JPWO2003099952A1 - Adhesive film and prepreg - Google Patents

Adhesive film and prepreg Download PDF

Info

Publication number
JPWO2003099952A1
JPWO2003099952A1 JP2004508197A JP2004508197A JPWO2003099952A1 JP WO2003099952 A1 JPWO2003099952 A1 JP WO2003099952A1 JP 2004508197 A JP2004508197 A JP 2004508197A JP 2004508197 A JP2004508197 A JP 2004508197A JP WO2003099952 A1 JPWO2003099952 A1 JP WO2003099952A1
Authority
JP
Japan
Prior art keywords
epoxy resin
component
resin composition
adhesive film
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004508197A
Other languages
Japanese (ja)
Inventor
中村 茂雄
茂雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Publication of JPWO2003099952A1 publication Critical patent/JPWO2003099952A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/22Macromolecular compounds not provided for in C08L2666/16 - C08L2666/20
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明は、下記成分(A)〜(C):(A)1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、(B)1分子中に2以上のシアナト基を有するシアネート化合物、及び(C)重量平均分子量が5000乃至100000のフェノキシ樹脂、を含有するエポキシ樹脂組成物が支持フィルム上に層形成されていることを特徴とする接着フィルム、及び上記成分(A)〜(C)を含有するエポキシ樹脂組成物が繊維からなるシート状補強基材中に含浸されていることを特徴とするプリプレグに関する。The present invention includes the following components (A) to (C): (A) an aromatic epoxy resin having two or more epoxy groups in one molecule, and (B) a cyanate compound having two or more cyanato groups in one molecule. And (C) an epoxy resin composition containing a phenoxy resin having a weight average molecular weight of 5000 to 100,000, and a layer formed on the support film, and the components (A) to (C) The prepreg is characterized by being impregnated in a sheet-like reinforcing base material made of fibers.

Description

技術分野
本発明は、電気絶縁材料として有用な接着フィルム及びプリプレグ、特に多層プリント配線板の層間絶縁材料として有用な接着フィルム及びプリプレグに関する。また本発明は、該接着フィルム及び該プリプレグにより絶縁層が形成された多層プリント配線板、該多層プリント配線板の製造方法にも関する。
背景技術
近年、電子機器、通信機器等に用いられるプリント配線板には、演算処理速度の高速化、配線の高密度化の要求が強まっている。それに伴い多層プリント配線板の製造方法として、回路基板の導体層上に有機絶縁層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。現在ビルトアップ方式で使用されている絶縁樹脂としては、芳香族系エポキシ樹脂に活性水素を持つ硬化剤(例えば、フェノール系硬化剤、アミン系硬化剤、カルボン酸系硬化剤)を組み合わせたものが主に用いられている。これらの硬化剤で硬化させて得られる硬化物は、物性面でバランス良く優れるものの、エポキシ基と活性水素の反応によって極性の高いヒドロキシル基が発生することにより、耐湿性や誘電率、誘電正接などの電気特性の低下を招くというマイナス面がある。特に高周波領域で使用される多層プリント配線板では誘電正接の低い絶縁材料が求められているが、従来のエポキシ系樹脂を主成分とする絶縁材料では誘電正接(1GHz、23℃)の値が0.03〜0.02程度とするのが限界であった。
一方、熱硬化性のシアナト基を有するシアネート化合物が誘電特性に優れた硬化物を与えることは古くから知られている。しかしながら、シアナト基が熱硬化によってS−トリアジン環を形成する反応は、例えば230℃で2時間以上という高温で比較的長時間の硬化を必要とするため、シアネート化合物を一般のFR4基板(ガラス転移点135℃程度)用の絶縁材料として使用するのは困難である。
シアネート化合物の硬化温度を下げる方法としては、シアネート化合物をエポキシ樹脂と併用し、硬化触媒を使用して硬化させる方法が知られている。この方法ではエポキシ樹脂のエポキシ基がシアネート化合物のシアナト基と反応しオキサゾリン環を形成する反応が主反応であり、熱硬化後に誘電正接を損ねるヒドロキシル基の発生や、同じく誘電正接を損ねるシアナト基の残存が抑制される。
シアネート化合物の硬化触媒としては、フェノール化合物と有機金属化合物とが知られている。しかしながら、硬化触媒としてフェノール化合物を使用した場合は、接着フィルムやプリプレグの製造における加熱乾燥工程の後で、樹脂組成物の保存安定性(ポットライフ)が著しく損なわれるという問題があった。また、有機金属化合物を使用する系では、熱硬化時のゲルタイムが、数百ppmという微量の触媒添加量に大きく左右されるためゲルタイムの制御が困難で工業的生産に必ずしも適しているとは言えなかった。
以上から、本発明は、エポキシ樹脂とシアネート化合物を使用した系で、硬化物の電気特性に優れると共に優れた硬化特性を発揮し、かつポットライフにも優れる、多層プリント配線板の工業的生産に適した接着フィルム及びプリプレグを提供することを目的とする。
発明の開示
本発明者らは前記の課題を解決すべく鋭意検討した結果、特定のエポキシ樹脂、特定のシアネート化合物及び特定のフェノキシ樹脂から構成された接着フィルム及びプリプレグにより前記課題が解決されることを見いだし、本発明を完成させるに到った。すなわち本発明は以下の内容を含むものである。
[1] 下記成分(A)〜(C)を含有するエポキシ樹脂組成物が支持フィルム上に層形成されていることを特徴とする接着フィルム;
(A)1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、
(B)1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、及び
(C)重量平均分子量が5000乃至100000のフェノキシ樹脂。
[2] 成分(C)のフェノキシ樹脂がビフェニル骨格を有するフェノキシ樹脂である上記[1]記載の接着フィルム。
[3] エポキシ樹脂組成物の加熱硬化後の誘電正接が、測定周波数1GHz及び温度23℃の条件で0.015以下である上記[1]乃至[2]記載の接着フィルム。
[4] エポキシ樹脂組成物中の成分(A)の芳香族系エポキシ樹脂のエポキシ基と成分(B)の芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、成分(A)と成分(B)の合計量100重量部に対し、成分(C)のフェノキシ樹脂が3乃至40重量部配合されている上記[1]乃至[3]記載の接着フィルム。
[5] 上記[1]乃至[4]記載の接着フィルムにより絶縁層が形成された多層プリント配線板。
[6] 上記[1]乃至[4]記載の接着フィルムを加圧及び加熱条件下で回路基板にラミネートし、必要により支持フィルムを剥離し、回路基板にラミネートされたエポキシ樹脂組成物を加熱硬化して絶縁層を形成した後、支持フィルムを剥離していない場合は必要によりそれを剥離し、必要により該絶縁層表面を酸化剤で粗化し、導体層をメッキにより形成する工程を含むことを特徴とする多層プリント配線板の製造方法。
[7] 上記[6]記載の製造方法により得られた多層プリント配線板。
[8] 下記成分(A)〜(C)を含有するエポキシ樹脂組成物が繊維からなるシート状補強基材中に含浸されていることを特徴とするプリプレグ;
(A)1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、
(B)1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、及び
(C)重量平均分子量が5000乃至100000のフェノキシ樹脂。
[9] 成分(C)のフェノキシ樹脂がビフェニル骨格を有するフェノキシ樹脂である上記[8]記載のプリプレグ。
[10] エポキシ樹脂組成物の加熱硬化後の比誘電率が、測定周波数1GHz及び温度23℃の条件で0.015以下である上記[8]乃至[9]記載のプリプレグ。
[11] エポキシ樹脂組成物中の成分(A)の芳香族系エポキシ樹脂のエポキシ基と成分(B)の芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、成分(A)と成分(B)の合計量100重量部に対し、成分(C)のフェノキシ樹脂が3乃至40重量部配合されている上記[8]乃至[10]記載のプリプレグ。
[12] 上記[8]乃至[11]記載のプリプレグにより絶縁層が形成された多層プリント配線板。
[13] 上記[8]乃至[11]記載のプリプレグを加圧及び加熱条件下で回路基板にラミネート及び硬化して絶縁層を形成した後、必要により該絶縁層表面を酸化剤で粗化し、導体層をメッキにより形成する工程を含むことを特徴とする多層プリント配線板の製造方法。
[14] 上記[14]記載の製造方法により得られた多層プリント配線板。
発明の実施の形態
以下に、本発明を詳細に説明する。
本発明における成分(A)の「1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂」とは、1分子中に2以上のエポキシ基を有し、かつ分子中に芳香環骨格を有するエポキシ樹脂をいう。1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、さらにはこれらの臭素化エポキシ樹脂やリン変性エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。
本発明における成分(B)の「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」とは、1分子中に2以上のシアナト基を有し、かつ分子中に芳香環骨格を有するシアネート化合物をいう。1分子中に2以上のシアナト基を有する芳香族系シアネート化合物の好ましい例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、それらが一部トリアジン化したプレポリマー等を挙げることが出来る。これらのシアネート化合物は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。
エポキシ樹脂組成物中の成分(A)の1分子中に存在するエポキシ基と成分(B)の1分子中に存在するシアナト基の割合は1:0.5乃至1:3とするのが好ましい。この範囲を外れると硬化後に残存する未反応のエポキシ基またはシアナト基により、十分に低い誘電正接値が得られない場合がある。なお、エポキシ樹脂組成物中に成分(A)以外のエポキシ基を有する化合物、成分(B)以外のシアナト基を有する化合物が含まれる場合は、これらの成分も含めてエポキシ基とシアナト基の割合を上記の範囲内とする。すなわち、エポキシ樹脂組成物中に存在するエポキシ基とシアナト基の割合を1:0.5乃至1:3とするのが好ましい。
次に、本発明における成分(C)である「重量平均分子量が5000乃至100000のフェノキシ樹脂」について説明する。
フェノキシ樹脂は2官能エポキシ樹脂とビスフェノール化合物の反応生成物からなるポリマーであり、分子中に存在するヒドロキシル基がエポキシ基とシアナト基の硬化促進作用を示すため、比較的低い硬化温度で十分な硬化物性(耐熱性、低誘電正接等)を発揮することが可能になると考えられる。シアネート化合物とエポキシ樹脂からなる樹脂組成物において、エポキシ樹脂がヒドロキシル基を有する場合は硬化促進作用が見られるものの、このようなヒドロキシル基は樹脂組成物のポットライフを悪化させることが知られている。一方、本発明者らは、成分(A)及び成分(B)に、高分子のフェノキシ樹脂成分(C)を併用することにより、エポキシ樹脂組成物のポットライフが悪化することなく、優れた硬化物性が発揮されることを見出した。また、成分(C)のフェノキシ樹脂の添加によりエポキシ樹脂硬化物の酸化剤による粗化性が向上し、メッキによる導体層形成が可能であることも見出した。
重平均分子量が5000乃至100000であるフェノキシ樹脂の好ましい例としては、例えばビスフェノールAタイプのフェノトートYP50(東都化成(株)製)、E−1256(ジャパンエポキシレジン(株)製)の他、臭素化されたフェノキシ樹脂であるフェノトートYPB40(東都化成(株)製)などが挙げられる。
成分(C)としては、特にビフェニル骨格を有する重量平均分子量が5000乃至100000であるフェノキシ樹脂が、耐熱性、耐湿性および硬化促進作用の点で好ましい。このようなフェノキシ樹脂の具体例としては、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製YX4000)と各種ビスフェノール化合物との反応生成物からなるフェノキシ樹脂である、YL6742BH30、YL6835BH40、YL6953BH30、YL6954BH30、YL6974BH30、YX8100BH30を挙げることができる。
これらのフェノキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。
重量平均分子量が5000乃至100000のフェノキシ樹脂は、硬化促進作用のほか接着フィルム及びプリプレグの可とう性を向上させこれらの取り扱いを容易にするとともに硬化物の機械的強度、可とう性も向上させる。また硬化物の酸化剤による粗化も可能となる。なお、成分(C)の樹脂の重量平均分子量が5000未満であると、上記の効果が十分でなく、100000を超えるとエポキシ樹脂及び有機溶剤への溶解性が著しく低下し、実際上の使用が困難となる。
成分(C)の樹脂の配合量については、その種類によっても異なるが、好ましくは成分(A)のエポキシ樹脂と成分(B)のシアネート化合物との合計量100重量部に対し3〜40重量部の範囲で配合される。特に5〜25重量部の範囲で配合するのが好ましい。3重量部未満であると樹脂組成物の硬化促進作用が十分でない場合が生じ、樹脂組成物を回路基板にラミネート(積層)する際、あるいはラミネートした樹脂組成物を熱硬化する際、樹脂の流動性が大きくなりすぎて絶縁層厚が不均一となる傾向にある。また導体層形成のための硬化物の粗化性も得られ難い傾向にある。一方、40重量部を超えると、フェノキシ樹脂の官能基が過剰に存在することになり、十分に低い誘電正接値が得られない傾向にあり、更には樹脂組成物を回路基板にラミネートする際の流動性が低すぎて回路基板に存在するビアホールやスルーホール内の樹脂充填が十分に行えなくなる傾向にある。
本発明におけるエポキシ樹脂組成物中のこれら成分(A)〜(C)の合計の含有量は特に限定されないが、通常、該エポキシ樹脂組成物を100重量%とした場合、25重量%〜90重量%の範囲で含有される。
本発明におけるエポキシ樹脂組成物は、必要により更に硬化時間を短縮する目的で、従来からエポキシ樹脂組成物とシアネート化合物を併用した系で硬化触媒として用いられている有機金属化合物を添加してもよい。従来の系では、有機金属化合物を使用すると、熱硬化時のゲルタイムが数百ppmという微量の有機金属化合物の添加量に大きく左右され制御が困難であったが、本発明のエポキシ樹脂組成物においては、有機金属化合物は硬化を補助する役割を果たすにすぎないため、有機金属触媒を添加した場合でもゲルタイムの制御も比較的容易に行うことができ、多層プリント配線板の工業的生産に適した接着フィルム及びプリプレグの提供が可能となる。このような有機金属化合物としては、銅(II)アセチルアセトナート等の有機銅化合物、亜鉛(II)アセチルアセトナート等の有機亜鉛化合物、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト化合物などが挙げられる。有機金属化合物を添加する場合の添加量は通常(B)成分「1分子中に2以上のシアナト基を有する芳香族系シアネート化合物」に対して金属換算で10〜500ppm、好ましくは25〜200ppmの範囲である。
本発明におけるエポキシ樹脂組成物においては、必要により形成される絶縁層の熱膨張率を低下させるため、無機充填材を添加してもよい。無機充填材を添加する場合の添加量は、本発明におけるエポキシ樹脂組成物の特性や求める機能によっても異なるが、該エポキシ樹脂組成物を100重量%とした場合、通常10〜75重量%、好ましくは20〜65重量%の範囲で配合される。
無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。特にシリカが好ましい。無機充填材は平均粒径5μm以下のものが好ましい。平均粒径が5μmを超える場合、導体層に回路パターンを形成する際にファインパターンの形成を安定的行うのが困難になる場合がある。また無機充填材は耐湿性を向上させるため、シランカップリング剤等の表面処理剤で表面処理してあるものが好ましい。
更に本発明におけるエポキシ樹脂組成物には成分の他に、本発明の効果を阻害しない範囲で必要に応じて他の熱硬化性樹脂や熱可塑性樹脂、添加剤を用いることができる。熱硬化性樹脂としては、希釈剤としての単官能エポキシ樹脂の他、脂環式多官能エポキシ樹脂、ゴム変性エポキシ樹脂、エポキシ樹脂用硬化剤としての酸無水物系化合物、ブロックイソシアネート樹脂、キシレン樹脂、ラジカル発生剤と重合性樹脂などが挙げられる。熱可塑性樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂などが挙げられる。添加剤としては、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。
本発明におけるエポキシ樹脂組成物は耐熱性及び電気特性に優れた硬化物を形成する。例えば、高周波領域に用いられるプリント配線板で求められる誘電正接の条件(例えば、測定周波数1GHz及び温度23℃の条件で0.015以下)を満足させる硬化物を形成させることが可能である。
次に本発明の接着フィルムについて説明する。
上記(A)〜(C)を必須成分とするエポキシ樹脂組成物を有機溶剤に溶解して樹脂ワニスとした後、これを支持体であるベースフィルム(支持フィルム)上に塗布し、熱風吹き付け等の手段で溶剤を乾燥させることにより、本発明の接着フィルムを製造することができる。
有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。有機溶剤は2種以上を組み合わせて用いてもよい。
当業者、簡単な実験により適宜、好適な乾燥条件を設定することができる。例えば30〜60重量%の有機溶剤を含むワニスを80〜100℃で3〜10分程度乾燥させることができる。エポキシ樹脂組成物に残存する有機溶剤の量は通常10重量%以下、好ましくは5重量%以下とする。
本発明の接着フィルムは、該接着フィルムを構成するエポキシ樹脂組成物層が、真空ラミネート法に用いるのに適した溶融粘度特性を有するものが好ましい。すなわち、本発明の接着フィルムは、真空ラミネートにおける温度条件(通常70℃〜140℃)で軟化して流動性を示し、ビアホール或いはスルーホールが存在する場合には、真空ラミネート時にこれらホールへの樹脂充填を同時に一括して行うことが可能なものが好ましい。このような溶融粘度特性はWO01/97582号公報に開示されており、エポキシ樹脂組成物の動的粘弾性率の測定による求められる温度−溶融粘度曲線によって決定することができる。測定開始温度を60℃とし、5℃/分の昇温速度で加熱し溶融粘度を測定し、温度−溶融粘度曲線を求めたとき、各温度における溶融粘度が第1表に示される値を示すものが前記特性を満たし接着フィルムとして好ましいものとなる。

Figure 2003099952
当業者は、本発明のエポキシ樹脂組成物と接着フィルムに関する開示、及びWO01/97582号公報の開示に従って、真空ラミネート法に好適な溶融粘度特性を有する接着フィルムを適宜容易に調製することができる。
本発明の接着フィルムにおいては、好ましくは10〜200μm厚の支持フィルムに、エポキシ樹脂組成物層の厚みをラミネートする回路基板の導体厚以上で、好ましくは10〜150μmの範囲で層形成させる。
エポキシ樹脂組成物層の支持フィルムが密着していない面には支持フィルムに準じた保護フィルムをさらに層形成することができる。保護フィルムの厚みは1〜40μmとするのが好ましい。保護フィルムで保護することにより、エポキシ樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。接着フィルムはロール状に巻きとって貯蔵することもできる。
支持フィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。支持フィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
なおワニスの調製に用いる有機溶剤としては、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素、ジメチルホルムアミド、ジメチルアセトアミド等を挙げることができる。これらの有機溶剤は各々単独で用いてもよく、2種以上を組み合わせて用いてもよい。
回路基板に用いられる基板としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用することができる。なお、本発明において回路基板とは上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層が交互に層形成してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも本発明にいう回路基板に含まれる。なお導体層表面は黒化処理等により予め粗化処理が施されていてもよい。
次に本発明のプリプレグについて説明する。
本発明のエポキシ樹脂組成物を、繊維からなるシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱により半硬化させることによりプリプレグを製造することができる。すなわち、エポキシ樹脂組成物が繊維からなるシート状補強基材に含浸した状態となるプリプレグとすることができる。
繊維からなるシート状補強基材としては、例えばガラスクロスやアラミド繊維等、プリプレグ用繊維として常用されているものを用いることができる。
ホットメルト法は、樹脂を有機溶剤に溶解することなく、樹脂を樹脂と剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいはダイコーターにより直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様、樹脂を有機溶剤に溶解した樹脂ワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。この場合の乾燥条件は接着フィルムの場合と同様である。
次に本発明の接着フィルムを用いて本発明の多層プリント配線板を製造する方法について説明する。
本発明の接着フィルムは真空ラミネーターにより好適に回路基板にラミネートすることができる。ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、接着フィルムを加圧及び加熱しながら回路基板に圧着する。ラミネートの条件は、接着フィルム及び回路基板を必要によりプレヒートし、圧着温度を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cmとし、空気圧20mmHg以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。ラミネート後、室温付近に冷却してから必要により支持フィルムを剥離し、回路基板にラミネートされたエポキシ樹脂組成物を加熱硬化させる。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましい条件は160℃〜200℃で30〜120分である。離型処理の施された支持フィルムを使用した場合には、加熱硬化させた後に支持フィルムを剥離してもよい。一方、金属箔を使用した場合は支持フィルムがそのまま導体層としても使用できることもあるため剥離する必要がない場合がある。
このようにエポキシ樹脂組成物の硬化物として絶縁層が形成された後、必要に応じて該絶縁層にドリル、レーザー等により穴開けを行いビアホールやスルーホールを形成してもよい。
次いで乾式メッキ又は湿式メッキにより導体層を形成する。乾式メッキとしては蒸着、スパッタリング、イオンプレーティング等の公知の方法が使用できる。湿式法の場合は、まず過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で硬化したエポキシ樹脂組成物層(絶縁層)の表面を粗化処理し、凸凹のアンカーを形成する。酸化剤としては特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで無電解メッキと電解メッキを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として具体的には、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。
次に本発明のプリプレグを用いて本発明の多層プリント配線板を製造する方法について説明する。
本発明のプリプレグを回路基板にラミネートする方法としては、例えば該プリプレグを1枚あるいは必要により数枚重ね、その上に離型フィルムを介して金属プレートを配置し加圧及び加熱条件下で積層プレス機によりラミネートする方法が挙げられる。この場合、回路基板へのプリプレグのラミネートと硬化は同時に行われ、圧力は好ましくは5〜40kgf/cm、温度は好ましくは120〜220℃で30〜180分の範囲で積層・硬化するのが好ましい。また前述した接着フィルムの場合と同様に真空ラミネーターにより回路基板へプリプレグをラミネートし、その後加熱硬化することも可能である。
このようにして回路基板にプリプレグの硬化物として絶縁層が形成された後、前述したのと同様、必要に応じて絶縁層にビアホールやスルーホールを形成し、絶縁層表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。なお、離型フィルムとプリプレグの間に銅箔等の金属箔を挟んでラミネートすることで金属箔をそのまま導体層として使用することもできる。
実施例
以下に実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。
<実施例1>
成分(A)としてビスフェノールA型エポキシ樹脂(エポキシ当量175、ジャパンエポキシレジン(株)製 エピコート825)30重量部、成分(B)としてビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)BA230S75、シアネート当量約232、不揮発分75%のメチルエチルケトン(MEK)ワニス)60重量部、成分(C)としてビフェニル骨格含有フェノキシ樹脂ワニス(ジャパンエポキシレジン(株)製 YL6954BH30、重量平均分子量38000、不揮発分30%のMEK/シクロヘキサノンワニス)40重量部、さらに球型シリカを30重量部添加しエポキシ樹脂組成物を作製した。そのワニス状のエポキシ樹脂組成物を厚さ38μmのPETフィルム上に、乾燥後の厚みが60μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た(残留溶媒約1〜2重量%)。
<実施例2>
実施例1記載の成分(C)のフェノキシ樹脂をビスフェノールA型フェノキシ樹脂ワニス(ジャパンエポキシレジン(株)製 E1256B40、重量平均分子量48000、不揮発分40%のMEKワニス)30重量部に変更する以外は全く同じエポキシ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが60μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た(残留溶媒約1〜2重量%)。
<実施例3>
実施例1記載のエポキシ樹脂組成物のワニスをガラスクロスに含浸し、150℃で8分乾燥させ、厚みが0.1mmのプリプレグを得た(プリプレグ中のエポキシ樹脂組成物含量45重量%、残留溶媒約1〜2重量%)。
<比較例1>
成分(C)のフェノキシ樹脂を含まないこと以外は実施例1記載エポキシ樹脂組成物と全く同じエポキシ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが60μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させたが、乾燥中に低粘度となりすぎるため一部に樹脂はじき(ピンホール)が見られる上に、乾燥後も樹脂表面に粘着性があり、接着フィルムとして使用に耐え得るものを製造できなかった。
<比較例2>
成分(C)のフェノキシ樹脂をポリサルホン(ソルベイアドバンストポリマーズ(株)製 P−1700)の不揮発分20%のN,N’−ジメチルホルムアミドワニス60重量部に変更する以外は実施例1と全く同じエポキシ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが60μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た(残留溶媒約1〜2重量%)。
<比較例3>
成分(C)のフェノキシ樹脂をフェノールノボラック樹脂(大日本インキ化学工業(株)製 TD2090−60M;不揮発分60%のMEKワニス)10重量部に変更する以外は実施例1と全く同じエポキシ樹脂組成物を、厚さ38μmのPETフィルム上に、乾燥後の厚みが60μmとなるようにダイコーターにて塗布し、80〜120℃で10分乾燥させ、接着フィルムを得た(残留溶媒約1〜2重量%)。
<実施例4>
銅箔35μm、板厚0.2mmのFR4両面銅張積層板から回路基板を作製し、実施例1で得られた接着フィルムをバッチ式真空ラミネーターにより、温度110℃、圧力5kgf/cm、気圧5mmHg以下、30秒加圧の条件で両面にラミネートした後、PETフィルムを剥離し、170℃で30分加熱硬化させた。その後、レーザーにより穴開けを行いビアホールを形成させ、次いで過マンガン酸塩のアルカリ性酸化剤で硬化したエポキシ樹脂組成物表面を粗化処理し、無電解及び電解メッキしサブトラクティブ法に従ってパターン形成し、4層プリント配線板を得た。その後、さらに180℃で90分アニール処理を行った。得られた導体層のピール強度は0.7kgf/cmであった。なお、ピール強度測定は日本工業規格(JIS)C6481に準じて評価し、導体メッキ厚は約30μmとした。得られた多層プリント配線板を260℃で60秒間はんだ浸漬し、はんだ耐熱性を観察したところ樹脂のデラミネーション、導体の剥がれ等の異常はなかった。
<実施例5>
実施例2で得られた接着フィルムを用いて実施例4と同様にして4層プリント配線板を得た。得られた導体層のピール強度は0.8kgf/cmであった。得られた多層プリント配線板を260℃で60秒間はんだ浸漬し、はんだ耐熱性を観察したところ樹脂のデラミネーション、導体の剥がれ等の異常はなかった。
<実施例6>
実施例3で得られたプリプレグを2枚重ねて、離型フィルムを介して金属プレートで挟み、120℃、10kgf/cmで15分間積層プレスした後、更に170℃、40kgf/cmで60分間積層プレスすることにより、板厚0.2mmの積層板を得た。次いで過マンガン酸塩のアルカリ性酸化剤で表面を粗化処理し、全面に無電解及び電解メッキにより導体層を形成した。その後さらに180℃で60分アニール処理を行った。得られた導体層のピール強度は0.7kgf/cmであった。得られた多層プリント配線板を260℃で60秒間はんだ浸漬し、はんだ耐熱性を観察したところ樹脂のデラミネーション、導体の剥がれ等の異常はなかった。
<比較例4>
比較例2で得られた接着フィルムを用いて実施例4と同様にして4層プリント配線板を得た。得られた導体層のピール強度は0.2kgf/cmであった。得られた多層プリント配線板を260℃で60秒間はんだ浸漬し、はんだ耐熱性を観察したところ、ピール強度が低いため導体が剥がれる異常が見られた。
<樹脂組成物の硬化挙動測定>
実施例1、2及び比較例2で得られた接着フィルムのエポキシ樹脂組成物を(株)ユー・ビー・エム社製型式Rhcosol−G3000を用いて、動的粘弾性を測定した。実施例1、2及び比較例2の測定結果を図1に示す。測定は初期温度60℃から昇温速度5℃/分で、測定間隔温度2.5℃、振動数1Hz/degで測定した。図1から分かる通り、実施例1、2では130℃程度から硬化に伴う溶融粘度の上昇が見られ170度以上で急上昇しているが、フェノキシ樹脂を含有しない比較例2では200℃付近まで粘度上昇が見られなかった。これより実施例1、2の樹脂組成物では低温での硬化が可能となっていることがわかる。第2表〜第4表に各温度における溶融粘度値を以下に示す。
Figure 2003099952
Figure 2003099952
Figure 2003099952
<樹脂組成物のポットライフ評価>
比較例3で得られた接着フィルムのエポキシ樹脂組成物につき上記と同様に動的粘弾性を測定した。また実施例1、2及び比較例2、3で得られた接着フィルムのエポキシ樹脂組成物を室温で3日保存後、上記と同様に動的粘弾性を測定した。比較例3について保存前後の結果を図2に示す。実施例1、2及び比較例2の樹脂組成物については、保存前とほぼ同じ曲線を描き(図中記載省略)、ポットライフに優れていることが分かった。一方フェノール樹脂を硬化促進剤として使用した比較例3の場合は室温で3日保存後、樹脂溶融粘度が極端に上昇し、ポットライフに劣るため、接着フィルムやプリプレグ用の樹脂組成物として使用に耐えられないものであることが分かった。図1の結果と併せると、実施例1、2で得られた接着フィルムのエポキシ樹脂組成物はフェノキシ樹脂によって硬化促進効果とポットライフが両立されていることが分かる。
<電気特性の評価>
実施例1、2及び比較例2で得られた接着フィルムのエポキシ樹脂組成物面同士を重ねて真空ラミネートし、支持フィルムを剥離後、同様に樹脂組成物面同士の真空ラミネートを複数回繰り返して60μm樹脂の16層分、約1mm厚の樹脂組成物サンプルを作製した。それを100℃で30分さらに180℃で90分熱硬化させた。本サンプルを使用してIPC−TM650 2.5.5.9に準じて誘電率、誘電正接を測定した。第5表に室温(23℃)、測定周波数1GHzでの測定値の結果を記した。
Figure 2003099952
また、第5表の結果より本発明における樹脂組成物は、180℃の硬化条件で優れた電気特性を発揮し(1GHz、23℃での誘電正接0.015以下)。一方、比較例2では樹脂自身の誘電正接ではフェノキシ樹脂よりも低い値を有するポリサルホンを使用したにも関わらず樹脂組成物の硬化物の誘電正接は高い値を示していることがわかる。
また実施例4〜6、比較例4から分かるように、本発明の接着フィルム及びプリプレグは酸化剤による粗化により密着性に優れた銅メッキを形成することができ、ビルドアップ方式で簡便に多層プリント配線板を得ることが可能である。
産業上の利用可能性
本発明の接着フィルム及びプリプレグは、ポットライフ及び硬化特性に優れかつ硬化後に優れた電気特性を発揮することができる。また硬化後に酸化剤による硬化物の粗化が可能なためメッキにより導体層を形成させることができ、特にビルトアップ方式により工業的に多層プリント配線板を製造するための接着フィルム及びプリプレグとして優れたものとなる。
【図面の簡単な説明】
図1は、実施例1、2及び比較例2で得られた接着フィルムを構成するエポキシ樹脂組成物の動的粘弾性の測定した結果である。
図2は、比較例3で得られた接着フィルムを構成するエポキシ樹脂組成物を室温で3日保存前後に動的粘弾性を測定した結果である。Technical field
The present invention relates to an adhesive film and a prepreg useful as an electrical insulating material, and particularly to an adhesive film and a prepreg useful as an interlayer insulating material of a multilayer printed wiring board. The present invention also relates to a multilayer printed wiring board in which an insulating layer is formed from the adhesive film and the prepreg, and a method for producing the multilayer printed wiring board.
Background art
In recent years, printed wiring boards used in electronic devices, communication devices, and the like have been increasingly demanded for higher processing speed and higher wiring density. Accordingly, as a method for manufacturing a multilayer printed wiring board, a build-up manufacturing technique in which organic insulating layers are alternately stacked on a conductor layer of a circuit board has attracted attention. Insulating resins that are currently used in the built-up method include a combination of an aromatic epoxy resin and a curing agent having active hydrogen (for example, a phenolic curing agent, an amine curing agent, or a carboxylic acid curing agent). Mainly used. Cured products obtained by curing with these curing agents are excellent in physical properties, but with a highly polar hydroxyl group generated by the reaction of epoxy groups and active hydrogen, moisture resistance, dielectric constant, dielectric loss tangent, etc. There is a downside that this leads to a decrease in electrical characteristics. In particular, an insulating material having a low dielectric loss tangent is required for a multilayer printed wiring board used in a high frequency region, but a dielectric loss tangent (1 GHz, 23 ° C.) is 0 for an insulating material mainly composed of an epoxy resin. The limit was about 0.03 to 0.02.
On the other hand, it has long been known that a cyanate compound having a thermosetting cyanato group gives a cured product having excellent dielectric properties. However, the reaction in which the cyanate group forms an S-triazine ring by thermosetting requires curing for a relatively long time at a high temperature of, for example, 230 ° C. for 2 hours or more. It is difficult to use as an insulating material for a point (about 135 ° C.).
As a method for lowering the curing temperature of the cyanate compound, a method is known in which the cyanate compound is used in combination with an epoxy resin and cured using a curing catalyst. In this method, the reaction in which the epoxy group of the epoxy resin reacts with the cyanate group of the cyanate compound to form an oxazoline ring is the main reaction. Generation of a hydroxyl group that impairs the dielectric loss tangent after thermosetting, and the formation of a cyanate group that also impairs the dielectric loss tangent. Residual is suppressed.
Phenol compounds and organometallic compounds are known as curing catalysts for cyanate compounds. However, when a phenol compound is used as a curing catalyst, there is a problem that the storage stability (pot life) of the resin composition is significantly impaired after the heat drying step in the production of an adhesive film or prepreg. Moreover, in a system using an organometallic compound, the gel time at the time of thermosetting is greatly influenced by a small amount of catalyst addition of several hundred ppm, so it is difficult to control the gel time and it is not necessarily suitable for industrial production. There wasn't.
From the above, the present invention is a system using an epoxy resin and a cyanate compound, and is excellent in electrical production of a cured product, exhibits excellent curing properties, and has excellent pot life, and industrial production of multilayer printed wiring boards. An object is to provide a suitable adhesive film and prepreg.
Disclosure of the invention
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by an adhesive film and a prepreg composed of a specific epoxy resin, a specific cyanate compound and a specific phenoxy resin, The present invention has been completed. That is, the present invention includes the following contents.
[1] An adhesive film in which an epoxy resin composition containing the following components (A) to (C) is layered on a support film;
(A) an aromatic epoxy resin having two or more epoxy groups in one molecule;
(B) an aromatic cyanate compound having two or more cyanato groups in one molecule, and
(C) A phenoxy resin having a weight average molecular weight of 5000 to 100,000.
[2] The adhesive film according to [1], wherein the phenoxy resin of component (C) is a phenoxy resin having a biphenyl skeleton.
[3] The adhesive film according to the above [1] or [2], wherein the dielectric loss tangent of the epoxy resin composition after heat curing is 0.015 or less under the conditions of a measurement frequency of 1 GHz and a temperature of 23 ° C.
[4] The ratio of the epoxy group of the aromatic epoxy resin of component (A) in the epoxy resin composition to the cyanate group of the aromatic cyanate compound of component (B) is 1: 0.5 to 1: 3. The adhesive film according to any one of [1] to [3], wherein 3 to 40 parts by weight of the phenoxy resin of component (C) is blended with respect to 100 parts by weight of the total amount of components (A) and (B).
[5] A multilayer printed wiring board in which an insulating layer is formed by the adhesive film described in [1] to [4].
[6] The adhesive film described in [1] to [4] above is laminated on a circuit board under pressure and heating conditions, the support film is peeled off if necessary, and the epoxy resin composition laminated on the circuit board is heated and cured. Then, after forming the insulating layer, if the support film is not peeled off, if necessary, it is peeled off, and if necessary, the surface of the insulating layer is roughened with an oxidizing agent, and a step of forming a conductor layer by plating is included. A method for producing a multilayer printed wiring board, which is characterized.
[7] A multilayer printed wiring board obtained by the production method described in [6] above.
[8] A prepreg characterized in that an epoxy resin composition containing the following components (A) to (C) is impregnated in a sheet-like reinforcing base material composed of fibers;
(A) an aromatic epoxy resin having two or more epoxy groups in one molecule;
(B) an aromatic cyanate compound having two or more cyanato groups in one molecule, and
(C) A phenoxy resin having a weight average molecular weight of 5000 to 100,000.
[9] The prepreg according to the above [8], wherein the phenoxy resin as the component (C) is a phenoxy resin having a biphenyl skeleton.
[10] The prepreg according to the above [8] to [9], wherein the epoxy resin composition has a relative dielectric constant after heat curing of 0.015 or less under conditions of a measurement frequency of 1 GHz and a temperature of 23 ° C.
[11] The ratio of the epoxy group of the aromatic epoxy resin of component (A) to the cyanate group of the aromatic cyanate compound of component (B) in the epoxy resin composition is 1: 0.5 to 1: 3. The prepreg according to the above [8] to [10], wherein 3 to 40 parts by weight of the phenoxy resin of the component (C) is blended with respect to 100 parts by weight of the total amount of the components (A) and (B).
[12] A multilayer printed wiring board in which an insulating layer is formed by the prepreg according to the above [8] to [11].
[13] After the prepreg according to the above [8] to [11] is laminated and cured on a circuit board under pressure and heating conditions to form an insulating layer, the surface of the insulating layer is roughened with an oxidizing agent if necessary, A method for producing a multilayer printed wiring board comprising a step of forming a conductor layer by plating.
[14] A multilayer printed wiring board obtained by the production method according to [14] above.
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is described in detail below.
The “aromatic epoxy resin having two or more epoxy groups in one molecule” of the component (A) in the present invention has two or more epoxy groups in one molecule and an aromatic ring skeleton in the molecule. The epoxy resin which has. Preferred examples of the aromatic epoxy resin having two or more epoxy groups in one molecule include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and alkylphenol novolac. Type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, epoxidized product of condensate of phenols and aromatic aldehyde having phenolic hydroxyl group, naphthalene type epoxy resin, triglycidyl isocyanurate, and these Examples thereof include brominated epoxy resins and phosphorus-modified epoxy resins. These epoxy resins may be used alone or in combination of two or more.
The “aromatic cyanate compound having two or more cyanato groups in one molecule” of the component (B) in the present invention has two or more cyanato groups in one molecule and has an aromatic ring skeleton in the molecule. The cyanate compound which has. Preferable examples of the aromatic cyanate compound having two or more cyanato groups in one molecule include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′- Examples thereof include methylene bis (2,6-dimethylphenyl cyanate), 4,4′-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, and prepolymers in which they are partially triazine. Or may be used in combination of two or more.
The ratio of the epoxy group present in one molecule of component (A) to the cyanate group present in one molecule of component (B) in the epoxy resin composition is preferably 1: 0.5 to 1: 3. . Outside this range, a sufficiently low dielectric loss tangent value may not be obtained due to unreacted epoxy groups or cyanate groups remaining after curing. In addition, when the compound which has epoxy groups other than component (A) and the compound which has cyanate groups other than component (B) is contained in an epoxy resin composition, the ratio of an epoxy group and cyanate groups also including these components Is within the above range. That is, it is preferable that the ratio of epoxy groups and cyanato groups present in the epoxy resin composition is 1: 0.5 to 1: 3.
Next, the “phenoxy resin having a weight average molecular weight of 5000 to 100,000” which is the component (C) in the present invention will be described.
Phenoxy resin is a polymer composed of a reaction product of a bifunctional epoxy resin and a bisphenol compound, and the hydroxyl group present in the molecule exhibits a curing accelerating action of the epoxy group and cyanato group. It is considered that physical properties (heat resistance, low dielectric loss tangent, etc.) can be exhibited. In a resin composition comprising a cyanate compound and an epoxy resin, when the epoxy resin has a hydroxyl group, a curing accelerating action is observed, but such a hydroxyl group is known to deteriorate the pot life of the resin composition. . On the other hand, the present inventors use the polymer phenoxy resin component (C) in combination with the component (A) and the component (B), so that the pot life of the epoxy resin composition is not deteriorated and excellent curing is achieved. It was found that physical properties are exhibited. It has also been found that the addition of the component (C) phenoxy resin improves the roughening property of the cured epoxy resin with an oxidizing agent, so that a conductor layer can be formed by plating.
Preferable examples of the phenoxy resin having a weight average molecular weight of 5,000 to 100,000 are, for example, bisphenol A type phenototo YP50 (manufactured by Toto Kasei Co., Ltd.), E-1256 (manufactured by Japan Epoxy Resin Co., Ltd.), bromine Phenototoy YPB40 (manufactured by Toto Kasei Co., Ltd.), which is a modified phenoxy resin.
As the component (C), a phenoxy resin having a biphenyl skeleton and a weight average molecular weight of 5,000 to 100,000 is particularly preferred from the viewpoints of heat resistance, moisture resistance and curing acceleration. Specific examples of such a phenoxy resin include YL6742BH30, YL6835BH40, YL6953BH30, YL6954BH30, and YL6974BH30, which are phenoxy resins made of reaction products of biphenyl type epoxy resin (YX4000 manufactured by Japan Epoxy Resin Co., Ltd.) and various bisphenol compounds. , YX8100BH30.
These phenoxy resins may be used alone or in combination of two or more.
A phenoxy resin having a weight average molecular weight of 5,000 to 100,000 improves the flexibility of the adhesive film and the prepreg by facilitating the curing, and facilitates the handling thereof, and also improves the mechanical strength and flexibility of the cured product. Moreover, the roughening by the oxidizing agent of hardened | cured material is also attained. In addition, when the weight average molecular weight of the resin of component (C) is less than 5000, the above effect is not sufficient, and when it exceeds 100,000, the solubility in an epoxy resin and an organic solvent is remarkably lowered, so that the practical use can be reduced. It becomes difficult.
About the compounding quantity of the resin of a component (C), although it changes also with the kind, Preferably it is 3-40 weight part with respect to 100 weight part of total amounts of the epoxy resin of a component (A), and the cyanate compound of a component (B). It is blended in the range. It is particularly preferable to blend in the range of 5 to 25 parts by weight. If it is less than 3 parts by weight, the resin composition may not be sufficiently cured to promote curing. When the resin composition is laminated (laminated) on a circuit board or when the laminated resin composition is thermally cured, the resin flow Therefore, the insulating layer thickness tends to be non-uniform. In addition, the roughening property of the cured product for forming the conductor layer tends to be difficult to obtain. On the other hand, when the amount exceeds 40 parts by weight, the functional group of the phenoxy resin is excessively present, and there is a tendency that a sufficiently low dielectric loss tangent value cannot be obtained. Further, when the resin composition is laminated on a circuit board. The fluidity is too low, and there is a tendency that resin filling in via holes and through holes existing in the circuit board cannot be sufficiently performed.
Although the total content of these components (A) to (C) in the epoxy resin composition in the present invention is not particularly limited, usually 25 wt% to 90 wt% when the epoxy resin composition is 100 wt%. It is contained in the range of%.
The epoxy resin composition in the present invention may be added with an organometallic compound that has been conventionally used as a curing catalyst in a system in which an epoxy resin composition and a cyanate compound are used in combination for the purpose of further shortening the curing time if necessary. . In the conventional system, when an organometallic compound is used, the gel time at the time of thermosetting was greatly influenced by the addition amount of a trace amount of the organometallic compound of several hundred ppm, but it was difficult to control, but in the epoxy resin composition of the present invention, Since the organometallic compound only serves to assist the curing, the gel time can be controlled relatively easily even when an organometallic catalyst is added, and is suitable for industrial production of multilayer printed wiring boards. An adhesive film and a prepreg can be provided. Examples of such organometallic compounds include organic copper compounds such as copper (II) acetylacetonate, organic zinc compounds such as zinc (II) acetylacetonate, cobalt (II) acetylacetonate, and cobalt (III) acetylacetonate. And organic cobalt compounds. The amount of addition in the case of adding an organometallic compound is usually 10 to 500 ppm, preferably 25 to 200 ppm in terms of metal with respect to component (B) “aromatic cyanate compound having two or more cyanato groups in one molecule”. It is a range.
In the epoxy resin composition in the present invention, an inorganic filler may be added in order to reduce the coefficient of thermal expansion of the insulating layer formed as necessary. The amount of the inorganic filler to be added varies depending on the properties of the epoxy resin composition and the desired function in the present invention, but when the epoxy resin composition is 100% by weight, usually 10 to 75% by weight, preferably Is blended in the range of 20 to 65% by weight.
Inorganic fillers include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, titanate Examples include strontium, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Silica is particularly preferable. The inorganic filler preferably has an average particle size of 5 μm or less. When the average particle diameter exceeds 5 μm, it may be difficult to stably form the fine pattern when forming the circuit pattern on the conductor layer. The inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance.
Furthermore, in addition to the components, other thermosetting resins, thermoplastic resins, and additives can be used in the epoxy resin composition of the present invention as necessary within a range not impairing the effects of the present invention. Thermosetting resins include monofunctional epoxy resins as diluents, alicyclic polyfunctional epoxy resins, rubber-modified epoxy resins, acid anhydride compounds as curing agents for epoxy resins, block isocyanate resins, xylene resins , Radical generators and polymerizable resins. Examples of the thermoplastic resin include polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Additives include organic fillers such as silicon powder, nylon powder and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, polymer-based antifoaming or leveling agents, imidazole-based, thiazole-based additives Examples thereof include adhesion imparting agents such as triazoles and silane coupling agents, and coloring agents such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.
The epoxy resin composition in the present invention forms a cured product having excellent heat resistance and electrical characteristics. For example, it is possible to form a cured product that satisfies a dielectric loss tangent condition (for example, 0.015 or less under the conditions of a measurement frequency of 1 GHz and a temperature of 23 ° C.) required for a printed wiring board used in a high frequency region.
Next, the adhesive film of the present invention will be described.
After the epoxy resin composition having the above (A) to (C) as essential components is dissolved in an organic solvent to form a resin varnish, this is applied onto a base film (support film) as a support, and hot air spraying, etc. The adhesive film of the present invention can be produced by drying the solvent by the above means.
Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. And aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Two or more organic solvents may be used in combination.
Those skilled in the art can appropriately set suitable drying conditions through simple experiments. For example, a varnish containing 30 to 60% by weight of an organic solvent can be dried at 80 to 100 ° C. for about 3 to 10 minutes. The amount of the organic solvent remaining in the epoxy resin composition is usually 10% by weight or less, preferably 5% by weight or less.
The adhesive film of the present invention is preferably such that the epoxy resin composition layer constituting the adhesive film has a melt viscosity characteristic suitable for use in a vacuum laminating method. That is, the adhesive film of the present invention softens and exhibits fluidity under the temperature conditions in vacuum lamination (usually 70 ° C. to 140 ° C.), and if via holes or through holes exist, the resin to these holes during vacuum lamination Those that can be filled at the same time are preferred. Such melt viscosity characteristics are disclosed in WO 01/97582, and can be determined by a temperature-melt viscosity curve obtained by measuring the dynamic viscoelastic modulus of the epoxy resin composition. When the measurement start temperature is 60 ° C., the melt viscosity is measured by heating at a rate of temperature increase of 5 ° C./min, and the temperature-melt viscosity curve is obtained, the melt viscosity at each temperature shows the values shown in Table 1. Those satisfying the above-mentioned characteristics are preferable as an adhesive film.
Figure 2003099952
A person skilled in the art can easily and appropriately prepare an adhesive film having melt viscosity characteristics suitable for the vacuum laminating method in accordance with the disclosure relating to the epoxy resin composition and the adhesive film of the present invention and the disclosure of WO 01/97582.
In the adhesive film of the present invention, the layer is preferably formed on a support film having a thickness of 10 to 200 [mu] m, not less than the conductor thickness of the circuit board on which the thickness of the epoxy resin composition layer is laminated, preferably in the range of 10 to 150 [mu] m.
A protective film according to the support film can be further formed on the surface of the epoxy resin composition layer on which the support film is not adhered. The thickness of the protective film is preferably 1 to 40 μm. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the epoxy resin composition layer and scratches. The adhesive film can also be stored in a roll.
Support films include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes referred to as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, release paper, copper foil, aluminum A metal foil such as a foil can be used. The support film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
Examples of the organic solvent used for the preparation of the varnish include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl cellosolve, and the like. Cellosolves, carbitols such as carbitol and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide and the like. These organic solvents may be used alone or in combination of two or more.
As the substrate used for the circuit substrate, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, or the like can be used. In the present invention, the circuit board refers to a circuit board formed with a patterned conductor layer (circuit) on one or both sides of the board. Further, the present invention also relates to a multilayer printed wiring board in which conductor layers and insulating layers are alternately formed, wherein one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned conductors (circuits). It is included in the circuit board. The surface of the conductor layer may be previously roughened by blackening or the like.
Next, the prepreg of the present invention will be described.
A prepreg can be produced by impregnating the epoxy resin composition of the present invention into a sheet-like reinforcing substrate made of fibers by a hot melt method or a solvent method and semi-curing by heating. That is, it can be set as the prepreg which will be in the state which impregnated the sheet-like reinforcement base material which consists of an epoxy resin composition.
As the sheet-like reinforcing substrate made of fibers, for example, those commonly used as prepreg fibers such as glass cloth and aramid fibers can be used.
In the hot melt method, without dissolving the resin in an organic solvent, the resin is once coated on the resin and a coated paper having good releasability, and then laminated on a sheet-like reinforcing substrate or directly applied by a die coater. Thus, a prepreg is manufactured. Similarly to the adhesive film, the solvent method is a method in which a sheet-like reinforcing base material is immersed in a resin varnish in which a resin is dissolved in an organic solvent, the resin varnish is impregnated into the sheet-like reinforcing base material, and then dried. The drying conditions in this case are the same as in the case of the adhesive film.
Next, a method for producing the multilayer printed wiring board of the present invention using the adhesive film of the present invention will be described.
The adhesive film of the present invention can be suitably laminated on a circuit board with a vacuum laminator. In the lamination, when the adhesive film has a protective film, the protective film is removed, and then the adhesive film is pressure-bonded to the circuit board while being pressurized and heated. The laminating conditions are as follows: adhesive film and circuit board are preheated as necessary, pressure bonding temperature is preferably 70 to 140 ° C., pressure bonding pressure is preferably 1 to 11 kgf / cm. 2 And laminating under reduced pressure with an air pressure of 20 mmHg or less. The laminating method may be a batch method or a continuous method using a roll. After lamination, the substrate is cooled to around room temperature, and then the support film is peeled off as necessary, and the epoxy resin composition laminated on the circuit board is cured by heating. The conditions for heat curing are selected in the range of 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, and more preferable conditions are 160 ° C. to 200 ° C. for 30 to 120 minutes. When a support film that has been subjected to a release treatment is used, the support film may be peeled off after being heat-cured. On the other hand, when a metal foil is used, the support film may be used as it is as a conductor layer, so there is a case where it is not necessary to peel off.
After the insulating layer is formed as a cured product of the epoxy resin composition in this manner, a via hole or a through hole may be formed by drilling the insulating layer with a drill, a laser, or the like as necessary.
Next, a conductor layer is formed by dry plating or wet plating. As the dry plating, known methods such as vapor deposition, sputtering and ion plating can be used. In the case of the wet method, first, an epoxy resin composition layer cured with an oxidizing agent such as permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, etc. The surface of the (insulating layer) is roughened to form uneven anchors. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. Specifically, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used as a pattern forming method thereafter.
Next, a method for producing the multilayer printed wiring board of the present invention using the prepreg of the present invention will be described.
As a method of laminating the prepreg of the present invention on a circuit board, for example, one or several sheets of the prepreg are stacked, and a metal plate is placed on the prepreg via a release film, and a lamination press is performed under pressure and heating conditions. The method of laminating by a machine is mentioned. In this case, the prepreg is laminated and cured on the circuit board at the same time, and the pressure is preferably 5 to 40 kgf / cm. 2 The temperature is preferably 120 to 220 ° C. and preferably 30 to 180 minutes for lamination and curing. Further, as in the case of the adhesive film described above, it is also possible to laminate a prepreg to a circuit board by a vacuum laminator and then heat cure.
After the insulating layer is formed as a prepreg cured product on the circuit board in this manner, as described above, via holes and through holes are formed in the insulating layer as necessary, and the surface of the insulating layer is roughened. A multilayer printed wiring board can be manufactured by forming a conductor layer by plating. In addition, metal foil can also be used as a conductor layer as it is by laminating a metal foil such as a copper foil between the release film and the prepreg.
Example
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
<Example 1>
30 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 175, Epicoat 825 manufactured by Japan Epoxy Resin Co., Ltd.) as component (A), prepolymer of bisphenol A dicyanate (Lonza Japan Co., Ltd. BA230S75, cyanate equivalent) as component (B) About 232, 60 parts by weight of methyl ethyl ketone (MEK) varnish with a non-volatile content of 75%, biphenyl skeleton-containing phenoxy resin varnish (YL6954BH30 manufactured by Japan Epoxy Resins Co., Ltd.), MEK with a weight average molecular weight of 38000 and a non-volatile content of 30% / Cyclohexanone varnish) 40 parts by weight and further 30 parts by weight of spherical silica were added to prepare an epoxy resin composition. The varnish-like epoxy resin composition was applied to a 38 μm thick PET film with a die coater so that the thickness after drying was 60 μm, and dried at 80 to 120 ° C. for 10 minutes to obtain an adhesive film. (Residual solvent about 1-2% by weight).
<Example 2>
Except for changing the phenoxy resin of component (C) described in Example 1 to 30 parts by weight of bisphenol A-type phenoxy resin varnish (E1256B40 manufactured by Japan Epoxy Resin Co., Ltd., MEK varnish having a weight average molecular weight of 48000 and a nonvolatile content of 40%). The same epoxy resin composition was applied on a 38 μm thick PET film with a die coater so that the thickness after drying was 60 μm, and dried at 80 to 120 ° C. for 10 minutes to obtain an adhesive film ( Residual solvent about 1-2% by weight).
<Example 3>
A glass cloth was impregnated with the varnish of the epoxy resin composition described in Example 1 and dried at 150 ° C. for 8 minutes to obtain a prepreg having a thickness of 0.1 mm (the epoxy resin composition content in the prepreg was 45% by weight, the residual Solvent about 1-2% by weight).
<Comparative Example 1>
Except that it does not contain the component (C) phenoxy resin, the same epoxy resin composition as the epoxy resin composition described in Example 1 is applied to a 38 μm thick PET film so that the thickness after drying is 60 μm. The coating was dried at 80 to 120 ° C. for 10 minutes. However, since the viscosity became too low during drying, some resin repelling (pinholes) was observed and the resin surface was still sticky after drying. Yes, it was impossible to produce an adhesive film that could withstand use.
<Comparative example 2>
Exactly the same epoxy as in Example 1 except that the phenoxy resin of component (C) is changed to 60 parts by weight of N, N′-dimethylformamide varnish having a non-volatile content of 20% of polysulfone (P-1700 manufactured by Solvay Advanced Polymers Co., Ltd.) The resin composition was applied on a 38 μm thick PET film with a die coater so that the thickness after drying was 60 μm, and dried at 80 to 120 ° C. for 10 minutes to obtain an adhesive film (residual solvent about 1-2% by weight).
<Comparative Example 3>
The same epoxy resin composition as in Example 1 except that the phenoxy resin of component (C) is changed to 10 parts by weight of phenol novolak resin (TD2090-60M; MEK varnish with a non-volatile content of 60%) manufactured by Dainippon Ink and Chemicals, Inc. The product was coated on a 38 μm thick PET film with a die coater so that the thickness after drying was 60 μm, and dried at 80 to 120 ° C. for 10 minutes to obtain an adhesive film (residual solvent about 1 to 2% by weight).
<Example 4>
A circuit board was prepared from an FR4 double-sided copper clad laminate having a copper foil of 35 μm and a thickness of 0.2 mm, and the adhesive film obtained in Example 1 was subjected to a batch-type vacuum laminator at a temperature of 110 ° C. and a pressure of 5 kgf / cm. 2 After laminating on both surfaces under the conditions of atmospheric pressure of 5 mmHg or less and pressurization for 30 seconds, the PET film was peeled off and cured by heating at 170 ° C. for 30 minutes. Thereafter, drilling with a laser to form a via hole, then roughening the epoxy resin composition surface cured with an alkaline oxidizer of permanganate, electroless and electroplating and patterning according to a subtractive method, A four-layer printed wiring board was obtained. Thereafter, annealing was further performed at 180 ° C. for 90 minutes. The peel strength of the obtained conductor layer was 0.7 kgf / cm. The peel strength measurement was evaluated according to Japanese Industrial Standard (JIS) C6481, and the conductor plating thickness was about 30 μm. When the obtained multilayer printed wiring board was immersed in solder at 260 ° C. for 60 seconds and the solder heat resistance was observed, there were no abnormalities such as resin delamination and conductor peeling.
<Example 5>
Using the adhesive film obtained in Example 2, a 4-layer printed wiring board was obtained in the same manner as in Example 4. The peel strength of the obtained conductor layer was 0.8 kgf / cm. The obtained multilayer printed wiring board was immersed in solder at 260 ° C. for 60 seconds and the solder heat resistance was observed, and there was no abnormality such as resin delamination and conductor peeling.
<Example 6>
Two prepregs obtained in Example 3 were stacked and sandwiched between metal plates through a release film, and 120 ° C., 10 kgf / cm. 2 After 15 minutes laminating and pressing at 170 ° C., 40 kgf / cm 2 Was laminated and pressed for 60 minutes to obtain a laminated plate having a thickness of 0.2 mm. Next, the surface was roughened with an alkaline manganate permanganate, and a conductor layer was formed on the entire surface by electroless and electrolytic plating. Thereafter, an annealing treatment was further performed at 180 ° C. for 60 minutes. The peel strength of the obtained conductor layer was 0.7 kgf / cm. The obtained multilayer printed wiring board was immersed in solder at 260 ° C. for 60 seconds and the solder heat resistance was observed, and there was no abnormality such as resin delamination and conductor peeling.
<Comparative example 4>
A 4-layer printed wiring board was obtained in the same manner as in Example 4 using the adhesive film obtained in Comparative Example 2. The peel strength of the obtained conductor layer was 0.2 kgf / cm. When the obtained multilayer printed wiring board was immersed in solder at 260 ° C. for 60 seconds and the solder heat resistance was observed, an abnormality in which the conductor peeled off was observed due to the low peel strength.
<Measurement of curing behavior of resin composition>
The dynamic viscoelasticity of the epoxy resin compositions of the adhesive films obtained in Examples 1 and 2 and Comparative Example 2 was measured using model Rhcosol-G3000 manufactured by UBM Co., Ltd. The measurement results of Examples 1 and 2 and Comparative Example 2 are shown in FIG. The measurement was performed from an initial temperature of 60 ° C. at a heating rate of 5 ° C./min, a measurement interval temperature of 2.5 ° C., and a frequency of 1 Hz / deg. As can be seen from FIG. 1, in Examples 1 and 2, an increase in melt viscosity was observed from about 130 ° C. and increased rapidly at 170 ° C. or more, but in Comparative Example 2 containing no phenoxy resin, the viscosity increased to around 200 ° C. There was no increase. This shows that the resin compositions of Examples 1 and 2 can be cured at a low temperature. Tables 2 to 4 show the melt viscosity values at each temperature.
Figure 2003099952
Figure 2003099952
Figure 2003099952
<Evaluation of pot life of resin composition>
The dynamic viscoelasticity was measured in the same manner as described above for the epoxy resin composition of the adhesive film obtained in Comparative Example 3. Moreover, after storing the epoxy resin composition of the adhesive film obtained in Examples 1 and 2 and Comparative Examples 2 and 3 at room temperature for 3 days, the dynamic viscoelasticity was measured in the same manner as described above. The results before and after storage for Comparative Example 3 are shown in FIG. For the resin compositions of Examples 1 and 2 and Comparative Example 2, the curve was almost the same as before storage (not shown in the figure), and it was found that the pot life was excellent. On the other hand, in the case of Comparative Example 3 in which a phenol resin is used as a curing accelerator, the resin melt viscosity is extremely increased after being stored at room temperature for 3 days and the pot life is inferior, so that it is used as a resin composition for an adhesive film or prepreg. It turned out to be unbearable. When combined with the results of FIG. 1, it can be seen that the epoxy resin compositions of the adhesive films obtained in Examples 1 and 2 have both a curing acceleration effect and a pot life due to the phenoxy resin.
<Evaluation of electrical characteristics>
The epoxy resin composition surfaces of the adhesive films obtained in Examples 1 and 2 and Comparative Example 2 were stacked and vacuum laminated, and after the support film was peeled off, the vacuum lamination of the resin composition surfaces was similarly repeated several times. A resin composition sample having a thickness of about 1 mm for 16 layers of 60 μm resin was prepared. It was heat cured at 100 ° C. for 30 minutes and further at 180 ° C. for 90 minutes. Using this sample, the dielectric constant and dielectric loss tangent were measured according to IPC-TM650 2.5.5.9. Table 5 shows the results of measurement values at room temperature (23 ° C.) and a measurement frequency of 1 GHz.
Figure 2003099952
From the results shown in Table 5, the resin composition of the present invention exhibits excellent electrical characteristics under the curing condition of 180 ° C. (dielectric loss tangent of 0.015 or less at 1 GHz and 23 ° C.). On the other hand, in Comparative Example 2, it can be seen that the dielectric loss tangent of the cured product of the resin composition shows a high value in spite of using polysulfone having a lower value than the phenoxy resin in the dielectric loss tangent of the resin itself.
Further, as can be seen from Examples 4 to 6 and Comparative Example 4, the adhesive film and prepreg of the present invention can form copper plating with excellent adhesion by roughening with an oxidizing agent, and can be easily multilayered by a build-up method. It is possible to obtain a printed wiring board.
Industrial applicability
The adhesive film and prepreg of the present invention are excellent in pot life and curing characteristics, and can exhibit excellent electrical characteristics after curing. Moreover, since the cured product can be roughened with an oxidant after curing, a conductor layer can be formed by plating, and particularly excellent as an adhesive film and prepreg for industrially producing a multilayer printed wiring board by a built-up method. It will be a thing.
[Brief description of the drawings]
1 is a result of measuring the dynamic viscoelasticity of the epoxy resin composition constituting the adhesive films obtained in Examples 1 and 2 and Comparative Example 2. FIG.
FIG. 2 is a result of measuring the dynamic viscoelasticity of the epoxy resin composition constituting the adhesive film obtained in Comparative Example 3 before and after storage at room temperature for 3 days.

Claims (14)

下記成分(A)〜(C)を含有するエポキシ樹脂組成物が支持フィルム上に層形成されていることを特徴とする接着フィルム;
(A)1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、
(B)1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、及び
(C)重量平均分子量が5000乃至100000のフェノキシ樹脂。
An adhesive film, wherein an epoxy resin composition containing the following components (A) to (C) is layered on a support film;
(A) an aromatic epoxy resin having two or more epoxy groups in one molecule;
(B) an aromatic cyanate compound having two or more cyanato groups in one molecule, and (C) a phenoxy resin having a weight average molecular weight of 5000 to 100,000.
成分(C)のフェノキシ樹脂がビフェニル骨格を有するフェノキシ樹脂である請求項1記載の接着フィルム。The adhesive film according to claim 1, wherein the phenoxy resin of component (C) is a phenoxy resin having a biphenyl skeleton. エポキシ樹脂組成物の加熱硬化後の誘電正接が、測定周波数1GHz及び温度23℃の条件で0.015以下である請求項1乃至2記載の接着フィルム。The adhesive film according to claim 1 or 2, wherein the dielectric loss tangent of the epoxy resin composition after heat curing is 0.015 or less under the conditions of a measurement frequency of 1 GHz and a temperature of 23 ° C. エポキシ樹脂組成物中の成分(A)の芳香族系エポキシ樹脂のエポキシ基と成分(B)の芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、成分(A)と成分(B)の合計量100重量部に対し、成分(C)のフェノキシ樹脂が3乃至40重量部配合されている請求項1乃至3記載の接着フィルム。The ratio of the epoxy group of the aromatic epoxy resin of the component (A) in the epoxy resin composition to the cyanate group of the aromatic cyanate compound of the component (B) is 1: 0.5 to 1: 3, and the component ( 4. The adhesive film according to claim 1, wherein 3 to 40 parts by weight of the phenoxy resin of component (C) is blended with respect to 100 parts by weight of the total amount of A) and component (B). 請求項1乃至4記載の接着フィルムにより絶縁層が形成されたことを特徴とする多層プリント配線板。A multilayer printed wiring board, wherein an insulating layer is formed of the adhesive film according to claim 1. 請求項1乃至4記載の接着フィルムを加圧及び加熱条件下で回路基板にラミネートし、必要により支持フィルムを剥離し、回路基板にラミネートされたエポキシ樹脂組成物を加熱硬化し絶縁層を形成した後、支持フィルムを剥離していない場合は必要によりそれを剥離し、必要により該絶縁層表面を酸化剤で粗化し、導体層をメッキにより形成する工程を含むことを特徴とする多層プリント配線板の製造方法。The adhesive film according to claim 1 is laminated on a circuit board under pressure and heating conditions, the support film is peeled off as necessary, and the epoxy resin composition laminated on the circuit board is heat-cured to form an insulating layer. Thereafter, if the support film is not peeled off, the multilayer printed wiring board includes a step of peeling the support film as necessary, roughening the surface of the insulating layer with an oxidizing agent as necessary, and forming a conductor layer by plating. Manufacturing method. 請求項6記載の製造方法により得られた多層プリント配線板。A multilayer printed wiring board obtained by the production method according to claim 6. 下記成分(A)〜(C)を含有するエポキシ樹脂組成物が繊維からなるシート状補強基材中に含浸されていることを特徴とするプリプレグ;
(A)1分子中に2以上のエポキシ基を有する芳香族系エポキシ樹脂、
(B)1分子中に2以上のシアナト基を有する芳香族系シアネート化合物、及び
(C)重量平均分子量が5000乃至100000のフェノキシ樹脂。
A prepreg characterized in that an epoxy resin composition containing the following components (A) to (C) is impregnated in a sheet-like reinforcing base material comprising fibers;
(A) an aromatic epoxy resin having two or more epoxy groups in one molecule;
(B) an aromatic cyanate compound having two or more cyanato groups in one molecule, and (C) a phenoxy resin having a weight average molecular weight of 5000 to 100,000.
成分(C)のフェノキシ樹脂がビフェニル骨格を有するフェノキシ樹脂である請求項8記載のプリプレグ。The prepreg according to claim 8, wherein the phenoxy resin of component (C) is a phenoxy resin having a biphenyl skeleton. エポキシ樹脂組成物の加熱硬化後の比誘電率が、測定周波数1GHz及び温度23℃の条件で0.015以下である請求項8乃至9記載のプリプレグ。The prepreg according to any one of claims 8 to 9, wherein the epoxy resin composition has a relative dielectric constant after heat curing of 0.015 or less under conditions of a measurement frequency of 1 GHz and a temperature of 23 ° C. エポキシ樹脂組成物中の成分(A)の芳香族系エポキシ樹脂のエポキシ基と成分(B)の芳香族系シアネート化合物のシアナト基の割合が1:0.5乃至1:3であり、成分(A)と成分(B)の合計量100重量部に対し、成分(C)のフェノキシ樹脂が3乃至40重量部配合されている請求項8乃至10記載のプリプレグ。The ratio of the epoxy group of the aromatic epoxy resin of the component (A) in the epoxy resin composition to the cyanate group of the aromatic cyanate compound of the component (B) is 1: 0.5 to 1: 3, and the component ( The prepreg according to any one of claims 8 to 10, wherein 3 to 40 parts by weight of the phenoxy resin of component (C) is blended with respect to 100 parts by weight of the total amount of A) and component (B). 請求項8乃至11記載のプリプレグにより絶縁層が形成されたことを特徴とする多層プリント配線板。A multilayer printed wiring board, wherein an insulating layer is formed by the prepreg according to claim 8. 請求項8乃至11記載のプリプレグを加圧及び加熱条件下で回路基板にラミネート及び硬化し絶縁層を形成した後、必要により該絶縁層表面を酸化剤で粗化し、導体層をメッキにより形成する工程を含むことを特徴とする多層プリント配線板の製造方法。A prepreg according to any one of claims 8 to 11 is laminated and cured on a circuit board under pressure and heating conditions to form an insulating layer, and then the surface of the insulating layer is roughened with an oxidizing agent as necessary, and a conductor layer is formed by plating The manufacturing method of the multilayer printed wiring board characterized by including a process. 請求項13記載の製造方法により得られた多層プリント配線板。A multilayer printed wiring board obtained by the production method according to claim 13.
JP2004508197A 2002-05-27 2003-05-26 Adhesive film and prepreg Pending JPWO2003099952A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002152489 2002-05-27
JP2002152489 2002-05-27
PCT/JP2003/006562 WO2003099952A1 (en) 2002-05-27 2003-05-26 Adhesive film and prepreg

Publications (1)

Publication Number Publication Date
JPWO2003099952A1 true JPWO2003099952A1 (en) 2005-10-20

Family

ID=29561277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004508197A Pending JPWO2003099952A1 (en) 2002-05-27 2003-05-26 Adhesive film and prepreg

Country Status (4)

Country Link
JP (1) JPWO2003099952A1 (en)
AU (1) AU2003241778A1 (en)
TW (1) TW200400242A (en)
WO (1) WO2003099952A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011641B2 (en) * 2004-01-28 2012-08-29 味の素株式会社 Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JP2005244150A (en) 2004-01-28 2005-09-08 Ajinomoto Co Inc Resin composition, adhesive film using it, and multi-layer printed wiring board
JP5055683B2 (en) * 2004-03-30 2012-10-24 住友ベークライト株式会社 Insulating sheet, insulating sheet with substrate, and multilayer printed wiring board
TWI455988B (en) * 2006-10-13 2014-10-11 Ajinomoto Kk Resin composition
JP5130698B2 (en) * 2006-11-21 2013-01-30 住友ベークライト株式会社 Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP2008143971A (en) * 2006-12-07 2008-06-26 Sumitomo Bakelite Co Ltd Insulation resin composition, insulation resin sheet with substrate, multi-layer printed wiring board and semiconductor device
TWI548320B (en) * 2007-09-11 2016-09-01 Ajinomoto Kk Manufacturing method of multilayer printed circuit board
WO2009119598A1 (en) 2008-03-25 2009-10-01 住友ベークライト株式会社 Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board, and semiconductor device
JP2010037489A (en) * 2008-08-07 2010-02-18 Hitachi Chem Co Ltd Adhesive film, and metal foil with resin
JP5636962B2 (en) 2009-01-19 2014-12-10 味の素株式会社 Resin composition
TWI565750B (en) 2009-02-20 2017-01-11 Ajinomoto Kk Resin composition
JP5168312B2 (en) * 2010-04-28 2013-03-21 住友ベークライト株式会社 Multilayer printed circuit board manufacturing method
KR20140038519A (en) * 2011-06-21 2014-03-28 스미토모 베이클리트 컴퍼니 리미티드 Laminated plate manufacturing method
WO2012176424A1 (en) * 2011-06-21 2012-12-27 住友ベークライト株式会社 Method for manufacturing laminated plate
JP5767540B2 (en) * 2011-09-14 2015-08-19 積水化学工業株式会社 B-stage film, multilayer substrate and laminated film which are episulfide resin materials
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP6582807B2 (en) * 2015-09-25 2019-10-02 味の素株式会社 Manufacturing method of resin sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204296A (en) * 1995-01-20 1996-08-09 Hitachi Chem Co Ltd Multiwire wiring board and manufacture thereof
JPH1150032A (en) * 1997-08-04 1999-02-23 Hitachi Chem Co Ltd Connection member for circuit and circuit board
JPH11100562A (en) * 1997-09-26 1999-04-13 Sumitomo Bakelite Co Ltd Interlayer insulation adhesive for multilayer printed wiring board and copper foil
JP3409751B2 (en) * 1999-10-22 2003-05-26 ソニーケミカル株式会社 Connection material and connection body
JP2001240687A (en) * 2000-02-29 2001-09-04 Hitachi Chem Co Ltd Prepreg and laminated board clad with metallic foil
JP4601781B2 (en) * 2000-07-28 2010-12-22 株式会社Adeka Non-woven fabric for laminate
JP2002146323A (en) * 2000-11-16 2002-05-22 Hitachi Chem Co Ltd Adhesive composition and adhesive member using the same and substrate for loading semiconductor and semiconductor device

Also Published As

Publication number Publication date
WO2003099952A1 (en) 2003-12-04
AU2003241778A1 (en) 2003-12-12
TW200400242A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
JP4725704B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP4423779B2 (en) Epoxy resin composition, adhesive film and prepreg using the composition, multilayer printed wiring board using the same, and method for producing the same
JP5605259B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP6024783B2 (en) Resin composition
KR100970105B1 (en) Method of laminating circuit board and method of forming insulation layer, multilayer printed wiring board and production method therefor and adhesion film for multilayer printed wiring board
JP5381764B2 (en) Resin composition
JP5298852B2 (en) Resin composition
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
US20040099367A1 (en) Adhesive film and method for manufacturing multilayer printed wiring board comprising the same
JP5029093B2 (en) Resin composition
JP5636962B2 (en) Resin composition
JPWO2003099952A1 (en) Adhesive film and prepreg
JP2009155354A (en) Resin composition for insulating layer
US20050129895A1 (en) Adhesive film and prepreg
JP2010090237A (en) Epoxy resin composition
WO2003009655A1 (en) Film for circuit board
JP5293065B2 (en) Resin composition
WO2007114464A1 (en) Resin composition for forming insulating layer
US20050186434A1 (en) Thermosetting resin composition, adhesive film and multilayer printed wiring board using same
JP2002241590A (en) Flame-retardant epoxy resin composition
JP6356587B2 (en) Epoxy resin composition and use thereof
JP2007273616A (en) Manufacturing method for multilayer printed circuit board
JP2003127313A (en) Adhesive film and prepreg
JP5664693B2 (en) Resin composition
JP2010028036A (en) Production method of multilayer printed wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060202