JP5446866B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP5446866B2
JP5446866B2 JP2009533193A JP2009533193A JP5446866B2 JP 5446866 B2 JP5446866 B2 JP 5446866B2 JP 2009533193 A JP2009533193 A JP 2009533193A JP 2009533193 A JP2009533193 A JP 2009533193A JP 5446866 B2 JP5446866 B2 JP 5446866B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
insulating layer
epoxy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009533193A
Other languages
Japanese (ja)
Other versions
JPWO2009038166A1 (en
Inventor
茂雄 中村
賢司 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2009533193A priority Critical patent/JP5446866B2/en
Publication of JPWO2009038166A1 publication Critical patent/JPWO2009038166A1/en
Application granted granted Critical
Publication of JP5446866B2 publication Critical patent/JP5446866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor

Description

本発明は、多層プリント配線板の絶縁層形成に好適な、エポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition suitable for forming an insulating layer of a multilayer printed wiring board.

近年、電子機器の小型化、高性能化が進み、多層プリント配線板においては、ビルドアップ層が複層化され、配線の微細化及び高密度化も一層進んでいる。高密度の微細配線を形成するのに適した導体形成方法として、絶縁層表面を粗化処理後、無電解めっきで導体層を形成するアディティブ法と、無電解めっきと電解めっきで導体層を形成するセミアディティブ法が知られている。これらの方法においては、絶縁層とめっき導体層との密着性は主に粗化処理によって形成された絶縁層表面の凹凸によって確保している。すなわち、絶縁層表面が凹凸を有することでめっき層との間にアンカー効果が得られる。従って、密着力を高めるには、絶縁層表面の凹凸の程度(粗度)をより大きくすることが考えられる。   In recent years, electronic devices have become smaller and higher in performance, and in multilayer printed wiring boards, the build-up layer has been multilayered, and the miniaturization and higher density of the wiring are further advanced. As a conductor formation method suitable for forming high-density fine wiring, an additive method in which a conductor layer is formed by electroless plating after the surface of the insulating layer is roughened, and a conductor layer is formed by electroless plating and electrolytic plating. A semi-additive method is known. In these methods, the adhesion between the insulating layer and the plated conductor layer is ensured mainly by unevenness on the surface of the insulating layer formed by roughening treatment. That is, an anchor effect is obtained between the plating layer and the insulating layer surface having irregularities. Therefore, to increase the adhesion, it is conceivable to increase the degree of roughness (roughness) on the surface of the insulating layer.

しかしながら、配線のさらなる高密度化のためには絶縁層表面の粗度は小さいのが好ましい。即ち、無電解めっき、電解めっきにより導体層を形成後、フラッシュエッチングにより薄膜のめっき層を取り除いて配線形成を完了させる際、絶縁層表面の粗度が大きいと、凹部に潜り込んだ導体層を取り除くために長時間のフラッシュエッチングが必要となり、フラッシュエッチングを長時間行うと、その影響で微細配線が損傷または断線する危険性が高くなってしまう。従って、高信頼性の高密度配線を形成するためには、絶縁層表面には粗化処理後の粗度が小さくてもめっき導体との密着性に優れることが要求される。   However, the surface roughness of the insulating layer is preferably small in order to further increase the wiring density. That is, after forming a conductor layer by electroless plating or electrolytic plating, and removing the thin plating layer by flash etching to complete wiring formation, if the roughness of the surface of the insulating layer is large, the conductor layer embedded in the recess is removed. Therefore, a long time of flash etching is required, and if the flash etching is performed for a long time, there is a high risk that the fine wiring is damaged or disconnected due to the influence. Therefore, in order to form a highly reliable high-density wiring, the insulating layer surface is required to have excellent adhesion to the plated conductor even if the roughness after the roughening treatment is small.

またさらに、多層プリント基板の絶縁材には難燃性が必要とされ、特に近年は、環境への配慮からノンハロゲン系の難燃剤が使用される傾向にある。ノンハロゲン系難燃剤の例としては、リン系難燃剤が知られており、例えば特開2001-181375号公報には、リン含有エポキシ樹脂と、フェノール系硬化剤、特定のフェノキシ樹脂等を含むエポキシ樹脂組成物が、多層プリント配線板の絶縁層に使用した場合に、耐熱性、難燃性が高く、メッキにより形成される導体層のピール強度に優れることが開示されている。しかしながら、同明細書の実施例に記載された粗化後絶縁層表面の粗度は大きく、微細配線化に限界があった。   Furthermore, the insulating material of the multilayer printed circuit board is required to have flame retardancy, and in recent years, non-halogen flame retardant tends to be used in consideration of the environment. As an example of the non-halogen flame retardant, a phosphorus flame retardant is known. For example, JP-A No. 2001-181375 discloses an epoxy resin containing a phosphorus-containing epoxy resin, a phenol-based curing agent, a specific phenoxy resin, and the like. It is disclosed that when the composition is used for an insulating layer of a multilayer printed wiring board, it has high heat resistance and flame retardancy and is excellent in peel strength of a conductor layer formed by plating. However, the roughness of the surface of the insulating layer after roughening described in the Examples of the same specification is large, and there is a limit to miniaturization.

また例えば特開2003-11269号公報には、フェノール性水酸基含有リン化合物を含有するエポキシ樹脂組成物が、銅箔付き絶縁材として使用した場合に、絶縁性、耐熱性に優れることが開示されている。しかしながら、本特許文献においても、絶縁層として用いた場合に、低粗度かつ高ピール強度が得られる樹脂組成物は開示されておらず、またそのような課題も提示されていない。   Further, for example, JP-A-2003-11269 discloses that an epoxy resin composition containing a phenolic hydroxyl group-containing phosphorus compound is excellent in insulation and heat resistance when used as an insulating material with a copper foil. Yes. However, even in this patent document, when used as an insulating layer, a resin composition that can provide low roughness and high peel strength is not disclosed, and such a problem is not presented.

本発明らは、上記のような事情に鑑みなされたもので、その解決しようとする課題は、多層プリント配線板の絶縁層としての使用に好適なエポキシ樹脂組成物であって、粗化処理後の粗化面の粗度が比較的小さいにもかかわらず、該粗化面がめっき導体に対して高い密着力を示し、かつ難燃性に優れた絶縁層を達成し得るエポキシ樹脂組成物を提供することである。   The present invention has been made in view of the circumstances as described above, and the problem to be solved is an epoxy resin composition suitable for use as an insulating layer of a multilayer printed wiring board, and after roughening treatment An epoxy resin composition capable of achieving an insulating layer having a high adhesion to a plated conductor and having an excellent flame retardance even though the roughness of the roughened surface is relatively small. Is to provide.

本発明者らは、上記課題を解決すべく鋭意研究した結果、エポキシ樹脂、エポキシ硬化剤、並びにフェノキシ樹脂及び/又はポリビニルアセタール樹脂と、リン含有ベンゾオキサジン化合物を配合したエポキシ樹脂組成物において、該エポキシ樹脂を硬化して得られる硬化物を粗化処理すると、得られる粗化面は粗度が比較的小さくてもめっき導体と高い密着力で密着し得るものとなる上に、優れた難燃性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an epoxy resin composition containing an epoxy resin, an epoxy curing agent, a phenoxy resin and / or a polyvinyl acetal resin, and a phosphorus-containing benzoxazine compound, When the cured product obtained by curing the epoxy resin is roughened, the resulting roughened surface can be adhered to the plated conductor with high adhesion even if the roughness is relatively small. As a result, the present invention has been completed.

すなわち、本発明は以下の内容を含むものである。
[1](A)エポキシ樹脂、(B)エポキシ硬化剤、(C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂、並びに(D)リン含有ベンゾオキサジン化合物を含有することを特徴とする、エポキシ樹脂組成物。
[2]リン含有ベンゾオキサジン化合物が、下式(1)で表されるリン含有ベンゾオキサジン化合物である上記[1]記載のエポキシ樹脂組成物。

[3]エポキシ硬化剤が、フェノール系硬化剤、ナフトール系硬化剤及び活性エステル系硬化剤から選択される1種以上からなるエポキシ硬化剤である、上記[1]又は[2]記載のエポキシ樹脂組成物。
[4]エポキシ樹脂組成物の不揮発成分を100質量%とした場合、成分(A)の含有量が10〜50質量%、成分(C)の含有量が2〜20質量%、および成分(D)の含有量が2〜20質量%であり、エポキシ樹脂組成物中に存在する1のエポキシ基に対するエポキシ硬化剤の反応基の比率が1:0.5〜1:1.1である、上記[1]〜[3]のいずれかに記載のエポキシ樹脂組成物。
[5]さらに無機充填材を含有する、上記[1]〜[4]のいずれかに記載のエポキシ樹脂組成物。
[6]エポキシ樹脂組成物の不揮発成分を100質量%とした場合、無機充填材の含有量が10〜60質量%である、上記[5]記載のエポキシ樹脂組成物。
[7]上記[1]〜[6]のいずれかに記載のエポキシ樹脂組成物が支持フィルム上に層形成されている接着フィルム。
[8]上記[1]〜[6]のいずれかに記載のエポキシ樹脂組成物が繊維からなるシート状繊維基材中に含浸されていることを特徴とするプリプレグ。
[9]上記[1]〜[6]のいずれかに記載のエポキシ樹脂組成物の硬化物により絶縁層が形成されている、多層プリント配線板。
[10]内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、該絶縁層が、上記[1]〜[6]のいずれかに記載のエポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面にめっきにより形成されることを特徴とする、多層プリント配線板の製造方法。
[11]内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層形成工程、該絶縁層の粗面化工程、及び該粗面へのめっき工程を有し、絶縁層の形成工程が、上記[7]記載の支持フィルム上に層形成されている接着フィルムを内層回路基板上にラミネートするステップと、エポキシ樹脂組成物を熱硬化するステップを有することを特徴とする、多層プリント配線板の製造方法。
[12]内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層が、上記[8]記載のプリプレグを内層回路基板上にラミネートし、エポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面にめっきにより形成されることを特徴とする、多層プリント配線板の製造方法。
[13]粗化処理が、アルカリ性過マンガン酸溶液を使用して行われる、上記[10]〜[12]のいずれかに記載の多層プリント配線板の製造方法。
That is, the present invention includes the following contents.
[1] An epoxy resin composition comprising (A) an epoxy resin, (B) an epoxy curing agent, (C) a phenoxy resin and / or a polyvinyl acetal resin, and (D) a phosphorus-containing benzoxazine compound. .
[2] The epoxy resin composition according to the above [1], wherein the phosphorus-containing benzoxazine compound is a phosphorus-containing benzoxazine compound represented by the following formula (1).

[3] The epoxy resin according to [1] or [2] above, wherein the epoxy curing agent is an epoxy curing agent composed of one or more selected from a phenolic curing agent, a naphthol curing agent and an active ester curing agent. Composition.
[4] When the nonvolatile component of the epoxy resin composition is 100% by mass, the content of the component (A) is 10 to 50% by mass, the content of the component (C) is 2 to 20% by mass, and the component (D ) Is 2 to 20% by mass, and the ratio of the reactive group of the epoxy curing agent to 1 epoxy group present in the epoxy resin composition is 1: 0.5 to 1: 1.1 The epoxy resin composition according to any one of [1] to [3].
[5] The epoxy resin composition according to any one of [1] to [4], further including an inorganic filler.
[6] The epoxy resin composition according to the above [5], wherein the content of the inorganic filler is 10 to 60% by mass when the nonvolatile component of the epoxy resin composition is 100% by mass.
[7] An adhesive film in which the epoxy resin composition according to any one of [1] to [6] is layered on a support film.
[8] A prepreg characterized in that the epoxy resin composition according to any one of [1] to [6] is impregnated in a sheet-like fiber substrate made of fibers.
[9] A multilayer printed wiring board in which an insulating layer is formed of a cured product of the epoxy resin composition according to any one of [1] to [6].
[10] A method for producing a multilayer printed wiring board, comprising a step of forming an insulating layer on an inner circuit board and a step of forming a conductor layer on the insulating layer, wherein the insulating layer is the above-mentioned [1] to [ 6], wherein the epoxy resin composition is heat-cured and the conductor layer is formed by plating on a roughened surface obtained by roughening the surface of the insulating layer. Manufacturing method of printed wiring board.
[11] A method for manufacturing a multilayer printed wiring board, comprising a step of forming an insulating layer on an inner circuit board and a step of forming a conductor layer on the insulating layer, the insulating layer forming step, the rough surface of the insulating layer A step of laminating an adhesive film formed on the support film according to the above [7] on the inner layer circuit board, and a step of forming an insulating layer and a step of plating on the rough surface. The manufacturing method of a multilayer printed wiring board characterized by including the step of thermosetting an epoxy resin composition.
[12] A method for producing a multilayer printed wiring board, comprising a step of forming an insulating layer on an inner circuit board and a step of forming a conductor layer on the insulating layer, wherein the insulating layer comprises the prepreg as described in [8] above Is formed by thermosetting an epoxy resin composition, and the conductor layer is formed by plating on a roughened surface obtained by roughening the surface of the insulating layer. A method for producing a multilayer printed wiring board.
[13] The method for producing a multilayer printed wiring board according to any one of [10] to [12], wherein the roughening treatment is performed using an alkaline permanganate solution.

本発明によれば、粗化処理後の粗化面の粗度が比較的小さいにもかかわらず、めっきで形成される導体層との密着強度に優れ、優れた難燃性を有する絶縁層を、多層プリント配線板に導入することが可能となる。   According to the present invention, an insulating layer having excellent flame retardancy and excellent adhesion strength with a conductor layer formed by plating, although the roughness of the roughened surface after the roughening treatment is relatively small. It becomes possible to introduce into a multilayer printed wiring board.

[成分(A)のエポキシ樹脂]
本発明における成分(A)のエポキシ樹脂は特に限定はされず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。
[Epoxy resin of component (A)]
The epoxy resin of component (A) in the present invention is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy Resin, naphthol type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring Containing epoxy resin, halogenated epoxy resin and the like.

エポキシ樹脂は、これらの中でも、耐熱性、絶縁信頼性、金属膜との密着性の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。具体的には、例えば、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート828EL」(「jER828EL」))、ナフタレン型2官能エポキシ樹脂(大日本インキ化学工業(株)製「HP4032」、「HP4032D])、ナフタレン型4官能エポキシ樹脂(大日本インキ化学工業(株)製「HP4700」)、ナフトール型エポキシ樹脂(東都化成(株)製「ESN−475V」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB−3600」)、ビフェニル構造を有するエポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」、ジャパンエポキシレジン(株)製「YX4000」)などが挙げられる。   Among these, the epoxy resin has a bisphenol A type epoxy resin, a naphthol type epoxy resin, a naphthalene type epoxy resin, a biphenyl type epoxy resin, and a butadiene structure from the viewpoint of heat resistance, insulation reliability, and adhesion to a metal film. Epoxy resins are preferred. Specifically, for example, liquid bisphenol A type epoxy resin (“Epicoat 828EL” (“jER828EL”) manufactured by Japan Epoxy Resin Co., Ltd.), naphthalene type bifunctional epoxy resin (“HP4032” manufactured by Dainippon Ink & Chemicals, Inc.) ”,“ HP4032D]), naphthalene type tetrafunctional epoxy resin (“HP4700” manufactured by Dainippon Ink & Chemicals, Inc.), naphthol type epoxy resin (“ESN-475V” manufactured by Tohto Kasei Co., Ltd.), and butadiene structure Epoxy resin ("PB-3600" manufactured by Daicel Chemical Industries, Ltd.), epoxy resin having a biphenyl structure ("NC3000H", "NC3000L" manufactured by Nippon Kayaku Co., Ltd., "YX4000" manufactured by Japan Epoxy Resins Co., Ltd.) Etc.

エポキシ樹脂は1種を単独で用いても、2種以上を併用してもよいが、通常、1分子中に2個以上のエポキシ基を有するエポキシ樹脂が含有される。エポキシ樹脂組成物の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であるのが好ましい。またさらに、1分子中に2以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂であるエポキシ樹脂、および1分子中に3以上エポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂を含有する態様が好ましい。なお、本発明でいう芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。またエポキシ当量(g/eq)は、エポキシ基1個当たりの分子量のことである。エポキシ樹脂として、液状エポキシ樹脂と固形エポキシ樹脂を使用することで、エポキシ樹脂組成物を接着フィルムの形態で使用する場合に、十分な可撓性を示し、取扱い性に優れた接着フィルムを形成できると同時に、エポキシ樹脂組成物の硬化物の破断強度が向上し、多層プリント配線板の耐久性が向上する。   One epoxy resin may be used alone, or two or more epoxy resins may be used in combination, but usually an epoxy resin having two or more epoxy groups in one molecule is contained. When the nonvolatile component of the epoxy resin composition is 100% by mass, at least 50% by mass is preferably an epoxy resin having two or more epoxy groups in one molecule. Furthermore, an epoxy resin that is an aromatic epoxy resin that has two or more epoxy groups in one molecule and is liquid at a temperature of 20 ° C, and a solid that has three or more epoxy groups in one molecule and has a temperature of 20 ° C. The aspect which contains a shape-like aromatic epoxy resin is preferable. The aromatic epoxy resin in the present invention means an epoxy resin having an aromatic ring skeleton in the molecule. The epoxy equivalent (g / eq) is the molecular weight per epoxy group. By using a liquid epoxy resin and a solid epoxy resin as an epoxy resin, when using an epoxy resin composition in the form of an adhesive film, an adhesive film that exhibits sufficient flexibility and excellent handling properties can be formed. At the same time, the breaking strength of the cured product of the epoxy resin composition is improved, and the durability of the multilayer printed wiring board is improved.

また、エポキシ樹脂として、液状エポキシ樹脂と固形エポキシ樹脂を併用する場合、その配合割合(液状:固形)は質量比で1:0.3〜1:2の範囲が好ましい。液状エポキシ樹脂の割合がかかる範囲内であれば、エポキシ樹脂組成物の粘着性が高くなることもなく、接着フィルムの形態で使用する場合に、真空ラミネート時の脱気性が低下してボイドが発生しやすくなることもない。また真空ラミネート時に保護フィルムや支持フィルムの剥離性の低下や、硬化後の耐熱性が低下することもない。また、エポキシ樹脂組成物の硬化物において十分な破断強度が得られる。一方、固形エポキシ樹脂の割合がかかる範囲内であれば、接着フィルムの形態で使用する場合に、十分な可撓性が得られ、取り扱い性が良好であり、ラミネートの際に十分な流動性が得られる。   Moreover, when using together a liquid epoxy resin and a solid epoxy resin as an epoxy resin, the mixture ratio (liquid: solid) has the preferable mass ratio of 1: 0.3-1: 2. If the ratio of the liquid epoxy resin is within such a range, the adhesiveness of the epoxy resin composition does not increase, and when used in the form of an adhesive film, the deaeration at the time of vacuum lamination decreases and voids are generated. It will not be easy to do. Further, the peelability of the protective film and the support film and the heat resistance after curing are not lowered during vacuum lamination. Moreover, sufficient breaking strength is obtained in the cured product of the epoxy resin composition. On the other hand, if the ratio of the solid epoxy resin is within such a range, when used in the form of an adhesive film, sufficient flexibility is obtained, the handleability is good, and the fluidity is sufficient when laminating. can get.

本発明のエポキシ樹脂組成物において、エポキシ樹脂組成物の不揮発成分を100質量%とした場合、エポキシ樹脂の含有量は10〜50質量%であるのが好ましく、より好ましくは20〜40質量%であり、とりわけ好ましくは20〜35質量%である。エポキシ樹脂(A)の含有量がこの範囲であれば、樹脂組成物の硬化性が良好である。   In the epoxy resin composition of the present invention, when the nonvolatile component of the epoxy resin composition is 100% by mass, the content of the epoxy resin is preferably 10 to 50% by mass, more preferably 20 to 40% by mass. It is particularly preferably 20 to 35% by mass. When the content of the epoxy resin (A) is within this range, the curability of the resin composition is good.

[成分(B)のエポキシ硬化剤]
本発明で使用するエポキシ硬化剤としては、本発明の効果を十分発揮する上で、フェノール系硬化剤、ナフトール系硬化剤及び活性エステル系硬化剤から選択される1種以上からなるエポキシ硬化剤が好ましい。フェノール系硬化剤、ナフトール系硬化剤としては、耐熱性、耐水性の観点から、ノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤が特に好ましい。かかるノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤の市販品としては、例えば、MEH−7700、MEH−7810、MEH−7851(明和化成(株)製)、NHN、CBN、GPH(日本化薬(株)製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成(株)製)、LA7052、LA7054(大日本インキ化学工業(株)製)等が挙げられる。活性エステル系硬化剤としては、EXB−9451、EXB−9460(大日本インキ化学工業(株)製)、DC808(ジャパンエポキシレジン(株)製)、などが挙げられる。本発明において、硬化剤は1種を使用しても2種以上を併用してもよいが、特に活性エステル系硬化剤は反応性に劣るためフェノール系硬化剤及び/又はナフトール系硬化剤と併用するのが好ましい。
[Epoxy curing agent of component (B)]
As an epoxy curing agent used in the present invention, an epoxy curing agent comprising at least one selected from a phenolic curing agent, a naphthol curing agent and an active ester curing agent is used in order to sufficiently exhibit the effects of the present invention. preferable. As the phenol-based curing agent and naphthol-based curing agent, a phenol-based curing agent having a novolak structure and a naphthol-based curing agent having a novolak structure are particularly preferable from the viewpoint of heat resistance and water resistance. Examples of commercially available phenolic curing agents having such a novolak structure and naphthol-based curing agents having a novolak structure include, for example, MEH-7700, MEH-7810, MEH-7785 (manufactured by Meiwa Kasei Co., Ltd.), NHN, CBN, GPH (manufactured by Nippon Kayaku Co., Ltd.), SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Tohto Kasei Co., Ltd.), LA7052, LA7054 (manufactured by Dainippon Ink & Chemicals, Inc.), etc. Is mentioned. Examples of the active ester curing agent include EXB-9451, EXB-9460 (manufactured by Dainippon Ink & Chemicals, Inc.), DC808 (manufactured by Japan Epoxy Resin Co., Ltd.), and the like. In the present invention, one type of curing agent may be used or two or more types may be used in combination. However, since active ester curing agents are inferior in reactivity, they are used in combination with phenolic curing agents and / or naphthol curing agents. It is preferable to do this.

本発明において、エポキシ樹脂組成物中のエポキシ硬化剤の量は、通常、エポキシ樹脂組成物中に存在するエポキシ基の合計数に対するエポキシ硬化剤の反応基の合計数の比率が、エポキシ基の合計数を1としたときに、1:0.5〜1:1.1となる量にするのが好ましく、当該比率が1:0.5〜1:0.9となる量にするのがより好ましい。なおエポキシ樹脂組成物中に存在するエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、エポキシ硬化剤の反応基(活性水酸基、活性エステル基等)の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。硬化剤の含有量をかかる好ましい範囲内にすることにより、エポキシ樹脂組成物を硬化して得られる硬化物の耐熱性が良好となる。   In the present invention, the amount of the epoxy curing agent in the epoxy resin composition is usually the ratio of the total number of reactive groups of the epoxy curing agent to the total number of epoxy groups present in the epoxy resin composition, the total of epoxy groups. When the number is 1, the amount is preferably 1: 0.5 to 1: 1.1, and the ratio is more preferably 1: 0.5 to 1: 0.9. preferable. The total number of epoxy groups present in the epoxy resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group ( The total number of active hydroxyl groups, active ester groups, etc.) is a value obtained by totaling the values obtained by dividing the solid content mass of each curing agent by the reactive group equivalent for all curing agents. By making content of a hardening | curing agent into this preferable range, the heat resistance of the hardened | cured material obtained by hardening | curing an epoxy resin composition will become favorable.

[成分(C)のフェノキシ樹脂及び/又はポリビニルアセタール樹脂]
本発明では、フェノキシ樹脂及び/又はポリビニルアセタール樹脂は、接着フィルムに十分な可撓性を付与すること、及び粗化性の調整の目的で使用される。フェノキシ樹脂の具体例としては東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YX8100、YX6954、YL6974等が挙げられる。ポリビニルアセタール樹脂は特に限定されないが、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、電気化学工業(株)製、電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。
[Component (C) Phenoxy Resin and / or Polyvinyl Acetal Resin]
In the present invention, the phenoxy resin and / or the polyvinyl acetal resin is used for the purpose of imparting sufficient flexibility to the adhesive film and adjusting the roughening property. Specific examples of the phenoxy resin include FX280, FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954, YL6974 manufactured by Japan Epoxy Resin Co., Ltd., and the like. The polyvinyl acetal resin is not particularly limited, but a polyvinyl butyral resin is preferable. Specific examples of the polyvinyl acetal resin include those manufactured by Denki Kagaku Kogyo Co., Ltd., electrified butyral 4000-2, 5000-A, 6000-C, 6000-EP, and Sekisui Chemical Co., Ltd., ESREC BH series, BX series, and KS. Series, BL series, BM series and the like.

当該ポリビニルアセタールはガラス転移温度が80℃以上のものが特に好ましい。ここでいう「ガラス転移温度」はJIS K 7197に記載の方法に従って決定される。なお、ガラス転移温度が分解温度よりも高く、実際にはガラス転移温度が観測されない場合には、分解温度を本発明におけるガラス転移温度とみなすことができる。なお、分解温度とは、JIS K 7120に記載の方法に従って測定したときの質量減少率が5%となる温度で定義される。   The polyvinyl acetal having a glass transition temperature of 80 ° C. or higher is particularly preferable. The “glass transition temperature” here is determined according to the method described in JIS K7197. When the glass transition temperature is higher than the decomposition temperature and the glass transition temperature is not actually observed, the decomposition temperature can be regarded as the glass transition temperature in the present invention. The decomposition temperature is defined as the temperature at which the mass reduction rate is 5% when measured according to the method described in JIS K 7120.

本発明のエポキシ樹脂組成物において、エポキシ樹脂組成物の不揮発成分を100質量%とした場合、当該フェノキシ樹脂及び/又はポリビニルアセタール樹脂の含有量は2〜20質量%の範囲であることが好ましい。同範囲内にすることにより、十分な可撓性が得られ、取り扱い性も良好で、メッキにより形成された導体層のピール強度が十分となる。また20質量%を超えると、ラミネートの際の十分な流動性が得られにくく、粗度が大きくなりすぎる傾向がある。   In the epoxy resin composition of the present invention, when the nonvolatile component of the epoxy resin composition is 100% by mass, the content of the phenoxy resin and / or polyvinyl acetal resin is preferably in the range of 2 to 20% by mass. By making it within the same range, sufficient flexibility is obtained, the handleability is good, and the peel strength of the conductor layer formed by plating is sufficient. On the other hand, if it exceeds 20% by mass, sufficient fluidity during lamination is difficult to obtain, and the roughness tends to be too large.

[成分(D)のリン含有ベンゾオキサジン化合物]
本発明で使用するリン含有ベンゾオキサジン化合物としては、特に下式(1)で表されるリン含有ベンゾオキサジン化合物が好ましい(WO/2008/010429参照)。

本化合物はリンを含有しており、ハロゲンフリーの難燃剤として機能する。また、エポキシ樹脂との反応性を有する。市販されているものとしては、昭和高分子(株)製のHF−BOZ06(式(1)で表されるリン含有ベンゾオキサジン化合物のジオキソラン溶液)、HFB−2006M(式(1)で表されるリン含有ベンゾオキサジン化合物の1−メトキシ−2−プロパノール溶液)等が挙げられる。本発明のエポキシ樹脂組成物において、エポキシ樹脂組成物の不揮発成分を100質量%とした場合、成分(D)の含有量が2〜20質量%であるのが好ましく、より好ましくは2〜10質量%であり、とりわけ好ましくは3〜6質量%である。成分(D)の含有量を2〜20質量%にすることにより、硬化物の難燃性と低吸湿性が向上する。
[Phosphorus-containing benzoxazine compound of component (D)]
The phosphorus-containing benzoxazine compound used in the present invention is particularly preferably a phosphorus-containing benzoxazine compound represented by the following formula (1) (see WO / 2008/010429).

This compound contains phosphorus and functions as a halogen-free flame retardant. Moreover, it has reactivity with an epoxy resin. Commercially available products include HF-BOZ06 (a dioxolane solution of a phosphorus-containing benzoxazine compound represented by formula (1)) and HFB-2006M (formula (1)) manufactured by Showa Polymer Co., Ltd. 1-methoxy-2-propanol solution of phosphorus-containing benzoxazine compound) and the like. In the epoxy resin composition of the present invention, when the nonvolatile component of the epoxy resin composition is 100% by mass, the content of the component (D) is preferably 2 to 20% by mass, more preferably 2 to 10% by mass. %, Particularly preferably 3 to 6% by mass. By making content of a component (D) 2-20 mass%, the flame retardance and low hygroscopic property of hardened | cured material will improve.

本発明のエポキシ樹脂組成物は、熱膨張率を低下させる等の目的でさらに無機充填材を含有してもよい。無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でも無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ等のシリカが特に好適である。シリカとしては球状のものが好ましい。無機充填材の平均粒径は1μm以下であるのが好ましく、0.8μm以下がより好ましく、0.7μm以下がとりわけ好ましい。平均粒径が1μmを超える場合、メッキにより形成される導体層のピール強度が低下する傾向にある。なお、無機充填材の平均粒径が小さくなりすぎると、エポキシ樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下する傾向にあるため、平均粒径は0.05μm以上であるのが好ましい。なお、無機充填材は耐湿性を向上させるため、エポキシシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤等の表面処理剤で表面処理してあるものが好ましい。   The epoxy resin composition of the present invention may further contain an inorganic filler for the purpose of reducing the coefficient of thermal expansion. Examples of the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, Examples include strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Among these, silica such as amorphous silica, fused silica, crystalline silica, and synthetic silica Particularly preferred. The silica is preferably spherical. The average particle size of the inorganic filler is preferably 1 μm or less, more preferably 0.8 μm or less, and particularly preferably 0.7 μm or less. When the average particle diameter exceeds 1 μm, the peel strength of the conductor layer formed by plating tends to decrease. If the average particle size of the inorganic filler is too small, when the epoxy resin composition is used as a resin varnish, the viscosity of the varnish tends to increase and the handleability tends to decrease. It is preferable that it is 05 μm or more. The inorganic filler is preferably surface-treated with a surface treatment agent such as an epoxy silane coupling agent, an aminosilane coupling agent, or a titanate coupling agent in order to improve moisture resistance.

上記無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA−500等を使用することができる。   The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

当該無機充填材を配合する場合の、エポキシ樹脂組成物(不揮発成分100質量%)中の含有量は樹脂組成物に要求される特性によっても異なるが、10〜60質量%であるのが好ましく、15〜50質量%がより好ましく、15〜45質量%がとりわけ好ましい。   When blending the inorganic filler, the content in the epoxy resin composition (nonvolatile component 100% by mass) varies depending on the properties required for the resin composition, but is preferably 10 to 60% by mass, 15-50 mass% is more preferable, and 15-45 mass% is especially preferable.

本発明のエポキシ樹脂組成物は、硬化物の機械強度を高める、応力緩和効果等の目的で固体状のゴム粒子を含有してもよい。本発明におけるゴム粒子は、エポキシ樹脂組成物を調製する際の有機溶媒にも溶解せず、エポキシ樹脂等の樹脂組成物中の成分とも相溶しないものである。従って、本発明におけるゴム粒子はエポキシ樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。ゴム粒子としては、例えば、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、(ガンツ化成(株)商品名)、メタブレンKW-4426(三菱レイヨン(株)商品名)が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒径0.5μm、JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.5μm)(三菱レイヨン(株)製)を挙げることができる。   The epoxy resin composition of the present invention may contain solid rubber particles for the purpose of increasing the mechanical strength of the cured product and for the purpose of stress relaxation. The rubber particles in the present invention are not dissolved in an organic solvent when preparing an epoxy resin composition, and are not compatible with components in the resin composition such as an epoxy resin. Accordingly, the rubber particles in the present invention exist in a dispersed state in the varnish of the epoxy resin composition. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles. Examples of the rubber particles include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, the outer shell layer is a glassy polymer and the inner core layer is a rubbery polymer. Examples include a three-layer structure in which the shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer. The glass layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, (Ganz Kasei Co., Ltd. trade name), and Metabrene KW-4426 (Mitsubishi Rayon Co., Ltd. trade name). Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm), W450A (average particle size 0.5 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).

配合するゴム粒子の平均粒径は0.005〜1μmの範囲が好ましく、0.2〜0.6μmの範囲がより好ましい。本発明におけるゴム粒子の平均粒径は、動的光散乱法を用いて測定することが出来る。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、FPRA-1000(大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。   The average particle size of the rubber particles to be blended is preferably in the range of 0.005 to 1 μm, and more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of the rubber particles in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in a suitable organic solvent by ultrasonic waves, etc., and using FPRA-1000 (manufactured by Otsuka Electronics Co., Ltd.), the particle size distribution of the rubber particles is created on a mass basis, and the median diameter is determined. The average particle size can be measured.

当該ゴム粒子を配合する場合の、エポキシ樹脂組成物(不揮発分100質量%)中の含有量は、1〜10質量%であるのが好ましく、2〜5質量%がより好ましい。   When the rubber particles are blended, the content in the epoxy resin composition (nonvolatile content: 100% by mass) is preferably from 1 to 10% by mass, and more preferably from 2 to 5% by mass.

本発明のエポキシ樹脂組成物は、硬化時間を調整する等の目的で硬化促進剤を含有してもよい。硬化促進剤としては、例えば、有機ホスフィン化合物、イミダゾール化合物、アミンアダクト化合物、3級アミン化合物などが挙げられる。有機ホスフィン化合物の具体例としては、トリフェニルホスフィン(商品名TPP)、テトラフェニルホスホニウムテトラフェニルボレート(商品名TPP-K)、トリフェニルホスフィントリフェニルボラン(商品名TPP−S)、トリ−p−トリルホスフィン(TPTP−S)以上、北興化学工業(株)製、などが挙げられる。イミダゾール化合物の具体例としては、2−メチルイミダゾール(商品名キュアゾール2MZ)、2−エチル−4−メチルイミダゾール(商品名2E4MZ)、2−ウンデシルイミダゾール(商品名C11Z)、1−シアノエチル−2−ウンデシルイミダゾール(商品名C11Z−CN)、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト(商品名C11Z−CNS)、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン(商品名C11Z−A)、2MZ−OK、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物(商品名2MA−OK、2−フェニル−4,5−ジヒドロキシメチルイミダゾール(商品名2PHZ)以上、四国化成工業(株)製、などが挙げられる。アミンアダクト化合物の具体例としては、ノバキュア(旭化成工業(株)商品名)、フジキュア(富士化成工業(株)商品名)などが挙げられる。3級アミン化合物の具体例としては、DBU(1,8−diazabicyelo[5,4,0]undec−7−ene)などが挙げられる。本発明のエポキシ樹脂組成物において、硬化促進剤の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂とフェノール性硬化剤の総量を100質量%(不揮発分)とした場合、通常0.1〜5質量%の範囲で使用される。   The epoxy resin composition of the present invention may contain a curing accelerator for the purpose of adjusting the curing time. Examples of the curing accelerator include organic phosphine compounds, imidazole compounds, amine adduct compounds, tertiary amine compounds, and the like. Specific examples of the organic phosphine compound include triphenylphosphine (trade name TPP), tetraphenylphosphonium tetraphenylborate (trade name TPP-K), triphenylphosphine triphenylborane (trade name TPP-S), and tri-p-. There may be mentioned tolylphosphine (TPTP-S) or more, manufactured by Hokuko Chemical Co., Ltd. Specific examples of the imidazole compound include 2-methylimidazole (trade name: Curazole 2MZ), 2-ethyl-4-methylimidazole (trade name: 2E4MZ), 2-undecylimidazole (trade name: C11Z), 1-cyanoethyl-2- Undecylimidazole (trade name C11Z-CN), 1-cyanoethyl-2-undecylimidazolium trimellitate (trade name C11Z-CNS), 2,4-diamino-6- [2'-undecylimidazolyl- (1 ')]-Ethyl-s-triazine (trade name C11Z-A), 2MZ-OK, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid addition Product (trade name 2MA-OK, 2-phenyl-4,5-dihydroxymethylimidazole (trade name 2PH ), Shikoku Kasei Kogyo Co., Ltd., etc. Specific examples of amine adduct compounds include Novacure (trade name of Asahi Kasei Kogyo Co., Ltd.) and Fuji Cure (trade name of Fuji Kasei Kogyo Co., Ltd.). Specific examples of the tertiary amine compound include DBU (1,8-diazabicero [5,4,0] undec-7-ene), etc. In the epoxy resin composition of the present invention, The content is usually in the range of 0.1 to 5% by mass when the total amount of the epoxy resin and the phenolic curing agent contained in the epoxy resin composition is 100% by mass (nonvolatile content).

本発明のエポキシ樹脂組成物は、本発明の硬化を損なわない範囲で(D)成分以外の難燃剤を含有しても良い。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。   The epoxy resin composition of the present invention may contain a flame retardant other than the component (D) as long as the curing of the present invention is not impaired. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.

本発明のエポキシ樹脂組成物は、本発明の効果が発揮される範囲で、上述した以外の他の樹脂を含有しても良い。他の樹脂としては、シアネートエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等が挙げられる。   The epoxy resin composition of the present invention may contain other resins than those described above as long as the effects of the present invention are exhibited. Examples of other resins include cyanate ester resins, polyimide resins, polyamideimide resins, polyethersulfone resins, and polysulfone resins.

本発明のエポキシ樹脂組成物は、本発明の効果が発揮される範囲で、上述した以外の他の樹脂添加剤を含有しても良い。樹脂添加剤としては、例えばシリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   The epoxy resin composition of the present invention may contain other resin additives other than those described above as long as the effects of the present invention are exhibited. Examples of the resin additive include organic fillers such as silicon powder, nylon powder, and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, polymer-based antifoaming agents or leveling agents, imidazole-based, Examples thereof include adhesion imparting agents such as thiazole, triazole, and silane coupling agents, and coloring agents such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.

本発明の樹脂組成物は、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとするか、または繊維からなるシート状繊維基材中に該樹脂組成物を含浸させて多層プリント配線板の層間絶縁層用のプリプレグとすることができる。本発明の樹脂組成物は回路基板に塗布して絶縁層を形成することもできるが、工業的には、一般に、接着フィルムまたはプリプレグの形態として絶縁層形成に用いられる。   The resin composition of the present invention is applied on a support film to form a resin composition layer to form an adhesive film for a multilayer printed wiring board, or the resin composition is contained in a sheet-like fiber substrate made of fibers. It can be impregnated to form a prepreg for an interlayer insulating layer of a multilayer printed wiring board. The resin composition of the present invention can be applied to a circuit board to form an insulating layer, but industrially, it is generally used for forming an insulating layer in the form of an adhesive film or a prepreg.

本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、支持フィルムを支持体として、この樹脂ワニスを塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。   The adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, applying the resin varnish using the support film as a support, and further heating or hot air. The organic solvent can be dried by spraying or the like to form a resin composition layer.

有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種を使用しても2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. , Aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. One organic solvent may be used, or two or more organic solvents may be used in combination.

乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有割合が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。乾燥条件は、簡単な実験により適宜、好適な乾燥条件を設定することができる。ワニス中の有機溶媒量によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることができる。   The drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. As drying conditions, suitable drying conditions can be appropriately set by simple experiments. Although it depends on the amount of organic solvent in the varnish, for example, a varnish containing 30 to 60% by mass of an organic solvent can be dried at 50 to 150 ° C. for about 3 to 10 minutes.

接着フィルムにおいて形成される樹脂組成物層の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。樹脂組成物層は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   The thickness of the resin composition layer formed in the adhesive film is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm. The resin composition layer may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

本発明における支持フィルム及び保護フィルムとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステルのフィルム、ポリカーボネートフィルム、ポリイミドフィルム、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマット処理、コロナ処理の他、離型処理を施してあってもよい。   As the support film and protective film in the present invention, polyolefin films such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate Examples thereof include films, polyimide films, and metal foils such as release paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mat treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さも特に制限されないが、通常1〜40μm、好ましくは10〜30μmの範囲で用いられる。なお、後述するように、接着フィルムの製造工程で支持体として用いる支持フィルムを、樹脂組成物層表面を保護する保護フィルムとして使用することもできる。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. The thickness of the protective film is not particularly limited, but is usually 1 to 40 μm, preferably 10 to 30 μm. In addition, as will be described later, a support film used as a support in the production process of the adhesive film can also be used as a protective film for protecting the resin composition layer surface.

本発明における支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができ、また硬化後の絶縁層の表面平滑性を向上させることができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。なお、支持フィルム上に形成される樹脂組成物層は、層の面積が支持フィルムの面積より小さくなるように形成するのが好ましい。また接着フィルムは、ロール状に巻き取って、保存、貯蔵することができる。   The support film in the present invention is peeled after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing step can be prevented, and the surface smoothness of the insulating layer after curing can be improved. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance. In addition, it is preferable to form the resin composition layer formed on a support film so that the area of a layer may become smaller than the area of a support film. The adhesive film can be wound up in a roll shape and stored and stored.

次に、本発明の接着フィルムを用いて本発明の多層プリント配線板を製造する方法について説明する。樹脂組成物層が保護フィルムで保護されている場合はこれらを剥離した後、樹脂組成物層を回路基板に直接接するように、回路基板の片面又は両面にラミネートする。本発明の接着フィルムにおいては真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, a method for producing the multilayer printed wiring board of the present invention using the adhesive film of the present invention will be described. When the resin composition layer is protected with a protective film, the resin composition layer is peeled and then laminated on one or both sides of the circuit board so that the resin composition layer is in direct contact with the circuit board. In the adhesive film of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧が20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。The laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C. and a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ). Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.

真空ラミネートは市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、(株)日立インダストリイズ製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.

本発明における内層回路基板とは、主として、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層が交互に層形成され、片面又は両面がパターン加工された導体層(回路)となっている、多層プリント配線板を製造する際に、さらに絶縁層および導体層が形成されるべき中間製造物も本発明における内層回路基板に含まれる。内層回路基板において、導体回路層表面は黒化処理等により予め粗化処理が施されていた方が絶縁層の内層回路基板への密着性の観点から好ましい。   The inner layer circuit board in the present invention is mainly a conductor layer (circuit) patterned on one or both sides of a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate, etc. The one formed by. In addition, when manufacturing a multilayer printed wiring board in which conductor layers and insulating layers are alternately formed, and one or both surfaces are patterned conductor layers (circuits), an insulating layer and a conductor layer are further formed. The intermediate product to be included is also included in the inner layer circuit board in the present invention. In the inner layer circuit board, the surface of the conductor circuit layer is preferably roughened by a blackening process or the like from the viewpoint of adhesion of the insulating layer to the inner layer circuit board.

このように接着フィルムを回路基板にラミネートした後、支持フィルムを剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分である。   Thus, after laminating the adhesive film on the circuit board, when the support film is peeled off, the insulating film can be formed on the circuit board by peeling and thermosetting. The conditions of heat curing are selected in the range of 20 to 180 minutes at 150 to 220 ° C, more preferably 30 to 120 minutes at 160 to 200 ° C.

絶縁層を形成した後、硬化前に支持フィルムを剥離しなかった場合は、ここで剥離する。次に回路基板上に形成された絶縁層に穴開けを行いビアホール、スルーホールを形成する。穴あけは例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけがもっとも一般的な方法である。   If the support film is not peeled off after the insulating layer is formed, it is peeled off here. Next, holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed by a known method such as drilling, laser, or plasma, or a combination of these methods if necessary. However, drilling by a laser such as a carbon dioxide laser or YAG laser is the most common method. .

次いで、絶縁層表面に粗化処理を行う。本発明における粗化処理は通常、酸化剤を使用した湿式粗化方法で行うのが好ましい。酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルトアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて粗化を行うのが好ましい。   Next, a roughening process is performed on the surface of the insulating layer. The roughening treatment in the present invention is usually preferably carried out by a wet roughening method using an oxidizing agent. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. Preferably, an alkaline permanganate solution (eg, potassium permanganate, sodium hydroxide solution of sodium permanganate), which is an oxidizer widely used for roughening an insulating layer in the production of multilayer printed wiring boards by a built-up method. It is preferable to perform roughening using.

絶縁層表面を粗化処理した粗化面の粗度は、微細配線を形成する上で、Ra値で0.5μm以下であるのが好ましい。なお、Ra値とは、表面粗さを表す数値の一種であり、算術平均粗さと呼ばれるものであって、具体的には測定領域内で変化する高さの絶対値を平均ラインである表面から測定して算術平均したものである。例えば、ビーコインスツルメンツ社製WYKO NT3300を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値により求めることができる。   The roughness of the roughened surface obtained by roughening the surface of the insulating layer is preferably 0.5 μm or less in terms of Ra when forming fine wiring. The Ra value is a kind of numerical value representing the surface roughness, and is called arithmetic average roughness. Specifically, the absolute value of the height changing in the measurement region is determined from the surface that is the average line. Measured and arithmetically averaged. For example, using WYKO NT3300 manufactured by Becoin Instruments Co., Ltd., it can be obtained from a numerical value obtained with a measurement range of 121 μm × 92 μm using a VSI contact mode and a 50 × lens.

次に、粗化処理により凸凹のアンカーが形成された樹脂組成物層表面に、無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。なお導体層形成後、150〜200℃で20〜90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。導体層のピール強度は、0.6kgf/cm以上であるのが好ましい。   Next, a conductor layer is formed on the surface of the resin composition layer on which uneven anchors are formed by the roughening treatment by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. After forming the conductor layer, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes. The peel strength of the conductor layer is preferably 0.6 kgf / cm or more.

また、導体層をパターン加工し回路形成する方法としては、例えば当業者に公知の、サブトラクティブ法(全面に銅箔を張られた基板から、不要な部分を取り除いて回路を形成する方法)や、セミアディディブ法(絶縁体基板に回路パターンを後から付け加える方法)などを用いることができる。   In addition, as a method of forming a circuit by patterning a conductor layer, for example, a subtractive method known to those skilled in the art (a method of forming a circuit by removing unnecessary portions from a substrate with copper foil stretched over the entire surface) A semi-additive method (a method of adding a circuit pattern to an insulating substrate later) or the like can be used.

本発明のプリプレグは、本発明の樹脂組成物を繊維からなるシート状繊維基材にホットメルト法又はソルベント法により含浸させ、加熱により半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物が繊維からなるシート状繊維基材に含浸した状態となるプリプレグとすることができる。   The prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like fiber substrate made of fibers by a hot melt method or a solvent method and semi-curing by heating. That is, it can be set as the prepreg which will be in the state which the resin composition of this invention impregnated the sheet-like fiber base material which consists of fibers.

繊維からなるシート状繊維基材としては、例えばガラスクロスやアラミド繊維等、プリプレグ用繊維として常用されているものを用いることができる。   As the sheet-like fiber base material composed of fibers, for example, glass cloth and aramid fibers, which are commonly used as prepreg fibers, can be used.

ホットメルト法は、樹脂を有機溶剤に溶解することなく、樹脂を樹脂と剥離性の良い塗工紙に一旦コーティングし、それをシート状繊維基材にラミネートする、あるいはダイコーターにより直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様、樹脂を有機溶剤に溶解した樹脂ワニスにシート状繊維基材を浸漬し、樹脂ワニスをシート状繊維基材に含浸させ、その後乾燥させる方法である。   In the hot melt method, without dissolving the resin in an organic solvent, the resin is once coated on the resin and a coated paper having good releasability, and then laminated on a sheet-like fiber substrate, or directly applied by a die coater. Thus, a prepreg is manufactured. Similarly to the adhesive film, the solvent method is a method in which a sheet-like fiber base material is immersed in a resin varnish obtained by dissolving a resin in an organic solvent, the resin varnish is impregnated into the sheet-like fiber base material, and then dried.

次に本発明のプリプレグを用いて本発明の多層プリント配線板を製造する方法について説明する。回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートを挟み加圧・加熱条件下でプレス積層する。圧力は好ましくは5〜40kgf/cm(49×10〜392×10N/m)、好ましくは、温度は120〜200℃で、時間は20〜100分の範囲で成型するのが好ましい。また接着フィルムと同様に真空ラミネート法により回路基板にラミネートした後、加熱硬化することによっても製造可能である。その後、前述の方法と同様、酸化剤により硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成することで、多層プリント配線板を製造することができる。Next, a method for producing the multilayer printed wiring board of the present invention using the prepreg of the present invention will be described. One or several prepregs of the present invention are stacked on a circuit board, a metal plate is sandwiched through a release film, and press lamination is performed under pressure and heating conditions. The pressure is preferably 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ), preferably the temperature is 120 to 200 ° C., and the time is 20 to 100 minutes. preferable. Moreover, it can also be manufactured by laminating on a circuit board by a vacuum laminating method as in the case of an adhesive film, and then curing by heating. Thereafter, in the same manner as described above, the surface of the prepreg cured with an oxidizing agent is roughened, and then the conductor layer is formed by plating, whereby a multilayer printed wiring board can be manufactured.

以下、実施例及び比較例を用いて本発明をより詳細に説明するが、これらは本発明をいかなる意味においても制限するものではない。なお、以下の記載において、「部」は「質量部」を意味する。
<実施例1>
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, these do not restrict | limit this invention in any meaning. In the following description, “part” means “part by mass”.
<Example 1>

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)30部と、ビフェニル型エポキシ樹脂(エポキシ当量291、日本化薬(株)製「NC3000H」)30部とをメチルエチルケトン(以下「MEK」と略称する。)15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、ナフトール系硬化剤(東都化成(株)製「SN485」、フェノール性水酸基当量215)の固形分50%のMEK溶液100部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、アミノシラン処理付「SO−C2」(株)アドマテックス製)70部、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS-1」)を固形分15%のエタノールとトルエンの1:1溶液)20部、フェノキシ樹脂(分子量38,000、ジャパンエポキシレジン(株)製「YX6954」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)20部、式(1)で表されるリン含有ベンゾオキサジン(昭和高分子(株)製HF−BOZ06、固形分65%のジオキソラン溶液)8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスをポリエチレンテレフタレートフィルム(厚さ38μm)上に、乾燥後の樹脂厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥した(残留溶媒量約2質量%)。次いで樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリット(slit)し、これより507×336mmサイズのシート状の接着フィルムを得た。
<実施例2>
30 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and 30 parts biphenyl type epoxy resin (epoxy equivalent 291; “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) Was dissolved in 15 parts of methyl ethyl ketone (hereinafter abbreviated as “MEK”) and 15 parts of cyclohexanone with stirring. Thereto, 100 parts of a 50% solid MEK solution of a naphthol curing agent (“SN485” manufactured by Tohto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215), a curing catalyst (“2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) 0.1 part, spherical silica (average particle size 0.5 μm, “amino-silane treated“ SO-C2 ”manufactured by Admatex) 70 parts, polyvinyl butyral resin solution (glass transition temperature 105 ° C., Sekisui Chemical Co., Ltd.) "KS-1"): 20 parts of a 15% solid ethanol / toluene 1: 1 solution), phenoxy resin (molecular weight 38,000, Japan Epoxy Resin Co., Ltd. "YX6954" MEK with a nonvolatile content of 30% by mass And cyclohexanone (1: 1 solution) 20 parts, phosphorus-containing benzoxazine represented by formula (1) (HF-BOZ06 manufactured by Showa Polymer Co., Ltd., solid content 65% Oxolane solution) 8 parts were mixed, and uniformly dispersed in a high-speed rotary mixer to prepare a resin varnish. Next, the resin varnish was applied on a polyethylene terephthalate film (thickness 38 μm) with a die coater so that the resin thickness after drying was 40 μm, and dried at 80 to 120 ° C. (average 100 ° C.) for 6 minutes. (Residual solvent amount of about 2% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.
<Example 2>

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)30部と、ビフェニル型エポキシ樹脂(エポキシ当量291、日本化薬(株)製「NC3000H」)30部とをMEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、ナフトール系硬化剤(東都化成(株)製「SN485」、フェノール性水酸基当量215)の固形分50%のMEK溶液80部、活性エステル系硬化剤(大日本インキ化学工業(株)製「EXB9451」、活性基当量223、固形分が65質量%のトルエン溶液)15部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、アミノシラン処理付「SO−C2」(株)アドマテックス製)70部、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS-1」)を固形分15%のエタノールとトルエンの1:1溶液)20部、フェノキシ樹脂(分子量38,000、ジャパンエポキシレジン(株)製「YX6954」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)20部、式(1)で表されるリン含有ベンゾオキサジン(昭和高分子(株)製HF−BOZ06、固形分65%のジオキソラン溶液)15部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。   30 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and 30 parts biphenyl type epoxy resin (epoxy equivalent 291; “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) Was dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. There, 80 parts of MEK solution of 50% solid content of naphthol type curing agent (“SN485” manufactured by Tohto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215), active ester type curing agent (Dainippon Ink Chemical Co., Ltd.) "EXB9451", 15 parts of an active group equivalent of 223 toluene solution with a solid content of 65 mass%, 0.1 part of a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., "2E4MZ"), spherical silica (average particle size 0. 5 μm, 70 parts of “SO-C2” with aminosilane treatment (manufactured by Admatechs), polyvinyl butyral resin solution (glass transition temperature 105 ° C., “KS-1” manufactured by Sekisui Chemical Co., Ltd.) with a solid content of 15% 20 parts of a 1: 1 solution of ethanol and toluene, phenoxy resin (molecular weight 38,000, "YX6954" manufactured by Japan Epoxy Resin Co., Ltd.) MEK and Siku with a nonvolatile content of 30% by mass 20 parts of hexanone (1: 1 solution) and 15 parts of phosphorus-containing benzoxazine represented by the formula (1) (Showa Polymer Co., Ltd. HF-BOZ06, solid content 65% dioxolane solution) are mixed and rotated at high speed. A resin varnish was prepared by uniformly dispersing with a mixer. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

<比較例1>
実施例1記載の樹脂ワニスにおいて、リン含有ベンゾオキサジン(昭和高分子(株)製HF−BOZ06、固形分65%のジオキソラン溶液)8部を添加しない以外は、全く同様にして、接着フィルムを得た。
<Comparative Example 1>
In the resin varnish described in Example 1, an adhesive film was obtained in exactly the same manner except that 8 parts of phosphorus-containing benzoxazine (HF-BOZ06 manufactured by Showa Polymer Co., Ltd., dioxolane solution having a solid content of 65%) was not added. It was.

<比較例2>
液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「エピコート828EL」)30部と、リン含有エポキシ樹脂(エポキシ当量306、東都化成(株)製「FX289」)30部とをMEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、ナフトール系硬化剤(東都化成(株)製「SN-485」、フェノール性水酸基当量215)の固形分50%のMEK溶液100部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(平均粒径0.5μm、アミノシラン処理付「SO−C2」(株)アドマテックス製)70部、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS-1」)を固形分15%のエタノールとトルエンの1:1溶液)20部、フェノキシ樹脂(分子量38,000、ジャパンエポキシレジン(株)製「YX6954」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)20部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative example 2>
30 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and 30 parts of phosphorus-containing epoxy resin (epoxy equivalent 306, “FX289” manufactured by Tohto Kasei Co., Ltd.) It was heated and dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. Thereto, 100 parts of a 50% solid MEK solution of a naphthol-based curing agent (“SN-485” manufactured by Tohto Kasei Co., Ltd., phenolic hydroxyl group equivalent 215), a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., “2E4MZ”) ”) 0.1 part, spherical silica (average particle diameter 0.5 μm,“ SO-C2 with aminosilane treatment ”manufactured by Admatechs Co., Ltd.), polyvinyl butyral resin solution (glass transition temperature 105 ° C., Sekisui Chemical Co., Ltd.) "KS-1"), 15 parts solid solution of ethanol and toluene (1: 1), 20 parts, phenoxy resin (molecular weight 38,000, Japan Epoxy Resin "YX6954" non-volatile content 30% by mass 20 parts of MEK and cyclohexanone (1: 1 solution) were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a resin varnish. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

<比較例3>
実施例1記載の樹脂ワニスにおいて、リン含有ベンゾオキサジン(昭和高分子(株)製HF−BOZ06、固形分65%のジオキソラン溶液)8部を、リン系難燃剤(三光(株)製HCA−HQ−HS)8部に変更する以外は全く同様にして、接着フィルムを得た。
<Comparative Example 3>
In the resin varnish described in Example 1, 8 parts of phosphorus-containing benzoxazine (HF-BOZ06 manufactured by Showa Polymer Co., Ltd., dioxolane solution having a solid content of 65%) was added to a phosphorus flame retardant (HCA-HQ manufactured by Sanko Co., Ltd.). -HS) Except for changing to 8 parts, an adhesive film was obtained in exactly the same manner.

<ピール強度およびRa値測定用サンプルの調製>
(1)積層板の下地処理
内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES]の両面を有機酸系エッチング剤(メック(株)製、CZ8100)に浸漬して銅表面の粗化処理をおこなった。
<Preparation of peel strength and Ra value measurement sample>
(1) Substrate treatment of laminated board Both sides of glass cloth base epoxy resin double-sided copper-clad laminate [copper foil thickness 18 μm, substrate thickness 0.3 mm, Matsushita Electric Works R5715ES] on which inner layer circuit is formed are organic The copper surface was roughened by dipping in an acid-based etching agent (CZ8100, manufactured by MEC Co., Ltd.).

(2)接着フィルムのラミネート
実施例及び比較例で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機(株)商品名)を用いて、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(2) Lamination of adhesive film The adhesive films prepared in Examples and Comparative Examples were laminated on both surfaces of a laminate using a batch-type vacuum pressurization laminator MVLP-500 (trade name of Meiki Co., Ltd.). Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds.

(3)樹脂組成物の硬化
ラミネートされた接着フィルムからPETフィルムを剥離し、180℃、30分の硬化条件で樹脂組成物を硬化した。
(3) Curing of resin composition The PET film was peeled from the laminated adhesive film, and the resin composition was cured under curing conditions of 180 ° C for 30 minutes.

(4)粗化処理
積層板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に浸漬、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントPに40℃で5分間浸漬した。粗化条件:膨潤液に60℃で5分間浸漬、粗化液に80℃で20分間浸漬した。この粗化処理後の積層板について、表面粗度(Ra値)の測定を行った。
(4) Roughening treatment The laminate was immersed in a swelling dip secu-ligand P containing diethylene glycol monobutyl ether of Atotech Japan Co., Ltd., which is a swelling liquid, and then the outlet of Atotech Japan Co., Ltd. as a roughening liquid. Immerse in rate compact P (KMnO 4 : 60 g / L, NaOH: 40 g / L aqueous solution) and finally neutralize it with Atotech Japan Co., Ltd. Reduction Sholyshin Securigant P at 40 ° C. for 5 minutes. Soaked. Roughening conditions: immersed in a swelling solution at 60 ° C. for 5 minutes, and immersed in a roughening solution at 80 ° C. for 20 minutes. About the laminated board after this roughening process, the surface roughness (Ra value) was measured.

(5)セミアディティブ工法によるメッキ
絶縁層表面に回路を形成するために、積層板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、30±5μmの厚さで導体層を形成した。次に、アニール処理を180℃にて60分間行った。この積層板についてメッキ銅のピール強度の測定を行った。
(5) Plating by semi-additive method In order to form a circuit on the surface of the insulating layer, the laminate was immersed in an electroless plating solution containing PdCl 2 and then immersed in an electroless copper plating solution. After annealing at 150 ° C. for 30 minutes, an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 30 ± 5 μm. Next, annealing was performed at 180 ° C. for 60 minutes. The peel strength of the plated copper was measured for this laminate.

<メッキ導体層の引き剥がし強さ(ピール強度)の測定>
積層板の導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で、積層板に対して略垂直方向に35mmを引き剥がした時の荷重を測定した。
<Measurement of peel strength (peel strength) of plated conductor layer>
Cut the 10mm width and 100mm length into the conductor layer of the laminate, peel off one end of the laminate and grasp it with a gripper, at a speed of 50mm / min at room temperature, approximately perpendicular to the laminate The load when peeling 35 mm was measured.

<粗化後の表面粗度(Ra値)の測定>
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値によりRa値を求めた。また10点の平均粗度を求めることにより測定した。
<Measurement of surface roughness (Ra value) after roughening>
Using a non-contact type surface roughness meter (BYCO Instruments WYKO NT3300), the Ra value was determined by a numerical value obtained by setting the measurement range to 121 μm × 92 μm with a VSI contact mode and a 50 × lens. Moreover, it measured by calculating | requiring the average roughness of 10 points | pieces.

<難燃性試験用サンプルの調製>
(1)積層板の下地処理
ガラス布基材エポキシ樹脂積層板[銅箔エッチアウト品、基板厚み0.3mm、松下電工(株)製R5715ES]の両面に実施例及び比較例で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機(株)商品名)を用いて、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74Mpaでプレスすることにより行った。ラミネートされた接着フィルムからPETフィルムを剥離した後、その上に同接着フィルムを、同条件にてさらに2回ラミネートした。
<Preparation of flame retardant test sample>
(1) Substrate treatment of laminated plate Adhesive films prepared in Examples and Comparative Examples on both surfaces of glass cloth base epoxy resin laminated plate [copper foil etched-out product, substrate thickness 0.3 mm, Matsushita Electric Works, Ltd. R5715ES] Was laminated on both surfaces of the laminate using a batch type vacuum pressure laminator MVLP-500 (trade name of Meiki Co., Ltd.). Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 Mpa for 30 seconds. After peeling the PET film from the laminated adhesive film, the same adhesive film was further laminated twice under the same conditions.

(2)樹脂組成物の硬化
最後にラミネートされた接着フィルムからPETフィルムを剥離し、180℃、90分の硬化条件で樹脂組成物を硬化させた。その後、UL難燃性の試験用として12.7mm×127mmのサイズに切断し、端面をサンドペーパー(最初に#1200、その後、#2800)にて研磨し、基材厚み0.3mm、片側に絶縁層120μmが積層された燃焼性試験用テストピースを作製した。その後、UL耐炎性試験規格に従って、94V0又は94V1の評価を行った。
(2) Curing of resin composition The PET film was peeled off from the finally laminated adhesive film, and the resin composition was cured under curing conditions at 180 ° C for 90 minutes. After that, it was cut into a size of 12.7 mm × 127 mm for the UL flame retardancy test, and the end surface was polished with sandpaper (first # 1200, then # 2800), and the substrate thickness was 0.3 mm on one side. A test piece for flammability test in which an insulating layer of 120 μm was laminated was produced. Thereafter, 94V0 or 94V1 was evaluated according to the UL flame resistance test standard.

実施例及び比較例で得られた接着フィルムを使用した評価サンプルのメッキ導体層のピール強度及び粗化後の表面粗度(Ra値)の結果について下記の表1に記載した。表1から明らかなように、本発明におけるリン含有ベンゾオキサジン化合物を使用した実施例の評価サンプルは、低粗度かつ高ピール強度であり、難燃性はV0と優れていた。また、リン含有ベンゾオキサジン化合物を使用しない比較例1の場合は、ピール強度は比較的高いものの、難燃性に劣り、粗度も大きくなる結果となった。さらに、本発明におけるリン含有ベンゾオキサジン化合物の代わりに別のリン含有化合物を使用した比較例2、3の場合、難燃性は同等で、ピール強度も比較的高いものの、そのように高いピール強度を得るためには、粗度が大きくなる結果となった。   The results of the peel strength and the roughened surface roughness (Ra value) of the plated conductor layers of the evaluation samples using the adhesive films obtained in Examples and Comparative Examples are shown in Table 1 below. As is clear from Table 1, the evaluation sample of the example using the phosphorus-containing benzoxazine compound in the present invention had a low roughness and a high peel strength, and the flame retardancy was excellent at V0. Moreover, in the case of the comparative example 1 which does not use a phosphorus containing benzoxazine compound, although the peel strength was comparatively high, it was inferior to a flame retardance and resulted in a large roughness. Further, in the case of Comparative Examples 2 and 3 in which another phosphorus-containing compound is used instead of the phosphorus-containing benzoxazine compound in the present invention, the flame resistance is equivalent and the peel strength is relatively high, but such a high peel strength In order to obtain the result, the roughness was increased.

本発明の樹脂組成物、該樹脂組成物により調製される接着フィルムおよびプリプレグは、多層プリント配線板、特にビルドアップ方式で製造される多層プリント配線板の層間絶縁材料として好適に使用される。   The resin composition of the present invention, the adhesive film prepared by the resin composition, and the prepreg are suitably used as an interlayer insulating material for multilayer printed wiring boards, particularly multilayer printed wiring boards manufactured by a build-up method.

本出願は、日本で出願された特願2007−245801を基礎としており、その内容は本明細書に全て包含されるものである。   This application is based on Japanese Patent Application No. 2007-245801 filed in Japan, the contents of which are incorporated in full herein.

Claims (12)

(A)エポキシ樹脂、(B)エポキシ硬化剤、(C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂、並びに(D)リン含有ベンゾオキサジン化合物を含有するエポキシ樹脂組成物であって、
該(D)リン含有ベンゾオキサジン化合物が、下式(1)で表されるリン含有ベンゾオキサジン化合物であることを特徴とする、エポキシ樹脂組成物。
An epoxy resin composition comprising (A) an epoxy resin, (B) an epoxy curing agent, (C) a phenoxy resin and / or a polyvinyl acetal resin, and (D) a phosphorus-containing benzoxazine compound ,
The epoxy resin composition, wherein the (D) phosphorus-containing benzoxazine compound is a phosphorus-containing benzoxazine compound represented by the following formula (1) .
エポキシ硬化剤が、フェノール系硬化剤、ナフトール系硬化剤及び活性エステル系硬化剤から選択される1種以上からなるエポキシ硬化剤である、請求項1記載のエポキシ樹脂組成物。 Epoxy curing agents, phenolic curing agent, an epoxy curing agent comprising one or more selected from naphthol type curing agent and active ester-based curing agent, according to claim 1 Symbol placement of the epoxy resin composition. エポキシ樹脂組成物の不揮発成分を100質量%とした場合、成分(A)の含有量が10〜50質量%、成分(C)の含有量が2〜20質量%、および成分(D)の含有量が2〜20質量%であり、エポキシ樹脂組成物中に存在する1のエポキシ基に対するエポキシ硬化剤の反応基の比率が1:0.5〜1:1.1である、請求項1又は2記載のエポキシ樹脂組成物。 When the nonvolatile component of the epoxy resin composition is 100% by mass, the content of the component (A) is 10 to 50% by mass, the content of the component (C) is 2 to 20% by mass, and the content of the component (D) the amount is 2 to 20 wt%, the ratio of the reactive groups of the epoxy curing agent to 1 epoxy groups present in the epoxy resin composition is 1: 0.5 to 1: 1.1, according to claim 1 or 2. The epoxy resin composition according to 2. さらに無機充填材を含有する、請求項1〜のいずれか1項に記載のエポキシ樹脂組成物。 Furthermore, the epoxy resin composition of any one of Claims 1-3 containing an inorganic filler. エポキシ樹脂組成物の不揮発成分を100質量%とした場合、無機充填材の含有量が10〜60質量%である、請求項記載のエポキシ樹脂組成物。 The epoxy resin composition of Claim 4 whose content of an inorganic filler is 10-60 mass% when the non-volatile component of an epoxy resin composition is 100 mass%. 請求項1〜のいずれか1項に記載のエポキシ樹脂組成物が支持フィルム上に層形成されている接着フィルム。 The adhesive film by which the epoxy resin composition of any one of Claims 1-5 is layer-formed on the support film. 請求項1〜のいずれか1項に記載のエポキシ樹脂組成物が繊維からなるシート状繊維基材中に含浸されていることを特徴とするプリプレグ。 A prepreg characterized in that the epoxy resin composition according to any one of claims 1 to 5 is impregnated in a sheet-like fiber base material comprising fibers. 請求項1〜のいずれか1項に記載のエポキシ樹脂組成物の硬化物により絶縁層が形成されている、多層プリント配線板。 The multilayer printed wiring board with which the insulating layer is formed with the hardened | cured material of the epoxy resin composition of any one of Claims 1-5 . 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、該絶縁層が、請求項1〜のいずれか1項に記載のエポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面にめっきにより形成されることを特徴とする、多層プリント配線板の製造方法。 It is a manufacturing method of a multilayer printed wiring board including the process of forming an insulating layer on an inner layer circuit board, and the process of forming a conductor layer on this insulating layer, and this insulating layer is any one of Claims 1-5. A multilayer printed wiring board, wherein the epoxy resin composition according to the item is heat-cured and the conductor layer is formed by plating on a roughened surface obtained by roughening the surface of the insulating layer. Production method. 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層形成工程、該絶縁層の粗面化工程、及び該粗面へのめっき工程を有し、絶縁層の形成工程が、請求項記載の支持フィルム上に層形成されている接着フィルムを内層回路基板上にラミネートするステップと、エポキシ樹脂組成物を熱硬化するステップを有することを特徴とする、多層プリント配線板の製造方法。 A method of manufacturing a multilayer printed wiring board comprising a step of forming an insulating layer on an inner layer circuit board and a step of forming a conductor layer on the insulating layer, the insulating layer forming step, the roughening step of the insulating layer, And an insulating layer forming step comprising laminating an adhesive film formed on the support film according to claim 6 on the inner circuit board, and an epoxy resin composition. A method for producing a multilayer printed wiring board, comprising the step of heat curing. 内層回路基板上に絶縁層を形成する工程及び該絶縁層上に導体層を形成する工程を含む多層プリント配線板の製造方法であって、絶縁層が、請求項7記載のプリプレグを内層回路基板上にラミネートし、エポキシ樹脂組成物を熱硬化して形成され、該導体層が、該絶縁層表面を粗化処理した粗化面にめっきにより形成されることを特徴とする、多層プリント配線板の製造方法。   A method for manufacturing a multilayer printed wiring board, comprising: a step of forming an insulating layer on an inner layer circuit board; and a step of forming a conductor layer on the insulating layer, the insulating layer comprising the prepreg according to claim 7 as an inner layer circuit board. A multilayer printed wiring board characterized in that it is formed by laminating and thermosetting an epoxy resin composition, and the conductor layer is formed by plating on a roughened surface obtained by roughening the surface of the insulating layer. Manufacturing method. 粗化処理が、アルカリ性過マンガン酸溶液を使用して行われる、請求項11のいずれか1項に記載の多層プリント配線板の製造方法。
The method for producing a multilayer printed wiring board according to any one of claims 9 to 11 , wherein the roughening treatment is performed using an alkaline permanganate solution.
JP2009533193A 2007-09-21 2008-09-19 Epoxy resin composition Active JP5446866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009533193A JP5446866B2 (en) 2007-09-21 2008-09-19 Epoxy resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007245801 2007-09-21
JP2007245801 2007-09-21
JP2009533193A JP5446866B2 (en) 2007-09-21 2008-09-19 Epoxy resin composition
PCT/JP2008/066965 WO2009038166A1 (en) 2007-09-21 2008-09-19 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPWO2009038166A1 JPWO2009038166A1 (en) 2011-01-06
JP5446866B2 true JP5446866B2 (en) 2014-03-19

Family

ID=40467975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533193A Active JP5446866B2 (en) 2007-09-21 2008-09-19 Epoxy resin composition

Country Status (4)

Country Link
JP (1) JP5446866B2 (en)
KR (1) KR101511495B1 (en)
TW (1) TWI433887B (en)
WO (1) WO2009038166A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732729B2 (en) * 2009-03-31 2015-06-10 住友ベークライト株式会社 Resin composition for wiring board and resin sheet for wiring board
WO2012131971A1 (en) 2011-03-31 2012-10-04 積水化学工業株式会社 Preliminarily cured product, roughened preliminarily cured product, and laminate
KR101377312B1 (en) * 2012-12-26 2014-03-25 주식회사 두산 Epoxy resin composition having an excellent adhesive property and copper foil with resin
KR101929588B1 (en) * 2012-12-31 2018-12-17 도레이첨단소재 주식회사 Plastic Films for Transparent Flexible Substrates
KR102338982B1 (en) 2016-06-27 2021-12-14 코오롱인더스트리 주식회사 Curable resin composition, prepreg and substrate using the same
CN106700548B (en) * 2016-12-30 2019-04-30 广东生益科技股份有限公司 A kind of preparation method containing benzoxazine resin composition and the prepreg and laminate being made from it
JP7029226B2 (en) * 2017-02-14 2022-03-03 味の素株式会社 Circuit board
TW201904929A (en) * 2017-06-28 2019-02-01 日商迪愛生股份有限公司 Active ester composition and semiconductor sealing material
JP6870544B2 (en) * 2017-09-04 2021-05-12 味の素株式会社 Resin composition
JP2021084968A (en) * 2019-11-28 2021-06-03 住友ベークライト株式会社 Resin membrane with substrate, printed wiring board and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
JP2003012894A (en) * 2001-07-03 2003-01-15 Hitachi Chem Co Ltd Epoxy resin composition, and insulation resin sheet and printed wiring board using the same
JP2003011269A (en) * 2001-06-28 2003-01-15 Hitachi Chem Co Ltd Manufacturing method of insulating material with copper leaf
JP2004528285A (en) * 2001-01-22 2004-09-16 バンティコ アクチエンゲゼルシャフト Flame retardant
JP2005272722A (en) * 2004-03-25 2005-10-06 Tamura Kaken Co Ltd Thermosetting resin composition, resin film and product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010429A1 (en) * 2006-07-20 2008-01-24 Showa Highpolymer Co., Ltd. Phosphorus-containing benzoxazine compound, process for production thereof, curable resin composition, cured article, and laminate plate
JP2008037957A (en) * 2006-08-03 2008-02-21 Tamura Kaken Co Ltd Thermosetting resin composition, b-stage resin film and multilayer build-up substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
JP2004528285A (en) * 2001-01-22 2004-09-16 バンティコ アクチエンゲゼルシャフト Flame retardant
JP2003011269A (en) * 2001-06-28 2003-01-15 Hitachi Chem Co Ltd Manufacturing method of insulating material with copper leaf
JP2003012894A (en) * 2001-07-03 2003-01-15 Hitachi Chem Co Ltd Epoxy resin composition, and insulation resin sheet and printed wiring board using the same
JP2005272722A (en) * 2004-03-25 2005-10-06 Tamura Kaken Co Ltd Thermosetting resin composition, resin film and product

Also Published As

Publication number Publication date
KR20100065385A (en) 2010-06-16
WO2009038166A1 (en) 2009-03-26
TW200923007A (en) 2009-06-01
KR101511495B1 (en) 2015-04-13
TWI433887B (en) 2014-04-11
JPWO2009038166A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP4992396B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP6267140B2 (en) Resin composition
JP4983228B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP5573869B2 (en) Resin composition for interlayer insulation layer of multilayer printed wiring board
JP6572983B2 (en) Epoxy resin composition
JP5505435B2 (en) Resin composition for insulating layer of multilayer printed wiring board
JP5446866B2 (en) Epoxy resin composition
JP4725704B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5605259B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5396805B2 (en) Epoxy resin composition
JP5195454B2 (en) Resin composition
JP6024783B2 (en) Resin composition
JP5651941B2 (en) Epoxy resin composition
JPWO2007097209A1 (en) Epoxy resin composition
JP2013234328A (en) Epoxy resin composition
JP5293065B2 (en) Resin composition
JP5904256B2 (en) Resin composition
JP6269401B2 (en) Surface-treated inorganic filler, method for producing the inorganic filler, and resin composition containing the inorganic filler
JP5644823B2 (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250