は黒化処理等により予め粗化処理が施されていた方が絶縁層の回路基板への密着性の観点から好ましい。   The circuit board in the present invention is mainly a conductive layer (circuit) patterned on one or both sides of a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate or the like. The one formed. Also included in the circuit board of the present invention is a multilayer printed wiring board in which conductor layers and insulating layers are alternately formed and a conductor layer (circuit) is patterned on one or both sides. The surface of the conductor circuit layer is preferably roughened by blackening or the like in advance from the viewpoint of adhesion of the insulating layer to the circuit board.

このように接着フィルムを回路基板にラミネートした後、支持フィルムを剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分である。   Thus, after laminating the adhesive film on the circuit board, when the support film is peeled off, the insulating film can be formed on the circuit board by peeling and thermosetting. The conditions of heat curing are selected in the range of 20 to 180 minutes at 150 to 220 ° C, more preferably 30 to 120 minutes at 160 to 200 ° C.

絶縁層を形成した後、硬化前に支持フィルムを剥離しなかった場合は、ここで剥離する。次に回路基板上に形成された絶縁層に穴開けを行いビアホール、スルーホールを形成する。穴あけは例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけがもっとも一般的な方法である。   If the support film is not peeled off after the insulating layer is formed, it is peeled off here. Next, holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed by a known method such as drilling, laser, or plasma, or a combination of these methods if necessary. However, drilling by a laser such as a carbon dioxide laser or YAG laser is the most common method. .

次いで、絶縁層表面に粗化処理を行う。本発明における粗化処理は通常、酸化剤を使用した湿式粗化方法で行うのが好ましい。酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルトアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて粗化を行うのが好ましい。   Next, a roughening process is performed on the surface of the insulating layer. The roughening treatment in the present invention is usually preferably carried out by a wet roughening method using an oxidizing agent. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. Preferably, an alkaline permanganate solution (eg, potassium permanganate, sodium hydroxide solution of sodium permanganate), which is an oxidizer widely used for roughening an insulating layer in the production of multilayer printed wiring boards by a built-up method. It is preferable to perform roughening using.

絶縁層表面を粗化処理した粗化面の粗さは、微細配線を形成する上で、Ra値で0.5μm以下であるのが好ましく、0.35μm以下であるのが更に好ましい。   The roughness of the roughened surface obtained by roughening the surface of the insulating layer is preferably 0.5 μm or less, more preferably 0.35 μm or less, in terms of Ra value when forming fine wiring.

次に、粗化処理により凸凹のアンカーが形成された樹脂組成物層表面に、無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。なお導体層形成後、150〜200℃で20〜90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。本発明によれば、多層プリント配線板として好ましい導体層のピール強度が得ることができる。多層プリント配線板に好ましいピール強度は、好ましくは0.6kgf/cm以上である。   Next, a conductor layer is formed on the surface of the resin composition layer on which uneven anchors are formed by the roughening treatment by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. In addition, after forming the conductor layer, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes. According to the present invention, a peel strength of a conductor layer preferable as a multilayer printed wiring board can be obtained. The peel strength preferable for the multilayer printed wiring board is preferably 0.6 kgf / cm or more.

また、導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。   Moreover, as a method of patterning the conductor layer to form a circuit, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.

本発明のプリプレグは、本発明の樹脂組成物を繊維からなるシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱により半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物が繊維からなるシート状補強基材に含浸した状態となるプリプレグとすることができる。   The prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing substrate made of fibers by a hot melt method or a solvent method and semi-curing by heating. That is, it can be set as the prepreg which will be in the state which the resin composition of this invention impregnated the sheet-like reinforcement base material which consists of fibers.

繊維からなるシート状補強基材としては、例えばガラスクロスやアラミド繊維等、プリプレグ用繊維として常用されているものを用いることができる。   As the sheet-like reinforcing substrate made of fibers, for example, those commonly used as prepreg fibers such as glass cloth and aramid fibers can be used.

ホットメルト法は、樹脂を有機溶剤に溶解することなく、樹脂を樹脂と剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいはダイコーターにより直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様、樹脂を有機溶剤に溶解した樹脂ワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。   In the hot melt method, without dissolving the resin in an organic solvent, the resin is once coated on the resin and a coated paper having good releasability, and then laminated on a sheet-like reinforcing substrate or directly applied by a die coater. Thus, a prepreg is manufactured. Similarly to the adhesive film, the solvent method is a method in which a sheet-like reinforcing base material is immersed in a resin varnish in which a resin is dissolved in an organic solvent, the resin varnish is impregnated into the sheet-like reinforcing base material, and then dried.

次に本発明のプリプレグを用いて本発明の多層プリント配線板を製造する方法について説明する。回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートを挟み加圧・加熱条件下でプレス積層する。圧力は好ましくは5〜40kgf/cm(49×10〜392×10N/m)、温度は好ましくは120〜200℃で20〜100分の範囲で成型するのが好ましい。また接着フィルムと同様に真空ラミネート法により回路基板にラミネートした後、加熱硬化することによっても製造可能である。その後、前に記載した方法と同様、酸化剤により硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。 Next, a method for producing the multilayer printed wiring board of the present invention using the prepreg of the present invention will be described. One or several prepregs of the present invention are stacked on a circuit board, a metal plate is sandwiched through a release film, and press lamination is performed under pressure and heating conditions. The pressure is preferably 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ), and the temperature is preferably 120 to 200 ° C. for 20 to 100 minutes. Moreover, it can also be manufactured by laminating on a circuit board by a vacuum laminating method as in the case of an adhesive film, and then curing by heating. Thereafter, similarly to the method described above, the surface of the prepreg cured with an oxidizing agent is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.

以下の実施例及び比較例を用いて本発明をより詳細に説明するが、これらは本発明をいかなる意味においても制限するものではない。なお、以下の記載において、「部」は「質量部」を意味する。     The present invention will be described in more detail with reference to the following examples and comparative examples, but these are not intended to limit the present invention in any way. In the following description, “part” means “part by mass”.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをメチルエチルケトン(以下MEKと略す)15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(東都化成(株)製「SN485」、フェノール性水酸基当量215、平均水酸基含有量1/3〜2/5)の固形分50%のMEK溶液110部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)77部、コアシェルゴム粒子(平均粒子径0.5μ、「AC-3816N」ガンツ化成(株)社製)9部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.78)。次に、かかる樹脂ワニスをポリエチレンテレフタレート(厚さ38μm、以下PETと略す)上に、乾燥後の樹脂厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥した(残留溶媒量約1質量%)。次いで樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリット(slit)し、これより507×336mmサイズのシート状の接着フィルムを得た。   28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved in 15 parts of methyl ethyl ketone (hereinafter abbreviated as MEK) and 15 parts of cyclohexanone with heating and dissolution. Then, MEK having a solid content of 50% of a novolak resin having a naphthalene structure (“SN485” manufactured by Toto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215, average hydroxyl group content 1/3 to 2/5), which is a phenolic curing agent. 110 parts of a solution, 0.1 part of a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 77 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs), core shell rubber particles (average Particle size 0.5μ, “AC-3816N” manufactured by Gantz Kasei Co., Ltd. 9 parts, phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd. 27 parts of glass transition temperature 130 ° C. were mixed and uniformly dispersed with a high-speed rotary mixer to prepare a resin varnish (for the non-volatile content of the resin varnish) Inorganic filler content is 38 wt%, phenolic hydroxyl total number / epoxy groups total number of 0.78). Next, the resin varnish is applied on polyethylene terephthalate (thickness 38 μm, hereinafter abbreviated as PET) with a die coater so that the resin thickness after drying is 40 μm, and is 80 to 120 ° C. (average 100 ° C.). It was dried for 6 minutes (residual solvent amount of about 1% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、チオメチル基含有のフェノール系硬化剤であるノボラック樹脂(ジャパンエポキシレジン(株)製「YLH1110L」、フェノール性水酸基当量168、平均水酸基含有量1/3〜1/2)の固形分60%のMEK溶液75部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)72部、コアシェルゴム粒子(平均粒子径0.5μ、「AC−3816N」ガンツ化成(株)社製)9部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.82)。実施例1と同様の方法によりシート状の接着フィルムを得た。   28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. A solid content of 60% of a novolak resin (“YLH1110L” manufactured by Japan Epoxy Resin Co., Ltd., phenolic hydroxyl group equivalent 168, average hydroxyl group content 1/3 to 1/2), which is a phenolic curing agent containing a thiomethyl group. MEK solution 75 parts, curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”) 0.1 part, spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs) 72 parts, core shell rubber particles (Average particle size 0.5μ, “AC-3816N” manufactured by Gantz Kasei Co., Ltd.) 9 parts, phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30 manufactured by Japan Epoxy Resin Co., Ltd.) ”, 27 parts of a glass transition temperature of 130 ° C. were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish (resin varnish). The inorganic filler content relative to the non-volatile content of the varnish is 38% by mass, and the total number of phenolic hydroxyl groups / total number of epoxy groups is 0.82. A sheet-like adhesive film was obtained in the same manner as in Example 1.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるノボラック樹脂(ジャパンエポキシレジン(株)製「YLH1027」、フェノール性水酸基当量120、平均水酸基含有量1/3〜1/2)の固形分60%のMEK溶液65部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)67部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)8部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.99)。実施例1と同様の方法によりシート状の接着フィルムを得た。   28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. Thereto, a MEK solution 65 with a solid content of 60% of a novolak resin (“YLH1027” manufactured by Japan Epoxy Resin Co., Ltd., phenolic hydroxyl group equivalent 120, average hydroxyl group content 1/3 to 1/2), which is a phenolic curing agent. Parts, 0.1 part of curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 67 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs), acrylic rubber particles (average particle size) 0.2 μ, “W-450A” manufactured by Mitsubishi Rayon Co., Ltd.) 8 parts, phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resins Co., Ltd., glass transition) 27 parts at a temperature of 130 ° C. were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish (non-volatile content of the resin varnish) The machine filler content was 38% by mass, and the total number of phenolic hydroxyl groups / total number of epoxy groups was 0.99). A sheet-like adhesive film was obtained in the same manner as in Example 1.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(日本化薬(株)製「GPH103」、フェノール性水酸基当量231、平均水酸基含有量1/3〜1/2)の固形分50%のMEK溶液120部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)80部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)9部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.79)。実施例1と同様の方法によりシート状の接着フィルムを得た。   28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. There, a novolak resin having a naphthalene structure which is a phenolic curing agent (“GPH103” manufactured by Nippon Kayaku Co., Ltd., phenolic hydroxyl group equivalent 231 and average hydroxyl group content 1/3 to 1/2) having a solid content of 50% 120 parts of MEK solution, 0.1 part of a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 80 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs), acrylic rubber particles ( Average particle size 0.2μ, “W-450A” manufactured by Mitsubishi Rayon Co., Ltd. 9 parts, phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd. 27 parts of glass transition temperature 130 ° C. were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish (based on the non-volatile content of the resin varnish) The inorganic filler content is 38% by mass, and the total number of phenolic hydroxyl groups / total number of epoxy groups is 0.79). A sheet-like adhesive film was obtained in the same manner as in Example 1.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(日本化薬(株)製「NHN」、フェノール性水酸基当量143、平均水酸基含有量3/5〜2/3)の固形分50%のMEK溶液75部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)67部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)8部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.80)。実施例1と同様の方法によりシート状の接着フィルムを得た。   28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. There, a novolak resin having a naphthalene structure which is a phenolic curing agent (“NHN” manufactured by Nippon Kayaku Co., Ltd., phenolic hydroxyl group equivalent 143, average hydroxyl group content 3/5 to 2/3) having a solid content of 50% MEK solution 75 parts, curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”) 0.1 part, spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs) 67 parts, acrylic rubber particles ( Average particle size 0.2μ, “W-450A” manufactured by Mitsubishi Rayon Co., Ltd.) 8 parts, phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd.) 27 parts of glass transition temperature 130 ° C. were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish (inorganic filling with respect to the nonvolatile content of the resin varnish) The material content is 38% by mass, the total number of phenolic hydroxyl groups / the total number of epoxy groups is 0.80). A sheet-like adhesive film was obtained in the same manner as in Example 1.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(日本化薬(株)製「SN395」、フェノール性水酸基当量107、平均水酸基含有量2/3〜4/5)の固形分50%のMEK溶液55部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)67部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)8部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は40質量%、フェノール性水酸基合計数/エポキシ基合計数は0.80)。実施例1と同様の方法によりシート状の接着フィルムを得た。   28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. Thereto, a novolak resin having a naphthalene structure as a phenolic curing agent (“SN395” manufactured by Nippon Kayaku Co., Ltd., phenolic hydroxyl group equivalent 107, average hydroxyl group content 2/3 to 4/5) having a solid content of 50% 55 parts of MEK solution, 0.1 part of curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 67 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs), acrylic rubber particles ( Average particle size 0.2μ, “W-450A” manufactured by Mitsubishi Rayon Co., Ltd.) 8 parts, phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd.) 27 parts of a glass transition temperature of 130 ° C. were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish (inorganic relative to the non-volatile content of the resin varnish) The filler content is 40% by mass, and the total number of phenolic hydroxyl groups / total number of epoxy groups is 0.80). A sheet-like adhesive film was obtained in the same manner as in Example 1.

<比較例1>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるノボラック樹脂(大日本インキ化学工業(株)製「LA7052」、固形分が60質量%のMEK溶液、固形物のフェノール性水酸基当量120、平均水酸基含有量1/1、下式(8)で表される化合物)50部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)62部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)8部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.76)。実施例1と同様の方法によりシート状の接着フィルムを得た。
<Comparative Example 1>
28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. There, a novolak resin that is a phenolic curing agent ("LA7052" manufactured by Dainippon Ink & Chemicals, Ltd., a MEK solution having a solid content of 60% by mass, a phenolic hydroxyl group equivalent of 120 solids, an average hydroxyl group content of 1 / 1, 50 parts of the compound represented by the following formula (8)), 0.1 part of a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), spherical silica (average particle size 0.5 μm, “SOC2” ad 62 parts by Mattex Co., Ltd., 8 parts by acrylic rubber particles (average particle size 0.2 μm, “W-450A” by Mitsubishi Rayon Co., Ltd.), phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass) 27 parts of “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd., glass transition temperature 130 ° C.) were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish ( The inorganic filler content relative to the nonvolatile content of the resin varnish is 38% by mass, and the total number of phenolic hydroxyl groups / total number of epoxy groups is 0.76). A sheet-like adhesive film was obtained in the same manner as in Example 1.

<比較例2>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるノボラック樹脂(大日本インキ化学工業(株)製「TD2090−60M」、固形分が60質量%のMEK溶液、固形物のフェノール性水酸基当量105、平均水酸基含有量1/1、下式(9)で表される化合物)45部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)60部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)7部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.79)。実施例1と同様の方法によりシート状の接着フィルムを得た。
<Comparative example 2>
28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. There, a novolak resin that is a phenol-based curing agent (“TD2090-60M” manufactured by Dainippon Ink and Chemicals, Inc., a MEK solution having a solid content of 60% by mass, a phenolic hydroxyl group equivalent of 105 solids, and an average hydroxyl group content 1/1, 45 parts of a compound represented by the following formula (9), curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”) 0.1 part, spherical silica (average particle size 0.5 μm, “SOC2 “Admatechs Co., Ltd.” 60 parts, acrylic rubber particles (average particle size 0.2 μ, “W-450A” manufactured by Mitsubishi Rayon Co., Ltd.), phenoxy resin varnish (non-volatile content 30% by mass of cyclohexanone and MEK 27 parts of the mixed solution, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd., glass transition temperature 130 ° C.) is mixed and dispersed uniformly with a high-speed rotary mixer to produce a resin varnish. (The inorganic filler content with respect to the nonvolatile content of the resin varnish was 38% by mass, the total number of phenolic hydroxyl groups / the total number of epoxy groups was 0.79). A sheet-like adhesive film was obtained in the same manner as in Example 1.

<比較例3>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(東都化成(株)製「SN485」、フェノール性水酸基当量215、平均水酸基含有量1/3〜2/5)の固形分50%のMEK溶液110部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)72部を混合し、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.78)。実施例1と同様の方法によりシート状の接着フィルムを得た。
<Comparative Example 3>
28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. Then, MEK having a solid content of 50% of a novolak resin having a naphthalene structure (“SN485” manufactured by Toto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215, average hydroxyl group content 1/3 to 2/5), which is a phenolic curing agent. 110 parts of a solution, 0.1 part of a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 72 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs) are mixed, and phenoxy resin 27 parts of varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd., glass transition temperature 130 ° C.) is mixed and dispersed uniformly with a high-speed rotary mixer, and resin varnish (The inorganic filler content relative to the nonvolatile content of the resin varnish was 38% by mass, the total number of phenolic hydroxyl groups / the total number of epoxy groups was 0. 78). A sheet-like adhesive film was obtained in the same manner as in Example 1.

<比較例4>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(東都化成(株)製「SN485」、フェノール性水酸基当量215、平均水酸基含有量1/3〜2/5)の固形分50%のMEK溶液110部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)73部、アクリルゴム粒子(平均粒子径0.2μ、「W−450A」三菱レイヨン(株)社製)9部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.78)。実施例1と同様の方法によりシート状の接着フィルムを得た。
<Comparative example 4>
28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. Then, MEK having a solid content of 50% of a novolak resin having a naphthalene structure (“SN485” manufactured by Toto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215, average hydroxyl group content 1/3 to 2/5), which is a phenolic curing agent. 110 parts of a solution, 0.1 part of a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 73 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatechs), acrylic rubber particles (average 9 parts of a particle size of 0.2 μ, “W-450A” manufactured by Mitsubishi Rayon Co., Ltd.) were mixed and uniformly dispersed with a high-speed rotary mixer to prepare a resin varnish (inorganic filler for the non-volatile content of the resin varnish) The content is 38% by mass, and the total number of phenolic hydroxyl groups / total number of epoxy groups is 0.78). A sheet-like adhesive film was obtained in the same manner as in Example 1.

<比較例5>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)28部と、ナフタレン型4官能エポキシ樹脂(エポキシ当量163、大日本インキ化学工業(株)製「EXA-4700」)28部とをMEK15部、シクロヘキサノン15部に撹拝しながら加熱溶解させた。そこへ、フェノール系硬化剤であるナフタレン構造のノボラック樹脂(東都化成(株)製「SN485」、フェノール性水酸基当量215、平均水酸基含有量1/3〜2/5)の固形分50%のMEK溶液110部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、「SOC2」アドマテックス社製)73部、液状ゴム変成樹脂(「PB−3600」ダイセル化学工業(株)社製)9部、フェノキシ樹脂ワニス(不揮発分30質量%のシクロヘキサノンとMEKの混合溶液、ジャパンエポキシレジン(株)製「YL6954BH30」、ガラス転位温度130℃)27部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した(樹脂ワニスの不揮発分に対する無機充填材含有量は38質量%、フェノール性水酸基合計数/エポキシ基合計数は0.78)。実施例1と同様の方法によりシート状の接着フィルムを得た。
<Comparative Example 5>
28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (epoxy equivalent 163, manufactured by Dainippon Ink & Chemicals, Inc. “EXA- 4700 ") and 28 parts were dissolved by heating in 15 parts of MEK and 15 parts of cyclohexanone while stirring. Then, MEK having a solid content of 50% of a novolak resin having a naphthalene structure (“SN485” manufactured by Toto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215, average hydroxyl group content 1/3 to 2/5), which is a phenolic curing agent. 110 parts of a solution, 0.1 part of a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”), 73 parts of spherical silica (average particle size 0.5 μm, “SOC2” manufactured by Admatex), liquid rubber modified resin ( 9 parts of “PB-3600” manufactured by Daicel Chemical Industries, Ltd., phenoxy resin varnish (mixed solution of cyclohexanone and MEK having a nonvolatile content of 30% by mass, “YL6954BH30” manufactured by Japan Epoxy Resin Co., Ltd., glass transition temperature 130 ° C. ) 27 parts were mixed and uniformly dispersed with a high-speed rotary mixer to prepare a resin varnish (containing an inorganic filler relative to the nonvolatile content of the resin varnish) 38 mass%, phenolic hydroxyl total number / epoxy groups total number of 0.78). A sheet-like adhesive film was obtained in the same manner as in Example 1.

<多層プリント配線板の製造> <Manufacture of multilayer printed wiring boards>

(1)回路基板の作製
ガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.8mm、松下電工(株)製R5715ES]の両面に回路パターンをエッチングにより形成し、さらにメック(株)製CZ8100に浸漬して銅表面の粗化処理をおこない、回路基板を作製する。
(1) Fabrication of circuit board A circuit pattern is formed by etching on both sides of a glass cloth base epoxy resin double-sided copper-clad laminate [copper foil thickness: 18 μm, board thickness: 0.8 mm, Matsushita Electric Works, Ltd. R5715ES] Further, it is immersed in CZ8100 manufactured by Mec Co., Ltd., and a copper surface is roughened to produce a circuit board.

(2)接着フィルムのラミネート
実施例1〜6で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(名機(株)製商品名)を用いて、回路基板の両面にラミネートする。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、圧力0.74MPaでプレスすることにより行う。
(2) Lamination of adhesive film The adhesive film produced in Examples 1-6 is laminated on both surfaces of a circuit board using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). Lamination is performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at a pressure of 0.74 MPa for 30 seconds.

(3)樹脂組成物の硬化
ラミネートされた接着フィルムからPETフィルムを剥離し、180℃、30分の硬化条件で樹脂組成物を硬化する。
(3) Curing of resin composition The PET film is peeled from the laminated adhesive film, and the resin composition is cured under curing conditions of 180 ° C for 30 minutes.

(4)ビアホール形成
松下溶接システム(株)製COレーザー加工機(YB−HCS03T04)を使用し、周波数1000Hzでパルス幅13μ秒、ショット数3の条件で加工して、絶縁層表面の直径が60μmのビアホールを形成する。
(4) Via hole formation Using a CO 2 laser processing machine (YB-HCS03T04) manufactured by Matsushita Welding System Co., Ltd., processing at a frequency of 1000 Hz with a pulse width of 13 μsec and a shot number of 3, the diameter of the insulating layer surface is A 60 μm via hole is formed.

(5)粗化処理
回路基板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに60℃で5分間浸漬する。次に粗化液である、アトテックジャパン(株)のコンセントレート・コンパクトP (KMnO4:60g/L、NaOH:40g/Lの水溶液)に80℃で20分間浸漬する。最後に中和液である、アトテックジャパン(株)のリダクションショリューシン・ セキュリガントPに40℃で5分間浸漬する。
(5) Roughening treatment The circuit board is immersed in a swelling dip / seculigand P containing diethylene glycol monobutyl ether of Atotech Japan Co., Ltd., which is a swelling liquid, at 60 ° C. for 5 minutes. Next, it is immersed for 20 minutes at 80 ° C. in the concentrated compact P (KMnO4: 60 g / L, NaOH: 40 g / L aqueous solution) of Atotech Japan Co., Ltd., which is a roughening solution. Finally, it is soaked at 40 ° C. for 5 minutes in Atotech Japan Co., Ltd. Reduction Sholysin Securigant P, which is a neutralizing solution.

(6)セミアディティブ工法によるメッキおよび回路形成
絶縁層表面に回路を形成するために、回路基板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬する。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行う。次に、エッチングレジストを除去し、更にフラッシュエッチングを行った後に、アニール処理を180℃にて60分間行い、絶縁層表面に厚さ約25μmの回路を形成し、多層プリント配線板を得る。
(6) Plating and circuit formation by semi-additive method In order to form a circuit on the surface of the insulating layer, the circuit board is immersed in an electroless plating solution containing PdCl 2 and then immersed in an electroless copper plating solution. After annealing for 30 minutes at 150 ° C., an etching resist is formed, and copper sulfate electrolytic plating is performed after pattern formation by etching. Next, after removing the etching resist and further performing flash etching, annealing is performed at 180 ° C. for 60 minutes to form a circuit having a thickness of about 25 μm on the surface of the insulating layer to obtain a multilayer printed wiring board.

<ピール強度およびRa値測定用サンプルの調製> <Preparation of peel strength and Ra value measurement sample>

(1)積層板の下地処理
ガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.8mm、松下電工(株)製R5715ES]の両面をメック(株)製CZ8100に浸漬して銅表面の粗化処理をおこなった。
(1) Substrate treatment of laminated board Glass cloth base epoxy resin double-sided copper-clad laminated board (copper foil thickness 18 μm, substrate thickness 0.8 mm, Matsushita Electric Works R5715ES) both sides of MEC CZ8100 The copper surface was roughened by immersion in

(2)接着フィルムのラミネート
実施例及び比較例で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(名機(株)製商品名)を用いて、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、圧力0.74MPaでプレスすることにより行った。
(2) Lamination of adhesive film The adhesive films prepared in Examples and Comparative Examples were laminated on both surfaces of a laminate using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at a pressure of 0.74 MPa for 30 seconds.

(3)樹脂組成物の硬化
ラミネートされた接着フィルムからPETフィルムを剥離し、180℃、30分の硬化条件で樹脂組成物を硬化した。
(3) Curing of resin composition The PET film was peeled from the laminated adhesive film, and the resin composition was cured under curing conditions of 180 ° C for 30 minutes.

(4)粗化処理
積層板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO4:60g/L、NaOH:40g/Lの水溶液)に浸漬、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントPに40℃で5分間浸漬した。
粗化条件1:膨潤液に80℃で5分間浸漬、粗化液に80℃で15分間浸漬した。
粗化条件2:膨潤液に60℃で5分間浸漬、粗化液に80℃で20分間浸漬した。
この粗化処理後の積層板について、表面粗度(Ra値)の測定を行った。
(4) Roughening treatment The laminate was immersed in a swelling dip secu-ligand P containing diethylene glycol monobutyl ether of Atotech Japan Co., Ltd., which is a swelling liquid, and then the outlet of Atotech Japan Co., Ltd. as a roughening liquid. Immerse in rate compact P (KMnO4: 60 g / L, NaOH: 40 g / L aqueous solution), and finally as a neutralizing solution, immerse in Atotech Japan Co., Ltd. Reduction Sholysin Securigant P at 40 ° C for 5 minutes did.
Roughening condition 1: immersed in a swelling liquid at 80 ° C. for 5 minutes, and immersed in a roughening liquid at 80 ° C. for 15 minutes.
Roughening condition 2: Dipped in a swelling solution at 60 ° C. for 5 minutes, and immersed in a roughening solution at 80 ° C. for 20 minutes.
About the laminated board after this roughening process, the surface roughness (Ra value) was measured.

(6)セミアディティブ工法によるメッキ
絶縁層表面に回路を形成するために、積層板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、25±10μmの厚さで導体層を形成した。次に、アニール処理を180℃にて60分間行った。この積層板についてメッキ銅のピール強度の測定を行った。
(6) Plating by semi-additive method In order to form a circuit on the surface of the insulating layer, the laminate was immersed in an electroless plating solution containing PdCl 2 and then immersed in an electroless copper plating solution. After annealing at 150 ° C. for 30 minutes, an etching resist was formed. After pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 25 ± 10 μm. Next, annealing was performed at 180 ° C. for 60 minutes. The peel strength of the plated copper was measured for this laminate.

[メッキ導体層の引き剥がし強さ(ピール強度)]
積層板の導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重を測定した。なお、この際の導体層の厚みは多層配線板の回路の厚みに相当する20〜30μmとした。
[Peeling strength of plating conductor layer (peel strength)]
When the conductor layer of the laminate is cut into a 10 mm wide and 100 mm long part, this end is peeled off and gripped with a gripping tool, and 35 mm is peeled off vertically at a speed of 50 mm / min at room temperature. The load of was measured. In this case, the thickness of the conductor layer was set to 20 to 30 μm corresponding to the circuit thickness of the multilayer wiring board.

[粗化後の表面粗さ(Ra値)]
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、Ra値を求めた。なお、Ra値は全測定領域に渡って計算された高さの平均値であり、具体的には測定領域内で変化する高さの絶対値を平均ラインである表面から測定して算術平均したものであり、下式(1)で表すことができる。ここで、MとNはアレイのそれぞれの方向にあるデータ個数である。ここでは10点の平均粗さを求めることにより測定した。
[Surface roughness after roughening (Ra value)]
Ra value was calculated | required using the non-contact-type surface roughness meter (BYCO Instruments WYKO NT3300). In addition, Ra value is the average value of the height calculated over the whole measurement area | region, and specifically, the absolute value of the height which changes within a measurement area | region was measured from the surface which is an average line, and was arithmetically averaged. It can be expressed by the following formula (1). Here, M and N are the number of data in each direction of the array. Here, measurement was performed by obtaining an average roughness of 10 points.

実施例及び比較例で得られた接着フィルムを使用した評価サンプルのメッキ導体層のピール強度及び粗化後の表面粗さ(Ra値)の結果について下記の表1に記載した。表1から明らかなように、本発明で規定するフェノール系硬化剤を使用した実施例の評価サンプルは、低粗度かつ高ピール強度である。一方、本発明で規定するフェノール系硬化剤の代わりに別のフェノール系硬化剤を使用した比較例の場合、ピール強度は比較的高いものの、粗度が大きく、微細配線形成に適しない。またゴム粒子が含まれない比較例3、フェノキシ樹脂が含まれない比較例4は粗度は低いものの、ピール強度が低い。また、ゴム粒子の代わりに液状ゴムが含まれる比較例5は、ピール強度は比較的高いものの、粗度が大きく、微細配線形成に適しない。   The results of the peel strength and the roughened surface roughness (Ra value) of the plated conductor layers of the evaluation samples using the adhesive films obtained in Examples and Comparative Examples are shown in Table 1 below. As is apparent from Table 1, the evaluation sample of the example using the phenolic curing agent specified in the present invention has a low roughness and a high peel strength. On the other hand, in the comparative example using another phenolic curing agent instead of the phenolic curing agent defined in the present invention, the peel strength is relatively high, but the roughness is large and it is not suitable for forming fine wiring. Moreover, although the comparative example 3 which does not contain a rubber particle and the comparative example 4 which does not contain a phenoxy resin have low roughness, they have low peel strength. Further, Comparative Example 5 in which liquid rubber is included instead of rubber particles has a relatively high peel strength, but has a large roughness and is not suitable for forming fine wiring.

本発明の樹脂組成物、該樹脂組成物により調製される接着フィルムおよびプリプレグは、多層プリント配線板、特にビルドアップ方式で製造される多層プリント配線板の層間絶縁材料として好適に使用される。   The resin composition of the present invention, the adhesive film prepared by the resin composition, and the prepreg are suitably used as an interlayer insulating material for multilayer printed wiring boards, particularly multilayer printed wiring boards manufactured by a build-up method.

Claims (21)

(A)1分子中に2個以上のエポキシ基を有するエポキシ樹脂、(B)1分子中の平均水酸基含有率P((総水酸基数/総ベンゼン環数)の平均値)が0<P<1であるフェノール系硬化剤、(C)フェノキシ樹脂、及び(D)ゴム粒子を含有することを特徴とする、メッキで導体層を形成する多層プリント配線板の絶縁層用のエポキシ樹脂組成物(但し、当該樹脂組成物が、両末端にアミノ基を有する芳香族ポリアミドオリゴマーと両末端にカルボキシル基を有するブタジエン−アクリロニトリル共重合体との重縮合により得られる重量平均分子量が10,000〜1,000,000のエラストマーを含む場合を除く)。 (A) Epoxy resin having two or more epoxy groups in one molecule, (B) Average hydroxyl group content P in one molecule (average value of (total number of hydroxyl groups / total number of benzene rings)) is 0 <P < 1. An epoxy resin composition for an insulating layer of a multilayer printed wiring board that forms a conductor layer by plating, comprising a phenolic curing agent that is 1, (C) a phenoxy resin, and (D) rubber particles ( However, the resin composition has a weight average molecular weight of 10,000 to 1, obtained by polycondensation of an aromatic polyamide oligomer having an amino group at both ends and a butadiene-acrylonitrile copolymer having a carboxyl group at both ends. Unless including 000,000 elastomers). 成分(B)のフェノール系硬化剤が、下式(1)又は(2)で表されるフェノール系硬化剤である、請求項1記載のエポキシ樹脂組成物。
(式中、R1〜R4は各々独立して、水素原子又はアルキル基を示し、X1はそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環、ナフタレン環又はヒドロキシナフタレン環を示し、Yはそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環又はビフェニル環を示し、j及びkはそれぞれ平均値で1〜15の数を示す。)
(式中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基又はチオアルキル基を示し、X2はそれぞれアルキル基で置換されていてもよい、ベンゼン環又はナフタレン環を示し、j及びkはそれぞれ平均値で1〜15の数を示し、mは1〜5の整数を示す。)
The epoxy resin composition of Claim 1 whose phenol type hardening | curing agent of a component (B) is a phenol type hardening | curing agent represented by the following Formula (1) or (2).
(Wherein R1 to R4 each independently represent a hydrogen atom or an alkyl group, X1 represents a benzene ring, a hydroxybenzene ring, a naphthalene ring or a hydroxynaphthalene ring, each of which may be substituted with an alkyl group, Y represents a benzene ring, a hydroxybenzene ring or a biphenyl ring, each of which may be substituted with an alkyl group, and j and k each represent an average value of 1 to 15)
(Wherein R5 represents a hydrogen atom or an alkyl group, R6 represents a hydrogen atom, an alkyl group or a thioalkyl group, X2 represents a benzene ring or a naphthalene ring each optionally substituted by an alkyl group, j and (k represents an average value of 1 to 15 and m represents an integer of 1 to 5)
成分(B)のフェノール系硬化剤が、下式(1’)又は(2’)で表されるフェノール系硬化剤である、請求項1記載のエポキシ樹脂組成物。
(式中、R1〜R4は各々独立して、水素原子又はアルキル基を示し、X1はそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環、ナフタレン環又はヒドロキシナフタレン環を示し、Yはそれぞれアルキル基で置換されていてもよい、ベンゼン環、ヒドロキシベンゼン環又はビフェニル環を示し、nは平均値で1〜15の数を示す。)
(式中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基又はチオアルキル基を示し、X2はそれぞれアルキル基で置換されていてもよい、ベンゼン環又はナフタレン環を示し、nは平均値で1〜15の数を示し、mは1〜5の整数を示す。)
The epoxy resin composition of Claim 1 whose phenol type hardening | curing agent of a component (B) is a phenol type hardening | curing agent represented by the following Formula (1 ') or (2').
(Wherein R1 to R4 each independently represent a hydrogen atom or an alkyl group, X1 represents a benzene ring, a hydroxybenzene ring, a naphthalene ring or a hydroxynaphthalene ring, each of which may be substituted with an alkyl group, Y represents a benzene ring, a hydroxybenzene ring or a biphenyl ring, each of which may be substituted with an alkyl group, and n represents an average value of 1 to 15.)
(Wherein R5 represents a hydrogen atom or an alkyl group, R6 represents a hydrogen atom, an alkyl group or a thioalkyl group, X2 represents a benzene ring or a naphthalene ring each optionally substituted with an alkyl group, and n represents The average value represents a number from 1 to 15, and m represents an integer from 1 to 5.)
成分(B)のフェノール系硬化剤が、下式(3)〜(5)のいずれかで表されるフェノール系硬化剤である、請求項1記載のエポキシ樹脂組成物。
(式中、R7は水素原子又はメチル基を示し、Zはナフタレン環を示し、nは平均値で1〜15の数を示す。)
(式中、R8およびR9はそれぞれ独立して水素原子又はメチル基を示し、nは平均値で1〜15の数を示す。)
(式中、R10は水素原子又はメチル基を示し、nは平均値で1〜15の数を示す。)
The epoxy resin composition according to claim 1, wherein the phenolic curing agent of component (B) is a phenolic curing agent represented by any of the following formulas (3) to (5).
(In the formula, R7 represents a hydrogen atom or a methyl group, Z represents a naphthalene ring, and n represents an average value of 1 to 15)
(In the formula, R8 and R9 each independently represent a hydrogen atom or a methyl group, and n represents an average value of 1 to 15)
(In the formula, R10 represents a hydrogen atom or a methyl group, and n represents an average value of 1 to 15)
成分(B)のフェノール系硬化剤が下式(6)で表されるフェノール系硬化剤である、請求項1記載のエポキシ樹脂組成物。
(式中、R11は水素原子、メチル基又はチオメチル基を示し、nは平均値で1〜15の数を示す。)
The epoxy resin composition of Claim 1 whose phenol type hardening | curing agent of a component (B) is a phenol type hardening | curing agent represented by the following Formula (6).
(In the formula, R11 represents a hydrogen atom, a methyl group or a thiomethyl group, and n represents an average value of 1 to 15)
成分(B)のフェノール系硬化剤が下式(7)で表されるフェノール系硬化剤である、請求項1記載のエポキシ樹脂組成物。
(式中、R12は水素原子、メチル基又は水酸基を示し、R13は水素原子又はメチル基を示し、Zはナフタレン環を示し、nは平均値で1〜15の数を示す。)
The epoxy resin composition of Claim 1 whose phenol type hardening | curing agent of a component (B) is a phenol type hardening | curing agent represented by the following Formula (7).
(Wherein R12 represents a hydrogen atom, a methyl group or a hydroxyl group, R13 represents a hydrogen atom or a methyl group, Z represents a naphthalene ring, and n represents an average value of 1 to 15)
成分(A)のエポキシ樹脂が、(A1)1分子中に2以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂である、第1のエポキシ樹脂、および(A2)1分子中に3以上エポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂である、第2のエポキシ樹脂を含有する、請求項1〜6いずれか1項に記載のエポキシ樹脂組成物。 The component (A) epoxy resin is (A1) a first epoxy resin which has two or more epoxy groups in one molecule and is a liquid aromatic epoxy resin at a temperature of 20 ° C., and (A2) 1 The epoxy resin composition according to any one of claims 1 to 6, comprising a second epoxy resin having 3 or more epoxy groups in a molecule and being a solid aromatic epoxy resin at a temperature of 20 ° C. object. 成分(A2)の第2のエポキシ樹脂のエポキシ当量が230以下である、請求項7記載のエポキシ樹脂組成物。 The epoxy resin composition of Claim 7 whose epoxy equivalent of the 2nd epoxy resin of a component (A2) is 230 or less. 成分(A2)の第2のエポキシ樹脂のエポキシ当量が150〜230の範囲である、請求項7記載のエポキシ樹脂組成物。 The epoxy resin composition of Claim 7 whose epoxy equivalent of the 2nd epoxy resin of a component (A2) is the range of 150-230. 第1のエポキシ樹脂(A1)と第2のエポキシ樹脂(A2)の配合割合(A1:A2)が、質量比で1:0.3〜1:2の範囲である、請求項7〜9いずれか1項に記載のエポキシ樹脂組成物。 Any one of Claims 7-9 whose compounding ratio (A1: A2) of a 1st epoxy resin (A1) and a 2nd epoxy resin (A2) is the range of 1: 0.3-1: 2 by mass ratio. The epoxy resin composition according to claim 1. エポキシ樹脂組成物の不揮発成分を100質量%とした場合、成分(A)の含有量が10〜50質量%、成分(C)の含有量が1〜20質量%、及び成分(D)の含有量が1〜10質量%であり、エポキシ樹脂組成物中に存在するエポキシ基に対するフェノール系硬化剤のフェノール性水酸基の割合が1:0.5〜1:1.5である、請求項1〜10いずれか1項に記載のエポキシ樹脂組成物。 When the non-volatile component of the epoxy resin composition is 100% by mass, the content of the component (A) is 10 to 50% by mass, the content of the component (C) is 1 to 20% by mass, and the content of the component (D) The amount is 1 to 10% by mass, and the ratio of the phenolic hydroxyl group of the phenol-based curing agent to the epoxy group present in the epoxy resin composition is 1: 0.5 to 1: 1.5. 10. The epoxy resin composition according to any one of 10 above. エポキシ樹脂組成物が更に無機充填材を含有する、請求項1〜11いずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 11, wherein the epoxy resin composition further contains an inorganic filler. エポキシ樹脂組成物の不揮発成分を100質量%とした場合、無機充填材を10〜75質量%含有する、請求項12記載のエポキシ樹脂組成物。 The epoxy resin composition of Claim 12 which contains 10-75 mass% of inorganic fillers when the non-volatile component of an epoxy resin composition is 100 mass%. 請求項1〜13いずれか1項に記載のエポキシ樹脂組成物が支持フィルム上に層形成されている接着フィルム。 The adhesive film by which the epoxy resin composition of any one of Claims 1-13 is layer-formed on the support film. 請求項1〜13いずれか1項に記載のエポキシ樹脂組成物が繊維からなるシート状補強基材中に含浸されていることを特徴とするプリプレグ。 A prepreg characterized in that the epoxy resin composition according to any one of claims 1 to 13 is impregnated in a sheet-like reinforcing base material comprising fibers. 請求項1〜13いずれか1項に記載のエポキシ樹脂組成物の硬化物により絶縁層が形成されている、多層プリント配線板。 The multilayer printed wiring board with which the insulating layer is formed with the hardened | cured material of the epoxy resin composition of any one of Claims 1-13. 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、該絶縁層が、請求項1〜13いずれか1項に記載のエポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面に銅メッキにより形成されることを特徴とする、多層プリント配線板の製造方法。 It is a manufacturing method of the multilayer printed wiring board including the process of forming an insulating layer on an inner-layer circuit board, and the process of forming a conductor layer on this insulating layer, Comprising: This insulating layer is any one of Claims 1-13. A multilayer printed wiring board comprising: a heat-cured epoxy resin composition according to claim 1, wherein the conductor layer is formed by copper plating on a roughened surface obtained by roughening the surface of the insulating layer. Production method. 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層が、請求項14記載の接着フィルムを内層回路基板上にラミネートし、支持フィルムを剥離するか又はしないで、エポキシ樹脂組成物を熱硬化し、硬化後に支持フィルムが存在する場合に支持フィルムを剥離して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面に銅メッキにより形成されることを特徴とする、多層プリント配線板の製造方法。 15. A method for manufacturing a multilayer printed wiring board comprising a step of forming an insulating layer on an inner layer circuit board and a step of forming a conductor layer on the insulating layer, wherein the insulating layer comprises the adhesive film as an inner layer circuit. Laminated on the substrate, the epoxy resin composition is heat-cured with or without peeling off the support film, and the support film is peeled off when the support film is present after curing. A method for producing a multilayer printed wiring board, wherein the roughened surface of the layer surface is formed by copper plating. 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層が、請求項15記載のプリプレグを内層回路基板上にラミネートし、エポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面に銅メッキにより形成されることを特徴とする、多層プリント配線板の製造方法。 16. A method of manufacturing a multilayer printed wiring board comprising a step of forming an insulating layer on an inner layer circuit board and a step of forming a conductor layer on the insulating layer, the insulating layer comprising the prepreg according to claim 15 as an inner layer circuit board. A multilayer printed wiring, characterized in that it is formed by laminating and thermosetting an epoxy resin composition, and the conductor layer is formed by copper plating on a roughened surface obtained by roughening the surface of the insulating layer. A manufacturing method of a board. 粗化処理が、酸化剤を使用して行われる、請求項17〜19のいずれか1項に記載の製造方法。 The method according to any one of claims 17 to 19, wherein the roughening treatment is performed using an oxidizing agent. 粗化処理が、アルカリ性過マンガン酸溶液を使用して行われる、請求項17〜19のいずれか1項に記載の製造方法。 The method according to any one of claims 17 to 19, wherein the roughening treatment is performed using an alkaline permanganate solution.
JP2006320769A 2005-11-29 2006-11-28 Resin composition for insulating layer of multilayer printed wiring board Active JP4983228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320769A JP4983228B2 (en) 2005-11-29 2006-11-28 Resin composition for insulating layer of multilayer printed wiring board

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005344686 2005-11-29
JP2005344686 2005-11-29
JP2006045637 2006-02-22
JP2006045637 2006-02-22
JP2006320769A JP4983228B2 (en) 2005-11-29 2006-11-28 Resin composition for insulating layer of multilayer printed wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012027733A Division JP5505435B2 (en) 2005-11-29 2012-02-10 Resin composition for insulating layer of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2007254709A JP2007254709A (en) 2007-10-04
JP4983228B2 true JP4983228B2 (en) 2012-07-25

Family

ID=38629253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320769A Active JP4983228B2 (en) 2005-11-29 2006-11-28 Resin composition for insulating layer of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP4983228B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096173A1 (en) * 2007-02-23 2010-04-22 Kentaro Fujino Epoxy resin composition, prepreg, and laminate and printed wiring board
JP5510314B2 (en) 2008-03-25 2014-06-04 住友ベークライト株式会社 Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board, and semiconductor device
JP5245526B2 (en) * 2008-05-09 2013-07-24 日立化成株式会社 Insulating resin composition and insulating film with support
JP2011525207A (en) * 2008-06-16 2011-09-15 スリーエム イノベイティブ プロパティズ カンパニー Reinforced curable composition
JP2010037489A (en) * 2008-08-07 2010-02-18 Hitachi Chem Co Ltd Adhesive film, and metal foil with resin
JP4416046B1 (en) * 2008-08-08 2010-02-17 横浜ゴム株式会社 Epoxy resin composition and structural adhesive
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2010084019A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Resin composition and cured product
JP2010083965A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Resin composition, cured body, and laminate
TWI494364B (en) * 2009-01-30 2015-08-01 Ajinomoto Kk Resin composition
JP5149917B2 (en) * 2009-03-27 2013-02-20 日立化成工業株式会社 Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
CN102365310B (en) * 2009-03-27 2013-11-20 日立化成工业株式会社 Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP2011032435A (en) * 2009-08-05 2011-02-17 Yokohama Rubber Co Ltd:The Epoxy resin composition
TWI506082B (en) * 2009-11-26 2015-11-01 Ajinomoto Kk Epoxy resin composition
TWI540170B (en) * 2009-12-14 2016-07-01 Ajinomoto Kk Resin composition
GB0922599D0 (en) * 2009-12-23 2010-02-10 Cytec Tech Corp Modified resin systems for liquid resin infusion applications, prepreg autoclave applications and hybrids thereof
JP2013001807A (en) * 2011-06-16 2013-01-07 Panasonic Corp Resin composition for electronic circuit board material, prepreg and laminated plate
JP5999091B2 (en) 2011-07-14 2016-09-28 三菱瓦斯化学株式会社 Resin composition for printed wiring board
US9351397B2 (en) 2012-01-31 2016-05-24 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil clad laminate, and printed wiring board using same
JP6205692B2 (en) * 2012-09-03 2017-10-04 味の素株式会社 Thermosetting epoxy resin composition, insulating film forming adhesive film and multilayer printed wiring board
TWI694109B (en) 2013-06-12 2020-05-21 日商味之素股份有限公司 Resin composition
JP6303320B2 (en) 2013-08-06 2018-04-04 味の素株式会社 Manufacturing method of component mounting board
JP6018148B2 (en) * 2014-09-25 2016-11-02 太陽インキ製造株式会社 Dry film and printed wiring board
EP3321302B1 (en) 2015-07-10 2021-06-30 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition, process for producing same, and uses of said composition
JP6610928B2 (en) * 2015-08-13 2019-11-27 味の素株式会社 Thermosetting resin composition
TWI725054B (en) 2015-10-01 2021-04-21 日商三菱鉛筆股份有限公司 Non-aqueous dispersion of fluorine resin, thermosetting resin composition of fluorine resin and its cured product, and adhesive composition for circuit board
JP6934633B2 (en) * 2016-12-19 2021-09-15 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate and printed wiring board
JP6556965B2 (en) 2017-01-10 2019-08-07 住友精化株式会社 Epoxy resin composition
KR102459583B1 (en) 2017-01-10 2022-10-28 스미토모 세이카 가부시키가이샤 epoxy resin composition
JP6763788B2 (en) * 2017-01-10 2020-09-30 味の素株式会社 Thermosetting epoxy resin composition, adhesive film for forming an insulating layer and multilayer printed wiring board
WO2018131567A1 (en) 2017-01-10 2018-07-19 住友精化株式会社 Epoxy resin composition
EP3569654B1 (en) 2017-01-10 2023-08-23 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
JP6915639B2 (en) * 2017-01-10 2021-08-04 味の素株式会社 Thermosetting epoxy resin composition, adhesive film for forming an insulating layer and multilayer printed wiring board
JP6928908B2 (en) * 2017-04-07 2021-09-01 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board
JP7279303B2 (en) * 2017-05-10 2023-05-23 味の素株式会社 Resin composition layer
JP6801608B2 (en) * 2017-08-21 2020-12-16 味の素株式会社 Resin composition
JP6860038B2 (en) * 2019-06-10 2021-04-14 味の素株式会社 Insulating resin material
JP7283409B2 (en) 2020-02-07 2023-05-30 信越化学工業株式会社 Bismaleimide compound and method for producing the same
JP7259783B2 (en) * 2020-02-27 2023-04-18 味の素株式会社 resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253094A (en) * 2002-03-04 2003-09-10 Toho Tenax Co Ltd Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP2003286390A (en) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2004051976A (en) * 2002-05-30 2004-02-19 Sekisui Chem Co Ltd Epoxy resin composition and epoxy resin molding
JP4725704B2 (en) * 2003-05-27 2011-07-13 味の素株式会社 Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP2005206831A (en) * 2003-12-24 2005-08-04 Sekisui Chem Co Ltd Thermosetting resin composition, resin sheet, and resin sheet for insulated substrate

Also Published As

Publication number Publication date
JP2007254709A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4983228B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP5505435B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP4992396B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP5573869B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP6572983B2 (en) Epoxy resin composition
JP6267140B2 (en) Resin composition
JP4725704B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5396805B2 (en) Epoxy resin composition
JP5605259B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5651941B2 (en) Epoxy resin composition
JP6024783B2 (en) Resin composition
JP5446866B2 (en) Epoxy resin composition
JP2011144361A (en) Resin composition
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JPWO2007097209A1 (en) Epoxy resin composition
JP2013234328A (en) Epoxy resin composition
JP5904256B2 (en) Resin composition

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4983228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250