JP5195454B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP5195454B2
JP5195454B2 JP2009012232A JP2009012232A JP5195454B2 JP 5195454 B2 JP5195454 B2 JP 5195454B2 JP 2009012232 A JP2009012232 A JP 2009012232A JP 2009012232 A JP2009012232 A JP 2009012232A JP 5195454 B2 JP5195454 B2 JP 5195454B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
manufactured
mass
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009012232A
Other languages
Japanese (ja)
Other versions
JP2010168470A (en
Inventor
一彦 鶴井
茂雄 中村
忠彦 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2009012232A priority Critical patent/JP5195454B2/en
Publication of JP2010168470A publication Critical patent/JP2010168470A/en
Application granted granted Critical
Publication of JP5195454B2 publication Critical patent/JP5195454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多層プリント配線板等の回路基板の絶縁層(特に層間絶縁層)形成に好適な樹脂組成物及び該樹脂組成物より得られる接着フィルムやプリプレグ等の絶縁樹脂シート、並びに、該樹脂組成物の硬化物により絶縁層が形成された回路基板に関する。   The present invention relates to a resin composition suitable for forming an insulating layer (especially an interlayer insulating layer) of a circuit board such as a multilayer printed wiring board, an insulating resin sheet such as an adhesive film or prepreg obtained from the resin composition, and the resin The present invention relates to a circuit board on which an insulating layer is formed of a cured product of the composition.

近年、電子機器の小型化、高性能化に伴い、回路基板においては、微細配線化や熱膨張率の更なる低下などが求められている。絶縁材料の低熱膨張化を図る手段としては、シリカ等の無機充填材を高充填化する方法が知られている。樹脂組成物中にシリカを高充填化する手段としては各種カップリング剤によりシリカを表面処理する方法が知られている。例えば、特許文献1には、半導体封止用のエポキシ樹脂組成物において、シリカに代表される金属酸化物粉体の表面をシラザン化合物及びシランカップリング剤で処理して高充填化する方法が開示されている。しかしながら、多層回路基板等の層間絶縁材として用いられる樹脂組成物では、それによる絶縁層の形成後に、該絶縁層表面に導体層が形成されるが、無機充填材を高充填化した樹脂組成物を使用した場合、ピール強度に優れる導体層の形成が困難となる傾向にあり、また無機充填材の脱落が過度に生じる場合、絶縁層表面粗度の不均一化により、微細配線化に不利となるという問題(例えば、粗大粒子の脱落によるアンカーが短絡化(ショート)の原因になる等)があった。   In recent years, with the miniaturization and high performance of electronic devices, circuit boards are required to have fine wiring and further lower the thermal expansion coefficient. As means for reducing the thermal expansion of the insulating material, a method of increasing the filling of an inorganic filler such as silica is known. As means for highly filling silica in a resin composition, a method of surface-treating silica with various coupling agents is known. For example, Patent Document 1 discloses a method for highly filling a surface of a metal oxide powder represented by silica with a silazane compound and a silane coupling agent in an epoxy resin composition for semiconductor encapsulation. Has been. However, in a resin composition used as an interlayer insulating material such as a multilayer circuit board, a conductor layer is formed on the surface of the insulating layer after the formation of the insulating layer, but the resin composition is highly filled with an inorganic filler. Is used, it tends to be difficult to form a conductor layer with excellent peel strength, and when the inorganic filler is excessively dropped, it is disadvantageous for fine wiring due to non-uniform surface roughness of the insulating layer. (For example, an anchor caused by dropping of coarse particles causes a short circuit).

また、回路基板の絶縁層を形成するための材料としては、樹脂組成物ワニスを支持体上に塗布、乾燥して層形成した接着フィルムや樹脂組成物ワニスを繊維基材に含浸させて乾燥させたプリプレグ等のシート状の絶縁材(以下、「絶縁樹脂シート」と呼ぶ。)が一般に用いられている。このような絶縁樹脂シートは、シート状部材として取り扱うため、ラミネートするための適度な溶融性が要求される。しかしながら、無機充填材の高充填化によって絶縁樹脂シートはその溶融性や流動性が著しく低下し、成形性に劣るため、微細配線領域での樹脂埋め込み等にも不利となる。   In addition, as a material for forming the insulating layer of the circuit board, a fiber base material is impregnated with an adhesive film or a resin composition varnish formed by applying and drying a resin composition varnish on a support and drying. A sheet-like insulating material such as a prepreg (hereinafter referred to as “insulating resin sheet”) is generally used. Since such an insulating resin sheet is handled as a sheet-like member, an appropriate melting property for laminating is required. However, due to the high filling of the inorganic filler, the meltability and fluidity of the insulating resin sheet are remarkably lowered and the moldability is poor, which is disadvantageous for resin embedding in a fine wiring region.

特開2004−59380号公報JP 2004-59380 A

本発明は、上記のような事情に鑑みてなされたものであり、その解決しようとする課題は、回路基板の絶縁層形成に好適に使用することができ、特に絶縁樹脂シートの形態で使用する場合のラミネート性に優れ、熱膨張率が低く、しかも、それを硬化して得られる絶縁層表面の粗度が低くても高いピール強度を有する導体層の形成を可能にする樹脂組成物及び絶縁樹脂シートを提供することにある。   This invention is made | formed in view of the above situations, The subject which it is going to solve can be used suitably for the insulating layer formation of a circuit board, and uses it in the form of an insulating resin sheet especially. Resin composition and insulation capable of forming a conductor layer having excellent peelability, low thermal expansion coefficient, and high peel strength even if the surface roughness of the insulating layer obtained by curing it is low It is to provide a resin sheet.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、無機充填材として、シラザン化合物で表面処理後、シランカップリング剤で表面処理された無機充填材を使用し、さらにフェノキシ樹脂及び/又はポリビニルアセタール樹脂を使用し、これらを特定のエポキシ樹脂組成物中に組み合わせて配合した場合には、無機充填材を多量に配合しても良好な成膜性を有し(特にラミネート性及びラミネート後の絶縁層の平坦性も良好な絶縁樹脂シートに形成でき)、さらに、それを硬化して得られる絶縁層に高いピール強度の導体層を形成でき、しかも粗化処理を施した後の表面が比較的低粗度の表面においても、導体層が高いピール強度を有することを見出し、本発明を完成するに至った。すなわち、本発明は以下の内容を含むものである。   As a result of intensive studies to solve the above problems, the present inventors used an inorganic filler surface-treated with a silazane compound and then surface-treated with a silane coupling agent as an inorganic filler, and further, a phenoxy resin and When polyvinyl acetal resin is used and these are combined in a specific epoxy resin composition and blended in a large amount, it has good film formability (especially laminating properties and The insulating layer after lamination can be formed into an insulating resin sheet having a good flatness), and further, a conductive layer having a high peel strength can be formed on the insulating layer obtained by curing it, and after the roughening treatment The inventors have found that the conductor layer has a high peel strength even when the surface has a relatively low roughness, and have completed the present invention. That is, the present invention includes the following contents.

(1)(A)多官能エポキシ樹脂、(B)硬化剤、(C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂、並びに(D)シラザン化合物で表面処理後、シランカップリング剤で表面処理された無機充填材を含有する樹脂組成物であり、該樹脂組成物中の不揮発分100質量%に対し、成分(D)の含有量が50〜80質量%であることを特徴とする樹脂組成物。
(2)成分(D)の含有量が55〜75質量%である上記(1)記載の樹脂組成物。
(3)無機充填材が平均粒子径が1μm以下、かつ、最大粒子径が5μm以下のシリカである、上記(1)又は(2)記載の樹脂組成物。
(4)フェノキシ樹脂及び/又はポリビニルアセタール樹脂の重量平均分子量が8,000〜150,000である、上記(1)〜(3)のいずれかに記載の樹脂組成物。
(5)樹脂組成物中の不揮発分100質量%に対し、成分(A)及び(B)の合計含有量が15〜50質量%であり、かつ、樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とエポキシ硬化剤の反応基の合計数との比(エポキシ基:反応基)が1:0.4〜2.0である、上記(1)〜(4)のいずれかに記載の樹脂組成物。
(6)樹脂組成物中の不揮発分100質量%に対し、成分(C)の含有量が1〜10質量%である、上記(1)〜(5)のいずれかに記載の樹脂組成物。
(7)上記(1)〜(6)のいずれかに記載の樹脂組成物の層が支持フィルム上に形成されてなる接着フィルム。
(8)上記(1)〜(6)のいずれかに記載の樹脂組成物が繊維からなるシート状繊維基材中に含浸されてなるプリプレグ。
(9)上記(1)〜(6)のいずれかに記載の樹脂組成物の硬化物により形成された絶縁層を含む回路基板。
(1) (A) polyfunctional epoxy resin, (B) curing agent, (C) phenoxy resin and / or polyvinyl acetal resin, and (D) inorganic surface-treated with silane coupling agent after surface treatment with silazane compound A resin composition comprising a filler, wherein the content of the component (D) is 50 to 80% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
(2) The resin composition according to the above (1), wherein the content of the component (D) is 55 to 75% by mass.
(3) The resin composition according to the above (1) or (2), wherein the inorganic filler is silica having an average particle size of 1 μm or less and a maximum particle size of 5 μm or less.
(4) The resin composition according to any one of (1) to (3), wherein the weight average molecular weight of the phenoxy resin and / or polyvinyl acetal resin is 8,000 to 150,000.
(5) The epoxy content of the epoxy resin in which the total content of the components (A) and (B) is 15 to 50% by mass with respect to 100% by mass of the nonvolatile content in the resin composition, and is present in the resin composition Any one of the above (1) to (4), wherein the ratio of the total number of groups to the total number of reactive groups of the epoxy curing agent (epoxy group: reactive group) is 1: 0.4 to 2.0. Resin composition.
(6) The resin composition according to any one of (1) to (5), wherein the content of the component (C) is 1 to 10% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
(7) An adhesive film in which the layer of the resin composition according to any one of (1) to (6) is formed on a support film.
(8) A prepreg in which the resin composition according to any one of (1) to (6) is impregnated in a sheet-like fiber base material composed of fibers.
(9) A circuit board including an insulating layer formed of a cured product of the resin composition according to any one of (1) to (6).

本発明の樹脂組成物は、無機充填材を比較的多量に含有していながら、絶縁樹脂シートの形態で使用する場合のラミネート性に優れるとともに、平坦性の高い絶縁層を形成することができ、得られる絶縁層は表面の粗度が低くても高いピール強度の導体層を形成できるものとなる。従って、本発明の樹脂組成物を使用することで、熱膨張率が低く、かつ、微細配線の形成に有利な絶縁層(特に層間絶縁層)を実現でき、その結果、微細配線を有する高機能かつ高信頼性の回路基板を形成すことが可能になる。   While the resin composition of the present invention contains a relatively large amount of inorganic filler, it has excellent laminating properties when used in the form of an insulating resin sheet, and can form an insulating layer with high flatness. The obtained insulating layer can form a high peel strength conductor layer even if the surface roughness is low. Therefore, by using the resin composition of the present invention, it is possible to realize an insulating layer (particularly an interlayer insulating layer) that has a low coefficient of thermal expansion and is advantageous for forming fine wiring, and as a result, has a high function having fine wiring. In addition, a highly reliable circuit board can be formed.

以下、本発明をその好適な実施形態に即して説明する。
本発明の樹脂組成物(以下、「本発明組成物」とも略称する。)は、(A)多官能エポキシ樹脂と、(B)硬化剤と、(C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂と、(D)シラザン化合物で表面処理後、シランカップリング剤で表面処理された無機充填材とを少なくとも含む樹脂組成物であり、樹脂組成物中の不揮発分100質量%に対し、成分(D)を50〜80質量%含有せしめたことが主たる特徴である。
Hereinafter, the present invention will be described with reference to preferred embodiments thereof.
The resin composition of the present invention (hereinafter also abbreviated as “the present composition”) includes (A) a polyfunctional epoxy resin, (B) a curing agent, (C) a phenoxy resin and / or a polyvinyl acetal resin. , (D) a resin composition containing at least an inorganic filler surface-treated with a silazane compound and then surface-treated with a silane coupling agent, and the component (D) with respect to 100% by mass of the nonvolatile content in the resin composition The main feature is that 50 to 80% by mass is contained.

[(A)多官能エポキシ樹脂]
多官能エポキシ樹脂とは、1分子中に2個以上のエポキシ基を有するエポキシ樹脂のことを指す。
[(A) Multifunctional epoxy resin]
A polyfunctional epoxy resin refers to an epoxy resin having two or more epoxy groups in one molecule.

多官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。かかる多官能エポキシ樹脂はいずれか1種を使用するか2種以上を混合して用いることができる。   Examples of the polyfunctional epoxy resin include bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, and alicyclic type. Epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin having butadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalenediol , Glycidyl ethers of phenols, and diglycidyl ethers of alcohols, and alkyl-substituted products, halides and hydrogenated products of these epoxy resins And the like. One of these polyfunctional epoxy resins can be used, or two or more can be mixed and used.

多官能エポキシ樹脂は、これらの中でも、耐熱性、絶縁信頼性、金属膜との密着性等の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。また、多官能エポキシ樹脂は、液状であっても、固形状であってもよいが、溶融性、フィルム形成性、物性等のバランスの観点から、液状多官能エポキシ樹脂と固形状多官能エポキシ樹脂を併用する態様が好ましい。なお、ここでの「液状」及び「固形状」とは、常温(25℃)でのエポキシ樹脂の状態をいう。   Among these, polyfunctional epoxy resins are bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, butadiene from the viewpoint of heat resistance, insulation reliability, adhesion to metal film, etc. An epoxy resin having a structure is preferred. The polyfunctional epoxy resin may be liquid or solid, but from the viewpoint of balance of meltability, film formability, physical properties, etc., the liquid polyfunctional epoxy resin and the solid polyfunctional epoxy resin A mode in which is used in combination is preferred. Here, “liquid” and “solid” refer to the state of the epoxy resin at room temperature (25 ° C.).

固形状多官能エポキシ樹脂としては、ガラス転移温度の高さ、熱膨張率の低さといった観点から、芳香族系多官能エポキシ樹脂が好ましく、より好ましくは、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等である。固形状多官能エポキシ樹脂は2種以上を混合して用いてもよい。   The solid polyfunctional epoxy resin is preferably an aromatic polyfunctional epoxy resin, more preferably a naphthol type epoxy resin, a naphthalene type epoxy resin, from the viewpoint of high glass transition temperature and low coefficient of thermal expansion. Biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin and the like. Two or more solid polyfunctional epoxy resins may be mixed and used.

液状多官能エポキシ樹脂としては、好ましくは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられる。液状多官能エポキシ樹脂は2種以上を混合して用いてもよい。   Preferred examples of the liquid polyfunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, cyclohexanedimethanol type epoxy resin, and glycidylamine type epoxy resin. . Two or more liquid polyfunctional epoxy resins may be mixed and used.

液状多官能エポキシ樹脂と固形状多官能エポキシ樹脂を併用する場合、液状多官能エポキシ樹脂と固形状多官能エポキシ樹脂の使用量比(液状多官能エポキシ樹脂:固形状多官能エポキシ樹脂)は不揮発分の質量比で5〜60:95〜40が好ましく、10〜50:90〜50がより好ましい。かかる範囲を外れて液状多官能エポキシ樹脂の割合が少なすぎると、本発明組成物により絶縁樹脂シートを形成したときの、該絶縁樹脂シートの可撓性や溶融流動性が低下する傾向にあり、液状多官能エポキシ樹脂の割合が多すぎると、該絶縁樹脂シートのガラス転移温の低下や、熱膨張率の増大を招く傾向にある。   When liquid polyfunctional epoxy resin and solid polyfunctional epoxy resin are used in combination, the usage ratio of liquid polyfunctional epoxy resin and solid polyfunctional epoxy resin (liquid polyfunctional epoxy resin: solid polyfunctional epoxy resin) is non-volatile The mass ratio is preferably 5-60: 95-40, more preferably 10-50: 90-50. If the ratio of the liquid polyfunctional epoxy resin is too small outside this range, when the insulating resin sheet is formed by the composition of the present invention, the flexibility and melt fluidity of the insulating resin sheet tend to decrease, When the ratio of the liquid polyfunctional epoxy resin is too large, the glass transition temperature of the insulating resin sheet tends to decrease and the coefficient of thermal expansion tends to increase.

多官能エポキシ樹脂の好適な具体例は、液状多官能エポキシ樹脂としては、例えば、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「jER828EL」(エポキシ当量:189))、液状ビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン(株)製「jER806」(エポキシ当量:165))、フェノールノボラック型エポキシ樹脂(ジャパンエポキシレジン(株)製「jER152」(エポキシ当量:175))、ナフタレン型2官能エポキシ樹脂(大日本インキ化学工業(株)製「HP4032」、「HP4032D](エポキシ当量:144))、液状2官能エポキシ樹脂(東都化成(株)製「ZX1658」(エポキシ当量:135))等を挙げることができる。   Specific examples of the polyfunctional epoxy resin include, as the liquid polyfunctional epoxy resin, for example, liquid bisphenol A type epoxy resin (“jER828EL” (epoxy equivalent: 189) manufactured by Japan Epoxy Resin Co., Ltd.), liquid bisphenol F type Epoxy resin (Japan Epoxy Resin Co., Ltd. “jER806” (epoxy equivalent: 165)), phenol novolac type epoxy resin (Japan Epoxy Resin Co., Ltd. “jER152” (epoxy equivalent: 175)), naphthalene type bifunctional epoxy Resins (“HP4032”, “HP4032D” (epoxy equivalent: 144) manufactured by Dainippon Ink & Chemicals, Inc.), liquid bifunctional epoxy resin (“ZX1658” (epoxy equivalent: 135) manufactured by Tohto Kasei Co., Ltd.), etc. Can be mentioned.

また、固形状多官能エポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂(大日本インキ化学工業(株)製「HP4700」(エポキシ当量:162))、ナフトール型エポキシ樹脂(東都化成(株)製「ESN−475V」(エポキシ当量:332))、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB−3600」)、ビフェニル構造を有するエポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」(エポキシ当量:269)、ジャパンエポキシレジン(株)製「YX4000」(エポキシ当量:192))などが挙げられる。   In addition, as the solid polyfunctional epoxy resin, naphthalene type tetrafunctional epoxy resin (“HP4700” (epoxy equivalent: 162) manufactured by Dainippon Ink & Chemicals, Inc.), naphthol type epoxy resin (manufactured by Toto Kasei Co., Ltd.) ESN-475V "(epoxy equivalent: 332)), epoxy resin having a butadiene structure (" PB-3600 "manufactured by Daicel Chemical Industries, Ltd.), epoxy resin having a biphenyl structure (" NC3000H "manufactured by Nippon Kayaku Co., Ltd.) , “NC3000L” (epoxy equivalent: 269), “YX4000” (epoxy equivalent: 192) manufactured by Japan Epoxy Resin Co., Ltd.), and the like.

本発明において、「多官能エポキシ樹脂」は反応性の観点から、エポキシ当量が90〜500の範囲のものが好適である。ここでエポキシ当量とはエポキシ基を含む樹脂の質量(g)であり、JIS K 7236に規定された方法に従って測定されるものである。   In the present invention, the “polyfunctional epoxy resin” preferably has an epoxy equivalent in the range of 90 to 500 from the viewpoint of reactivity. Here, the epoxy equivalent is the mass (g) of the resin containing an epoxy group, and is measured according to the method defined in JIS K 7236.

[(B)硬化剤]
本発明において、硬化剤は、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、好ましいものとしては、例えば、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル樹脂等が挙げられる。かかる硬化剤はいずれか1種を使用するか2種以上を混合して用いてもよい。
[(B) Curing agent]
In the present invention, the curing agent is not particularly limited as long as it has a function of curing the epoxy resin. Preferred examples thereof include a phenol-based curing agent, a naphthol-based curing agent, an active ester-based curing agent, and a benzoxazine. Examples thereof include a system curing agent and a cyanate ester resin. Any one of these curing agents may be used, or two or more may be mixed and used.

フェノール系硬化剤、ナフトール系硬化剤としては、耐熱性、耐水性の観点から、ノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤が好ましい。市販品としては、例えば、MEH−7700、MEH−7810、MEH7851−4H(明和化成社(株)製)、NHN、CBN、GPH(日本化薬(株)製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成(株)製)、LA7052、LA7054(大日本インキ化学工業(株)製)等が挙げられる。活性エステル系硬化剤としては、EXB−9460(大日本インキ化学工業(株)製)、DC808、YLH1030(ジャパンエポキシレジン(株)製)等が挙げられる。ベンゾオキサジン系硬化剤としては、HFB2006M(昭和高分子(株)製)、P−d、F−a(四国化成工業(株)製)などが挙げられる。シアネートエステル樹脂の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2−ビス(4−シアネート)フェニルプロパン、1,1−ビス(4−シアネートフェニルメタン)、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、ビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。市販されているシアネートエステル樹脂としては、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製「PT30」、シアネート当量124)やビスフェノールAジシアネートの一部または全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製「BA230」、シアネート当量232)等が挙げられる。   As a phenol type hardening | curing agent and a naphthol type | system | group hardening | curing agent, from a heat resistant and water-resistant viewpoint, the phenol type hardening | curing agent which has a novolak structure, and the naphthol type hardening | curing agent which has a novolak structure are preferable. Examples of commercially available products include MEH-7700, MEH-7810, MEH7851-4H (Maywa Kasei Co., Ltd.), NHN, CBN, GPH (Nippon Kayaku Co., Ltd.), SN170, SN180, SN190, and SN475. SN485, SN495, SN375, SN395 (manufactured by Toto Kasei Co., Ltd.), LA7052, LA7054 (manufactured by Dainippon Ink & Chemicals, Inc.), and the like. Examples of the active ester curing agent include EXB-9460 (Dainippon Ink Chemical Co., Ltd.), DC808, YLH1030 (Japan Epoxy Resin Co., Ltd.) and the like. Examples of the benzoxazine-based curing agent include HFB2006M (manufactured by Showa Polymer Co., Ltd.), Pd, Fa (manufactured by Shikoku Kasei Kogyo Co., Ltd.), and the like. Specific examples of the cyanate ester resin include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4, 4'-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5- Bifunctional cyanate resins such as dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether, phenol Novolac, cle Examples include polyfunctional cyanate resins derived from arn novolac, etc., prepolymers in which these cyanate resins are partially triazines, etc. Examples of commercially available cyanate ester resins include phenol novolac type polyfunctional cyanate ester resins (Lonza Japan Ltd.). ) “PT30”, cyanate equivalent 124), or a prepolymer in which a part or all of bisphenol A dicyanate is triazine-modified (“BA230” manufactured by Lonza Japan Co., Ltd., cyanate equivalent 232) and the like. .

本発明の樹脂組成物においては、十分な硬化を行う上で、前記の「多官能エポキシ樹脂」と当該「エポキシ硬化剤」の合計含有量が、樹脂組成物中の不揮発分100質量%に対して15〜50質量%であるのが好ましい。またさらに、これら両者を、樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とエポキシ硬化剤の反応基の合計数の比(エポキシ基の合計数:エポキシ硬化剤の反応基の合計数)が1:0.4〜2.0、さらには1:0.5〜1.5となる量で使用するのが好ましい。なお、樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、エポキシ硬化剤の反応基(活性水酸基、活性エステル基等)の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。   In the resin composition of the present invention, when sufficient curing is performed, the total content of the “polyfunctional epoxy resin” and the “epoxy curing agent” is 100% by mass of the nonvolatile content in the resin composition. It is preferable that it is 15-50 mass%. Furthermore, both of these ratios of the total number of epoxy groups in the epoxy resin and the total number of reactive groups in the epoxy curing agent present in the resin composition (total number of epoxy groups: total number of reactive groups in the epoxy curing agent) ) Is preferably 1: 0.4 to 2.0, more preferably 1: 0.5 to 1.5. The total number of epoxy groups in the epoxy resin present in the resin composition is a value obtained by dividing the value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins. The total number of reactive groups (active hydroxyl group, active ester group, etc.) is a value obtained by totaling the values obtained by dividing the solid content mass of each curing agent by the reactive group equivalent for all curing agents.

本発明組成物には、硬化剤に加え、硬化促進剤をさらに配合することができる。硬化促進剤としては、例えば、有機ホスフィン化合物、有機ホスホニウム塩化合物、イミダゾール化合物、アミンアダクト化合物、3級アミン化合物などが挙げられる。有機ホスフィン化合物及び有機ホスホニウム塩化合物の具体例としては、TPP、TPP−K、TPP−S、TPTP−S、TBP−DA、TPP−SCN、TPTP−SCN(北興化学工業(株)商品名)などが挙げられる。イミダゾール化合物の具体例としては、キュアゾール2MZ、2E4MZ、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2MZ-OK、2MA-OK、2PHZ(四国化成工業(株)商品名)などが挙げられる。アミンアダクト化合物の具体例としては、ノバキュア(旭化成工業(株)商品名)、フジキュア(富士化成工業(株)商品名)などが挙げられる。3級アミン化合物の具体例としては、DBU(1,8−diazabicyclo[5,4,0]undec−7−ene)などが挙げられる。硬化促進剤は2種以上を混合して用いてもよい。本発明の樹脂組成物において、硬化促進剤の含有量は、樹脂組成物中に含まれるエポキシ樹脂とエポキシ硬化剤の総量(不揮発分)に対し、通常、0.1〜5質量%の範囲で使用される。   In addition to the curing agent, a curing accelerator can be further added to the composition of the present invention. Examples of the curing accelerator include organic phosphine compounds, organic phosphonium salt compounds, imidazole compounds, amine adduct compounds, and tertiary amine compounds. Specific examples of organic phosphine compounds and organic phosphonium salt compounds include TPP, TPP-K, TPP-S, TPTP-S, TBP-DA, TPP-SCN, TPTP-SCN (trade name of Hokuko Chemical Co., Ltd.), etc. Is mentioned. Specific examples of the imidazole compound include Curazole 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZ-OK, 2MA-OK, 2PHZ (trade names of Shikoku Kasei Kogyo Co., Ltd.). . Specific examples of the amine adduct compound include Novacure (trade name of Asahi Kasei Kogyo Co., Ltd.) and Fuji Cure (trade name of Fuji Kasei Kogyo Co., Ltd.). Specific examples of the tertiary amine compound include DBU (1,8-diazabiccyclo [5,4,0] undec-7-ene). Two or more curing accelerators may be mixed and used. In the resin composition of the present invention, the content of the curing accelerator is usually in the range of 0.1 to 5 mass% with respect to the total amount (nonvolatile content) of the epoxy resin and the epoxy curing agent contained in the resin composition. used.

なお、エポキシ硬化剤としてシアネートエステル樹脂を使用する場合は、硬化時間を短縮する目的で、従来からエポキシ樹脂とシアネート化合物とを併用した系で硬化触媒として用いられている有機金属化合物を添加してもよい。有機金属化合物としては、銅(II)アセチルアセトナート等の有機銅化合物、亜鉛(II)アセチルアセトナート等の有機亜鉛化合物、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト化合物などが挙げられる。有機金属化合物の添加量は、シアネートエステル樹脂に対し、金属換算で通常10〜500ppm、好ましくは25〜200ppmの範囲である。有機金属化合物は2種以上を混合して用いてもよい。また、かかるシアネートエステル樹脂と有機金属化合物を使用する系では、有機金属化合物と上記任意の硬化促進剤1種以上と併用してもよい。   When using a cyanate ester resin as an epoxy curing agent, for the purpose of shortening the curing time, an organometallic compound that has been conventionally used as a curing catalyst in a system in which an epoxy resin and a cyanate compound are used together is added. Also good. Examples of organometallic compounds include organic copper compounds such as copper (II) acetylacetonate, organic zinc compounds such as zinc (II) acetylacetonate, and organic such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate. A cobalt compound etc. are mentioned. The addition amount of the organometallic compound is usually in the range of 10 to 500 ppm, preferably 25 to 200 ppm in terms of metal with respect to the cyanate ester resin. Two or more organometallic compounds may be mixed and used. In a system using such a cyanate ester resin and an organometallic compound, the organometallic compound and one or more optional curing accelerators may be used in combination.

[(C)フェノキシ樹脂、ポリビニルアセタール樹脂]
本発明の樹脂組成物はフェノキシ樹脂及び/又はポリビニルアセタール樹脂を含有する。フェノキシ樹脂及び/又はポリビニルアセタール樹脂は、その重量平均分子量が8,000〜150,000の範囲が好ましく、10,000〜60,000の範囲がより好ましく、20,000〜60,000の範囲であるのが特に好ましい。フェノキシ樹脂及び/又はポリビニルアセタール樹脂の重量平均分子量がかかる好適範囲よりも小さいと、本発明の樹脂組成物により形成された絶縁層上の導体層のピール強度が低下する傾向にあり、かかる範囲より大きいと、絶縁層の熱膨張率や、粗化処理後の絶縁層表面の粗度が増大する傾向にある。
[(C) Phenoxy resin, polyvinyl acetal resin]
The resin composition of the present invention contains a phenoxy resin and / or a polyvinyl acetal resin. The weight average molecular weight of the phenoxy resin and / or polyvinyl acetal resin is preferably in the range of 8,000 to 150,000, more preferably in the range of 10,000 to 60,000, and in the range of 20,000 to 60,000. It is particularly preferred. When the weight average molecular weight of the phenoxy resin and / or the polyvinyl acetal resin is smaller than the preferred range, the peel strength of the conductor layer on the insulating layer formed by the resin composition of the present invention tends to decrease, and from this range. If it is large, the thermal expansion coefficient of the insulating layer and the roughness of the surface of the insulating layer after the roughening treatment tend to increase.

ここでいう「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。   The “weight average molecular weight” here is measured by gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K- manufactured by Showa Denko KK as a column. 804 L can be measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.

なお、フェノキシ樹脂及びポリビニルアセタール樹脂はいずれか一方を単独で使用しても、両者を混合して使用してもよいが、エポキシ樹脂組成物中における相溶性や絶縁層上に形成される導体層のピール強度の点から少なくともフェノキシ樹脂を使用するのが好ましい。フェノキシ樹脂及びポリビニルアセタール樹脂はそれぞれ1種又は2種以上を使用することができる。   The phenoxy resin and the polyvinyl acetal resin may be used either alone or in combination, but the compatibility in the epoxy resin composition and the conductor layer formed on the insulating layer From the viewpoint of the peel strength, it is preferable to use at least a phenoxy resin. Each of the phenoxy resin and the polyvinyl acetal resin can be used alone or in combination of two or more.

フェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。フェノキシ樹脂の末端はフェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂の市販品としては、例えば、ジャパンエポキシレジン(株)製1256、4250(ビスフェノールA骨格含有フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX8100(ビスフェノールS骨格含有フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX6954(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)や、その他東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YL7553BH30、YL6794、YL7213、YL7290、YL7482等が挙げられる。   Examples of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene skeleton, Examples thereof include those having one or more skeletons selected from a trimethylcyclohexane skeleton. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. Examples of commercially available phenoxy resins include 1256, 4250 (bisphenol A skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., YX8100 (bisphenol S skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., Japan Epoxy Resin ( YX6954 (bisphenol acetophenone skeleton-containing phenoxy resin) manufactured by Co., Ltd., FX280, FX293 manufactured by Toto Kasei Co., Ltd., YL7553BH30, YL6794, YL7213, YL7290, YL7482 manufactured by Japan Epoxy Resins Co., Ltd. and the like can be mentioned.

ポリビニルアセタール樹脂はポリビニルブチラール樹脂が好ましく、ポリビニルアセタール樹脂の具体例としては、電気化学工業(株)製、電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。   The polyvinyl acetal resin is preferably a polyvinyl butyral resin, and specific examples of the polyvinyl acetal resin include those manufactured by Denki Kagaku Kogyo Co., Ltd., Electric Butyral 4000-2, 5000-A, 6000-C, 6000-EP, Sekisui Chemical Co., Ltd. ) Made S-Rec BH series, BX series, KS series, BL series, BM series and the like.

本発明の樹脂組成物におけるフェノキシ樹脂及び/又はポリビニルアセタール樹脂の含有量は、樹脂組成物中の不揮発分100質量%に対し、1〜20質量%の範囲であるのが好ましく、2〜15質量%の範囲であるのがより好ましい。含有量が少なすぎると、無機充填材の高充填化及び絶縁層上の導体層の高ピール強度化という所期の効果が十分に得られにくい傾向となり、含有量が多すぎると、樹脂組成物の粘度が高くなりすぎて、導体パターン上に樹脂組成物による層を形成したときの埋め込み(隣接するパターン(配線)の間への組成物の埋め込み)等が困難になったり、当該樹脂組成物により形成される絶縁樹脂シートのラミネート性が低下する傾向となる。   The content of the phenoxy resin and / or the polyvinyl acetal resin in the resin composition of the present invention is preferably in the range of 1 to 20% by mass with respect to 100% by mass of the nonvolatile content in the resin composition, and 2 to 15% by mass. % Is more preferable. If the content is too small, the desired effects of increasing the filling of the inorganic filler and increasing the peel strength of the conductor layer on the insulating layer tend not to be obtained sufficiently, and if the content is too large, the resin composition When the layer of the resin composition is formed on the conductor pattern, embedding (embedding of the composition between adjacent patterns (wiring)) or the like becomes difficult, or the resin composition As a result, the laminating property of the insulating resin sheet formed tends to decrease.

[(D)シラザン化合物で表面処理後、シランカップリング剤で表面処理された無機充填材]
本発明の樹脂組成物において、シラザン化合物で表面処理後、シランカップリング剤で表面処理された無機充填材は、樹脂組成物から形成される絶縁層の熱膨張率を低下させる目的で配合されるが、当該無機充填材は樹脂組成物中で優れた分散性を示すことから、比較的多量に配合しても樹脂組成物を比較的低い溶融粘度を示すものにすることができるとともに、無機充填材が高充填化した絶縁層形成に寄与する。一方、当該無機充填材を含む樹脂組成物を加熱硬化して得られる絶縁層は当該無機充填材とフェノキシ樹脂及び/又はポリビニルアセタール樹脂の存在により、導体層(メッキ層)に対する密着性が向上するという作用を発現し、粗化処理して得られる表面の表面粗さが小さいにもかかわらず、導体層との密着性に優れる絶縁層を形成することを可能にする。
[(D) Inorganic filler surface-treated with silazane compound and then surface-treated with silane coupling agent]
In the resin composition of the present invention, the inorganic filler surface-treated with the silazane compound and then surface-treated with the silane coupling agent is blended for the purpose of reducing the thermal expansion coefficient of the insulating layer formed from the resin composition. However, since the inorganic filler exhibits excellent dispersibility in the resin composition, the resin composition can be made to exhibit a relatively low melt viscosity even when blended in a relatively large amount, and the inorganic filler This contributes to the formation of an insulating layer whose material is highly filled. On the other hand, the insulating layer obtained by heat-curing the resin composition containing the inorganic filler has improved adhesion to the conductor layer (plating layer) due to the presence of the inorganic filler and the phenoxy resin and / or polyvinyl acetal resin. This makes it possible to form an insulating layer having excellent adhesion to the conductor layer, although the surface roughness obtained by the roughening treatment is small.

表面処理が施される無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でも、シリカ(球状シリカ、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ等)が好適であり、球状シリカが特に好ましい。かかる無機充填材はいずれか1種を使用しても2種以上を組み合わせて使用してもよい。   Examples of the inorganic filler to be surface-treated include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, and boric acid. Aluminum, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, etc., among these, silica (spherical silica, amorphous silica, Fused silica, crystalline silica, synthetic silica, etc.) are preferred, and spherical silica is particularly preferred. Such inorganic fillers may be used alone or in combination of two or more.

表面処理が施される無機充填材の平均粒子径は1μm以下であるのが好ましく、0.8μm以下がより好ましく、0.7μm以下がとりわけ好ましい。当該無機充填材の平均粒子径が1μmを超える場合、樹脂組成物から形成された絶縁層上にメッキにより導体層を形成したときの導体層のピール強度が低下する傾向となる。なお、無機充填材の平均粒子径が小さくなりすぎると、樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下する傾向となることから、平均粒子径は0.05μm以上であるのが好ましい。また、無機充填材の平均粒子径が1μm以下であっても粗大な粒子を多く含むと、粗化処理時に粗大な粒子由来の凹凸が生じ、メッキによる導体層形成時にその凹凸にメッキ銅が浸透し、微細化された導体間が短絡化しやすくなる。従って、無機充填材は最大粒子径が5μm以下であるのが好ましい。   The average particle diameter of the inorganic filler subjected to the surface treatment is preferably 1 μm or less, more preferably 0.8 μm or less, and particularly preferably 0.7 μm or less. When the average particle diameter of the inorganic filler exceeds 1 μm, the peel strength of the conductor layer when the conductor layer is formed by plating on the insulating layer formed from the resin composition tends to decrease. If the average particle size of the inorganic filler is too small, the viscosity of the varnish tends to increase and the handleability tends to decrease when the resin composition is a resin varnish. It is preferable that it is 05 μm or more. Even if the average particle diameter of the inorganic filler is 1 μm or less, if it contains a large amount of coarse particles, irregularities derived from coarse particles are produced during the roughening treatment, and plated copper penetrates into the irregularities when forming a conductor layer by plating. However, it becomes easy to short-circuit between the miniaturized conductors. Therefore, the inorganic filler preferably has a maximum particle size of 5 μm or less.

ここでいう表面処理が施される無機充填材の平均粒子径及び最大粒子径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径(50%値)を平均粒子径とし、5%値を最大粒子径とすることで測定される。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製LA−500等を使用することができる。   The average particle diameter and the maximum particle diameter of the inorganic filler to be subjected to the surface treatment here can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler is created on a volume basis with a laser diffraction particle size distribution measuring device, the median diameter (50% value) is the average particle diameter, and the 5% value is the maximum particle diameter. Measured in As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba, Ltd. or the like can be used.

表面処理に使用されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサ(t−ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、1,3−ジエチルテトラメチルジシラザン、1,3−ジ−n−オクチルテトラメチルジシラザン、1,3−ジフェニルテトラメチルジシラザン、1,3−ジメチルテトラフェニルジシラザン、1,3−ジエチルテトラメチルジシラザン、1,1,3,3−テトラフェニル−1,3−ジメチルジシラザン、1,3−ジプロピルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメチルシクロトリシラザン等を挙げることができ、特にヘキサメチルジシラザンが好ましい。   Examples of the silazane compound used for the surface treatment include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, Hexabutyldisilazane, hexaoctyldisilazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetra Phenyldisilazane, 1,3-diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, Hexaphenyldisilazane, dimethylaminotrimethylsilazane, trisilazane, cyclo Examples include trisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, and hexamethyldisilazane is particularly preferable.

また、表面処理に使用されるシランカップリング剤としては、例えば、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン及び11−メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルジメトキシメチルシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシランおよびN−(2−アミノエチル)−3−アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3−ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p−スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3−アクリルオキシプロピルトリメトキシシランおよび3−メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3−イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。中でも、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、イミダゾールシランが好ましい。   Examples of the silane coupling agent used for the surface treatment include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3, Epoxy silane coupling agents such as 4-epoxycyclohexyl) ethyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane Mercapto silane coupling agents such as: 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl 3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Amino silane coupling agents such as; ureido silane coupling agents such as 3-ureidopropyltriethoxysilane; vinyl silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; p A styryl silane coupling agent such as styryltrimethoxysilane; an acrylate silane coupling agent such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane; Isocyanate-based silane coupling agents such as propyl propyltrimethoxysilane, sulfide-based silane coupling agents such as bis (triethoxysilylpropyl) disulfide and bis (triethoxysilylpropyl) tetrasulfide; methyltrimethoxysilane, octadecyltrimethoxysilane , Phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, imidazolesilane, triazinesilane and the like. Of these, aminosilane coupling agents, epoxysilane coupling agents, and imidazolesilane are preferable.

無機充填材の表面処理は、例えば、未処理の無機充填材を混合機で常温にて攪拌分散させながら、シラザン化合物を添加噴霧して5〜15分間攪拌し、続いて、シランカップリング剤を添加噴霧して5〜15分間攪拌することによって行なうことができる。なお、市販品のシラザン化合物で表面処理した無機充填材(シラザン化合物処理付無機充填材)を使用することができ、この場合は、市販品のシラザン化合物で表面処理した無機充填材を常温にて攪拌分散させながら、シランカップリング剤を添加噴霧して5〜15分間攪拌することによって行えばよい。なお、シラザン化合物及び/又はシランカップリング剤を無機充填材に強固に被着させるために、上記の操作後、混合機から無機充填材を取り出して1日以上放置してもよく、また、シラザン化合物を添加噴霧した後の攪拌操作後、及び/又は、シランカップリング剤を添加噴霧した後の攪拌操作後に、軽微な加熱処理を行なってもよい。また、シラザン化合物及び/又はシランカップリング剤を無機充填材に均一に被着させるために、シラザン化合物の添加噴霧後、及び/又は、シランカップリング剤の添加噴霧後に、有機溶媒を添加し混合してもよい。混合機としては、公知の混合機を使用することができ、例えば、Vブレンダー、リボンブレンダー及びバブルコーンブレンダー等のブレンダー、ヘンシェルミキサー及びコンクリートミキサー等のミキサー、ボールミル等が挙げられ、ミキサーが好ましく使用される。   For example, the surface treatment of the inorganic filler may be performed by adding and spraying a silazane compound and stirring for 5 to 15 minutes while stirring and dispersing the untreated inorganic filler at room temperature with a mixer, followed by adding a silane coupling agent. This can be done by spraying with addition and stirring for 5-15 minutes. In addition, an inorganic filler surface-treated with a commercially available silazane compound (inorganic filler with silazane compound treatment) can be used. In this case, the inorganic filler surface-treated with a commercially available silazane compound is used at room temperature. What is necessary is just to carry out by adding and spraying a silane coupling agent and stirring for 5 to 15 minutes while stirring and dispersing. In order to firmly adhere the silazane compound and / or silane coupling agent to the inorganic filler, the inorganic filler may be taken out from the mixer after the above operation and allowed to stand for more than one day. A slight heat treatment may be performed after the stirring operation after adding and spraying the compound and / or after the stirring operation after adding and spraying the silane coupling agent. In order to uniformly deposit the silazane compound and / or silane coupling agent on the inorganic filler, an organic solvent is added and mixed after the addition spray of the silazane compound and / or after the addition spray of the silane coupling agent. May be. As the mixer, known mixers can be used, for example, blenders such as V blenders, ribbon blenders and bubble cone blenders, mixers such as Henschel mixers and concrete mixers, ball mills, etc., and mixers are preferably used. Is done.

シラザン化合物の処理量は無機充填材100質量部当たり0.01〜1.0質量部程度が好ましい。また、シランカップリング剤の処理量は無機充填材100質量部当たり0.5〜2質量部程度が好ましい。なお、市販品のシラザン化合物処理付無機充填材を使用する場合、シランカップリング剤の処理量はシラザン化合物処理付無機充填材100質量部当たり0.5〜2質量部程度が好ましい。   The treatment amount of the silazane compound is preferably about 0.01 to 1.0 part by mass per 100 parts by mass of the inorganic filler. Moreover, the processing amount of the silane coupling agent is preferably about 0.5 to 2 parts by mass per 100 parts by mass of the inorganic filler. In addition, when using the inorganic filler with silazane compound processing of a commercial item, the processing amount of a silane coupling agent has about 0.5-2 mass parts per 100 mass parts of inorganic fillers with silazane compound treatment.

シラザン類とシランカップリング剤のいずれか一方のみの表面処理を施した無機充填材や、シランカップリング剤による表面処理を先に行ない、シラザン類による表面処理を後に行なった無機充填材を使用しても、また、シラザン類とシランカップリング剤を混合して表面処理を行なった無機充填材を使用しても、所期の効果、すなわち、樹脂組成物の低溶融粘度化及び絶縁層の導体層との密着性向上の両方が十分に発現する効果は得られない。   Use an inorganic filler that has been surface-treated with either a silazane or a silane coupling agent, or an inorganic filler that has been surface-treated with a silane coupling agent first, followed by a surface treatment with a silazane. However, even if an inorganic filler that has been surface-treated by mixing silazane and a silane coupling agent is used, the desired effect, ie, low melt viscosity of the resin composition and conductor of the insulating layer can be obtained. The effect of sufficiently exhibiting both improvement in adhesion to the layer cannot be obtained.

本発明の樹脂組成物における当該無機充填材(成分(D))の含有量は、樹脂組成物中の不揮発分100質量%に対して50〜80質量%の範囲であるのが好ましく、55〜75質量%の範囲であるがより好ましく、60〜70質量%の範囲であるのがとりわけ好ましい。該無機充填材の含有量が少なすぎると、樹脂組成物により形成される絶縁樹脂シートや絶縁層の熱膨張率が上昇する傾向にあり、含有量が多すぎると、絶縁樹脂シートの可撓性が低下する傾向にある。   It is preferable that content of the said inorganic filler (component (D)) in the resin composition of this invention is the range of 50-80 mass% with respect to 100 mass% of non volatile matters in a resin composition. It is more preferably in the range of 75% by mass, particularly preferably in the range of 60 to 70% by mass. When the content of the inorganic filler is too small, the thermal expansion coefficient of the insulating resin sheet or the insulating layer formed by the resin composition tends to increase. When the content is too large, the flexibility of the insulating resin sheet is increased. Tend to decrease.

[ゴム粒子]
本発明の樹脂組成物には、硬化物の機械強度の向上や応力緩和等の目的からゴム粒子を含有させてもよい。当該ゴム粒子は、樹脂組成物を調製する際の有機溶媒にも溶解せず、エポキシ樹脂等の樹脂組成物中の成分とも相溶せず、樹脂組成物のワニス中では分散状態で存在するものが好ましい。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製することができ、具体的には、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子等が挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、(ガンツ化成(株)商品名)、メタブレンKW-4426(三菱レイヨン(株)商品名)が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.5μm)(三菱レイヨン(株)製)を挙げることができる。
[Rubber particles]
The resin composition of the present invention may contain rubber particles for the purpose of improving the mechanical strength of the cured product and relaxing the stress. The rubber particles are not dissolved in an organic solvent when preparing the resin composition, are not compatible with components in the resin composition such as an epoxy resin, and exist in a dispersed state in the varnish of the resin composition Is preferred. Such rubber particles can generally be prepared by increasing the molecular weight of the rubber component to a level that does not dissolve in an organic solvent or resin and making it into particles. Specifically, core-shell type rubber particles, Examples thereof include acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, the outer shell layer is a glassy polymer and the inner core layer is a rubbery polymer. Examples include a three-layer structure in which the shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer. The glass layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, (Ganz Kasei Co., Ltd. trade name), and Metabrene KW-4426 (Mitsubishi Rayon Co., Ltd. trade name). Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include methabrene W300A (average particle size 0.1 μm), W450A (average particle size 0.5 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).

ゴム粒子の平均粒子径は0.005〜1μmの範囲が好ましく、0.2〜0.6μmの範囲がより好ましい。かかるゴム粒子の平均粒子径は、動的光散乱法を用いて測定することが出来る。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、FPRA-1000(大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒子径とすることで測定される。   The average particle diameter of the rubber particles is preferably in the range of 0.005 to 1 μm, and more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of such rubber particles can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in a suitable organic solvent by ultrasonic waves, etc., and using FPRA-1000 (manufactured by Otsuka Electronics Co., Ltd.), the particle size distribution of the rubber particles is created on a mass basis, and the median diameter is determined. The average particle diameter is measured.

ゴム粒子を配合する場合の含有量は、樹脂組成物中の不揮発分100質量%に対し、1〜10質量%の範囲であるのが好ましく、2〜5質量%の範囲であるのがより好ましい。   When the rubber particles are blended, the content is preferably in the range of 1 to 10% by mass and more preferably in the range of 2 to 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition. .

[熱硬化性樹脂]
本発明の樹脂組成物は、必要に応じて本発明の効果が発揮される範囲でマレイミド化合物、ビスアリルナジイミド化合物、ビニルベンジル樹脂、ビニルベンジルエーテル樹脂などのエポキシ樹脂以外の熱硬化性樹脂を配合することもできる。このような熱硬化性樹脂は2種以上を混合して用いてもよい。マレイミド樹脂としてはBMI1000、BMI2000、BMI3000、BMI4000、BMI5100(大和化成工業(株)製)、BMI、BMI−70、BMI−80(ケイ・アイ化成(株)製)、ANILIX−MI(三井化学ファイン(株)製)、ビスアリルナジイミド化合物としてはBANI−M、BANI−X(丸善石油化学工業(株)製)ビニルベンジル樹脂としてはV5000(昭和高分子(株)製)、ビニルベンジルエーテル樹脂としてはV1000X、V1100X(昭和高分子(株)製)が挙げられる。
[Thermosetting resin]
The resin composition of the present invention contains a thermosetting resin other than an epoxy resin, such as a maleimide compound, a bisallyl nadiimide compound, a vinyl benzyl resin, and a vinyl benzyl ether resin, as long as the effects of the present invention are exhibited as necessary. It can also be blended. Such thermosetting resins may be used in combination of two or more. As maleimide resins, BMI1000, BMI2000, BMI3000, BMI4000, BMI5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.), BMI, BMI-70, BMI-80 (manufactured by KEI Kasei Co., Ltd.), ANILIX-MI (Mitsui Chemical Fine) BANI-M, BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.) as a vinyl benzyl resin, V5000 (manufactured by Showa Polymer Co., Ltd.), vinyl benzyl ether resin V1000X, V1100X (manufactured by Showa Polymer Co., Ltd.).

[難燃剤]
本発明の樹脂組成物は、本発明の効果が発揮される範囲で難燃剤を含有しても良い。難燃剤は2種以上を混合して用いてもよい。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA−HQ、HCA−NQ等のフェナントレン型リン化合物、昭和高分子(株)製のHFB−2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX305等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルミド化合物、大塚化学(株)製のSPB100、SPE100、(株)伏見製作所製FP−series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)製のB−30、B−325、B−315、B−308、B−303、UFH−20等の水酸化アルミニウム等が挙げられる。
[Flame retardants]
The resin composition of the present invention may contain a flame retardant as long as the effects of the present invention are exhibited. Two or more flame retardants may be mixed and used. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organic phosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd., and Ajinomoto Reefos 30, 50, 65, 90, 110, Fine Techno Co., TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, PPQ, Clariant (made by Hokuko Chemical Co., Ltd.) Phosphoric acid ester compounds such as OP930 manufactured by Daihachi Chemical Co., Ltd., FX289 compounds manufactured by Tohto Kasei Co., Ltd., phosphorus-containing epoxy resins such as FX305, phosphorus such as ERF001 manufactured by Tohto Kasei Co., Ltd. Examples thereof include phenoxy resin. Examples of organic nitrogen-containing phosphorus compounds include phosphate ester compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., phosphazenes such as SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Seisakusho Co., Ltd. Compounds and the like. As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308, B manufactured by Sakai Kogyo Co., Ltd. And aluminum hydroxide such as -303 and UFH-20.

本発明の樹脂組成物は、本発明の効果が発揮される範囲で、上述した成分以外の各種樹脂添加剤を任意で含有させても良い。このような樹脂添加剤としては、例えば、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、シランカップリング剤、トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   The resin composition of the present invention may optionally contain various resin additives other than the components described above as long as the effects of the present invention are exhibited. Examples of such resin additives include organic fillers such as silicon powder, nylon powder, and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, and polymer-based antifoaming agents or leveling agents. Adhesion imparting agents such as silane coupling agents, triazole compounds, thiazole compounds, triazine compounds, porphyrin compounds, coloring agents such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, carbon black, etc. it can.

[絶縁樹脂シート]
支持体上に本発明の樹脂組成物の層を形成することで接着フィルムが得られ、また、繊維からなるシート状基材(シート状繊維基材)中に本発明の樹脂組成物を含浸させることでプリプレグを得ることができる。本発明の樹脂組成物は直接回路基板に塗布して絶縁層を形成することもできるが、工業的には、本発明の樹脂組成物を用いて上記の接着フィルムやプリプレグ等の絶縁樹脂シートを形成し、該絶縁樹脂シートを使用して回路基板に絶縁層を形成するのが好ましい。
[Insulating resin sheet]
An adhesive film is obtained by forming a layer of the resin composition of the present invention on a support, and the resin composition of the present invention is impregnated in a sheet-like substrate (sheet-like fiber substrate) made of fibers. Thus, a prepreg can be obtained. The resin composition of the present invention can be directly applied to a circuit board to form an insulating layer, but industrially, the resin composition of the present invention is used to form an insulating resin sheet such as the above adhesive film or prepreg. It is preferable to form and form an insulating layer on the circuit board using the insulating resin sheet.

本発明の樹脂組成物を用いた接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、支持体上に、この樹脂ワニスを塗布し、更に加熱、あるいは熱風吹きつけ等によって有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。   The adhesive film using the resin composition of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which the resin composition is dissolved in an organic solvent, and applying the resin varnish on a support. It can be produced by drying the organic solvent by heating or blowing hot air to form the resin composition layer.

有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種を使用しても2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. , Aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. One organic solvent may be used, or two or more organic solvents may be used in combination.

乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有割合が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。乾燥条件は、簡単な実験により適宜、好適な乾燥条件を設定することができる。ワニス中の有機溶媒量によっても異なるが、例えば、30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることができる。   The drying conditions are not particularly limited, but the drying is performed so that the content ratio of the organic solvent in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. As drying conditions, suitable drying conditions can be appropriately set by simple experiments. Depending on the amount of organic solvent in the varnish, for example, a varnish containing 30 to 60% by mass of an organic solvent can be dried at 50 to 150 ° C. for about 3 to 10 minutes.

接着フィルムにおいて形成される樹脂組成物層の厚さは、一般的には、回路基板が有する導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。樹脂組成物層は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   In general, the thickness of the resin composition layer formed in the adhesive film is equal to or greater than the thickness of the conductor layer of the circuit board. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm. The resin composition layer may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

接着フィルムに使用する支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどのプラスチックフィルムが挙げられる。プラスチックフィルムとしては、とくにPETが好ましい。また、支持体として銅箔やアルミニウム箔等の金属箔を使用することで、金属箔付接着フィルムとすることもできる。保護フィルムは、支持体と同様のプラスチックフィルムを用いるのが好ましい。また、支持体及び保護フィルムはマット処理、コロナ処理の他、離型処理を施してあってもよい。離型処理としては、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。   Examples of the support used for the adhesive film include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, plastics such as polycarbonate and polyimide. A film is mentioned. As the plastic film, PET is particularly preferable. Moreover, it can also be set as an adhesive film with metal foil by using metal foil, such as copper foil and aluminum foil, as a support body. The protective film is preferably a plastic film similar to the support. Further, the support and the protective film may be subjected to a release treatment in addition to the mat treatment and the corona treatment. Examples of the release treatment include a release treatment with a release agent such as a silicone resin release agent, an alkyd resin release agent, and a fluororesin release agent.

支持体の厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さも特に制限されないが、通常1〜40μm、好ましくは10〜30μmの範囲で用いられる。   Although the thickness of a support body is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. The thickness of the protective film is not particularly limited, but is usually 1 to 40 μm, preferably 10 to 30 μm.

接着フィルムにおける支持体は、接着フィルムを回路基板等にラミネートした後に、或いは、ラミネート後に樹脂組成物層を加熱硬化して絶縁層を形成した後に、剥離される。樹脂組成物層の加熱硬化後に支持体を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができ、また硬化後の絶縁層の表面平滑性を向上させることができる。硬化後に剥離する場合、通常、支持体には予め離型処理が施される。なお、支持体上に形成される樹脂組成物層は、層の面積が支持体の面積より小さくなるように形成するのが好ましい。また接着フィルムは、ロール状に巻き取って、保存、貯蔵することができる。   The support in the adhesive film is peeled after the adhesive film is laminated on a circuit board or the like, or after the resin composition layer is heated and cured to form an insulating layer after lamination. If the support is peeled off after the resin composition layer is heat-cured, adhesion of dust and the like in the curing step can be prevented, and the surface smoothness of the insulating layer after curing can be improved. In the case of peeling after curing, the support is usually subjected to a release treatment in advance. In addition, it is preferable to form the resin composition layer formed on a support body so that the area of a layer may become smaller than the area of a support body. The adhesive film can be wound up in a roll shape and stored and stored.

本発明の接着フィルムを用いた多層プリント配線板等の回路基板の製造は例えば次のようにして行うことができる。接着フィルムの樹脂組成物層が保護フィルムで保護されている場合はこれらを剥離した後、樹脂組成物層を内層回路基板に直接接するように、内層回路基板の片面又は両面に接着フィルムをラミネートする。本発明の接着フィルムにおいては真空ラミネート法により減圧下で内層回路基板にラミネートする方法が好適に用いられる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び内層回路基板を必要により加熱(プレヒート)しておいてもよい。   A circuit board such as a multilayer printed wiring board using the adhesive film of the present invention can be produced, for example, as follows. When the resin composition layer of the adhesive film is protected by a protective film, after peeling these, the adhesive film is laminated on one or both sides of the inner circuit board so that the resin composition layer is in direct contact with the inner circuit board . In the adhesive film of the present invention, a method of laminating the inner layer circuit board under reduced pressure by a vacuum laminating method is preferably used. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the inner layer circuit board may be heated (preheated) as necessary before lamination.

本発明でいう「内層回路基板」とは、主として、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層が交互に層形成され、片面又は両面がパターン加工された導体層(回路)となっている、多層プリント配線板を製造する際に、さらに絶縁層および導体層が形成されるべき中間製造物も本発明における内層回路基板に含まれる。内層回路基板において、導体回路層表面は黒化処理等により予め粗化処理が施されていた方が絶縁層の内層回路基板への密着性の観点から好ましい。   The “inner circuit board” as used in the present invention is mainly a conductor layer patterned on one or both sides of a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate, etc. (Circuit) is formed. In addition, when manufacturing a multilayer printed wiring board in which conductor layers and insulating layers are alternately formed, and one or both surfaces are patterned conductor layers (circuits), an insulating layer and a conductor layer are further formed. The intermediate product to be included is also included in the inner layer circuit board in the present invention. In the inner layer circuit board, the surface of the conductor circuit layer is preferably roughened by a blackening process or the like from the viewpoint of adhesion of the insulating layer to the inner layer circuit board.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧が20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。 The laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C. and a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ). Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.

真空ラミネートは市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製のバキュームアップリケーター、(株)名機製作所製の真空加圧式ラミネーター、(株)日立インダストリイズ製のロール式ドライコータ、日立エーアイーシー(株)製の真空ラミネーター等を挙げることができる。   The vacuum lamination can be performed using a commercially available vacuum laminator. Examples of commercially available vacuum laminators include a vacuum applicator manufactured by Nichigo-Morton, a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi Air Examples include a vacuum laminator manufactured by EC Co., Ltd.

接着フィルムを内層回路基板にラミネートした後、支持体を剥離する場合は剥離し、熱硬化することにより内層回路基板上に絶縁層を形成することができる。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分である。なお、硬化前に支持体を剥離しなかった場合は、絶縁層の形成後に剥離する。   After laminating the adhesive film on the inner layer circuit board, when the support is peeled off, the insulating film can be formed on the inner layer circuit board by peeling and thermosetting. The conditions of heat curing are selected in the range of 20 to 180 minutes at 150 to 220 ° C, more preferably 30 to 120 minutes at 160 to 200 ° C. In addition, when a support body is not peeled before hardening, it peels after formation of an insulating layer.

次に内層回路基板上に形成された絶縁層に穴開けを行いビアホール、スルーホールを形成する。穴あけは例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけがもっとも一般的な方法である。   Next, holes are formed in the insulating layer formed on the inner circuit board to form via holes and through holes. Drilling can be performed by a known method such as drilling, laser, or plasma, or a combination of these methods if necessary. However, drilling by a laser such as a carbon dioxide laser or YAG laser is the most common method. .

次いで、絶縁層表面に粗化処理を行う。本発明における粗化処理は通常、酸化剤を使用した湿式粗化方法で行うのが好ましい。酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルトアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて粗化を行うのが好ましい。   Next, a roughening process is performed on the surface of the insulating layer. The roughening treatment in the present invention is usually preferably carried out by a wet roughening method using an oxidizing agent. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. Preferably, an alkaline permanganate solution (for example, potassium permanganate, sodium hydroxide aqueous solution of sodium permanganate), which is an oxidizer widely used for roughening an insulating layer in the production of a multilayer printed wiring board by a built-up method. It is preferable to perform roughening using.

絶縁層表面を粗化処理した粗化面の粗さは、微細配線を形成する上で、Ra値で50〜500nmであるのが好ましい。なお、ここで、Ra値とは、表面粗さを表す数値の一種であり、算術平均粗さと呼ばれるものであって、具体的には測定領域内で変化する高さの絶対値を平均ラインである表面から測定して算術平均したものである。例えば、ビーコインスツルメンツ社製WYKO NT3300を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値により求めることができる。   The roughness of the roughened surface obtained by roughening the surface of the insulating layer is preferably 50 to 500 nm in terms of Ra when forming fine wiring. Here, the Ra value is a kind of numerical value representing the surface roughness, and is called arithmetic average roughness. Specifically, the absolute value of the height changing in the measurement region is expressed by the average line. Measured from a certain surface and arithmetically averaged. For example, using WYKO NT3300 manufactured by Becoin Instruments Co., Ltd., it can be obtained from a numerical value obtained with a measurement range of 121 μm × 92 μm using a VSI contact mode and a 50 × lens.

次に、粗化された絶縁層表面に、無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。なお導体層形成後、150〜200℃で20〜90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。導体層のピール強度は、0.6kgf/cm以上であるのが好ましい。   Next, a conductor layer is formed on the roughened insulating layer surface by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. In addition, after forming the conductor layer, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes. The peel strength of the conductor layer is preferably 0.6 kgf / cm or more.

また、導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。   Moreover, as a method of patterning the conductor layer to form a circuit, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.

本発明の樹脂組成物を用いたプリプレグは、本発明の樹脂組成物をシート状繊維基材にホットメルト法又はソルベント法により含浸させ、加熱により半硬化させることにより製造することができる。   A prepreg using the resin composition of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like fiber base material by a hot melt method or a solvent method and semi-curing by heating.

シート状繊維基材としては、例えばガラスクロスやアラミド繊維等からなるプリプレグ用の繊維基材として常用されているものを用いることができる。   As a sheet-like fiber base material, what is commonly used as a fiber base material for a prepreg made of, for example, glass cloth or aramid fiber can be used.

ホットメルト法は、樹脂を有機溶剤に溶解することなく、樹脂を樹脂と剥離性の良い塗工紙に一旦コーティングし、それをシート状繊維基材にラミネートする、あるいはダイコーターにより直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様、樹脂を有機溶剤に溶解した樹脂ワニスにシート状繊維基材を浸漬し、樹脂ワニスをシート状繊維基材に含浸させ、その後乾燥させる方法である。   In the hot melt method, without dissolving the resin in an organic solvent, the resin is once coated on the resin and a coated paper having good releasability, and then laminated on a sheet-like fiber substrate, or directly applied by a die coater. Thus, a prepreg is produced. Similarly to the adhesive film, the solvent method is a method in which a sheet-like fiber base material is immersed in a resin varnish obtained by dissolving a resin in an organic solvent, the resin varnish is impregnated into the sheet-like fiber base material, and then dried.

本発明のプリプレグを用いた多層プリント配線板等の回路基板の製造は例えば次のようにして行うことができる。内層回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートを挟み加圧・加熱条件下でプレス積層する。圧力は好ましくは5〜40kgf/cm(49×10〜392×10N/m)、温度は好ましくは120〜200℃で20〜100分の範囲で成型するのが好ましい。また、接着フィルムと同様に真空ラミネート法により内層回路基板にラミネートした後、加熱硬化することによっても製造可能である。その後、前述の方法と同様、酸化剤により硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成することで、多層プリント配線板等の回路基板を製造することができる。 Production of a circuit board such as a multilayer printed wiring board using the prepreg of the present invention can be performed as follows, for example. One or several prepregs of the present invention are stacked on the inner layer circuit board, and a metal plate is sandwiched through a release film, and press laminated under pressure and heating conditions. The pressure is preferably 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ), and the temperature is preferably 120 to 200 ° C. for 20 to 100 minutes. Moreover, it can also be manufactured by laminating to an inner layer circuit board by a vacuum laminating method as in the case of the adhesive film, followed by heat curing. Thereafter, in the same manner as described above, the surface of the prepreg cured with an oxidizing agent is roughened, and then the conductor layer is formed by plating, whereby a circuit board such as a multilayer printed wiring board can be manufactured.

本発明における絶縁樹脂シート(接着フィルム、プリプレグ等)は、その硬化物(すなわち、本発明の樹脂組成物の硬化物)の25℃から150℃までの平均線熱膨張率が好ましくは20〜40ppmであり、より好ましくは20〜35ppmである。かかる平均線熱膨張率を有することによって、回路基板の熱膨張率低減に有効に作用する。   The insulating resin sheet (adhesive film, prepreg, etc.) in the present invention preferably has an average linear thermal expansion coefficient of 25 to 150 ° C. of the cured product (that is, the cured product of the resin composition of the present invention) of 20 to 40 ppm. More preferably, it is 20-35 ppm. By having such an average linear thermal expansion coefficient, it effectively acts to reduce the thermal expansion coefficient of the circuit board.

以下、実施例及び比較例を用いて本発明をより詳細に説明するが、これらは本発明をいかなる意味においても制限するものではない。なお、以下の記載において、「部」は「質量部」を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, these do not restrict | limit this invention in any meaning. In the following description, “part” means “part by mass”.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「jER828EL」)14部と、ビフェニルアラルキル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000L」)14部、ナフタレン型4官能エポキシ樹脂(エポキシ当量162、DIC(株)製「HP−4700」)10部、フェノキシ樹脂(ジャパンエポキシレジン(株)製の「YX6954BH30」(重量平均分子量38000)をメチルエチルケトン(以下「MEK」と略称する。)とシクロヘキサノンの質量比が1:1の混合溶媒に溶解した不揮発分30質量%の樹脂溶液)20部とをMEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、ビフェニルアラルキル型フェノール樹脂(明和化成(株)製「MEH7851−4H」の固形分50%のMEK溶液、フェノール性水酸基当量242)40部、フェノールノボラック系硬化剤(DIC(株)製「LA−7054」の固形分60%のMEK溶液、フェノール性水酸基当量124)8部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに日鉱金属(株)製イミダゾールシランIM−1000を1部処理したもの)105部、ポリビニルブチラール樹脂溶液(積水化学工業(株)製の「KS-1」(ガラス転移温度105℃、重量平均分子量:27000)をエタノールとトルエンの質量比が1:1の混合溶媒に溶解した固形分15%の樹脂溶液)12部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、ポリエチレンテレフタレート(厚さ38μm、以下「PET」と略称する。)上に、乾燥後の樹脂組成物の厚みが40μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で7分間乾燥した(残留溶媒量約2質量%)。次いで樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507mm×336mmサイズのシート状の接着フィルムを得た。   14 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Japan Epoxy Resins Co., Ltd.) and 14 parts biphenyl aralkyl type epoxy resin (epoxy equivalent 269, “NC3000L” manufactured by Nippon Kayaku Co., Ltd.) 10 parts of a naphthalene type tetrafunctional epoxy resin (epoxy equivalent 162, “HP-4700” manufactured by DIC Corporation), phenoxy resin (“YX6954BH30” manufactured by Japan Epoxy Resin Co., Ltd. (weight average molecular weight 38000)) is methyl ethyl ketone (hereinafter “ MEK ”) and 20 parts of a resin solution having a nonvolatile content of 30% by mass dissolved in a mixed solvent having a mass ratio of cyclohexanone of 1: 1 were dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. Thereto, 40 parts of a biphenyl aralkyl type phenol resin (MEK solution of Mehkasei Co., Ltd. “MEH7851-4H” having a solid content of 50%, phenolic hydroxyl group equivalent 242), phenol novolac-based curing agent (manufactured by DIC Corporation “ LA-7054 "60% solid MEK solution, phenolic hydroxyl group equivalent 124) 8 parts, curing catalyst (Shikoku Kasei Kogyo Co., Ltd.," 2E4MZ ") 0.1 part, spherical silica (manufactured by Admatechs) 105 parts of “SOC2” (with hexamethyldisilazane treatment, average particle size 0.5 μm) further treated with 1 part of imidazolesilane IM-1000 manufactured by Nikko Metal Co., Ltd., polyvinyl butyral resin solution (Sekisui Chemical) “KS-1” (glass transition temperature 105 ° C., weight average molecular weight: 27000) manufactured by Kogyo Co., Ltd. was mixed with ethanol and toluene Mass ratio of 1: 1 mixed 15% solids resin solution in a solvent) 12 parts were mixed, and uniformly dispersed in a high-speed rotary mixer to prepare a resin varnish. Next, it was coated on a polyethylene terephthalate (thickness 38 μm, hereinafter abbreviated as “PET”) with a die coater so that the thickness of the resin composition after drying was 40 μm, and the temperature was 80 to 120 ° C. (average 100 ) For 7 minutes (residual solvent amount of about 2% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition layer. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 mm × 336 mm was obtained therefrom.

液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、ジャパンエポキシレジン(株)製「jER828EL」)14部と、ビフェニルアラルキル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000L」)14部、ナフタレン型4官能エポキシ樹脂(エポキシ当量162、DIC(株)製「HP−4700」)10部、フェノキシ樹脂(ジャパンエポキシレジン(株)製の「YX6954BH30」(重量平均分子量38000)をMEKとシクロヘキサノンの質量比が1:1の混合溶媒に溶解した不揮発分30質量%の樹脂溶液)20部とをMEK15部、シクロヘキサノン15部に撹拌しながら加熱溶解させた。そこへ、ビフェニルアラルキル型フェノール樹脂(明和化成(株)製「MEH7851−4H」の固形分50%のMEK溶液、フェノール性水酸基当量242)40部、ジシアンジアミド(ジャパンエポキシレジン(株)製「DICY7」)1部、硬化触媒(四国化成工業(株)製、「2E4MZ」)0.1部、球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに日鉱金属(株)製イミダゾールシランIM−1000を1部処理したもの)160部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。   14 parts of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Japan Epoxy Resins Co., Ltd.) and 14 parts biphenyl aralkyl type epoxy resin (epoxy equivalent 269, “NC3000L” manufactured by Nippon Kayaku Co., Ltd.) 10 parts of naphthalene-type tetrafunctional epoxy resin (epoxy equivalent 162, “HP-4700” manufactured by DIC Corporation), phenoxy resin (“YX6954BH30” manufactured by Japan Epoxy Resin Co., Ltd. (weight average molecular weight 38000)) of MEK and cyclohexanone 20 parts of a resin solution having a nonvolatile content of 30% by mass dissolved in a mixed solvent having a mass ratio of 1: 1) was dissolved in 15 parts of MEK and 15 parts of cyclohexanone with stirring. There, 40 parts of biphenyl aralkyl type phenol resin (MEK solution of MEH7851-4H manufactured by Meiwa Kasei Co., Ltd., 50% solid content, phenolic hydroxyl group equivalent 242), dicyandiamide (“DICY7” manufactured by Japan Epoxy Resin Co., Ltd.) ) 1 part, curing catalyst (Shikoku Kasei Kogyo Co., Ltd., “2E4MZ”) 0.1 part, spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., with hexamethyldisilazane treatment, average particle size 0.5 μm) A resin varnish was prepared by mixing 160 parts of 100 parts of a imidazolesilane IM-1000 manufactured by Nikko Metal Co., Ltd. and uniformly dispersing the mixture with a high-speed rotary mixer. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA−230−S75」、シアネート当量約232、不揮発分75質量%のMEK溶液)40部、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製「PT30」、シアネート当量約124)を10部、MEK10部と共に攪拌混合し、ナフトール型エポキシ樹脂として東都化成(株)製「ESN−475V」(下記一般式(1)で表されるエポキシ当量約340のエポキシ樹脂の不揮発分65質量%のMEK溶液)30部、さらに液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「jER828EL」、エポキシ当量約185)10部、フェノキシ樹脂溶液(ジャパンエポキシレジン(株)製「YL7553BH30」(重量平均分子量35000)の不揮発分30質量%のMEKとシクロヘキサノンとの混合溶液)10部、コバルト(II)アセチルアセトナート(東京化成(株)製)の1質量%のN,N−ジメチルホルムアミド(DMF)溶液3.5部、および球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに信越化学工業(株)製エポキシシランKBM−403を1部処理したもの)110部、を混合し、高速回転ミキサーで均一に分散して、熱硬化性樹脂組成物のワニスを作製した。次に、かかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。   40 parts of a prepolymer of bisphenol A dicyanate ("BA-230-S75" manufactured by Lonza Japan Co., Ltd., MEK solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass), a phenol novolac type polyfunctional cyanate ester resin (Lonza Japan ( "PT30" manufactured by Co., Ltd. and cyanate equivalent of about 124) were mixed with 10 parts and 10 parts of MEK, and "ESN-475V" manufactured by Tohto Kasei Co., Ltd. (represented by the following general formula (1)) as a naphthol type epoxy resin. 30 parts of an epoxy resin having an epoxy equivalent of about 340 (a MEK solution having a nonvolatile content of 65% by mass), 10 parts of a liquid bisphenol A type epoxy resin ("jER828EL" manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent of about 185), a phenoxy resin solution (Japan Epoxy Resin Co., Ltd. “YL7553 10 parts of a mixed solution of MEK and cyclohexanone having a nonvolatile content of 30% by mass of “H30” (weight average molecular weight 35000), 1% by mass of N, N—cobalt (II) acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) To 3.5 parts of dimethylformamide (DMF) solution and spherical silica ("SOC2" manufactured by Admatechs Co., Ltd., with hexamethyldisilazane treatment, average particle diameter of 0.5 µm) and epoxy manufactured by Shin-Etsu Chemical Co., Ltd. 110 parts of silane KBM-403 treated) were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a varnish of a thermosetting resin composition. Next, using this resin varnish, an adhesive film was obtained in the same manner as in Example 1.

Figure 0005195454
Figure 0005195454

(nは平均値として1〜6の数を示し、Xはグリシジル基又は炭素数1〜8の炭化水素基を示し、炭化水素基/グリシジル基の比率は0.05〜2.0である。) (N shows the number of 1-6 as an average value, X shows a glycidyl group or a C1-C8 hydrocarbon group, and the ratio of a hydrocarbon group / glycidyl group is 0.05-2.0. )

<比較例1>
実施例1において、球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに日鉱金属(株)製イミダゾールシランIM−1000を1部処理したもの)105部を、球状シリカ(アドマテックス社製の「SOC2」(平均粒子径0.5μm))105部に変更した熱硬化性樹脂組成物のワニスを使用する以外は実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 1>
In Example 1, 100 parts of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd. (with hexamethyldisilazane treatment, average particle diameter of 0.5 μm) was further treated with 1 part of imidazolesilane IM-1000 manufactured by Nikko Metal Co., Ltd. Example 1) Except for using 105 parts of spherical silica ("SOC2" (average particle size 0.5 µm) manufactured by Admatechs Co., Ltd.) 105 parts, completely the same as Example 1 except that a varnish of a thermosetting resin composition was used. An adhesive film was obtained in the same manner.

<比較例2>
実施例1において、球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに日鉱金属(株)製イミダゾールシランIM−1000を1部処理したもの)105部を、球状シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm))105部に変更した熱硬化性樹脂組成物のワニスを使用する以外は実施例1と全く同様にして接着フィルムを得た。
<Comparative example 2>
In Example 1, 100 parts of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd. (with hexamethyldisilazane treatment, average particle diameter of 0.5 μm) was further treated with 1 part of imidazolesilane IM-1000 manufactured by Nikko Metal Co., Ltd. The varnish of the thermosetting resin composition was used, in which 105 parts were changed to 105 parts spherical silica ("SOC2" manufactured by Admatechs (with hexamethyldisilazane treatment, average particle size 0.5 µm)). Except for this, an adhesive film was obtained in the same manner as in Example 1.

<比較例3>
実施例1において、球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに日鉱金属(株)製イミダゾールシランIM−1000を1部処理したもの)105部を、球状シリカ(アドマテックス社製の「SOC2」(イミダゾールシラン処理付、平均粒子径0.5μm)100部にさらに東京化成工業(株)製1,1,1,3,3,3−ヘキサメチルジシラザンを1部処理したもの)105部に変更した熱硬化性樹脂組成物のワニスを使用する以外は実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 3>
In Example 1, 100 parts of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd. (with hexamethyldisilazane treatment, average particle diameter of 0.5 μm) was further treated with 1 part of imidazolesilane IM-1000 manufactured by Nikko Metal Co., Ltd. 105 parts of spherical silica ("SOC2" manufactured by Admatechs Co., Ltd. (with imidazole silane treatment, average particle size 0.5 µm)) and 1,1,1,3, manufactured by Tokyo Chemical Industry Co., Ltd. An adhesive film was obtained in exactly the same manner as in Example 1 except that the varnish of the thermosetting resin composition changed to 105 parts) was used, which was obtained by treating 1 part of 3,3-hexamethyldisilazane.

<比較例4>
実施例3において、球形シリカ(アドマテックス社製の「SOC2」(ヘキサメチルジシラザン処理付、平均粒子径0.5μm)100部にさらに信越化学工業(株)製エポキシシランKBM−403を1部処理したもの)110部を、球形シリカ(アドマテックス社製の「SOC2」(平均粒子径0.5μm)100部に信越化学工業(株)製エポキシシランKBM−403を1部処理したもの)110部に変更した熱硬化性樹脂組成物のワニスを使用する以外は実施例3と全く同様にして接着フィルムを得た。
<Comparative example 4>
In Example 3, 100 parts of spherical silica ("SOC2" manufactured by Admatechs Co., Ltd. (with hexamethyldisilazane treatment, average particle size 0.5 µm)) and 1 part of Epoxysilane KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd. 110 parts of spherical silica ("SOC2" (average particle size 0.5 µm) manufactured by Admatechs Co., Ltd. and 1 part of epoxy silane KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 110 parts An adhesive film was obtained in the same manner as in Example 3 except that the varnish of the thermosetting resin composition changed to the part was used.

<比較例5>
実施例1において、フェノキシ樹脂(ジャパンエポキシレジン(株)製の「YX6954BH30」(重量平均分子量38000)をメチルエチルケトン(以下「MEK」と略称する。)とシクロヘキサノンの質量比が1:1の混合溶媒に溶解した不揮発分30質量%の樹脂溶液)20部と、ポリビニルブチラール樹脂溶液(積水化学工業(株)製「KS-1」(ガラス転移温度105℃、重量平均分子量:27000)をエタノールとトルエンの質量比が1:1の混合溶媒に溶解した固形分15%の樹脂溶液)12部を除いた熱硬化性樹脂組成物のワニスを使用する以外は実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 5>
In Example 1, phenoxy resin (“YX6954BH30” (weight average molecular weight 38000) manufactured by Japan Epoxy Resin Co., Ltd.) was mixed into a mixed solvent having a mass ratio of 1: 1 to methyl ethyl ketone (hereinafter abbreviated as “MEK”) and cyclohexanone. 20 parts of a dissolved resin solution having a non-volatile content of 30% by mass and a polyvinyl butyral resin solution (“KS-1” (glass transition temperature 105 ° C., weight average molecular weight: 27000) manufactured by Sekisui Chemical Co., Ltd.) of ethanol and toluene An adhesive film was obtained in exactly the same manner as in Example 1 except that a varnish of a thermosetting resin composition excluding 12 parts (resin solution having a solid content of 15% dissolved in a mixed solvent having a mass ratio of 1: 1) was used. It was.

<比較例6>
実施例1において、フェノキシ樹脂(ジャパンエポキシレジン(株)製の「YX6954BH30」(重量平均分子量38000)をメチルエチルケトン(以下「MEK」と略称する。)とシクロヘキサノンの質量比が1:1の混合溶媒に溶解した不揮発分30質量%の樹脂溶液)20部とポリビニルブチラール樹脂溶液(積水化学工業(株)製「KS−1」(ガラス転移温度105℃、重量平均分子量:27000)をエタノールとトルエンの質量比が1:1の混合溶媒に溶解した固形分15%の樹脂溶液)12部を除き、代わりにポリイミド樹脂溶液(DIC(株)製「ユニディックV−8000」(重量平均分子量20000)の不揮発分40質量%のエチルジグリコールアセテート溶液)20部を添加した熱硬化性樹脂組成物のワニスを使用する以外は実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 6>
In Example 1, phenoxy resin (“YX6954BH30” (weight average molecular weight 38000) manufactured by Japan Epoxy Resin Co., Ltd.) was mixed into a mixed solvent having a mass ratio of 1: 1 to methyl ethyl ketone (hereinafter abbreviated as “MEK”) and cyclohexanone. 20 parts of a dissolved resin solution having a nonvolatile content of 30% by mass and polyvinyl butyral resin solution (“KS-1” manufactured by Sekisui Chemical Co., Ltd. (glass transition temperature 105 ° C., weight average molecular weight: 27000)) are masses of ethanol and toluene. Except 12 parts of a resin solution having a solid content of 15% dissolved in a mixed solvent having a ratio of 1: 1), a polyimide resin solution (“Unidic V-8000” (weight average molecular weight 20000) manufactured by DIC Corporation) was used instead. A crocodile of a thermosetting resin composition to which 20 parts of a 40 mass% ethyl diglycol acetate solution) is added Except using the in the same manner as in Example 1 to obtain an adhesive film.

<比較例7>
比較例6において、ポリイミド樹脂溶液20部を、ゴム変性ポリアミド樹脂溶液(日本化薬(株)製「BPAM−260」(重量平均分子量70000)の不揮発分40質量%のDMF溶液)20部に変更した熱硬化性樹脂組成物のワニスを使用する以外は比較例6と全く同様にして接着フィルムを得た。
<Comparative Example 7>
In Comparative Example 6, 20 parts of the polyimide resin solution was changed to 20 parts of a rubber-modified polyamide resin solution (DMP solution of “BPAM-260” (weight average molecular weight 70000) manufactured by Nippon Kayaku Co., Ltd.). An adhesive film was obtained in the same manner as in Comparative Example 6 except that the varnish of the thermosetting resin composition thus obtained was used.

<比較例8>
比較例6において、ポリイミド樹脂溶液20部を、ポリイミド樹脂(バンティコ(株)製「Matrimid5218US」の不揮発分40質量%のDMF溶液)20部に変更した熱硬化性樹脂組成物のワニスを使用する以外は比較例6と全く同様にして接着フィルムを得た。
<Comparative Example 8>
In Comparative Example 6, except for using a varnish of a thermosetting resin composition in which 20 parts of a polyimide resin solution was changed to 20 parts of a polyimide resin (a DMF solution having a non-volatile content of 40% by mass of “Matrimid 5218US” manufactured by Bantico Co., Ltd.). Produced an adhesive film in exactly the same manner as in Comparative Example 6.

<比較例9>
比較例6において、ポリイミド樹脂溶液20部を、アクリル酸エステル共重合樹脂(ナガセケムテックス(株)製の「SG−70L」(重量平均分子量80000)の不揮発分12.5質量%のMEK・トルエン溶液)40部に変更した熱硬化性樹脂組成物のワニスを使用する以外は比較例6と全く同様にして接着フィルムを得た。
<Comparative Example 9>
In Comparative Example 6, 20 parts of a polyimide resin solution was added to MEK / toluene having a nonvolatile content of 12.5% by mass of acrylic acid ester copolymer resin (“SG-70L” (weight average molecular weight 80000) manufactured by Nagase ChemteX Corporation). Solution) An adhesive film was obtained in the same manner as in Comparative Example 6 except that the varnish of the thermosetting resin composition changed to 40 parts was used.

<溶融粘度測定>
実施例および比較例で作製した接着フィルムにおける樹脂組成物層の溶融粘度を測定した。(株)ユー・ビー・エム製型式Rheosol−G3000を使用して、樹脂量は1g、直径18mmのパラレルプレートを使用し、開始温度60℃から200℃まで、昇温速度5℃/分、測定温度間隔2.5℃、振動1Hz/degの測定条件にて溶融粘度を測定した。
<Melt viscosity measurement>
The melt viscosity of the resin composition layer in the adhesive films prepared in Examples and Comparative Examples was measured. Using UBM Model Rheosol-G3000, using a parallel plate with a resin amount of 1 g and a diameter of 18 mm, starting temperature from 60 ° C. to 200 ° C., heating rate of 5 ° C./min, measurement The melt viscosity was measured under the measurement conditions of a temperature interval of 2.5 ° C. and a vibration of 1 Hz / deg.

<ラミネート性試験>
実施例及び比較例で作製した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(名機(株)製商品名)を用いて、導体厚35μmでL(ライン:配線幅)/S(スペース:間隔幅)=160/160μmの櫛歯状の導体パターン上にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。ラミネート後の樹脂組成物層のボイドの有無を確認した。ラミネートされた接着フィルムからPETフィルムを剥離し、180℃、30分の硬化条件で樹脂組成物を硬化して、絶縁層を形成した。絶縁層における導体上とそれ以外の部分の凹凸差(Rt:最大のpeak−to−valley)の値は非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、10倍レンズにより測定範囲を1.2mm×0.91mmとして得られる数値により求めた。
なお、ラミネート後にボイドの発生は無く、さらに導体上とそれ以外の部分の凹凸差が5μm未満の場合を○、ラミネート後にボイドの発生は無いが、導体上とそれ以外の部分の凹凸差が5μm以上の場合を△、ラミネート後にボイドが発生した場合を×と評価した。
<Lamination test>
The adhesive films produced in the examples and comparative examples were subjected to L (line: wiring width) / S (space) with a conductor thickness of 35 μm using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). : Interval width) = 160/160 μm was laminated on a comb-like conductor pattern. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds. The presence or absence of voids in the resin composition layer after lamination was confirmed. The PET film was peeled from the laminated adhesive film, and the resin composition was cured under curing conditions at 180 ° C. for 30 minutes to form an insulating layer. The value of the unevenness difference (Rt: maximum peak-to-valley) between the conductor and other portions in the insulating layer is determined using a non-contact type surface roughness meter (WYKO NT3300 manufactured by Beeco Instruments Inc.), VSI contact mode, The value was obtained by a numerical value obtained with a 10 × lens with a measurement range of 1.2 mm × 0.91 mm.
In addition, there is no generation of voids after lamination, and the difference in unevenness between the conductor and other portions is less than 5 μm, and no void is generated after lamination, but the unevenness difference between the conductor and other portions is 5 μm. The case above was evaluated as Δ, and the case where void occurred after lamination was evaluated as ×.

<ピール強度およびRa値測定用サンプルの調製>
(1)内層回路基板の下地処理
内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES)の両面をメック(株)製CZ8100(アゾール類の銅錯体、有機酸を含む表面処理剤)に浸漬して銅表面の粗化処理をおこなった。
(2)接着フィルムのラミネート
実施例及び比較例で作製した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(名機(株)製商品名)を用いて、内層回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(3)樹脂組成物の硬化
(3−1)実施例1、2及び比較例1〜3、5〜9
ラミネートされた接着フィルムからPETフィルムを剥離し、170℃、30分の硬化条件で樹脂組成物を硬化して絶縁層を形成した。
(3−2)実施例3及び比較例4
ラミネートされた接着フィルムからPETフィルムを剥離し、100℃、30分、さらに180℃、30分の硬化条件で樹脂組成物を硬化して絶縁層を形成した。
(4)粗化処理
(4−1)実施例1、2及び比較例1〜3、5〜9
積層板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に浸漬、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントPに40℃で5分間浸漬した(粗化条件:膨潤液に60℃で5分間浸漬、粗化液に80℃で20分間浸漬)。
この粗化処理後の積層板について、下記の方法で表面粗度の測定を行った。
(4−2)実施例3及び比較例4
積層板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガンドPに浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に浸漬、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントPに40℃で5分間浸漬した(粗化条件:膨潤液に80℃で10分間浸漬、粗化液に80℃で20分間浸漬)。
この粗化処理後の積層板について、下記の方法で表面粗度の測定を行った。
(5)セミアディティブ工法によるメッキ
絶縁層表面に回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、30±5μmの厚さで導体層を形成した。次に、アニール処理を180℃にて60分間行った。この回路基板についてメッキ銅のピール強度の測定を行った。
<Preparation of peel strength and Ra value measurement sample>
(1) Underlayer treatment of inner layer circuit board Both sides of a glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 18 μm, substrate thickness 0.3 mm, Matsushita Electric Works R5715ES) on which an inner layer circuit is formed The copper surface was roughened by immersing in CZ8100 (a surface treatment agent containing an azoles copper complex and an organic acid) manufactured by MEC Co., Ltd.
(2) Lamination of Adhesive Film The adhesive films produced in the examples and comparative examples were laminated on both sides of the inner circuit board using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). . Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds.
(3) Curing of resin composition (3-1) Examples 1 and 2 and Comparative Examples 1 to 3 and 5 to 9
The PET film was peeled off from the laminated adhesive film, and the resin composition was cured under curing conditions at 170 ° C. for 30 minutes to form an insulating layer.
(3-2) Example 3 and Comparative Example 4
The PET film was peeled from the laminated adhesive film, and the resin composition was cured under curing conditions at 100 ° C. for 30 minutes, and further at 180 ° C. for 30 minutes to form an insulating layer.
(4) Roughening treatment (4-1) Examples 1 and 2 and Comparative Examples 1 to 3 and 5 to 9
The laminate is immersed in a swelling solution, a swelling dip / seculigand P containing diethylene glycol monobutyl ether, which is a swelling solution, and then concentrated as a roughening solution by Atotech Japan Co., Ltd., Compact P (KMnO). 4 : 60 g / L, NaOH: 40 g / L aqueous solution), and finally, as a neutralizing solution, immersed in Atotech Japan Co., Ltd. Reduction Sholyshin Securigant P at 40 ° C. for 5 minutes (roughening conditions) : Immersion in swelling liquid at 60 ° C. for 5 minutes, immersion in roughening liquid at 80 ° C. for 20 minutes).
About the laminated board after this roughening process, the surface roughness was measured with the following method.
(4-2) Example 3 and Comparative Example 4
The laminate is immersed in a swelling solution, a swelling dip / seculigand P containing diethylene glycol monobutyl ether, which is a swelling solution, and then concentrated as a roughening solution by Atotech Japan Co., Ltd., Compact P (KMnO). 4 : 60 g / L, NaOH: 40 g / L aqueous solution), and finally, as a neutralizing solution, immersed in Atotech Japan Co., Ltd. Reduction Sholyshin Securigant P at 40 ° C. for 5 minutes (roughening conditions) : Immersion in swelling liquid at 80 ° C. for 10 minutes, immersion in roughening liquid at 80 ° C. for 20 minutes).
About the laminated board after this roughening process, the surface roughness was measured with the following method.
(5) Plating by semi-additive method In order to form a circuit on the surface of the insulating layer, the inner layer circuit board was immersed in an electroless plating solution containing PdCl 2 and then immersed in an electroless copper plating solution. After annealing at 150 ° C. for 30 minutes, an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 30 ± 5 μm. Next, annealing was performed at 180 ° C. for 60 minutes. The peel strength of the plated copper was measured for this circuit board.

<メッキ導体層の引き剥がし強さ(ピール強度)>
回路基板の導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重を測定した。
<Stripping strength of peeled conductor layer (peel strength)>
When the conductor layer of the circuit board is cut into a 10 mm wide and 100 mm long part, this end is peeled off and gripped with a gripper, and 35 mm is peeled off vertically at a speed of 50 mm / min at room temperature. The load of was measured.

<粗化後の表面粗さ(Ra値)>
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値によりRa値を求めた。また10点の平均粗さを求めることにより測定した。
<Surface roughness after roughening (Ra value)>
Using a non-contact type surface roughness meter (BYCO Instruments WYKO NT3300), the Ra value was determined by a numerical value obtained by setting the measurement range to 121 μm × 92 μm with a VSI contact mode and a 50 × lens. Moreover, it measured by calculating | requiring the average roughness of 10 points | pieces.

<ガラス転移温度(Tg)及び線熱膨張係数の評価>
実施例および比較例で得られた接着フィルムを190℃で90分間加熱して樹脂組成物層を熱硬化させた。その硬化物を、幅約5mm、長さ約15mmの試験片に切断し、(株)リガク製熱機械分析装置(Thermo Plus TMA8310)を使用して、引張加重法で熱機械分析を行った。試験片を前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定においてガラス転移温度と、25℃から150℃までの平均線熱膨張率を算出した。
結果を下記表1、2に示す。
<Evaluation of glass transition temperature (Tg) and linear thermal expansion coefficient>
The adhesive films obtained in Examples and Comparative Examples were heated at 190 ° C. for 90 minutes to thermally cure the resin composition layer. The cured product was cut into a test piece having a width of about 5 mm and a length of about 15 mm, and thermomechanical analysis was performed by a tensile load method using a thermomechanical analyzer manufactured by Rigaku Corporation (Thermo Plus TMA8310). After mounting the test piece on the apparatus, the test piece was measured twice continuously under the measurement conditions of a load of 1 g and a heating rate of 5 ° C./min. In the second measurement, the glass transition temperature and the average linear thermal expansion coefficient from 25 ° C. to 150 ° C. were calculated.
The results are shown in Tables 1 and 2 below.

Figure 0005195454
Figure 0005195454

Figure 0005195454
Figure 0005195454

表1の結果から、実施例1〜3で得られた接着フィルムを構成する樹脂組成物は低い溶融粘度を有しているためラミネート性に優れており、しかも、その硬化物(絶縁層)は平均線熱膨張率が35ppm以下という低熱膨張性を有する。また、絶縁層は表面粗度が低いにもかかわらず、ピール強度が0.6kgf/cm以上という高ピール強度の導体層を形成できている。一方、比較例1の接着フィルムは表面処理を施していない球状シリカを使用したことから、樹脂組成物中での球状シリカの分散性が著しく悪く、樹脂組成物の溶融粘度も高くなり、ラミネート後にボイドが発生して、絶縁層には不適応であった。よって、その後の評価を省略した。また、比較例2の接着フィルムは球状シリカとして表面をヘキサメチルジシラザン処理したものを使用し、比較例3の接着フィルムは球状シリカとして表面をイミダゾールシランとヘキサメチルジシラザンでこの順に処理したものを使用したが、いずれにおいても、樹脂組成物は十分な溶融性が得られないため、櫛歯状の導体パターン上への樹脂組成物層のラミネートにおいて、導体上とそれ以外の部分の凹凸差が5μm以上と大きく、さらにそれを硬化して得られた絶縁層の表面は高ピール強度の導体層を得るための粗化処理後の粗度が増大し、微細配線の形成に不利な結果であった。また、エポキシシランによる表面処理のみを施した球状シリカを使用した比較例4の接着フィルムにおいても、樹脂組成物は十分な溶融性が得られず、櫛歯状の導体パターン上への樹脂組成物層のラミネートにおいて平坦性の確保が困難である上に、粗度、線熱膨張率も実施例3に劣る結果であった。さらに、フェノキシ樹脂及び/又はポリビニルアセタール樹脂を用いていない比較例5の接着フィルムでは、樹脂組成物のラミネート性は良好であったが、その硬化物(絶縁層)は高ピール強度の導体層を形成できるものではなく、また、フェノキシ樹脂及び/又はポリビニルアセタール樹脂以外の熱可塑性樹脂を用いた比較例6〜9の接着フィルムでは、樹脂組成物は良好なラミネート性を示すものの、その硬化物(絶縁層)は、実施例1〜3のように、低粗度且つ高ピール強度が得られるものではなかった。   From the result of Table 1, since the resin composition which comprises the adhesive film obtained in Examples 1-3 has low melt viscosity, it is excellent in laminating property, and the cured product (insulating layer) is It has a low coefficient of thermal expansion with an average linear thermal expansion coefficient of 35 ppm or less. Moreover, although the insulating layer has low surface roughness, a high peel strength conductor layer having a peel strength of 0.6 kgf / cm or more can be formed. On the other hand, since the adhesive film of Comparative Example 1 uses spherical silica that has not been subjected to surface treatment, the dispersibility of the spherical silica in the resin composition is remarkably poor, and the melt viscosity of the resin composition is also increased. A void was generated, which was not suitable for the insulating layer. Therefore, subsequent evaluation was omitted. The adhesive film of Comparative Example 2 uses a spherical silica whose surface is treated with hexamethyldisilazane, and the adhesive film of Comparative Example 3 is a spherical silica whose surface is treated with imidazole silane and hexamethyldisilazane in this order. However, in either case, since the resin composition does not have sufficient meltability, in the lamination of the resin composition layer on the comb-like conductor pattern, the unevenness difference between the conductor and the other portion The surface of the insulating layer obtained by curing it is larger than 5 μm, and the roughness after the roughening treatment for obtaining a high peel strength conductor layer increases, which is disadvantageous for the formation of fine wiring. there were. In addition, in the adhesive film of Comparative Example 4 using spherical silica subjected only to surface treatment with epoxysilane, the resin composition does not have sufficient meltability, and the resin composition on the comb-like conductor pattern It was difficult to ensure flatness in the lamination of the layers, and the roughness and linear thermal expansion coefficient were inferior to Example 3. Furthermore, in the adhesive film of Comparative Example 5 in which no phenoxy resin and / or polyvinyl acetal resin was used, the resin composition had good laminating properties, but the cured product (insulating layer) had a high peel strength conductor layer. In the adhesive films of Comparative Examples 6 to 9 using a thermoplastic resin other than the phenoxy resin and / or the polyvinyl acetal resin, the resin composition exhibits good laminating properties, but the cured product ( Insulating layer) did not provide low roughness and high peel strength as in Examples 1-3.

Claims (8)

(A)多官能エポキシ樹脂、(B)硬化剤、(C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂、並びに(D)シラザン化合物で表面処理後、シランカップリング剤で表面処理された無機充填材を含有する樹脂組成物であり、該樹脂組成物中の不揮発分100質量%に対し、成分(D)の含有量が50〜80質量%である樹脂組成物が、繊維からなるシート状繊維基材中に含浸されてなるプリプレグ(A) A polyfunctional epoxy resin, (B) a curing agent, (C) a phenoxy resin and / or polyvinyl acetal resin, and (D) an inorganic filler surface-treated with a silazane compound and then surface-treated with a silane coupling agent. a resin composition containing, relative to a non-volatile content 100% by weight of the resin composition, tree fat composition content of Ru 50-80% by mass of the component (D) is a sheet-like fibers consisting of fibers A prepreg impregnated in a substrate . 成分(D)の含有量が55〜75質量%である請求項1記載のプリプレグThe prepreg according to claim 1, wherein the content of the component (D) is 55 to 75% by mass. 無機充填材が平均粒子径が1μm以下、かつ、最大粒子径が5μm以下のシリカである、請求項1又は2記載のプリプレグThe prepreg according to claim 1 or 2, wherein the inorganic filler is silica having an average particle size of 1 µm or less and a maximum particle size of 5 µm or less. フェノキシ樹脂及び/又はポリビニルアセタール樹脂の重量平均分子量が8,000〜150,000である、請求項1〜3のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 1 to 3, wherein the phenoxy resin and / or the polyvinyl acetal resin has a weight average molecular weight of 8,000 to 150,000. 樹脂組成物中の不揮発分100質量%に対し、成分(A)及び(B)の合計含有量が15〜50質量%であり、かつ、樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とエポキシ硬化剤の反応基の合計数との比(エポキシ基:反応基)が1:0.4〜2.0である、請求項1〜4のいずれか1項に記載のプリプレグThe total content of the components (A) and (B) is 15 to 50% by mass with respect to 100% by mass of the nonvolatile content in the resin composition, and the total of epoxy groups of the epoxy resin present in the resin composition The prepreg according to any one of claims 1 to 4, wherein a ratio of the number to the total number of reactive groups of the epoxy curing agent (epoxy group: reactive group) is 1: 0.4 to 2.0. 樹脂組成物中の不揮発分100質量%に対し、成分(C)の含有量が1〜10質量%である、請求項1〜5のいずれか1項に記載のプリプレグTo a non-volatile content 100% by weight of the resin composition, 1 to 10 mass% content of the component (C), the prepreg according to any one of claims 1 to 5. (C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂の重量平均分子量が8,000〜150,000であり、かつ、樹脂組成物中の(C)フェノキシ樹脂及び/又はポリビニルアセタール樹脂の含有量が、樹脂組成物中の不揮発分100質量%に対し、1〜20質量%の範囲である、請求項1〜6のいずれか1項記載のプリプレグ (C) The weight average molecular weight of the phenoxy resin and / or the polyvinyl acetal resin is 8,000 to 150,000, and the content of the (C) phenoxy resin and / or the polyvinyl acetal resin in the resin composition is a resin. The prepreg according to any one of claims 1 to 6, which is in a range of 1 to 20% by mass with respect to 100% by mass of a nonvolatile content in the composition . 請求項1〜7のいずれか1項記載のプリプレグを用いた回路基板。The circuit board using the prepreg of any one of Claims 1-7.
JP2009012232A 2009-01-22 2009-01-22 Resin composition Active JP5195454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012232A JP5195454B2 (en) 2009-01-22 2009-01-22 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012232A JP5195454B2 (en) 2009-01-22 2009-01-22 Resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012208831A Division JP5644823B2 (en) 2012-09-21 2012-09-21 Resin composition

Publications (2)

Publication Number Publication Date
JP2010168470A JP2010168470A (en) 2010-08-05
JP5195454B2 true JP5195454B2 (en) 2013-05-08

Family

ID=42700908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012232A Active JP5195454B2 (en) 2009-01-22 2009-01-22 Resin composition

Country Status (1)

Country Link
JP (1) JP5195454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190122738A (en) 2017-03-13 2019-10-30 린텍 가부시키가이샤 Resin composition, resin sheet, laminated body, and semiconductor element

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494364B (en) * 2009-01-30 2015-08-01 Ajinomoto Kk Resin composition
JP5405959B2 (en) * 2009-09-25 2014-02-05 ナミックス株式会社 Epoxy resin composition and adhesive film thereby
JP5249903B2 (en) * 2009-10-22 2013-07-31 味の素株式会社 Resin composition
JP5303524B2 (en) * 2010-08-11 2013-10-02 積水化学工業株式会社 Epoxy resin material, laminated film and multilayer substrate
JP5003855B2 (en) * 2010-10-22 2012-08-15 日立化成工業株式会社 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
KR101070160B1 (en) * 2010-11-10 2011-10-05 삼성전기주식회사 A solar cell and a method for manufacturing the same
TW201302907A (en) * 2011-06-01 2013-01-16 Sumitomo Bakelite Co A liquid resin composition and a semiconductor device using said liquid resin composition
KR101234789B1 (en) 2011-09-23 2013-02-20 (주)켐텍 Epoxy resin composition, adhesive sheet using the same, circuit substrate comprising the same and process for producing the same
SG11201406941TA (en) * 2012-04-26 2014-11-27 Furukawa Electric Co Ltd Film adhesive composition, method for producing the same, film adhesive, semiconductor package using the film adhesive, and method for manufacturing the semiconductor package
JP6330327B2 (en) * 2012-07-05 2018-05-30 東レ株式会社 Reinforced fiber base material for RTM molding method using binder resin composition for preform for RTM molding method, preform for RTM molding method and fiber reinforced composite material
KR20140030890A (en) * 2012-09-04 2014-03-12 삼성전기주식회사 Insulation composition for multilayered printed circuit board, and multilayered printed circuit board comprising insulation layer thereof
JP6545924B2 (en) * 2012-12-27 2019-07-17 味の素株式会社 Roughened hardened body, laminate, printed wiring board and semiconductor device
JP6175781B2 (en) * 2013-01-29 2017-08-09 東レ株式会社 Molding materials and fiber reinforced composite materials
JP5793720B1 (en) * 2014-04-11 2015-10-14 パナソニックIpマネジメント株式会社 Adhesive sheet with metal foil, laminate with metal foil, multilayer substrate with metal foil, method for producing circuit board
JP6327980B2 (en) * 2014-07-04 2018-05-23 菱電化成株式会社 Manufacturing method of rotating electrical machine
JP6497652B2 (en) * 2015-04-15 2019-04-10 京セラ株式会社 Epoxy resin molding material for sealing and electronic parts
EP3321325B1 (en) * 2015-07-06 2021-11-24 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, and printed circuit board
KR102392225B1 (en) * 2016-08-30 2022-04-28 린텍 가부시키가이샤 Resin composition, resin sheet, and semiconductor device
JP6822651B2 (en) * 2016-09-16 2021-01-27 ナミックス株式会社 A method for surface-treating a silica filler, a silica filler obtained thereby, and a resin composition containing the silica filler.
WO2019102719A1 (en) * 2017-11-27 2019-05-31 ナミックス株式会社 Filmy semiconductor emcapsulant
JP2021055108A (en) * 2020-12-24 2021-04-08 ナミックス株式会社 Surface treatment method of silica filler, silica filler obtained by the same, and resin composition containing the silica filler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316265A (en) * 1994-05-30 1995-12-05 Matsushita Electric Works Ltd Epoxy resin composition for sealing
JP4279521B2 (en) * 2002-07-30 2009-06-17 トヨタ自動車株式会社 Metal oxide powder for epoxy resin composition for semiconductor encapsulation, its production method, and epoxy resin composition for semiconductor encapsulation
JP4725704B2 (en) * 2003-05-27 2011-07-13 味の素株式会社 Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5220981B2 (en) * 2003-12-15 2013-06-26 トヨタ自動車株式会社 Finely basic silica powder, method for producing the same, and resin composition
JP4992396B2 (en) * 2005-11-29 2012-08-08 味の素株式会社 Resin composition for interlayer insulation layer of multilayer printed wiring board
KR20080108469A (en) * 2006-02-22 2008-12-15 아지노모토 가부시키가이샤 Epoxy resin composition
JP5130698B2 (en) * 2006-11-21 2013-01-30 住友ベークライト株式会社 Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190122738A (en) 2017-03-13 2019-10-30 린텍 가부시키가이샤 Resin composition, resin sheet, laminated body, and semiconductor element
US11512200B2 (en) 2017-03-13 2022-11-29 Lintec Corporation Resin composition, resin sheet, laminate, and semiconductor element

Also Published As

Publication number Publication date
JP2010168470A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5195454B2 (en) Resin composition
JP5249903B2 (en) Resin composition
JP6267140B2 (en) Resin composition
JP6024783B2 (en) Resin composition
JP5950005B2 (en) Resin composition
JP5651941B2 (en) Epoxy resin composition
JP5446866B2 (en) Epoxy resin composition
JP6183583B2 (en) Curable resin composition
JP2014201698A (en) Curable resin composition
JP5904256B2 (en) Resin composition
JP6007663B2 (en) Resin composition
JP5293065B2 (en) Resin composition
JP2017048400A (en) Resin composition
JP6452080B2 (en) Curable resin composition
JP5664693B2 (en) Resin composition
JP6217895B2 (en) Curable resin composition
JP6269401B2 (en) Surface-treated inorganic filler, method for producing the inorganic filler, and resin composition containing the inorganic filler
JP5644823B2 (en) Resin composition
JP6281233B2 (en) Resin composition
JP6337917B2 (en) Resin composition
JP6579500B2 (en) Curable resin composition
JP6657954B2 (en) Manufacturing method of wiring board
JP2019011481A (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5195454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250