JP5338807B2 - 電池状態判定方法および自動車 - Google Patents

電池状態判定方法および自動車 Download PDF

Info

Publication number
JP5338807B2
JP5338807B2 JP2010505133A JP2010505133A JP5338807B2 JP 5338807 B2 JP5338807 B2 JP 5338807B2 JP 2010505133 A JP2010505133 A JP 2010505133A JP 2010505133 A JP2010505133 A JP 2010505133A JP 5338807 B2 JP5338807 B2 JP 5338807B2
Authority
JP
Japan
Prior art keywords
lead battery
battery
deterioration degree
deterioration
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010505133A
Other languages
English (en)
Other versions
JPWO2009118910A1 (ja
Inventor
啓介 福原
謙一 前田
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Publication of JPWO2009118910A1 publication Critical patent/JPWO2009118910A1/ja
Application granted granted Critical
Publication of JP5338807B2 publication Critical patent/JP5338807B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Description

本発明は電池状態判定方法および自動車に係り、特に、車両に搭載された鉛電池の電池状態判定方法および該電池状態判定方法により鉛電池の電池状態を判定する電池状態判定装置を備えた自動車に関する。
現在、環境問題等への取り組みから、大型バスやトラックを中心に、アイドリングストップ・スタート(ISS)機能を備えた車両が一般化されつつある。ISS機能を有する車両(ISS車)は、車両停車時にエンジンを止め、アイドリングストップ時の燃料の消費、排気ガスの排出を抑えることができる。
エンジン停止時はオルタネータによる発電ができないため、鉛電池のみで車載電装品への電力を供給する。このため、ISS車に搭載された鉛電池は、ISS機能を有していない車両に搭載された鉛電池に比べ残存容量が低くなることが予想される。また、鉛電池は車両に搭載されてから劣化が始まり、満充電容量は徐々に低下していく。劣化の進んだ鉛電池はさらに走行時の残存容量が少なくなることが予想されるため、新品状態の鉛電池に比べ、エンジンの再始動ができないおそれが高くなる。従って、鉛電池の劣化度を算出して、エンジン始動に必要な電気容量を鉛電池が保持するかを判定し、保持しない場合は交換を促す旨の信号を車両側のコンピュータもしくはユーザ側に伝えることが望ましい。
車載鉛電池の劣化判定技術として、日本国特開2006−10601号公報には、鉛電池に流れる充電電流と放電電流とを別々に積算し、充放電収支から劣化度ないし健康状態(SOH)を算出する技術が開示されている。なお、本発明に関連する技術としては、鉛電池の開回路電圧(OCV)を計測することにより求める技術(例えば、日本国特開平4−264371号公報参照)、鉛電池の内部抵抗を測定することにより求める技術(例えば、日本国特開2002−334725号公報参照)、鉛電池の開回路電圧および内部抵抗を、複数の劣化度に応じてOCVと内部抵抗との関係が予め定義されたマップに当てはめて鉛電池の劣化度を推定する技術(例えば、日本国特開2006−15896号公報参照)が知られている。
しかしながら、日本国特開2006−10601号公報の技術では、精度よく劣化度SOHを推定することができない。それは、鉛電池の劣化が放電深度DODおよび周囲温度の影響を受けるためと考えられる。
本発明は上記事案に鑑み、鉛電池の劣化判定を高精度に行うことができる電池状態判定方法および該電池状態判定方法により鉛電池の電池状態を判定する電池状態判定装置を備えた自動車を提供することを課題とする。
上記課題を解決するために、本発明の第1の態様は、車両に搭載された鉛電池の電池状態判定方法であって、前記鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて前記鉛電池の放電による劣化度を算出する第1の劣化度算出ステップ、または、前記鉛電池の過充電量と単位過充電量あたりの劣化度増分とを用いて前記鉛電池の過充電による劣化度を算出する第2の劣化度算出ステップ、または、前記第1および第2の劣化度算出ステップの両方で算出した劣化度を用いて前記鉛電池の劣化度を算出する第3の劣化度算出ステップを含み、前記第1の劣化度算出ステップは、車両走行時の前記鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて車両走行時の前記鉛電池の放電による劣化度を求める第1のステップと、車両駐車時の前記鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて車両駐車時の前記鉛電池の放電による劣化度を求める第2のステップとを含み、前記第1のステップおよび第2のステップにおいて、前記単位放電量あたりの劣化度増分に、車両走行時の前記鉛電池の放電深度に応じた劣化度増分を用いることおよび車両駐車時の前記鉛電池の放電深度に応じた劣化度増分を用い、前記第1のステップは、車両走行時の前記鉛電池の放電量DISrと車両走行時の放電回数NUMdと前記鉛電池の新品時における満充電容量CAP0とから車両走行時の放電深度DODrを求め、前記鉛電池の放電深度と単位放電量あたりの劣化度増分と温度との関係を予め定めたマップないし関係式に前記求めたDODrおよび前記鉛電池の温度Tを代入することにより車両走行時の前記鉛電池の単位放電量あたりの劣化度増分ΔSOHr1を求め、該求めた単位放電量あたりの劣化度増分ΔSOHr1と前記放電量DISrとの積から車両走行時の前記鉛電池の劣化度増分ΔSOHrを求め、該求めた劣化度増分ΔSOHrを車両走行前の前記鉛電池の放電による劣化度SOHr0から減算することで車両走行時の前記鉛電池の放電による劣化度SOHrを算出する、ことを特徴とする。
第1の態様で算出された劣化度により鉛電池の劣化判定に加え、他の劣化判定、例えば、電圧OCVと、鉛電池の直流内部抵抗の変化量を電圧OCVの変化量で除したΔDCR/ΔOCVを用いた劣化判定や、電圧OCVと鉛電池の直流抵抗DCRを用いた劣化判定とを併用するようにしてもよい。このとき、電圧OCVは、車両駐車時の鉛電池から車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることが好ましい。
また、上記課題を解決するために、本発明の第2の態様は、第1の態様の電池状態判定方法により鉛電池の電池状態を判定する電池状態判定装置を備えた自動車である。
本発明の第1の態様によれば、使用形態および環境が大きく異なる車載鉛電池の劣化度を精度よく算出することができ、第2の態様によれば、劣化による鉛電池の電気容量不足による車両始動トラブルを防止することができる、という効果を得ることができる。
以下、図面を参照して、本発明に係る自動車の実施の形態について説明する。
(構成)
図1に示すように、本実施形態の自動車100はガソリンエンジン車であり、自動車100は、例えば、エンジンルームに、液式鉛電池8と、鉛電池8の例えば上部に配置され鉛電池8の電池状態を判定する電池状態判定システム1とを備えている。なお、本実施形態では、鉛電池8と電池状態システム1とは一体化されている。
図2に示すように、電池状態判定システム1は、差動増幅回路等を有し鉛電池8の電圧を検出する電圧検出回路2、サーミスタ等の温度センサ9と協働して鉛電池8の温度を検出する温度検出回路3、ホール素子等の電流センサ10と協働して鉛電池8に流れる電流を検出する電流検出回路4、マイクロコンピュータ(以下、MCUと略称する。)を有する演算装置5およびEEPROM等の不揮発性メモリを有する記憶装置6で構成された電池状態判定装置7を備えている。なお、本実施形態の電池状態判定装置7は鉛電池8を電源として作動する。
鉛電池8は、電池容器となる略角型の電槽を有しており、電槽内には合計6組の極板群が収容されている。電槽の材質には、例えば、ポリエチレン(PE)等の高分子樹脂を用いることができる。各極板群は複数枚の負極板および正極板がセパレータを介して積層されており、セル電圧は2.0Vである。このため、鉛電池8の公称電圧は12Vとされている。電槽の上部は、電槽の上部開口を密閉するPE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池8を電源として外部へ電力を供給するためのロッド状正極端子および負極端子が立設されている。なお、上述した温度センサは電槽の側面部または底面部に固定されている。
鉛電池8の正極端子は、図示を省略したイグニッションスイッチ(以下、IGNと略称する。)の中央端子に接続されている。IGNは、中央端子とは別に、OFF端子、ON/ACC端子およびSTART端子を有しており、中央端子とこれらOFF、ON/ACCおよびSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。
START端子はエンジン始動用セルモータ(スタータ)に接続されている。セルモータは、不図示のクラッチ機構を介してエンジンの回転軸に回転駆動力の伝達が可能である。また、ON/ACC端子は、エアコン、ラジオ、ランプ等の補機および一方向への電流の流れを許容する整流素子を含むレギュレータを介してエンジンの回転により発電するオルタネータの一端に接続されている。すなわち、レギュレータのアノード側はオルタネータの一端に、カソード側はON/ACC端子に接続されている。エンジンの回転軸は、不図示のクラッチ機構を介してオルタネータに動力の伝達が可能である。このため、エンジンが回転状態にあるときは、不図示のクラッチ機構を介してオルタネータが作動しオルタネータからの電力が補機や鉛電池8に供給(充電)される。なお、OFF端子はいずれにも接続されていない。
電圧検出回路2の出力側は演算装置5内のA/Dコンバータに接続されている。また、温度検出回路3および電流検出回路4の出力側も、演算装置5内のA/Dコンバータにそれぞれ接続されている。このため、演算装置5のMCUは、鉛電池8の電圧、温度および鉛電池8に流れる電流をデジタル値で取り込むことができる。
演算装置5のMCUは、中央演算処理装置として機能するCPU、演算装置5の基本制御プログラムや後述するマップ、数式等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM等を含んで構成されている。鉛電池8の負極端子、上述したオルタネータ、セルモータおよび補機の他端、並びに、電池状態判定装置7は、それぞれグランド(自動車100のシャーシと同電位)に接続されている。なお、電池状態判定装置7は、I/Oを介して上位の車両制御システムと通信可能である。
(基本原理)
1.充放電量を用いた劣化判定
ここで、本実施形態の自動車100に搭載された鉛電池8の劣化判定の基本原理について、走行時の放電による鉛電池8の劣化度SOHr、駐車時の放電による鉛電池8の劣化度SOHp、過充電による鉛電池8の劣化度SOHc、鉛電池8の劣化度の算出および劣化判定の順に説明する。
1−1.走行時の放電による鉛電池8の劣化度SOHrの算出
まず、エンジン停止時、つまり、走行終了時に1走行時の放電深度DODrを次式(1)により求める:DODr=(DISr÷NUMd÷CAP0)×100(%)・・・(1)。式(1)において、DISrは1走行時の鉛電池8の放電量、NUMdは1走行時の鉛電池8の放電回数、CAP0は鉛電池8の新品時の満充電容量である。なお、1走行時の放電量DISrおよび1走行時の放電回数NUMdは、電流センサ10および電流検出回路4を介して検知する。
鉛電池8の放電深度DOD(%)と、単位放電量(本実施形態では放電1Ah)あたりの鉛電池8の劣化度ΔSOHd1と、鉛電池8の温度Tとの関係は、図3に示す特性線図で表すことができる。図3の特性線図は、鉛電池8の温度を3水準(70°C、40°C、25°C)に振り分け、充放電試験機による走行模擬試験を行い、試験時の放電量と放電による劣化度の推移から作成したものである。
図3に示した特性線図と、1走行時の鉛電池8の放電深度DODrと、1走行時の鉛電池8の平均温度Trから、1走行時の放電1Ahあたりの鉛電池8の劣化度ΔSOHr1を求める。例として、1走行時の放電深度DODrがX1%、1走行時の平均温度Trが50°Cの場合について、1走行時の放電1Ahあたりの鉛電池8の劣化度ΔSOHr1の算出法を示す。まず、70°Cと40°Cのプロットラインから比例(按分)計算で、50°Cにおける放電深度DODと放電1Ahあたりの劣化度ΔSOHd1の対応関係(図3の破線参照)を求める。求めた50°Cにおける放電深度DODと放電1Ahあたりの劣化度ΔSOHd1の対応関係から、1走行時の放電深度DODr=X1における1走行時の放電1Ahあたりの劣化度ΔSOHr1=Y1を求める。
次に、1走行時の放電による鉛電池8の劣化度増分ΔSOHrを次式(2)により求める:ΔSOHr=ΔSOHr1×DISr(%)・・・(2)。なお、放電電流が流れるたびに放電深度DODrを求め、その都度、劣化度増分ΔSOHrを求めるようにしてもよい。
次いで、走行時の放電による鉛電池8の劣化度SOHrを次式(3)により算出する:SOHr=SOHr0−ΔSOHr(%)・・・(3)。式(3)において、SOHr0は、走行前の放電による鉛電池8の劣化度で、初期値は100である。なお、暗電流が1〜3mA程度と小さくISS車のように過充電量が小さい場合は、走行時の放電による鉛電池8の劣化度SOHrを鉛電池8のSOHとしてもよい。
1−2.駐車時の放電による鉛電池8の劣化度SOHpの算出
上記走行時の放電による劣化に加え、駐車時の暗電流による鉛電池8の劣化も考慮した、放電による劣化度SOHpを求める。まず、1駐車時の暗電流放電量DISpを求める。暗電流とは、駐車時に鉛電池8から自動車100(上述した構成に即して説明すれば、セルモータおよび補機)に流れる負荷電流をいう。駐車中においても鉛電池8は微小ではあるが放電している。1駐車時の暗電流放電量DISpは電流センサ10および電流検出回路4で計測した暗電流を積算することにより得ることができる。暗電流の値が既知であれば、次式(4)で1駐車時の暗電流放電量DISpを求めるようにしてもよい:DISp=Ish×tp(Ah)・・・(4)。なお、式(4)において、Ishは自動車100の暗電流値、tpは駐車時間である。
次に、1駐車時の暗電流放電量DISpから、1駐車時の放電深度DODpを次式(5)により求める:DODp=(DISp÷CAP0)×100(%)・・・(5)。上述した1走行時の放電1Ahあたりの劣化度ΔSOHr1の算出の場合と同様に、図3に示す特性線図と1駐車時の放電深度DODpと1駐車時の鉛電池8の平均温度Tpから、1駐車時の放電1Ahあたりの劣化度ΔSOHp1を求める。
次いで、1駐車時の鉛電池8の劣化度増分ΔSOHpを次式(6)により求める:ΔSOHp=ΔSOHp1×DISp(%)。さらに、放電による鉛電池8の劣化度SOHdを次式(7)により算出する:SOHd=SOHd0−(ΔSOHr+ΔSOHp)(%)・・・(7)。なお、SOHd0は、前回求めた(直近の)放電による劣化度で、初期値は100である。
1−3.過充電による鉛電池8の劣化度SOHcの算出
まず、1走行時の単位過充電量(本実施形態では過充電1Ah)あたりの鉛電池8の劣化度ΔSOHc1を求める。鉛電池8の過充電による劣化度SOHc(%)と、過充電1Ahあたりの鉛電池8の劣化度ΔSOHc1と、鉛電池8の温度Tとの関係は、図4に示す特性線図で表すことができる。図4の特性線図は、鉛電池8の温度を3水準(75°C、40°C、25°C)に振り分け、充放電試験機による定電圧および定電流の過充電試験を行い、試験時の過充電量と過充電による劣化度の推移から作成したものである。
図4に示した特性線図と、走行前の過充電による鉛電池8の劣化度SOHcと、1走行時の鉛電池8の平均温度Trから、1走行時の過充電1Ahあたりの鉛電池8の劣化度ΔSOHc1を求める。例として、走行前の過充電による劣化度SOHcがX2%、鉛電池8の1走行時の平均温度Trが50°Cの場合について、1走行時の過充電1Ahあたりの鉛電池8の劣化度ΔSOHc1の算出法を示す。まず、40°Cと75°Cのプロットラインから比例計算で50°Cにおける走行前の過充電による劣化度SOHcと過充電1Ahあたりの劣化度ΔSOHc1の対応関係(図4の破線参照)を求める。求めた50°Cにおけると走行前の過充電による劣化度SOHcと過充電1Ahあたりの劣化度ΔSOHc1の対応関係から、走行前の過充電による劣化度SOHc=X2における1Ahあたりの劣化度ΔSOHc1=Y2を求める。
次に、1走行あたりの過充電量Qを次式(8)により求める:Q=CHAr−(DISr+DISp)(Ah)・・・(8)。なお、式(8)において、CHArは1走行あたりの充電積算量である。また、求めた1走行あたりの過充電量Qと過充電1Ahあたりの劣化度ΔSOHc1から、1走行あたりの鉛電池8の劣化度増分ΔSOHcを次式(9)により求める:ΔSOHc=Q×ΔSOHc1(%)・・・(9)。
次いで、過充電による鉛電池8の劣化度SOHcを次式(10)により算出する:SOHc=SOHc0−ΔSOHc(%)・・・(10)。なお、式(10)において、劣化度SOHc0は、前回求めた(直近の)過充電による劣化度で、初期値は100である。
1−4.鉛電池8の劣化度の算出および劣化判定
上記算出した劣化度SOHdの値と劣化度SOHcの値を比較して小さい方をもって、鉛電池8の劣化度SOHとする。これは、ISS車等に対するフェールセーフ(アイドリングストップ後のエンジン再始動の確保)の思想による。このように算出された鉛電池8の劣化度SOHは、予め設定された閾値SOHxと比較され、閾値SOHx以下の場合には劣化した(寿命)と判定される。
鉛電池8の劣化判定は、上述した充放電量を用いた劣化判定でほとんどのケースをカバーできると考えられるが、例えば、(A)極板間に異物が混入する場合や、(B)格子表面が不導体化する場合などのレアケースも網羅するために、上記1の充放電量を用いた劣化判定に加え、以下に示すように、2.OCVとΔDCR/ΔOCVを用いた劣化判定および3.OCVとDCRを用いた劣化判定を併用するようにしてもよい。
2.OCVとΔDCR/ΔOCVを用いた劣化判定
この判定法について、一言すれば、駐車時の鉛電池8の電圧OCVと、電圧OCVおよびエンジン始動時の鉛電池8の直流抵抗DCRから変化量ΔDCRをOCVの変化量ΔOCVで除したΔDCR/ΔOCVとで、鉛電池8の劣化度が予め定められた閾値SOHxに達したかを判定する方法であるが、詳しくは以下の通りである。
2−1.OCVの算出
自動車100の停止時の鉛電池8の電圧OCVを計測する。この場合、鉛電池8の分極反応が解消する所定時刻経過後(例えば、停車後6時間経過後)の鉛電池8の電圧OCVを計測することが好ましい。
電圧OCVは次の方法で暗電流を考慮した補正を行ってもよい。図5に、0°Cで暗電流25mA放電したときのOCVと、実際の(真の)25°CでのOCVの関係を示す。劣化した鉛電池では内部抵抗が大きくなるため、新品(SOH100%)より電圧降下が大きくなる。このため、図5に示すように、左方にシフトする。SOH100%の近似線をf3(x)、SOH40%の近似線をf4(x)とした。同様に、下表1に示すように、−20,0,25,60°C、暗電流25,32,75mAについて、SOH100%の近似線、SOH40%の近似線を求めることができる。
Figure 0005338807
電圧OCVの計測値をこの補正式に代入し、比例計算により25°CのOCV(OCV25)を算出する。例として、暗電流Ish>32mA、電池温度T<0°Cの場合について説明する。
1)32mA、−20°C、SOH40%のときのOCV25(Data1)は、Data1=f9(OCV)・・・(11)で表すことができる。また、32mA、−20°C、SOH100%のときのOCV25(Data2)は、Data2=f10(OCV)・・・(12)で表すことができる。従って、32mA、−20°C、SOH(SOH)%のときのOCV25(Data3)は、Data3=Data2+(Data1−Data2)×(100−SOH)/(100−40)・・・(13)で表すことができる。
2)一方、32mA、0°C、SOH40%のときのOCV25(Data4)は、Data4=f11(OCV)・・・(14)で表すことができる。また、32mA、0°C、SOH100%のときのOCV25(Data5)は、Data5=f12(OCV)・・・(15)で表すことができる。従って、32mA、0°C、SOH(SOH)%のときのOCV25(Data6)は、Data6=Data5+(Data4−Data5)×(100−SOH)/(100−40)・・・(16)で表すことができる。
3)上記1)、2)から、32mA、T°C、SOH(SOH)%のときのOCV25(Data7)は、Data7=Data6+(Data3−Data6)×(0−T)/(0−(−20))・・・(17)で表すことができる。同様に75mA、T°C、SOH(SOH)%のときのOCV25(Data8)を求めることができる。
4)上記3)から、OCV25は、OCV25=Data8+(Data7−Data8)×(75−Ish)/(75−32)・・・(18)として得ることができる。なお、SOHの値は、上記1−4で算出したSOHの値を使用することができる。このように算出されたOCV25は記憶装置6に記憶される。
2−2.ΔDCR/ΔOCVの算出
図6は、エンジン始動時における鉛電池8に流れる電流Iと電圧Vの波形を示したものある。一般に、ガソリンエンジン車やディーゼルエンジン車等の内燃機関を有する自動車では、鉛電池から電力を供給しセルモータを回して、エンジンを始動する。この際、大電流が流れるが、それに伴い、鉛電池の端子間電圧は大きく降下する。このときの電圧降下および電流の時間変化を測定すると、セルモータに電流が流れ始めた直後に、鋭いピーク状の大電流が流れ、同時に鉛電池の端子間電圧は鋭い谷状(ピーク状)の電圧降下を示す。エンジン始動時における鉛電池の最低電圧Vst、鉛電池に流れる最大電流Ist、および、自動車(車両)の抵抗値との間には、オームの法則が成り立つ。
鉛電池8の直流内部抵抗DCRは、例えば、ピーク出現以降の電圧Vおよび電流Iを電流値−100〜0Aの範囲で計測し、計測した電流値と電圧値との組を最小二乗法によって得られる近似直線の傾きで求めることができる。図7は、この直流内部抵抗DCR(近似直線の傾き)の算出方法を模式的に示したものである。なお、直流内部抵抗DCRは他の方法で算出してもよい。例えば、ピーク時の電圧Vstと電流Istを計測し、オームの法則から、DCR=(Vst−OCV)/Ist(mΩ)・・・(19)として求めることができる。
この直流内部抵抗DCRは鉛電池8の温度Tにおける算出値である。同一温度条件下で鉛電池8の劣化度を判定するために、直流内部抵抗DCRを、25°Cにおける直流内部抵抗DCRtに変換する。図8は、鉛電池8の残存容量と直流内部抵抗DCRと温度Tとの関係を示したものである。この特性線図は、温度4水準(−20°C、0°C、25°C、60°C)における鉛電池8の新品時の残存容量と直流内部抵抗DCRから作成したものである。
図8に示した特性線図と直流内部抵抗DCRから、温度Tにおける鉛電池8の残存容量を推定し、推定した残存容量から25°Cにおける直流内部抵抗DCRtを求める。例えば、鉛電池8の温度Tが10°Cの場合、0°Cと25°Cのプロットラインから比例計算で、10°Cにおける直流内部抵抗DCRと残存容量との対応関係を求める(図8の破線参照)。求めた10°Cにおける直流内部抵抗DCRと残存容量との対応関係から、10°Cにおける直流内部抵抗DCRから鉛電池8の残存容量を求め、求めた残存容量を25°Cのプロットラインに代入して25°Cにおける直流内部抵抗DCRtを算出する。このように算出された直流内部抵抗DCRtも記憶装置6に記憶される。
上記2−1で説明したOCV25と直流内部抵抗DCRtの組が記憶装置6に所定個数(例えば、5〜10個)記憶されたときまたは後に、OCV25の平均値OCVaを算出するとともに、ΔDCRt/ΔOCV(OCVの変化量に対する直流内部抵抗DCRtの変化量)を、最小二乗法により近似直線の傾きとして算出する。図9は、最小二乗法で求めた近似直線の傾き、すなわち、ΔDCRt/ΔOCVを模式的に示したものである。
2−3.劣化判定
図10は、OCVaとΔDCRt/ΔOCVと鉛電池8の劣化度との関係を示す関係図である。この関係図は、種々の劣化度の鉛電池8について、OCVaとΔDCRt/ΔOCVをプロットし劣化判定領域境界線(閾値)を求め、劣化判定領域を設定したものである。劣化判定領域境界線を含む劣化判定領域内にOCVaとΔDCRt/ΔOCVとで特定されるプロットが入ったときに、鉛電池8を予め設定された閾値SOHxより劣化したと判定する。
3.OCVとDCRを用いた劣化判定
図11は、OCVとDCRtと鉛電池8の劣化度との関係を示す関係図である。この関係図は、種々の劣化度の鉛電池8について、OCVとDCRtをプロットし劣化判定領域境界線(閾値)を求め、劣化判定領域を設定したものである。劣化判定領域境界線を含む劣化判定領域内にOCVとDCRtとで特定されるプロットが入ったときに、鉛電池8を予め設定された閾値SOHxより劣化したと判定する。
4.鉛電池8の劣化判定
フェールセーフの視点から、本実施形態では、上記1(1−4)、2、3の3つの判定法のいずれか1つが閾値SOHx以下と判定したときに、鉛電池8が寿命に至ったと判定する。
(動作)
次に、フローチャートを参照して、電池状態判定システム1の動作について、演算装置5のMCUのCPU(以下、単にCPUという。)を主体として説明する。把握を容易にするために、上記1に対応し充放電量から鉛電池8の劣化を判定する第1劣化判定ルーチンと、上記2、3に対応し鉛電池8の劣化を第1劣化判定ルーチンに対して補完して判定する第2劣化判定ルーチンとに分けて説明する。なお、電池状態判定装置7に鉛電池8から電源が投入されると、CPUはROMに格納されたマップ、数式等(図3〜5、8、10、11の特性線図上の数値のマップないし関係式、および、式(1)〜(19))のプログラムデータをROMからRAMに展開する初期設定処理を行った後、第1および第2劣化判定ルーチンを実行する。
<第1劣化判定ルーチン>
図12に示すように、第1劣化判定ルーチンでは、まず、ステップ102において、エンジンが始動したか否かを判定する。CPUは、IGNの電圧を測定し(図2では構成を省略)、例えば、IGNの電圧が約0Vから12V以上となった場合、IGNがON/ACC端子位置に位置し、IGNの電圧が12V以上の電圧から約0Vの電圧となったときにIGNがオフ端子位置に位置したと判断し、自動車100のイグニッションスイッチがオンかオフか(キーによるエンジン始動、エンジン停止)を検知している。なお、IGNが端子位置について信号を出力するタイプのものであれば、その信号または車両制御システムからの信号によりエンジン状態を検知するようにしてもよい。
ステップ102において否定判断のときは、ステップ104で、鉛電池8から自動車100に流れる暗電流を計測して積算するとともに、鉛電池8の温度および駐車時間を計測し、ステップ102に戻る。一方、ステップ102において肯定判断のときは、ステップ106で、1駐車時の鉛電池8の放電1Ahあたりの劣化度増分ΔSOHpを演算する(式(6)参照)。
次にステップ108で、充電電流、放電電流、放電回数、鉛電池8の温度を計測するとともに、充電電流および放電電流については積算し、次のステップ110において、エンジンが停止したか否かを判断する。否定判断のときは、ステップ108に戻り、肯定判断のときは、次のステップ112で、1走行時の鉛電池8の放電1Ahあたりの劣化度増分ΔSOHrを演算し(式(2)参照)、さらに鉛電池8の放電による劣化度SOHdを演算し(式(7)参照)、次回の演算に備え、演算した劣化度SOHdを直近の放電による鉛電池8の劣化度SOHd0として記憶装置6に記憶させる。
次いでステップ114では、1走行あたりの過充電による鉛電池の劣化度増分ΔSOHcを演算し(式(9)参照)、さらに鉛電池8の過充電による劣化度SOHcを演算し(式(10)参照)、次回の演算に備え、演算した劣化度SOHcを直近の過充電による鉛電池8の劣化度SOHc0として記憶装置6に記憶させる。
次のステップ116では、ステップ114で演算した鉛電池8の過充電による劣化度SOHcが、ステップ112で演算した鉛電池8の放電による劣化度SOHdより大きいか否かを判断し、肯定判断のときは、ステップ118で、鉛電池8の放電による劣化度SOHdを鉛電池8の劣化度SOHとしてステップ122へ進み、否定判断のときは、ステップ120で、鉛電池8の過充電による劣化度SOHcを鉛電池8の劣化度SOHとしてステップ122へ進む。
次に、ステップ122において、ステップ118、120のいずれかでみなした鉛電池8の劣化度SOHが閾値SOHxより小さいかまたは同じかを判断する。否定判断のときは、鉛電池8の電池状態(健康状態)は良好であるため、継続して電池状態を判断するためステップ104に戻り、肯定判断のときは、鉛電池8は寿命に至った(劣化した)と判断し、次のステップ124において、その旨を上位の車両制御システムに送信してステップ104に戻る。これを受信した車両制御システムは、例えば、インストールメントパネルにその旨を表示したり、必要に応じて音声を出力したりすることで、ドライバに鉛電池8が寿命に至ったことを報知(警告)する。
<第2劣化判定ルーチン>
次に、図13に示すように、第2劣化判定ルーチンでは、まず、ステップ202において、エンジンが始動したか否かを判定する。否定判断のときは、ステップ204で電圧OCVを測定し記憶装置6に記憶させる。なお、本実施形態では、自動車100が停止した後、6時間経過していない場合は鉛電池8の分極反応が解消していなものとみなしてステップ204での処理を行うことなくステップ202に戻る処理を行っている(図13では不図示)。
一方、ステップ202で肯定判断のときは、次のステップ206で、鉛電池8の電圧V、鉛電池8に流れる電流Iを計測(例えば、1ms毎に計測)し、直流内部抵抗DCRを演算する。次いで、ステップ208で、鉛電池8の温度Tを計測し、直流内部抵抗DCRを直流内部抵抗DCRt(25°Cへの温度補正後の値)に変換して記憶装置6に記憶させる。
次のステップ210では、ステップ204に格納した直近のOCVを読み出してOCV25に変換し、OCV25とステップ208で演算した直流内部抵抗DCRtとを、図11に示す関係図のマップに代入(プロット)し、ステップ212において、プロットが劣化判定領域内に位置するか否かを判断する。否定判断のときは、ステップ214に進み、肯定判断のときは、ステップ220に進む。これにより、上記3の処理が終了する。
ステップ214では、ステップ204で記憶装置6に格納させたOCVの数が所定個数に到達したか否かを判断し、否定判断のときは、上記2の処理を行う前提条件(最小二乗法を用いて近似直線の傾きを求める場合の精度)を欠くため、ステップ204に戻って前提条件を確保し、肯定判断のときは、ステップ216で、平均値OCVa、ΔDCRt/ΔOCVを演算し、両者を、図10に示す関係図のマップに代入(プロット)し、ステップ218において、プロットが劣化判定領域内に位置するか否かを判断する。否定判断のときは、継続して電池状態を判断する(劣化判定をする)ためステップ204に戻り、肯定判断のときは、ステップ220において、図12のステップ124の場合と同様に、その旨を車両制御システムに送信してステップ204に戻る。これにより、上記2の処理が終了する。
(効果等)
次に、本実施形態の自動車100の作用・効果等について、電池状態判定システム1の作用・効果等を中心に説明する。
本実施形態では、CPUは、鉛電池8の放電量と放電1Ahあたりの劣化度増分とを用いて鉛電池の放電による劣化度SOHdを演算している(ステップ112)。その際、駐車時の鉛電池8の放電量と放電1Ahあたりの劣化度増分ΔSOHp(ステップ106)と、走行時の鉛電池8の放電量と放電1Ahあたりの劣化度増分ΔSOHr(ステップ112)とを用いて、車両走行時の鉛電池8の放電による劣化度SOHdを算出し、精度を高めるために、劣化度SOHdを算出する際に放電深度を用いている(図3参照)。このため、電池状態判定システム1によれば、使用形態および環境が大きく異なる車載鉛電池の劣化度を精度よく算出することができるとともに、鉛電池8の劣化判定を正確に行うことができる。
また、本実施形態では、CPUは、鉛電池8の過充電量と過充電1Ahあたりの劣化度増分ΔSOHcとを用いて鉛電池8の過充電による劣化度SOHcを演算し(ステップ114)、精度を高めるために、過充電による劣化度SOHcを演算する際に前走行時のSOHcを用いている(図4参照)。上述した放電による劣化度SOHdと、過充電による劣化度SOHcとは同時に進行し、異なる劣化度である。従って、電池状態判定システム1によれば、過充電による劣化度SOHcにより鉛電池8の劣化判定を行うため、劣化判定の確実性が向上する。
さらに、本実施形態では、CPUは、OCVとDCRを用いた劣化判定(ステップ210、212)、OCVとΔDCR/ΔOCVを用いた劣化判定(ステップ216、218)も併用している。このため、電池状態判定システム1によれば、極板間に異物が混入したり格子表面が不導体化したりする場合などのレアケースでの鉛電池8の劣化についても適正な劣化判定を行うことが可能である。
従って、本実施形態の自動車は、鉛電池8の劣化を精度よく判断可能な電池状態判定システム1を備えているので、アイドリングストップ・スタートの際に、エンジン再始動を確保することができる。換言すれば、劣化による鉛電池8の電気容量不足による車両始動トラブルを防止することができる。
なお、本実施形態では、鉛電池8に典型的な14V系液式鉛電池を例示したが、本発明はこれに限定されるものではない。例えば、42V系液式鉛電池、リテーナに電解液を含有させたタイプの鉛電池、鉛電池の一種のバイポーラ電池等にも適用可能なことは論を待たない。
また、本実施形態では、ホール式の電流センサを例示したが、本発明はこれに限らず、シャント式の電流センサを用いるようにしてもよい。さらに、本実施形態では、IGNによりエンジン状態を検知する例を示したが、電圧変動および/または電流変動を把握するようにしてもよい。また、第1、第2劣化判定ルーチンでは、説明を簡潔にするために、CPUを常時動作させる例を示したが、例えば、車両制御システムやIGNから、IGNがON/ACC端子位置に位置したことの信号を受信することにより、立ち上がって(ウェーク・アップして)作動状態に入り、車両停止時は、OCVの計測と記憶装置6への格納時を除いて、作動状態からタイマのみ作動させる省電力モードに入るようにしてもよい。このような態様では、鉛電池8を電源として作動する電池状態判定装置7の消費電力を抑えることができる。
さらに、本実施形態では、記憶装置6に不揮発性メモリを例示したが、RAM等の揮発性メモリを用いるようにしてもよい。ただし、このような態様では、鉛電池8からの電力供給が一次的に不能となった場合に、OCVや直流内部抵抗DCRtのデータが失われるため、鉛電池8が確実に充電される車両に用いられることが望ましい。また、本実施形態では平均値OCVaを算出する際に、算術平均を行う例を示したが、予想される値を越えるような場合には平均値OCVaを求める際にその測定値を排除したり、必要に応じて体操平均等を算出したりするようにしてもよい。
また、本実施形態では、説明を簡単にするために、充放電量を用いた劣化判定や図10、図11において、劣化判定領域境界線(閾値SOHx)を1つのみとした例を示したが、本発明をこれに限られるものではない。例えば、図10、11に示した劣化判定領域境界線の他に、良好電池プロットにより近い、鉛電池8の劣化度を注意するための注意領域境界線を有するようにしてもよい。複数の境界線を設けることで、CPUは鉛電池8の劣化の程度を判断することが可能となる。このような態様では、例えば、鉛電池8が劣化する前に(要交換となる前に)ドライバにいち早く鉛電池8の状態を知らせることができるので、鉛電池8が要交換となった際に、注意を払っていたドライバにより鉛電池8が確実に交換されることが期待できる。
そして、本実施形態では、放電による劣化度SOHdと過充電による劣化度SOHcとの併用例を示したが(ステップ116、118、120)、いずれか一つのみで鉛電池8の劣化を判断するようにしてもよいことは論を待たない。
本発明は鉛電池の劣化判定を高精度に行うことができる電池状態判定方法および該電池状態判定方法により鉛電池の劣化度を算出する電池状態判定装置を備えた自動車を提供するものであるため、電池状態判定装置および自動車の製造、販売に寄与するので、産業上の利用可能性を有する。
本発明が適用可能な実施形態の自動車の外観図である。 実施形態の自動車に搭載された電池状態判定システムのブロック回路図である。 放電深度DODと放電1Ahあたりの劣化度と鉛電池の温度との関係を示す特性線図である。 過充電による劣化度SOHcと過充電1Ahあたりの劣化度ΔSOHc1と鉛電池の温度との関係を示す特性線図である。 0°Cで暗電流25mA放電したときのOCVと25°COCVとの関係を示す特性線図である。 エンジン始動時の鉛電池の電圧および電流の時間的推移を模式的に示す説明図である。 最小二乗法による直流内部抵抗DCRの演算方法を模式的に示す説明図である。 温度Tの直流内部抵抗DCRを25°Cの直流内部抵抗DCRtとの関係を示す特性線図である。 最小二乗法によるΔDCRt/ΔOCVの演算方法を模式的に示す説明図である。 OCVaveとΔDCRt/ΔOCVにより鉛電池の劣化を判定するためのマップを模式的に示す説明図である。 OCVとDCRtにより鉛電池の劣化を判定するためのマップを模式的に示す説明図である。 演算装置のMCUのCPUが実行する第1劣化状態判定ルーチンのフローチャートである。 演算装置のMCUのCPUが実行する第2劣化状態判定ルーチンのフローチャートである。
符号の説明
1 電池状態判定システム
5 演算装置
6 記憶装置
7 電池状態判定装置
100 自動車

Claims (24)

  1. 車両に搭載された鉛電池の電池状態判定方法であって、
    前記鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて前記鉛電池の放電による劣化度を算出する第1の劣化度算出ステップ、または、前記鉛電池の過充電量と単位過充電量あたりの劣化度増分とを用いて前記鉛電池の過充電による劣化度を算出する第2の劣化度算出ステップ、または、前記第1および第2の劣化度算出ステップの両方で算出した劣化度を用いて前記鉛電池の劣化度を算出する第3の劣化度算出ステップを含み、
    前記第1の劣化度算出ステップは、車両走行時の前記鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて車両走行時の前記鉛電池の放電による劣化度を求める第1のステップと、車両駐車時の前記鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて車両駐車時の前記鉛電池の放電による劣化度を求める第2のステップとを含み、
    前記第1のステップおよび第2のステップにおいて、前記単位放電量あたりの劣化度増分に、車両走行時の前記鉛電池の放電深度に応じた劣化度増分を用いることおよび車両駐車時の前記鉛電池の放電深度に応じた劣化度増分を用い、
    前記第1のステップは、車両走行時の前記鉛電池の放電量DISrと車両走行時の放電回数NUMdと前記鉛電池の新品時における満充電容量CAP0とから車両走行時の放電深度DODrを求め、前記鉛電池の放電深度と単位放電量あたりの劣化度増分と温度との関係を予め定めたマップないし関係式に前記求めたDODrおよび前記鉛電池の温度Tを代入することにより車両走行時の前記鉛電池の単位放電量あたりの劣化度増分ΔSOHr1を求め、該求めた単位放電量あたりの劣化度増分ΔSOHr1と前記放電量DISrとの積から車両走行時の前記鉛電池の劣化度増分ΔSOHrを求め、該求めた劣化度増分ΔSOHrを車両走行前の前記鉛電池の放電による劣化度SOHr0から減算することで車両走行時の前記鉛電池の放電による劣化度SOHrを算出する、
    ことを特徴とする電池状態判定方法。
  2. 前記第1の劣化度算出ステップは、
    車両走行時の前記鉛電池の放電量DISrと車両走行時の放電回数NUMdと前記鉛電池の新品時における満充電容量CAP0とから車両走行時の放電深度DODrを求め、前記鉛電池の放電深度と単位放電量あたりの劣化度増分と温度との関係を予め定めたマップないし関係式に前記求めたDODrおよび前記鉛電池の温度Tを代入することにより車両走行時の前記鉛電池の単位放電量あたりの劣化度増分ΔSOHr1を求め、該求めた単位放電量あたりの劣化度増分ΔSOHr1と前記放電量DISrとの積から車両走行時の前記鉛電池の劣化度増分ΔSOHrを算出するステップと、
    車両駐車時の前記鉛電池の放電量DISpと前記鉛電池の新品時における満充電容量CAP0から車両駐車時の放電深度DODpを求め、前記鉛電池の放電深度と単位放電量あたりの劣化度増分と温度との関係を予め定めたマップないし関係式に前記求めたDODpおよび前記鉛電池の温度Tを代入することにより車両駐車時の前記鉛電池の単位放電量あたりの劣化度増分ΔSOHp1を求め、該求めた単位放電量あたりの劣化度増分ΔSOHp1と前記放電量DISpとの積から車両駐車時の前記鉛電池の劣化度増分ΔSOHpを算出するステップと、
    を含み、前記算出した劣化度増分ΔSOHrと劣化度増分ΔSOHpとの和を直近で求めた前記鉛電池の放電による劣化度SOHd0から減算することで前記鉛電池の放電による劣化度SOHdを算出することを特徴とする請求項に記載の電池状態判定方法。
  3. 前記第1の劣化度算出ステップにおいて、車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、前記記憶された鉛電池の電圧OCVの平均値OCVaと、前記直流抵抗DCRの変化量ΔDCRを前記電圧OCVの変化量ΔOCVで除したΔDCR/ΔOCVとを求め、平均値OCVaとΔDCR/ΔOCVと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記求めた平均値OCVaとΔDCR/ΔOCVとを代入することにより前記閾値SOHxと比較するとともに、前記算出した前記鉛電池の放電による劣化度SOHdと前記鉛電池の劣化度の閾値SOHxとを比較するステップをさらに含み、前記比較結果により前記鉛電池の劣化の程度を判定することを特徴とする請求項に記載の電池状態判定方法。
  4. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項に記載の電池状態判定方法。
  5. 前記第1の劣化度算出ステップにおいて、車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、電圧OCVと直流抵抗DCRと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記記憶しておいた電圧OCVと直流抵抗DCRとの組を代入することにより前記閾値SOHxと比較するとともに、前記算出した前記鉛電池の放電による劣化度SOHdと前記鉛電池の劣化度の閾値SOHxとを比較するステップをさらに含み、前記比較結果により前記鉛電池の劣化の程度を判定することを特徴とする請求項に記載の電池状態判定方法。
  6. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項に記載の電池状態判定方法。
  7. 前記第1の劣化度算出ステップにおいて、
    車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、前記記憶された鉛電池の電圧OCVの平均値OCVaと、前記直流抵抗DCRの変化量ΔDCRを前記電圧OCVの変化量ΔOCVで除したΔDCR/ΔOCVとを求め、平均値OCVaとΔDCR/ΔOCVと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記求めた平均値OCVaとΔDCR/ΔOCVとを代入することにより前記閾値SOHxと比較する第1の比較ステップと、
    車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、電圧OCVと直流抵抗DCRと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記記憶したおいた電圧OCVと直流抵抗DCRとの組を代入することにより前記閾値SOHxと比較する第2の比較ステップと、
    前記算出した前記鉛電池の放電による劣化度SOHdと前記鉛電池の劣化度の閾値SOHxとを比較する第3の比較ステップと、
    をさらに含み、
    前記第1ないし第3の比較ステップのいずれか1つが前記閾値SOHxを越えると判断したときに、前記鉛電池が劣化したと判定することを特徴とする請求項に記載の電池状態判定方法。
  8. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項に記載の電池状態判定方法。
  9. 前記第2の劣化度算出ステップは、車両走行前の前記鉛電池の劣化度に応じた劣化度増分を用いることを特徴とする請求項1に記載の電池状態判定方法。
  10. 前記第2の劣化度算出ステップは、車両走行前の前記鉛電池の過充電による劣化度と単位過充電量あたりの劣化度増分と温度との関係を予め定めたマップないし関係式に車両走行前の前記鉛電池の過充電による劣化度SOHcと車両走行時の前記鉛電池の温度Tとを代入することにより、車両走行時の前記鉛電池の単位過充電量あたりの劣化度増分ΔSOHc1を求め、該求めた劣化度増分ΔSOHc1と車両走行時の過充電積算量Qとの積から車両走行時の過充電による劣化度増分ΔSOHcを求め、該求めた劣化度増分ΔSOHcを直近で求めた前記鉛電池の過充電による劣化度SOHcから減算することで前記鉛電池の過充電による劣化度SOHcを算出するステップを含むことを特徴とする請求項に記載の電池状態判定方法。
  11. 前記第2の劣化度算出ステップにおいて、車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、前記記憶された鉛電池の電圧OCVの平均値OCVaと、前記直流抵抗DCRの変化量ΔDCRを前記電圧OCVの変化量ΔOCVで除したΔDCR/ΔOCVとを求め、平均値OCVaとΔDCR/ΔOCVと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記求めた平均値OCVaとΔDCR/ΔOCVとを代入することにより前記閾値SOHxと比較するとともに、前記算出した前記鉛電池の過充電による劣化度SOHcと前記鉛電池の劣化度の閾値SOHxとを比較するステップをさらに含み、前記比較結果により前記鉛電池の劣化の程度を判定することを特徴とする請求項10に記載の電池状態判定方法。
  12. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項11に記載の電池状態判定方法。
  13. 前記第2の劣化度算出ステップにおいて、車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、電圧OCVと直流抵抗DCRと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記記憶しておいた電圧OCVと直流抵抗DCRとの組を代入することにより前記閾値SOHxと比較するとともに、前記算出した前記鉛電池の過充電による劣化度SOHcと前記鉛電池の劣化度の閾値SOHxとを比較するステップをさらに含み、前記比較結果により前記鉛電池の劣化の程度を判定することを特徴とする請求項10に記載の電池状態判定方法。
  14. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項13に記載の電池状態判定方法。
  15. 前記第2の劣化度算出ステップにおいて、
    車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、前記記憶された鉛電池の電圧OCVの平均値OCVaと、前記直流抵抗DCRの変化量ΔDCRを前記電圧OCVの変化量ΔOCVで除したΔDCR/ΔOCVとを求め、平均値OCVaとΔDCR/ΔOCVと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記求めた平均値OCVaとΔDCR/ΔOCVとを代入することにより前記閾値SOHxと比較する第1の比較ステップと、
    車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、電圧OCVと直流抵抗DCRと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記記憶したおいた電圧OCVと直流抵抗DCRとの組を代入することにより前記閾値SOHxと比較する第2の比較ステップと、
    前記算出した前記鉛電池の過充電による劣化度SOHcと前記鉛電池の劣化度の閾値SOHxとを比較する第3の比較ステップと、
    をさらに含み、
    前記第1ないし第3の比較ステップのいずれか1つが前記閾値SOHxを越えると判断したときに、前記鉛電池が劣化したと判定することを特徴とする請求項10に記載の電池状態判定方法。
  16. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項15に記載の電池状態判定方法。
  17. 前記第3の劣化度算出ステップにおいて、前記第1および第2の劣化度算出ステップで算出した劣化度の両者を比較して値が小さい方の値をもって、前記鉛電池の劣化度とすることを特徴とする請求項1に記載の電池状態判定方法。
  18. 前記第3の劣化度算出ステップにおいて、車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、前記記憶された鉛電池の電圧OCVの平均値OCVaと、前記直流抵抗DCRの変化量ΔDCRを前記電圧OCVの変化量ΔOCVで除したΔDCR/ΔOCVとを求め、平均値OCVaとΔDCR/ΔOCVと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記求めた平均値OCVaとΔDCR/ΔOCVとを代入することにより前記閾値SOHxと比較するとともに、前記小さい方の値を持って前記鉛電池の劣化度とした該劣化度と前記鉛電池の劣化度の閾値SOHxとを比較するステップをさらに含み、前記比較結果により前記鉛電池の劣化の程度を判定することを特徴とする請求項17に記載の電池状態判定方法。
  19. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項18に記載の電池状態判定方法。
  20. 前記第3の劣化度算出ステップにおいて、車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、電圧OCVと直流抵抗DCRと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記記憶しておいた電圧OCVと直流抵抗DCRとの組を代入することにより前記閾値SOHxと比較するとともに、前記小さい方の値を持って前記鉛電池の劣化度とした該劣化度と前記鉛電池の劣化度の閾値SOHxとを比較するステップをさらに含み、前記比較結果により前記鉛電池の劣化の程度を判定することを特徴とする請求項17に記載の電池状態判定方法。
  21. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項20に記載の電池状態判定方法。
  22. 前記第3の劣化度算出ステップにおいて、
    車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、前記記憶された鉛電池の電圧OCVの平均値OCVaと、前記直流抵抗DCRの変化量ΔDCRを前記電圧OCVの変化量ΔOCVで除したΔDCR/ΔOCVとを求め、平均値OCVaとΔDCR/ΔOCVと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記求めた平均値OCVaとΔDCR/ΔOCVとを代入することにより前記閾値SOHxと比較する第1の比較ステップと、
    車両駐車時における前記鉛電池の電圧OCVと、エンジン始動時の前記鉛電池の直流抵抗DCRとを予め記憶しておき、前記記憶された前記鉛電池の電圧OCVの数が所定個数に達したときまたは達した後に、電圧OCVと直流抵抗DCRと前記鉛電池の劣化度の閾値SOHxとの関係を予め定めたマップないし関係式に前記記憶したおいた電圧OCVと直流抵抗DCRとの組を代入することにより前記閾値SOHxと比較する第2の比較ステップと、
    前記小さい方の値を持って前記鉛電池の劣化度とした該劣化度と前記鉛電池の劣化度の閾値SOHxとを比較する第3の比較ステップと、
    をさらに含み、
    前記第1ないし第3の比較ステップのいずれか1つが前記閾値SOHxを越えると判断したときに、前記鉛電池が劣化したと判定することを特徴とする請求項17に記載の電池状態判定方法。
  23. 前記電圧OCVは、車両駐車時の前記鉛電池から前記車両側に流れる暗電流分を排除するように補正されるとともに所定温度に変換された開回路電圧であることを特徴とする請求項22に記載の電池状態判定方法。
  24. 請求項1に記載の電池状態判定方法により鉛電池の電池状態を判定する電池状態判定装置を備えた自動車。
JP2010505133A 2008-03-28 2008-03-28 電池状態判定方法および自動車 Active JP5338807B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056229 WO2009118910A1 (ja) 2008-03-28 2008-03-28 電池状態判定方法および自動車

Publications (2)

Publication Number Publication Date
JPWO2009118910A1 JPWO2009118910A1 (ja) 2011-07-21
JP5338807B2 true JP5338807B2 (ja) 2013-11-13

Family

ID=41113137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010505133A Active JP5338807B2 (ja) 2008-03-28 2008-03-28 電池状態判定方法および自動車

Country Status (2)

Country Link
JP (1) JP5338807B2 (ja)
WO (1) WO2009118910A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548197B (zh) * 2012-03-19 2018-04-20 松下知识产权经营株式会社 蓄电池监视方法、蓄电池监视系统以及蓄电池系统
WO2015008620A1 (ja) * 2013-07-15 2015-01-22 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
EP3706205B1 (en) 2014-10-13 2024-01-03 24M Technologies, Inc. Systems and methods for series battery charging and forming
JP6789938B2 (ja) 2015-06-18 2020-11-25 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. シングルパウチバッテリセル及びその製造方法
JP6607353B2 (ja) * 2016-06-07 2019-11-20 日立化成株式会社 車両およびその電池状態検知システム
JP6605008B2 (ja) 2017-10-20 2019-11-13 本田技研工業株式会社 電源システム及び車両
JP2019078571A (ja) * 2017-10-20 2019-05-23 本田技研工業株式会社 電源システム
KR102255485B1 (ko) 2018-01-26 2021-05-24 주식회사 엘지에너지솔루션 Soh 분석 장치 및 방법
JP2021060230A (ja) 2019-10-03 2021-04-15 株式会社Gsユアサ 推定装置、推定方法、及びコンピュータプログラム
JP2021099262A (ja) * 2019-12-23 2021-07-01 株式会社Gsユアサ 制御弁式の鉛蓄電池の充電状態、電解液の減液量または電解液の硫酸濃度の推定方法、および、制御弁式の鉛蓄電池の監視装置
JP7311458B2 (ja) * 2020-04-07 2023-07-19 トヨタ自動車株式会社 バッテリー診断装置、方法、プログラム、及び車両
WO2024042874A1 (ja) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 電池の内部抵抗の測定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819103A (ja) * 1994-06-30 1996-01-19 Chugoku Electric Power Co Inc:The 電気自動車用鉛蓄電池残存容量メータ
JP2004022183A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 電池の劣化度算出装置および劣化度算出方法
JP2008039526A (ja) * 2006-08-03 2008-02-21 Auto Network Gijutsu Kenkyusho:Kk 電池劣化診断方法、電池劣化診断装置及びコンピュータプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188740B2 (ja) * 1991-12-24 2001-07-16 松下電工株式会社 電池の寿命報知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819103A (ja) * 1994-06-30 1996-01-19 Chugoku Electric Power Co Inc:The 電気自動車用鉛蓄電池残存容量メータ
JP2004022183A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 電池の劣化度算出装置および劣化度算出方法
JP2008039526A (ja) * 2006-08-03 2008-02-21 Auto Network Gijutsu Kenkyusho:Kk 電池劣化診断方法、電池劣化診断装置及びコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2009118910A1 (ja) 2011-07-21
WO2009118910A1 (ja) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5338807B2 (ja) 電池状態判定方法および自動車
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
JP5070790B2 (ja) 電池状態検知システムおよびこれを備えた自動車
JP4066732B2 (ja) バッテリ残容量推定方法
JP4042475B2 (ja) 電池の劣化度算出装置および劣化度算出方法
WO2007105595A1 (ja) 電池状態判定装置
JP4288958B2 (ja) 劣化度推定方法
JP5163229B2 (ja) 電池状態検知システムおよびこれを備えた自動車
JP5644190B2 (ja) 電池状態推定装置および電池情報報知装置
JP2007055450A (ja) 蓄電デバイスの劣化状態推定システム
JP4844044B2 (ja) 電池状態検知システム及びこれを備えた自動車
JP4457781B2 (ja) 劣化度推定方法及び劣化度推定装置
JP2009241646A (ja) 電池状態判定システムおよび該システムを備えた自動車
JP6603888B2 (ja) バッテリ種別判定装置およびバッテリ種別判定方法
JP5162971B2 (ja) 電池状態検知システムおよび自動車
JP2007057433A (ja) 蓄電デバイスの劣化状態推定システム
JP6604478B2 (ja) 車両およびその電池状態検知システム
JP4702115B2 (ja) 電池状態判定装置
JP2008074257A (ja) バッテリ劣化判定装置
JP4548011B2 (ja) 劣化度判定装置
JP5163739B2 (ja) 電池状態検知システムおよびこれを備えた自動車
JP2005292035A (ja) 電池状態検知方法
JP2003127807A (ja) アイドリングストップ機能を有する車両に搭載された二次蓄電池の残存容量を判定する装置および方法
JP2017219405A (ja) 車両およびその電池状態検知システム
JP2014148232A (ja) 車載用蓄電システム、情報端末

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5338807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250