JP5337044B2 - 異種タンパク質製造のための細胞及びそれを用いた製造方法 - Google Patents

異種タンパク質製造のための細胞及びそれを用いた製造方法 Download PDF

Info

Publication number
JP5337044B2
JP5337044B2 JP2009538243A JP2009538243A JP5337044B2 JP 5337044 B2 JP5337044 B2 JP 5337044B2 JP 2009538243 A JP2009538243 A JP 2009538243A JP 2009538243 A JP2009538243 A JP 2009538243A JP 5337044 B2 JP5337044 B2 JP 5337044B2
Authority
JP
Japan
Prior art keywords
enzyme
kegg
polypeptide
dna
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009538243A
Other languages
English (en)
Other versions
JPWO2009054433A1 (ja
Inventor
久大 田淵
智史 泰中
朋也 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP2009538243A priority Critical patent/JP5337044B2/ja
Publication of JPWO2009054433A1 publication Critical patent/JPWO2009054433A1/ja
Application granted granted Critical
Publication of JP5337044B2 publication Critical patent/JP5337044B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Description

本発明は、異種タンパク質製造のための細胞及びそれを用いた製造方法に関し、より詳細には、Bicarbonateトランスポーターを強発現する細胞及びそれを用いてポリペプチドを製造する方法に関する。
遺伝子組換え技術を用いて、医薬として有用なタンパク質を生産する際に、動物細胞を用いると、原核細胞が行い得ないような複雑な翻訳後修飾やフォールディングが可能となるため、動物細胞は組換えタンパク質生産のための宿主細胞として多用されてきている。
近年、抗体や生理活性タンパク質などの多くのバイオ医薬品が輩出されているが、組換えタンパク質を効率よく動物細胞に生産させる技術は、バイオ医薬品の低コスト化につながり、患者への安定な供給を約束するものである。
従って、より生産効率の高いタンパク質の製造方法が望まれている。
アニオンエクスチェンジャーは、細胞膜内外のアニオンを交換輸送するトランスポーター(膜輸送タンパク質)である。SLC4ファミリーはHCO3 -のトランスポーターのファミリーであるが、それに属するAE1、AE2及びAE3という3つのメンバーは、細胞膜外のCl-を細胞膜内のHCO3 -と交換する機能を有する。
腎臓において、AE1は側底膜の集合尿細管のα間在細胞に見られる(非特許文献1)。ヒトにおけるAE1の変異は、遠位尿細管性アシドーシスを起こすことが知られている(非特許文献2及び3)。
また、腎臓において、AE2には、AE2a、AE2b及びAE2cという3つのアイソフォームがみつかっている。AE2は、細胞シグナル伝達のために細胞内pHホメオスタシスを制御すると考えられている(非特許文献4)が、AE2ノックアウトマウスは離乳期に死亡するが、腎性の表現型異常はみられない(非特許文献5)。
SLC26は比較的新しいアニオンエクスチェンジャーファミリーであり、その多くのメンバー(例えば、SLC26A3、SLC26A4、SLC26A6、SLC26A9など)が Bicarbonateエクチェンジャーであることが示唆されている(非特許文献6〜11)。
一方、Bicarbonateトランスポーター機能を有するアニオンエクスチェンジャーを強発現させることにより、アニオンエクスチェンジャーを介したアニオンの培養細胞内への取り込みおよび細胞外への排出を人為的に促進することが、培養細胞における所望の組換えタンパク質の産生向上に寄与することについてはまったく知られていない。
van Adelsberg JS. et.al., J Biol Chem 1993; 268:11283-11289 Shayakui C. et.al., Curr Opin Nephrol Hypertens 2000; 9:541-546 Alper SL. et.al., Annu Rev Physiol 2002; 64:899-923 Komlosi P. et.al., Am J Physiol Renal Physiol 2005; 288:F380-F386 Gawenis LR. et.al., J Biol Chem 2004; 279:30531-30539 Melvin et al, J Biol Chem 1999; 274:22855-22861 Ko et al., EMBO J. 2002; 21:5662-5672 Soleimani et al., Am. J. Physiol. Renal Physiol. 2001; 280:F356-F364 Wang et al., Am. J. Physiol. Gastrointest. Liver Physiol. 2002; 282:G573-G579 Petrovic et al., Am. J. Physiol. Renal Physiol. 2004; 286:F161-F169 Xu et al., Am. J. Physiol. Cell Physiol. 2005; 289:C493-C505
本発明は、効率よくポリペプチドを生産することができる方法を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意努力した結果、Bicarbonateトランスポーターを強発現する細胞を用いることによって、所望のポリペプチドの生産量を増加させることができることを見出し、本発明を完成させるに至った。さらに、Bicarbonateトランスポーターとシステインスルフィン酸デカルボキシラーゼ(以下、「CSAD」と記すこともある) 又はアラニンアミノトランスフェラーゼ(以下、「ALT」と記すこともある)を共発現する細胞を用いることによって、所望のポリペプチドの生産量をさらに増加させることができた。
本発明の要旨は以下の通りである。
(1) Bicarbonateトランスポーターを強発現し、且つ所望のポリペプチドをコードするDNAを導入した細胞を培養し、所望のポリペプチドを産生させることを含む、ポリペプチドの製造方法。
(2)Bicarbonateトランスポーターを強発現する細胞が、BicarbonateトランスポーターをコードするDNAを導入した細胞である(1)記載の製造方法。
(3)Bicarbonateトランスポーターを強発現する細胞がさらにシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼを強発現する(1)又は(2)記載の製造方法。
(4)Bicarbonateトランスポーターが、SLC4アニオンエクスチェンジャーまたはSLC26アニオンエクスチェンジャーである(1)乃至(3)記載の製造方法。
(5)Bicarbonateトランスポーターが、SLC4アニオンエクスチェンジャーである(1)乃至(3)記載の製造方法。
(6)SLC4アニオンエクスチェンジャーが、AE1である(5)記載の製造方法。
(7)細胞がチャイニーズハムスター卵巣細胞である(1)〜(6)のいずれかに記載の製造方法。
(8)所望のポリペプチドが抗体である(1)〜(7)のいずれかに記載の製造方法。
(9)SLC4アニオンエクスチェンジャーをコードするDNAが以下の(a)〜(e)のいずれかである(4)〜(6)のいずれかに記載の製造方法。
(a) 配列番号2のアミノ酸配列を有するポリペプチドをコードするDNA
(b) 配列番号2のアミノ酸配列において、1又は複数のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
(c) 配列番号2のアミノ酸配列と50%以上の相同性を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
(d) 配列番号1の塩基配列を有するDNA
(e) 配列番号1の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
(10)(1)〜(9)のいずれかに記載の方法で製造されたポリペプチドを含有する医薬品を製造する方法。
(11)BicarbonateトランスポーターをコードするDNAと所望のポリペプチドをコードするDNAが導入されている細胞。
(12)さらにシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼをコードするDNAが導入されている(11)記載の細胞。
(13)BicarbonateトランスポーターをコードするDNAとシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼをコードするDNAが導入されている細胞。
本発明により、大量に所望のポリペプチドを生産することができるようになった。
本明細書は、本願の優先権の基礎である日本国特許出願、特願2007‐276182の明細書および/または図面に記載される内容を包含する。
図1は、ヒト肝細胞由来AE1のアミノ酸配列から TMpred programによって予測された膜貫通領域および方向に基づいて、Exo Physiol 91. 1 pp153-161, 2006, Seth L. AlperのFIG.1.を参考に作成したAE1膜トポロジーである。 図2は、ヒト AE1(911アミノ酸)を発現させたHygromycin選抜用のプラスミドである。 図3は、ヒト AE1(911アミノ酸)を発現させたPuromycin選抜用のプラスミドである。 図4は、50mlシェーカーフラスコ流加培養12日目における抗グリピカン-3抗体産生量プロットである。 pHyg-AE1導入細胞(n=4)の抗グリピカン-3抗体産生量は、pHyg導入細胞(n=4)に対して優位であった(P<0.05)。 図5は、50mlシェーカーフラスコ流加培養10日目における抗グリピカン-3抗体産生量プロットである。 pHyg-AE1導入抗体高産生細胞のpHyg-AE1-42株にpPur-CSADを導入した共発現細胞AE1/CSAD株(n=9)の抗グリピカン-3抗体産生量は、pHyg-AE1-42株にpPurを導入した共発現細胞AE1/pPur (n=8)に対して優位であった(P<0.05)。 図6は、50mlシェーカーフラスコ流加培養10日目における生存率プロットである。 pHyg-AE1導入抗体高産生細胞のpHyg-AE1-42株にpPur-CSADを導入した共発現細胞AE1/CSAD株(n=9)の生存率は、pHyg-AE1-42株にpPurを導入した共発現細胞AE1/pPur (n=8)に対して優位であった(P<0.01)。培養7日目における生存率においてもP<0.01であった(data not shown)。 図7は、50mlシェーカーフラスコ流加培養8日目における抗グリピカン-3抗体産生量プロットである。 pHyg-AE1導入抗体高産生細胞であったpHyg-AE1-42株にpPur-ALT1を導入した共発現細胞AE1/ALT株(n=10)の抗グリピカン-3抗体産生量はAE1/CSAD株(n=9)以上であり、pHyg-AE1-42株にpPurを導入した共発現細胞AE1/pPur (n=8)に対して優位であった(P<0.01)。 図8は、AE1/ALT1共発現株であるAA53の1L Jar流加培養の抗体産生量を示すグラフである。培養7日目における抗グリピカン-3抗体産生量は 1.9g/Lであった。 図9は、新規にクローニングされたCHO細胞由来ハムスターCSAD遺伝子の塩基配列およびアミノ酸配列を示す。 図10は、Hamster CSAD(493アミノ酸)を発現させたPuromycin選抜用のプラスミドである。 図11は、ヒト ALT1(496アミノ酸)を発現させたPuromycin選抜用のプラスミドである。 図12は、AE1強発現宿主由来の抗IL-6R抗体産生細胞AE1-S08の1L Jar流加培養における抗体産生量を示すグラフである。培養14日目における抗IL-6R抗体産生量は 3.0g/Lであった。 図13は、新規にクローニングされたCHO細胞由来ハムスタータウリントランスポーター遺伝子の塩基配列およびアミノ酸配列を示す。 図14は、新規にクローニングしたCHO細胞由来Hamster TauTのアミノ酸配列から TMpred programによって予測された膜貫通領域および方向に基づいて、Proc. Natl. Acad. Sci. USA Vol.89, pp.8230-8234, September 1992, Shinichi Uchida et.al.のFIG.5.を参考に作成したタウリントランスポーター膜トポロジーである。◎はHamster TauT特異的なアミノ酸残基であり、第2ループ(EX:細胞膜外領域)、12番目の膜貫通領域(TM)およびC末端(IC:細胞内領域)にHuman TauTと異なるアミノ酸が多数存在する。 図15は、Hamster TauT(622アミノ酸)を発現させたHygromycin選抜用のプラスミドである。
以下、本発明の実施の形態についてより詳細に説明する。
本発明は、Bicarbonateトランスポーターを強発現し、且つ所望のポリペプチドをコードするDNAを導入した細胞を培養し、所望のポリペプチドを産生させることを含む、ポリペプチドの製造方法を提供する。
本発明の方法において、細胞は、所望のポリペプチドを産生できる天然の細胞であっても、所望のポリペプチドをコードするDNAを導入した形質転換細胞であってもよいが、所望のポリペプチドをコードするDNAを導入した形質転換細胞が好ましい。
本発明の方法において、所望のポリペプチドは特に限定されず、抗体(例えば、抗IL-6レセプター抗体、抗グリピカン-3抗体、抗CD3抗体、抗CD20抗体、抗GPIIb/IIIa抗体、抗TNF抗体、抗CD25抗体、抗EGFR抗体、抗Her2/neu抗体、抗RSV抗体、抗CD33抗体、抗CD52抗体、抗IgE抗体、抗CD11a抗体、抗VEGF抗体、抗VLA4抗体など)や生理活性タンパク質(顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、エリスロポエチン、インターフェロン、IL-1やIL-6等のインターロイキン、t-PA、ウロキナーゼ、血清アルブミン、血液凝固因子、PTHなど)など如何なるポリペプチドでもよいが、特に抗体が好ましい。抗体は、天然抗体、Fab、scFv、sc(Fv)2などの低分子化抗体、キメラ抗体、ヒト化抗体などの如何なる抗体であってもよい。
Bicarbonateトランスポーターを強発現する細胞を用いることにより、細胞によるポリペプチドの産生量を増加させることができる。
Bicarbonateトランスポーターは、炭酸水素アニオン(HCO3 -)または炭酸アニオン(CO3 2-)を排出するとともに、塩素アニオンや硫酸アニオンなどを取り込む、交換輸送機能をもつ膜蛋白である。Bicarbonateトランスポーターとしては、SLC4アニオンエクスチェンジャー、SLC26アニオンエクスチェンジャーなどを例示することができる。
SLC4アニオンエクスチェンジャーは、細胞内pHホメオスタシスおよび細胞容積を制御する膜蛋白である。現在、10種( SLC4A1(AE1),SLC4A2(AE2), SLC4A3(AE3), SLC4A4(NBCe1), SLC4A5(NBCe2), SLC4A7(NBCn1), SLC4A8(kNBC3), SLC4A9(NBCn2), SLC4A10(NBCn3), SLC4A11(NaBC1))のSLC4 ファミリーが知られており、少なくとも1種以上のアイソフォームが存在する。また、それぞれは、Na+非依存的に電荷的中性なCl-とHCO3 -のエクスチェンジャーであるSLC4A1(AE1)、SLC4A2(AE2)、ALC4A3(AE3)、ALC4A9(NBCn2またはAE4)、起電性のALC4A4(NBCe1)、 ALC4A5(NBCe2)、電荷的中性なNa+とHCO3 -の共輸送体であるALC4A7(NBCn1)、Na+依存的に電荷的中性なCl-とHCO3 -のエクスチェンジャーであるALC4A8(kNBC3)、ALC4A10(NBCn3)、起電性のNa+とBorateの共輸送体であるALC4A11(NaBC1)などと異なる機能を有している。これらは局所特異的な作用を有する。たとえばAE1の場合、極性をもつ上皮細胞においては経上皮分泌や酸塩基の再吸収に寄与し、鱒の赤血球においてはosmolyte輸送を促進する。SLC4アニオンエクスチェンジャーとしては、SLC4A1(AE1), SLC4A2(AE2), SLC4A3(AE3), SLC4A4(NBCe1), SLC4A5(NBCe2), SLC4A7(NBCn1), SLC4A8(kNBC3), SLC4A9(NBCn2), SLC4A10(NBCn3), SLC4A11(NaBC1)などを例示することができるが、AE1が好ましい。
SLC26アニオンエクスチェンジャーは、ほとんどすべての臓器系で作用する多機能な膜タンパクであり、硫酸アニオン、ヨウ素アニオン、蟻酸アニオン、しゅう酸アニオン、塩素アニオン、ヒドロキシルアニオン、炭酸水素アニオンなどの交換輸送をおこなうものや、塩素イオンチャネル、あるいはアニオン依存性分子モーターが存在する。種々のアニオンのホメオスタシスに関与していると考えられ、10種(SLC26A1, SLC26A2, SLC26A3, SLC26A4, SLC26A5, SLC26A6, SLC26A7, SLC26A8, SLC26A9, SLC26A11)のアニオンエクスチェンジャーファミリーが知られている。たとえば、ヒドロキシルアニオン、炭酸水素アニオンのトランスポーターであるSLC26A3, SLC26A4, SLC26A6, SLC26A9は、SLC4アニオンエクスチェンジャーと同様に膜内外のpHを制御している。 腎臓で発現しているのは、SLC26A1, SLC26A2, SLC26A4, SLC26A6, SLC26A9, SLC26A11である。SLC26A1は硫酸アニオンとシュウ酸アニオン輸送を、SLC26A6は塩化ナトリウムを取り込むために、種々のアニオンを交換輸送する。SLC26A1は腎石症、SLC26A4とSLC26A6は高血圧症、SLC26A5は難聴の病因となる。SLC26A7はSLC26A4と同様に酸塩基のホメオスタシスや血圧制御に関与する。SLC26アニオンエクスチェンジャーとしては、SLC26A1、SLC26A2、SLC26A3、SLC26A4、SLC26A5、SLC26A6、SLC26A7、SLC26A8、SLC26A9、SLC26A11などを例示することができる。
Bicarbonate トランスポーターを強発現する細胞は、天然の細胞と比較してBicarbonateトランスポーターの発現量が増加している細胞であれば特に限定されない。天然の細胞は特に限定されないが、例えばCHO細胞など組換えタンパク質を製造する際に宿主として用いられている細胞を挙げることができる。
細胞に強発現させるBicarbonateトランスポーターは、如何なる生物由来のBicarbonateトランスポーターでもよく、特に限定されない。具体的には、ヒト、またはマウス、ラット、ハムスターなどのげっ歯類、チンパンジー、ウシ、ウマ、イヌ、オオカミなどの哺乳類、ニワトリなどの鳥類、ゼブラフィッシュ、ウナギなどの魚類、ショウジョウバエなどの昆虫類などの生物由来のBicarbonateトランスポーターが挙げられ、ヒト、げっ歯類或いは宿主細胞と同じ種由来のBicarbonateトランスポーターであることが好ましく、例えば、Bicarbonateトランスポーターを強発現させる細胞がチャイニーズハムスター卵巣細胞(CHO細胞)である場合には、ヒト或いはハムスター由来のBicarbonateトランスポーターであることが好ましい。
Bicarbonateトランスポーターを強発現する細胞は動物細胞、植物細胞、酵母などの真核細胞;大腸菌、枯草菌などの原核細胞など如何なる細胞でもよく、CHO細胞、COS細胞などの動物細胞が好ましく、特にCHO細胞が好ましい。また、所望のポリペプチドを製造するためには、CHO dhfr−細胞など所望の遺伝子を導入するのに適した細胞であることが好ましい。
Bicarbonateトランスポーターを強発現する細胞としては、例えば、Bicarbonateトランスポーター遺伝子(例えば、SLC4アニオンエクスチェンジャー遺伝子、SLC26アニオンエクスチェンジャー遺伝子など)が人為的に導入された細胞を挙げることができる。Bicarbonateトランスポーター遺伝子が人為的に導入された細胞は当業者に公知の方法により作製することが可能であり、例えばBicarbonateトランスポーター遺伝子をベクターに組込み、該ベクターを細胞に形質転換することにより作製することが可能である。さらに、本明細書では遺伝子活性化技術(例えば、国際公開第WO94/12650号パンフレット参照)により内因性Bicarbonateトランスポーター遺伝子が活性化され、その結果、Bicarbonateトランスポーターが強発現した細胞もBicarbonateトランスポーター遺伝子が人為的に導入された細胞に包含される。
細胞に導入するSLC4アニオンエクスチェンジャー遺伝子としては、SLC4アニオンエクスチェンジャーをコードする以下の(a)〜(e)のいずれかのDNAを挙げることもできる。
(a) 配列番号2のアミノ酸配列を有するポリペプチドをコードするDNA
(b) 配列番号2のアミノ酸配列において、1又は複数(例えば、数個)のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
(c) 配列番号2のアミノ酸配列と50%以上の相同性を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
(d) 配列番号1の塩基配列を有するDNA
(e) 配列番号1の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
SLC4アニオンエクスチェンジャー活性とは、細胞内pHの恒常性や細胞容積を維持させるため、培地中のCl-やSO4 2-取り込み、細胞内のHCO3 -やBorateを排出する活性を包含する概念である。
SLC4アニオンエクスチェンジャー活性は、以下のようにして測定することができる。
SLC4を機能的に発現させた細胞をpH感受性色素であるBCECF-AMで処理し、Cl-やNa+を含む培地と含まない培地を潅流させたときの蛍光強度比較により、細胞内pH(pHi)の変化を測定することができる(Dahl NK. et.al., J Biol Chem 2003; 278:44949-44958; Fujinaga J. et.al., J Biol Chem 1999; 274:6626-6633)。
本発明において、SLC4アニオンエクスチェンジャーをコードするDNAとして、配列番号2のアミノ酸配列を有するポリペプチドをコードするDNAを用いるとよい。その他にも、配列番号2のアミノ酸配列において、1又は複数(例えば、数個)のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNAを用いてもよい。配列番号2のアミノ酸配列は、ヒトAE1のアミノ酸配列である。AE1については、ヒト以外にも、マウス、ラット、チンパンジー、ウシ、ウマ、イヌ、オオカミ、ニワトリ、ゼブラフィッシュなどの配列情報が、マウス GenBanK NM_011403、ラット GeneBank NM_012651、チンパンジー GenBank XM_001151353、ウシ GeneBank NM_181036、ウマ GeneBank NM_001081788、イヌ GenBank AB242566、オオカミGeneBank NM_001048031、ニワトリ GenBank NM_205522、ゼブラフィッシュ GenBanK NM_198338などに登録されているので、それを利用することもできる。他のSLC4アニオンエクスチェンジャーについても、各種のデータベースに配列情報が登録されており、それらを利用してもよい。
配列番号2のアミノ酸配列において、1又は複数(例えば、数個)のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドは、ヒト、マウス、ラット、ニワトリ、チンパンジー、ウシ、ウマ、イヌ、オオカミ、ニワトリ、ゼブラフィッシュSLC4アニオンエクスチェンジャー(以下、「ヒト等のSLC4アニオンエクスチェンジャー」と記すこともある)と機能的に同等なポリペプチドである。このようなポリペプチドには、例えば、ヒト等のSLC4アニオンエクスチェンジャーの変異体などが含まれる。後述の実施例では、公開されているヒトSLC4アニオンエクスチェンジャー遺伝子(AE1遺伝子)がコードしているアミノ酸911個中、4アミノ酸(L88R、E693G、V712A、H834Y)が置換されている変異体が用いられた。
あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知られた方法としては、ポリペプチドに変異を導入する方法が知られている。例えば、当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Proc Natl Acad Sci U S A. 82, 488-492、Kunkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、ヒト等のSLC4アニオンエクスチェンジャーのアミノ酸に適宜変異を導入することにより、ヒト等のSLC4アニオンエクスチェンジャーと機能的に同等なポリペプチドを調製することができる。また、アミノ酸の変異は自然界においても生じうる。
ヒト等のSLC4アニオンエクスチェンジャーと機能的に同等なポリペプチドとしては、具体的には、ヒト等のSLC4アニオンエクスチェンジャーのアミノ酸配列(例えば、配列番号2のアミノ酸配列)中の1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が欠失したもの、ヒト等のSLC4アニオンエクスチェンジャーのアミノ酸配列に1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が付加したもの、ヒト等のSLC4アニオンエクスチェンジャーのアミノ酸配列中の1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が他のアミノ酸で置換されたもの等が挙げられる。
変異するアミノ酸残基は、特に限定されないが、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。
なお、あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666 、Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500 、Wang, A. et al., Science 224, 1431-1433 、 Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413 )。
ヒト等のSLC4アニオンエクスチェンジャーに1又は複数個のアミノ酸残基が付加されたポリペプチドとしては、例えば、ヒト等のSLC4アニオンエクスチェンジャーを含む融合ポリペプチドが挙げられる。融合ポリペプチドは、ヒト等のSLC4アニオンエクスチェンジャーと他のポリペプチドとが融合したものである。融合ポリペプチドを作製する方法は、ヒト等のSLC4アニオンエクスチェンジャーをコードする遺伝子と他のポリペプチドをコードする遺伝子をフレームが一致するように連結してこれを発現ベクターに導入し、宿主で発現させればよく、当業者に公知の手法を用いることができる。ヒト等のSLC4アニオンエクスチェンジャーとの融合に付される他のポリペプチドとしては、特に限定されない。
ヒト等のSLC4アニオンエクスチェンジャーとの融合に付される他のペプチドとしては、例えば、FLAG(Hopp, T. P. et al., BioTechnology (1988) 6, 1204-1210 )、6 個のHis (ヒスチジン)残基からなる6×His、10×His、インフルエンザ凝集素(HA)、ヒトc-myc の断片、VSV-GPの断片、p18HIVの断片、T7-tag、HSV-tag 、E-tag 、SV40T 抗原の断片、lck tag 、α-tubulinの断片、B-tag 、Protein C の断片、GST (グルタチオン−S−トランスフェラーゼ)、HA(インフルエンザ凝集素)、イムノグロブリン定常領域、β−ガラクトシダーゼ、MBP (マルトース結合ポリペプチド)等が挙げられる。
市販されているこれらのポリペプチドをコードする遺伝子をヒト等のSLC4アニオンエクスチェンジャーをコードする遺伝子と融合させ、これにより調製された融合遺伝子を発現させることにより、融合ポリペプチドを調製することができる。
また、あるポリペプチドと機能的に同等なポリペプチドを調製する当業者によく知られた他の方法としては、ハイブリダイゼーション技術(Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. press, 1989)を利用する方法が挙げられる。即ち、当業者であれば、ヒト等のSLC4アニオンエクスチェンジャーをコードするDNA配列(例えば、配列番号1のDNA配列)もしくはその一部を基に、これと相同性の高いDNAを単離して、該DNAからヒト等のSLC4アニオンエクスチェンジャーと機能的に同等なポリペプチドを単離することも通常行いうることである。
ヒト等のSLC4アニオンエクスチェンジャーと機能的に同等なポリペプチドをコードするDNAを単離するためのハイブリダイゼーションの条件としては、当業者であれば適宜選択することができる。ハイブリダイゼーションの条件は、例えば、低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、例えば42℃、2×SSC、0.1%SDSが挙げられ、好ましくは50℃、2×SSC 、0.1%SDSである。またより好ましくは、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、2×SSC及び0.1%SDSが挙げられる。これらの条件において、温度を下げる程に高い相同性を有するDNAのみならず、低い相同性しか有していないDNAまでも包括的に得ることができる。逆に、温度を上げる程、高い相同性を有するDNAのみを得られることが期待できる。但し、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度以外にも塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
これらハイブリダイゼーション技術により単離されるDNAがコードするポリペプチドは、ヒト等のSLC4アニオンエクスチェンジャーとアミノ酸配列において70%以上の同一性を有するものであればよいが、通常、ヒト等のSLC4アニオンエクスチェンジャーとアミノ酸配列において高い相同性を有する。高い相同性とは、通常、97%以上の同一性、好ましくは98%以上の同一性、さらに好ましくは99%以上の同一性を指す。ポリペプチドの同一性を決定するには、文献(Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-730)に記載のアルゴリズムにしたがえばよい。
ポリペプチドは、後述するそれを産生する細胞や宿主あるいは精製方法により、アミノ酸配列、分子量、等電点又は糖鎖の有無や形態などが異なり得る。しかしながら、得られたポリペプチドが、ヒト等のSLC4アニオンエクスチェンジャーと同等の機能を有している限り、それをコードするDNAを本発明で利用することができる。例えば、ポリペプチドを原核細胞、例えば大腸菌で発現させた場合、本来のポリペプチドのアミノ酸配列のN末端にメチオニン残基が付加される。また、真核細胞、例えば哺乳動物細胞で発現させた場合、N末端のシグナル配列は除去される。このようなポリペプチドをコードするDNAも本発明で利用することができる。
本発明において、SLC4アニオンエクスチェンジャーをコードするDNAとして、配列番号1の塩基配列を有するDNAを用いてもよい。その他にも、配列番号1の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNAを用いてもよい。配列番号1の塩基配列は、ヒトAE1の塩基配列である。AE1については、ヒト以外にも、マウス、ラット、チンパンジー、ウシ、ウマ、イヌ、オオカミ、ニワトリ、ゼブラフィッシュなどの配列情報が、マウス GenBanK NM_011403、ラット GeneBank NM_012651、チンパンジー GenBank XM_001151353、ウシ GeneBank NM_181036、ウマ GeneBank NM_001081788、イヌ GenBank AB242566、オオカミGeneBank NM_001048031、ニワトリ GenBank NM_205522、ゼブラフィッシュ GenBanK NM_198338、などに登録されているので、それを利用することもできる。他のSLC4アニオンエクスチェンジャーについても、各種のデータベースに配列情報が登録されており、それらを利用してもよい。
SLC4アニオンエクスチェンジャーをコードするDNAは、上述したような所望のポリペプチドの in vivo や in vitroにおける生産に利用される他、SLC4アニオンエクスチェンジャーを強発現する細胞の作製に用いることができる。SLC4アニオンエクスチェンジャーをコードするDNAは、SLC4アニオンエクスチェンジャーをコードしうるものであれば、いかなる形態でもよい。即ち、mRNAから合成されたcDNAであるか、ゲノムDNAであるか、化学合成DNAであるかなどを問わない。また、SLC4アニオンエクスチェンジャーをコードするDNAをコードしうる限り、遺伝暗号の縮重に基づく任意の塩基配列を有するDNAが含まれる。
SLC4アニオンエクスチェンジャーをコードするDNAは、当業者に公知の方法により調製することができる。例えば、SLC4アニオンエクスチェンジャーを発現している細胞よりcDNAライブラリーを作製し、SLC4アニオンエクスチェンジャーのDNAの配列(例えば、配列番号1)の一部をプローブにしてハイブリダイゼーションを行うことにより調製できる。cDNAライブラリーは、例えばSambrook, J. et al., Molecular Cloning、Cold Spring Harbor Laboratory Press (1989)に記載の方法により調製してもよいし、市販の 遺伝子ライブラリーを用いてもよい。また、SLC4アニオンエクスチェンジャーを発現している細胞よりRNAを調製し、SLC4アニオンエクスチェンジャーのDNAの配列(例えば、配列番号1)に基づいてオリゴDNAを合成し、これをプライマーとして用いてPCR反応を行い、SLC4アニオンエクスチェンジャーをコードするcDNAを増幅させることにより調製することも可能である。
また、得られたcDNAの塩基配列を決定することにより、それがコードする翻訳領域を決定でき、SLC4アニオンエクスチェンジャーのアミノ酸配列を得ることができる。また、得られたcDNAをプローブとしてゲノムDNA ライブラリーをスクリーニングすることにより、ゲノムDNAを単離することができる。
具体的には、次のようにすればよい。まず、SLC4アニオンエクスチェンジャーを発現する細胞、組織などから、mRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) 、AGPC法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-159) 等により全RNAを調製し、mRNA Purification Kit (Pharmacia) 等を使用して全RNAからmRNAを精製する。また、QuickPrep mRNA Purification Kit (Pharmacia) を用いることによりmRNAを直接調製することもできる。
得られたmRNAから逆転写酵素を用いてcDNAを合成する。cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業)等を用いて行うこともできる。また、プライマー等を用いて、5'-Ampli FINDER RACE Kit (Clontech製)およびポリメラーゼ連鎖反応 (polymerase chain reaction ; PCR)を用いた5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002 ; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) にしたがい、cDNAの合成および増幅を行うことができる。
得られたPCR産物から目的とするDNA断片を調製し、ベクターDNAと連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列は、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認することができる。
また、SLC4アニオンエクスチェンジャーをコードするDNAにおいては、発現に使用する宿主のコドン使用頻度を考慮して、より発現効率の高い塩基配列を設計することができる(Grantham, R. et al., Nucelic Acids Research (1981) 9, r43-74 )。また、SLC4アニオンエクスチェンジャーをコードするDNAは、市販のキットや公知の方法によって改変することができる。改変としては、例えば、制限酵素による消化、合成オリゴヌクレオチドや適当なDNAフラグメントの挿入、リンカーの付加、開始コドン(ATG)及び/又は終止コドン(TAA、TGA、又はTAG)の挿入等が挙げられる。
SLC4アニオンエクスチェンジャーをコードするDNAはまた、配列番号1の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズするDNAであり、かつSLC4アニオンエクスチェンジャーと機能的に同等なポリペプチドをコードするDNAを含む。
ストリンジェントな条件としては、当業者であれば適宜選択することができるが、例えば低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、例えば42℃、2×SSC、0.1%SDSが挙げられ、好ましくは50℃、2×SSC 、0.1%SDSである。またより好ましくは、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、2×SSC及び0.1%SDSが挙げられる。これらの条件において、温度を上げる程に高い相同性を有するDNAを得ることができる。上記のハイブリダイズするDNAは好ましくは天然由来のDNA、例えばcDNA又は染色体DNAであってよい。
これらハイブリダイゼーション技術により単離されるDNAは、通常、ヒト等のSLC4アニオンエクスチェンジャーをコードするDNAと塩基配列において高い同一性を有する。SLC4アニオンエクスチェンジャーをコードするDNAには、ヒト等のSLC4アニオンエクスチェンジャーと機能的に同等なポリペプチドをコードし、ヒト等のSLC4アニオンエクスチェンジャーをコードするDNAと高い同一性を有するDNAも含まれる。高い同一性とは、通常、96%以上の同一性、好ましくは98%以上の同一性、さらに好ましくは99%以上の同一性を指す。塩基配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。このアルゴリズムに基づいて、BLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol.215:403-410, 1990)。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメーターは、例えば、score = 100、wordlength = 12とする。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。
細胞に導入するBicarbonateトランスポーター遺伝子としては、SLC26アニオンエクスチェンジャー遺伝子であってもよい。SLC26アニオンエクスチェンジャー遺伝子の塩基配列及びそれがコードするアミノ酸配列情報は、GenBank AF331525 (ヒトputative SLC26A9)、GenBank NM_052934 (ヒトSLC26A9 variant 1)、GenBank NM_134325(ヒトSLC26A9 variant 2)、GenBank NM_134420(マウスSLC26A6)、GenBank NM_177243(マウスSLC26A9)、GenBank AY240025(ショウジョウバエSlc26d9702)、GenBank AY240023 (ショウジョウバエSlc26d6928)、GenBank AY240022 (ショウジョウバエSlc26d6125)、GenBank AY240021 (ショウジョウバエSlc26d5002)、GenBank AB084425 (ウナギSlc26A6)などに登録されているので、それを利用することができる。
BicarbonateトランスポーターをコードするDNAはベクターに挿入されるとよい。
ベクターとしては、例えば、大腸菌を宿主とする場合には、ベクターを大腸菌(例えば、JM109、DH5α、HB101、XL1Blue)などで大量に増幅させ大量調製するために、大腸菌で増幅されるための「ori」をもち、さらに形質転換された大腸菌の選抜遺伝子(例えば、なんらかの薬剤(アンピシリンやテトラサイクリン、カナマイシン、クロラムフェニコール)により判別できるような薬剤耐性遺伝子)を有することが好ましい。ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などが挙げられる。所望のポリペプチドを生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、大腸菌での発現を目的とした場合は、ベクターが大腸菌で増幅されるような上記特徴を持つほかに、宿主をJM109、DH5α、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター(Wardら, Nature (1989) 341, 544-546;FASEB J. (1992) 6, 2422-2427)、araBプロモーター(Betterら, Science (1988) 240, 1041-1043 )、またはT7プロモーターなどを持っていることが好ましい。このようなベクターとしては、上記ベクターの他にpGEX-5X-1(Pharmacia社製)、「QIAexpress system」(Qiagen社製)、pEGFP、またはpET(この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい)などが挙げられる。
また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379 )を使用すればよい。宿主細胞へのベクターの導入は、例えば塩化カルシウム法、エレクトロポレーション法を用いて行うことができる。
大腸菌を宿主とする場合以外にも、例えば、所望のポリペプチドを製造するために用いられるベクターとしては、哺乳動物由来の発現ベクター(例えば、pcDNA3 (Invitrogen社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322)、pEF 、pCDM8 )、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovairus expression system」(GIBCO BRL社製)、pBacPAK8)、植物由来の発現ベクター(例えばpMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、pMV、pAdexLcw )、レトロウィルス由来の発現ベクター(例えば、pZIpneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」( Invitrogen社製)、pNV11 、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)などが挙げられる。
CHO細胞、COS細胞、NIH3T3細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター(Mulliganら, Nature (1979) 277, 108)、MMLV-LTRプロモーター、EF1αプロモーター(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322)、CMVプロモーターなどを持っていることが好ましく、細胞への形質転換を選抜するための遺伝子(例えば、薬剤(ネオマイシン、G418など)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。
さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHFR遺伝子を有するベクター(例えば、pCHOIなど)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター(pcDなど)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV )等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH )遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
BicarbonateトランスポーターをコードするDNA(ベクターに組み込まれていてもよい)が導入される宿主細胞としては特に制限はなく、例えば、大腸菌や種々の動物細胞などを用いることが可能である。BicarbonateトランスポーターをコードするDNAが導入された宿主細胞に所望のポリペプチドをコードするDNAを導入すれば、この宿主細胞は、Bicarbonateトランスポーターを強発現することができ、所望のポリペプチドの生産を増加させることができる。BicarbonateトランスポーターをコードするDNAが導入された宿主細胞には、CSAD又はALTをコードするDNA(ベクターに組み込まれていてもよい)がさらに導入されてもよい。BicarbonateトランスポーターをコードするDNAが導入された宿主細胞に所望のポリペプチドをコードするDNAとCSAD又はALTをコードするDNAを導入することにより、所望のポリペプチドの産生量を向上させることができる。ポリペプチド製造のための産生系は、in vitroおよびin vivo の産生系がある。in vitroの産生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。
Bicarbonateトランスポーター遺伝子が人為的に導入された細胞を用いて所望のポリペプチドを製造する場合、Bicarbonateトランスポーター遺伝子と所望のポリペプチドをコードする遺伝子の導入の順序は特に制限されず、Bicarbonateトランスポーター遺伝子を導入した後に所望のポリペプチドをコードする遺伝子を導入してもよいし、所望のポリペプチドをコードする遺伝子を導入した後にBicarbonateトランスポーター遺伝子を導入してもよい。又、Bicarbonateトランスポーター遺伝子と所望のポリペプチドをコードする遺伝子を同時に導入してもよい。
Bicarbonateトランスポーター遺伝子及び所望のポリペプチドをコードする遺伝子の導入は単一のベクターにより同時に導入してもよいし、複数のベクターを用いて別々に導入してもよい。
Bicarbonateトランスポーターを強発現する細胞は、所望のポリペプチドを製造するために、さらにシステインスルフィン酸デカルボキシラーゼ(CSAD)又はアラニンアミノトランスフェラーゼ(ALT)を強発現していることが好ましい。BicarbonateトランスポーターのほかにCSAD又はALTを強発現する細胞に所望のポリペプチドをコードする遺伝子を導入し、該細胞を培地中で培養することにより、より大量に所望のポリペプチドを製造することが可能である。
CSADは、本来、3-スルフィン酸アラニンをハイポタウリンに変換する酵素として知られているが、CHO細胞内で強発現させることにより、β-アラニンを過剰量合成するようになる。
CSADを強発現する細胞は、天然の細胞と比較してCSADの発現量が増加している細胞であれば特に限定されない。天然の細胞は特に限定されないが、例えばCHO細胞など組換えタンパク質を製造する際に宿主として用いられている細胞を挙げることができる。
細胞に強発現させるCSADとしては、如何なる生物由来のCSADでもよく特に限定されない。具体的には、ヒト、マウス、ラット、ハムスターなどのげっ歯類、フグ類のトラフグ、ホヤ類のカタユウレイボヤなどの生物由来のCSADが挙げられ、ヒト、げっ歯類或いは宿主細胞と同じ種由来のCSADであることが好ましく、例えば、CSADを強発現させる細胞がチャイニーズハムスター卵巣細胞(CHO細胞)である場合には、ヒト或いはハムスター由来のCSADであることが好ましい。
CSADを強発現する細胞としては、例えば、CSAD遺伝子が人為的に導入された細胞を挙げることができる。CSAD遺伝子が人為的に導入された細胞は当業者に公知の方法により作製することが可能であり、例えば、CSAD遺伝子をベクターに組込み、該ベクターを細胞に形質転換することにより作製することが可能である。さらに、本明細書では遺伝子活性化技術(例えば、国際公開第WO94/12650号パンフレット参照)により内因性CSAD遺伝子が活性化され、その結果、CSADが強発現した細胞もCSAD遺伝子が人為的に導入された細胞に包含される。
細胞に導入するCSAD遺伝子としては、CSADをコードする以下の(a1)〜(e1)のいずれかのDNAを挙げることができる。
(a1) 配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列を有するポリペプチドをコードするDNA
(b1) 配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列において、1又は複数(例えば、数個)のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつCSAD活性を有するポリペプチドをコードするDNA
(c1) 配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列と70%以上の相同性を有し、かつCSAD活性を有するポリペプチドをコードするDNA
(d1) 配列番号3の塩基配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列を有するDNA
(e1) 配列番号3の塩基配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつCSAD活性を有するポリペプチドをコードするDNA
CSAD活性とは、3-sulfino-L-alanine = hypotaurine + CO2 を触媒し、脱炭酸させる活性を包含する概念である。L-cysteic acidを脱炭酸させる活性でもある(EC-Number 4.1.1.29 )。
CSAD活性は、以下のようにして測定することができる。
Davis K. et.al., J Biomed Sci 2001;8:359-364 で示されているように、L-[1-14C]cysteic acidからCSADの脱炭酸酵素活性によって生成される14CO2を定量する。
本発明において、CSADをコードするDNAとして、配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列を有するポリペプチドをコードするDNAを用いるとよい。その他にも、配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列において、1又は複数のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつCSAD活性を有するポリペプチドをコードするDNAを用いてもよい。
配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列において、1又は複数のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつCSAD活性を有するポリペプチドは、ハムスター、ラット、マウス、ヒト(以下、「ハムスター等のCSAD」と記すこともある)と機能的に同等なポリペプチドである。このようなポリペプチドには、例えば、ハムスター等のCSADの変異体などが含まれる。
あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知られた方法としては、ポリペプチドに変異を導入する方法が知られている。例えば、当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Proc Natl Acad Sci U S A. 82, 488-492、Kunkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、ハムスター等のCSADのアミノ酸に適宜変異を導入することにより、ハムスター等のCSADと機能的に同等なポリペプチドを調製することができる。また、アミノ酸の変異は自然界においても生じうる。
ハムスター等のCSADと機能的に同等なポリペプチドとしては、具体的には、ハムスター等のCSADのアミノ酸配列(例えば、配列番号4のアミノ酸配列又はUniProt Knowledgebase (Swiss-Prot and TrEMBL)ラットCSAD (Q64611) 、マウスCSAD_(Q9DBE0)若しくはヒトCSAD_(Q9Y600)のアミノ酸配列)中の1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が欠失したもの、ハムスター等のCSADのアミノ酸配列に1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が付加したもの、ハムスター等のCSADのアミノ酸配列中の1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が他のアミノ酸で置換されたもの等が挙げられる。
変異するアミノ酸残基は、特に限定されないが、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。
なお、あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666 、Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500 、Wang, A. et al., Science 224, 1431-1433 、 Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413 )。
ハムスター等のCSADに1又は複数個のアミノ酸残基が付加されたポリペプチドとしては、例えば、ハムスター等のCSADを含む融合ポリペプチドが挙げられる。融合ポリペプチドは、ハムスター等のCSADと他のポリペプチドとが融合したものである。融合ポリペプチドを作製する方法は、ハムスター等のCSADをコードする遺伝子と他のポリペプチドをコードする遺伝子をフレームが一致するように連結してこれを発現ベクターに導入し、宿主で発現させればよく、当業者に公知の手法を用いることができる。ハムスター等のCSADとの融合に付される他のポリペプチドとしては、特に限定されない。
ハムスター等のCSADとの融合に付される他のペプチドとしては、例えば、FLAG(Hopp, T. P. et al., BioTechnology (1988) 6, 1204-1210 )、6 個のHis (ヒスチジン)残基からなる6×His、10×His、インフルエンザ凝集素(HA)、ヒトc-myc の断片、VSV-GPの断片、p18HIVの断片、T7-tag、HSV-tag 、E-tag 、SV40T 抗原の断片、lck tag 、α-tubulinの断片、B-tag 、Protein C の断片、GST (グルタチオン−S−トランスフェラーゼ)、HA(インフルエンザ凝集素)、イムノグロブリン定常領域、β−ガラクトシダーゼ、MBP (マルトース結合ポリペプチド)等が挙げられる。
市販されているこれらのポリペプチドをコードする遺伝子をハムスター等のCSADをコードする遺伝子と融合させ、これにより調製された融合遺伝子を発現させることにより、融合ポリペプチドを調製することができる。
また、あるポリペプチドと機能的に同等なポリペプチドを調製する当業者によく知られた他の方法としては、ハイブリダイゼーション技術(Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. press, 1989)を利用する方法が挙げられる。即ち、当業者であれば、ハムスター等のCSADをコードするDNA配列(例えば、配列番号3のDNA配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989のDNA酸配列)もしくはその一部を基に、これと相同性の高いDNAを単離して、該DNAからハムスター等のCSADと機能的に同等なポリペプチドを単離することも通常行いうることである。
ハムスター等のCSADと機能的に同等なポリペプチドをコードするDNAを単離するためのハイブリダイゼーションの条件としては、当業者であれば適宜選択することができる。ハイブリダイゼーションの条件は、例えば、低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、例えば42℃、2×SSC、0.1%SDSが挙げられ、好ましくは50℃、2×SSC 、0.1%SDSである。またより好ましくは、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、2×SSC及び0.1%SDSが挙げられる。これらの条件において、温度を下げる程に高い相同性を有するDNAのみならず、低い相同性しか有していないDNAまでも包括的に得ることができる。逆に、温度を上げる程、高い相同性を有するDNAのみを得られることが期待できる。但し、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度以外にも塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
これらハイブリダイゼーション技術により単離されるDNAがコードするポリペプチドは、ハムスター等のCSADとアミノ酸配列において70%以上の同一性を有するものであればよいが、通常、ハムスター等のCSADとアミノ酸配列において高い相同性を有する。高い相同性とは、通常、97%以上の同一性、好ましくは98%以上の同一性、さらに好ましくは99%以上の同一性を指す。ポリペプチドの同一性を決定するには、文献(Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-730)に記載のアルゴリズムにしたがえばよい。
ポリペプチドは、後述するそれを産生する細胞や宿主あるいは精製方法により、アミノ酸配列、分子量、等電点又は糖鎖の有無や形態などが異なり得る。しかしながら、得られたポリペプチドが、ハムスター等のCSADと同等の機能を有している限り、それをコードするDNAを本発明で利用することができる。例えば、ポリペプチドを原核細胞、例えば大腸菌で発現させた場合、本来のポリペプチドのアミノ酸配列のN末端にメチオニン残基が付加される。また、真核細胞、例えば哺乳動物細胞で発現させた場合、N末端のシグナル配列は除去される。このようなポリペプチドをコードするDNAも本発明で利用することができる。
本発明において、CSADをコードするDNAとして、配列番号3の塩基配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列を有するDNAを用いてもよい。その他にも、配列番号3の塩基配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつCSAD活性を有するポリペプチドをコードするDNAを用いてもよい。
CSADをコードするDNAは、上述したような所望のポリペプチドの in vivo や in vitroにおける生産に利用される他、CSADを強発現する細胞の作製に用いることができる。CSADをコードするDNAは、CSADをコードしうるものであれば、いかなる形態でもよい。即ち、mRNAから合成されたcDNAであるか、ゲノムDNAであるか、化学合成DNAであるかなどを問わない。また、CSADをコードするDNAをコードしうる限り、遺伝暗号の縮重に基づく任意のヌクレオチド配列を有するDNAが含まれる。
CSADをコードするDNAは、当業者に公知の方法により調製することができる。例えば、CSADを発現している細胞よりcDNAライブラリーを作製し、CSADのDNAの配列(例えば、配列番号3の塩基配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列)の一部をプローブにしてハイブリダイゼーションを行うことにより調製できる。cDNAライブラリーは、例えばSambrook, J. et al., Molecular Cloning、Cold Spring Harbor Laboratory Press (1989)に記載の方法により調製してもよいし、市販の 遺伝子ライブラリーを用いてもよい。また、CSADを発現している細胞よりRNAを調製し、CSADのDNAの配列(例えば、配列番号3の塩基配列又はGenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列)に基づいてオリゴDNAを合成し、これをプライマーとして用いてPCR反応を行い、CSADをコードするcDNAを増幅させることにより調製することも可能である。
また、得られたcDNAの塩基配列を決定することにより、それがコードする翻訳領域を決定でき、CSADのアミノ酸配列を得ることができる。また、得られたcDNAをプローブとしてゲノムDNA ライブラリーをスクリーニングすることにより、ゲノムDNAを単離することができる。
具体的には、次のようにすればよい。まず、CSADを発現する細胞、組織などから、mRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et. al., Biochemistry (1979) 18, 5294-5299) 、AGPC法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-159) 等により全RNAを調製し、mRNA Purification Kit (Pharmacia) 等を使用して全RNAからmRNAを精製する。また、QuickPrep mRNA Purification Kit (Pharmacia) を用いることによりmRNAを直接調製することもできる。
得られたmRNAから逆転写酵素を用いてcDNAを合成する。cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業)等を用いて行うこともできる。また、プライマー等を用いて、5'-Ampli FINDER RACE Kit (Clontech製)およびポリメラーゼ連鎖反応 (polymerase chain reaction ; PCR)を用いた5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002 ; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) にしたがい、cDNAの合成および増幅を行うことができる。
得られたPCR産物から目的とするDNA断片を調製し、ベクターDNAと連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列は、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認することができる。
また、CSADをコードするDNAにおいては、発現に使用する宿主のコドン使用頻度を考慮して、より発現効率の高い塩基配列を設計することができる(Grantham, R. et al., Nucelic Acids Research (1981) 9, r43-74 )。また、CSADをコードするDNAは、市販のキットや公知の方法によって改変することができる。改変としては、例えば、制限酵素による消化、合成オリゴヌクレオチドや適当なDNAフラグメントの挿入、リンカーの付加、開始コドン(ATG)及び/又は終止コドン(TAA、TGA、又はTAG)の挿入等が挙げられる。
CSADをコードするDNAはまた、配列番号3の塩基配列又は GenBank ラットCSAD NM_021750、マウスCSAD NM_144942若しくはヒトCSAD NM_015989の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズするDNAであり、かつCSADと機能的に同等なポリペプチドをコードするDNAを含む。
ストリンジェントな条件としては、当業者であれば適宜選択することができるが、例えば低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、例えば42℃、2×SSC、0.1%SDSが挙げられ、好ましくは50℃、2×SSC 、0.1%SDSである。またより好ましくは、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、2×SSC及び0.1%SDSが挙げられる。これらの条件において、温度を上げる程に高い相同性を有するDNAを得ることができる。上記のハイブリダイズするDNAは好ましくは天然由来のDNA、例えばcDNA又は染色体DNAであってよい。
これらハイブリダイゼーション技術により単離されるDNAは、通常、ハムスター等のCSADをコードするDNAと塩基配列において高い同一性を有する。ALTをコードするDNAには、ハムスター等のCSADと機能的に同等なポリペプチドをコードし、ハムスター等のCSADをコードするDNAと高い同一性を有するDNAも含まれる。高い同一性とは、通常、96%以上の同一性、好ましくは98%以上の同一性、さらに好ましくは99%以上の同一性を指す。塩基配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。このアルゴリズムに基づいて、BLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol.215:403-410, 1990)。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメーターは、例えば、score = 100、wordlength = 12とする。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。
また、ALTは、本来、アラニンのアミノ基を2-オキソグルタル酸に転移させ、グルタミン酸を生成させる酵素として知られているが、CHO細胞などの宿主細胞内で強発現させることにより、アラニンからピルビン酸やグルタミン酸を生合成する反応を促進できれば、TCA回路での代謝や、糖新生によるグルコース生成に利用されて、細胞の培養挙動が改善し、所望のポリペプチドの高生産が期待される。
ALTを強発現する細胞は、天然の細胞と比較してALTの発現量が増加している細胞であれば特に限定されない。天然の細胞は特に限定されないが、例えばCHO細胞など組換えタンパク質を製造する際に宿主として用いられている細胞を挙げることができる。
ALTを強発現する細胞としては、例えば、ALT遺伝子が人為的に導入された細胞を挙げることができる。ALT遺伝子が人為的に導入された細胞は当業者に公知の方法により作製することが可能であり、例えば、ALT遺伝子をベクターに組込み、該ベクターを細胞に形質転換することにより作製することが可能である。さらに、本明細書では遺伝子活性化技術(例えば、国際公開第WO94/12650号パンフレット参照)により内因性ALT遺伝子が活性化され、その結果、ALTが強発現した細胞もALT遺伝子が人為的に導入された細胞に包含される。
細胞に強発現させるALTは、如何なる生物由来のALTでもよく特に限定されない。具体的には、ヒト、マウス、ラット、イヌ、アフリカツメガエル、ショウジョウバエ、センチュウ、日本米、原子紅藻、パン酵母、糸状菌Ashbya gossypii、真菌Candida albicans、分裂酵母、真菌Aspergillus nidulans、真菌Aspergillus fumigatus、清酒麹菌Aspergillus oryzae、真菌Cryptococcus neoformans、細胞性粘菌 Dictyostelium discoideum、Trypanosoma brucei、細胞内寄生性原虫Leishmania major、赤痢アメーバEntamoeba histolytica又は細胞内寄生性原虫Trypanosoma cruziなどのALTが公知であり、これらを利用することができるが、ヒト、げっ歯類或いは宿主細胞と同じ種由来のALTであることが好ましく、例えば、ALTを強発現させる細胞がチャイニーズハムスター卵巣細胞(CHO細胞)である場合には、ヒト或いはハムスター由来のALTであることが好ましい。ヒト、マウス、酵母などのALTは、Variant(ALT1とALT2)が存在する。ALT2は、ALT1に対してアミノ酸レベルで80%以上の相同性がある。後述の実施例及び参考例では、ALT1を強制発現させた。
細胞に導入するALT遺伝子としては、ALTをコードする以下の(a2)〜(e2)のいずれかのDNAを挙げることができる。
(a2) KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のアミノ酸配列を有するポリペプチドをコードするDNA
(b2) KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のアミノ酸配列において、1又は複数(例えば、数個)のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつALT活性を有するポリペプチドをコードするDNA
(c2) KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のアミノ酸配列と70%以上の同一性を有し、かつALT活性を有するポリペプチドをコードするDNA
(d2) KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140の塩基配列を有するDNA
(e2) KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつALT活性を有するポリペプチドをコードするDNA
ALT活性とは、アミノ酸とα-ケト酸との間のアミノ基転移を触媒する酵素活性を包含する概念である。
ALT活性は、以下のようにして測定することができる。
自動分析用アラニンアミノトランスフェラーゼ測定試薬(ランピア リキッド S-ALT 承認番号20900AMZ00597000)や、Rajamohan F. et.al. Protein Expression and Purification (2006) 48, 81-89 で示された方法を用いてALT活性値を求める。
本発明において、ALTをコードする遺伝子として、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のアミノ酸配列を有するポリペプチドをコードするDNAを用いるとよい。その他にも、上記アミノ酸配列において、1又は複数のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつALT活性を有するポリペプチドをコードするDNAを用いてもよい。
KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のアミノ酸配列において、1又は複数のアミノ酸が置換、欠失、付加又は/及び挿入されたアミノ酸配列を有し、かつALT活性を有するポリペプチドは、ヒト、マウス、ラット、イヌ、アフリカツメガエル、ショウジョウバエ、センチュウ、日本米、原子紅藻、パン酵母、糸状菌Ashbya gossypii、真菌Candida albicans、分裂酵母、真菌Aspergillus nidulans、真菌Aspergillus fumigatus、清酒麹菌Aspergillus oryzae、真菌Cryptococcus neoformans、細胞性粘菌 Dictyostelium discoideum、Trypanosoma brucei、細胞内寄生性原虫Leishmania major、赤痢アメーバEntamoeba histolytica又は細胞内寄生性原虫Trypanosoma cruzi ALT(以下、「ヒト等のALT」と記すこともある)と機能的に同等なポリペプチドである。このようなポリペプチドには、例えば、ヒト等のALTの変異体などが含まれる。後述の実施例及び参考例では、公開されているヒトALT1遺伝子がコードしているアミノ酸496個中、4アミノ酸(R53S、Q72R、F286S、M332K)が置換されている変異体が用いられた。
あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知られた方法としては、ポリペプチドに変異を導入する方法が知られている。例えば、当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Proc Natl Acad Sci U S A. 82, 488-492、Kunkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、ヒト等のALTのアミノ酸に適宜変異を導入することにより、ヒト等のALTと機能的に同等なポリペプチドを調製することができる。また、アミノ酸の変異は自然界においても生じうる。
ヒト等のALTと機能的に同等なポリペプチドとしては、具体的には、ヒト等のALTのアミノ酸配列(例えば、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のアミノ酸配列)中の1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が欠失したもの、ヒト等のALTのアミノ酸配列に1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が付加したもの、ヒト等のALTのアミノ酸配列中の1又は2個以上、好ましくは、1個以上30個以下、より好ましくは1個以上10個以下のアミノ酸が他のアミノ酸で置換されたもの等が挙げられる。
変異するアミノ酸残基は、特に限定されないが、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。
なお、あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666 、Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500 、Wang, A. et al., Science 224, 1431-1433 、 Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413 )。
ヒト等のALTに1又は複数個のアミノ酸残基が付加されたポリペプチドとしては、例えば、ヒト等のALTを含む融合ポリペプチドが挙げられる。融合ポリペプチドは、ヒト等のALTと他のポリペプチドとが融合したものである。融合ポリペプチドを作製する方法は、ヒト等のALTをコードする遺伝子と他のポリペプチドをコードする遺伝子をフレームが一致するように連結してこれを発現ベクターに導入し、宿主で発現させればよく、当業者に公知の手法を用いることができる。ヒト等のALTとの融合に付される他のポリペプチドとしては、特に限定されない。
ヒト等のALTとの融合に付される他のペプチドとしては、例えば、FLAG(Hopp, T. P. et al., BioTechnology (1988) 6, 1204-1210 )、6 個のHis (ヒスチジン)残基からなる6×His、10×His、インフルエンザ凝集素(HA)、ヒトc-myc の断片、VSV-GPの断片、p18HIVの断片、T7-tag、HSV-tag 、E-tag 、SV40T 抗原の断片、lck tag 、α-tubulinの断片、B-tag 、Protein C の断片、GST (グルタチオン−S−トランスフェラーゼ)、HA(インフルエンザ凝集素)、イムノグロブリン定常領域、β−ガラクトシダーゼ、MBP (マルトース結合ポリペプチド)等が挙げられる。
市販されているこれらのポリペプチドをコードする遺伝子をヒト等のALTをコードする遺伝子と融合させ、これにより調製された融合遺伝子を発現させることにより、融合ポリペプチドを調製することができる。
また、あるポリペプチドと機能的に同等なポリペプチドを調製する当業者によく知られた他の方法としては、ハイブリダイゼーション技術(Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. press, 1989)を利用する方法が挙げられる。即ち、当業者であれば、ヒト等のALTをコードするDNA配列(例えば、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のDNA配列)もしくはその一部を基に、これと相同性の高いDNAを単離して、該DNAからヒト等のALTと機能的に同等なポリペプチドを単離することも通常行いうることである。
ヒト等のALTと機能的に同等なポリペプチドをコードするDNAを単離するためのハイブリダイゼーションの条件としては、当業者であれば適宜選択することができる。ハイブリダイゼーションの条件は、例えば、低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、例えば42℃、2×SSC、0.1%SDSが挙げられ、好ましくは50℃、2×SSC 、0.1%SDSである。またより好ましくは、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、2×SSC及び0.1%SDSが挙げられる。これらの条件において、温度を下げる程に高い相同性を有するDNAのみならず、低い相同性しか有していないDNAまでも包括的に得ることができる。逆に、温度を上げる程、高い相同性を有するDNAのみを得られることが期待できる。但し、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度以外にも塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
これらハイブリダイゼーション技術により単離されるDNAがコードするポリペプチドは、ヒト等のALTとアミノ酸配列において70%以上の同一性を有するものであればよいが、通常、ヒト等のALTとアミノ酸配列において高い相同性を有する。高い相同性とは、通常、97%以上の同一性、好ましくは98%以上の同一性、さらに好ましくは99%以上の同一性を指す。ポリペプチドの同一性を決定するには、文献(Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-730)に記載のアルゴリズムにしたがえばよい。
ポリペプチドは、後述するそれを産生する細胞や宿主あるいは精製方法により、アミノ酸配列、分子量、等電点又は糖鎖の有無や形態などが異なり得る。しかしながら、得られたポリペプチドが、ヒト等のALTと同等の機能を有している限り、それをコードするDNAを本発明で利用することができる。例えば、ポリペプチドを原核細胞、例えば大腸菌で発現させた場合、本来のポリペプチドのアミノ酸配列のN末端にメチオニン残基が付加される。また、真核細胞、例えば哺乳動物細胞で発現させた場合、N末端のシグナル配列は除去される。このようなポリペプチドをコードするDNAも本発明で利用することができる。
本発明において、ALTをコードするDNAとして、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140の塩基配列を有するDNAを用いてもよい。その他にも、上記塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズし、かつALT活性を有するポリペプチドをコードするDNAを用いてもよい。
ALTをコードするDNAは、上述したような所望のポリペプチドの in vivo や in vitroにおける生産に利用される他、ALTを強発現する細胞の作製に用いることができる。ALTをコードするDNAは、ALTをコードしうるものであれば、いかなる形態でもよい。即ち、mRNAから合成されたcDNAであるか、ゲノムDNAであるか、化学合成DNAであるかなどを問わない。また、ALTをコードするDNAをコードしうる限り、遺伝暗号の縮重に基づく任意の塩基配列を有するDNAが含まれる。
ALTをコードするDNAは、当業者に公知の方法により調製することができる。例えば、ALTを発現している細胞よりcDNAライブラリーを作製し、ALTのDNAの配列(例えば、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のDNA配列)の一部をプローブにしてハイブリダイゼーションを行うことにより調製できる。cDNAライブラリーは、例えばSambrook, J. et al., Molecular Cloning、Cold Spring Harbor Laboratory Press (1989)に記載の方法により調製してもよいし、市販の 遺伝子ライブラリーを用いてもよい。また、ALTを発現している細胞よりRNAを調製し、ALTのDNAの配列(例えば、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140のDNA配列)に基づいてオリゴDNAを合成し、これをプライマーとして用いてPCR反応を行い、ALTをコードするcDNAを増幅させることにより調製することも可能である。
また、得られたcDNAの塩基配列を決定することにより、それがコードする翻訳領域を決定でき、ALTのアミノ酸配列を得ることができる。また、得られたcDNAをプローブとしてゲノムDNA ライブラリーをスクリーニングすることにより、ゲノムDNAを単離することができる。
具体的には、次のようにすればよい。まず、ALTを発現する細胞、組織などから、mRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) 、AGPC法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-159) 等により全RNAを調製し、mRNA Purification Kit (Pharmacia) 等を使用して全RNAからmRNAを精製する。また、QuickPrep mRNA Purification Kit (Pharmacia) を用いることによりmRNAを直接調製することもできる。
得られたmRNAから逆転写酵素を用いてcDNAを合成する。cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業)等を用いて行うこともできる。また、プライマー等を用いて、5'-Ampli FINDER RACE Kit (Clontech製)およびポリメラーゼ連鎖反応 (polymerase chain reaction ; PCR)を用いた5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002 ; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) にしたがい、cDNAの合成および増幅を行うことができる。
得られたPCR産物から目的とするDNA断片を調製し、ベクターDNAと連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列は、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認することができる。
また、ALTをコードするDNAにおいては、発現に使用する宿主のコドン使用頻度を考慮して、より発現効率の高い塩基配列を設計することができる(Grantham, R. et al., Nucelic Acids Research (1981) 9, r43-74 )。また、ALTをコードするDNAは、市販のキットや公知の方法によって改変することができる。改変としては、例えば、制限酵素による消化、合成オリゴヌクレオチドや適当なDNAフラグメントの挿入、リンカーの付加、開始コドン(ATG)及び/又は終止コドン(TAA、TGA、又はTAG)の挿入等が挙げられる。
ALTをコードするDNAはまた、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875、KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 84706、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 76282、KEGG / ENZYME: 2.6.1.2 / Mus musculus (mouse): 108682、KEGG / ENZYME: 2.6.1.2 / Rattus norvegicus (rat): 81670、KEGG / ENZYME: 2.6.1.2 / Canis familiaris (dog): 609510、KEGG / ENZYME: 2.6.1.2 / Xenopus laevis (African clawed frog): 444533、KEGG / ENZYME: 2.6.1.2 / Drosophila melanogaster (fruit fly): Dmel_CG1640、KEGG / ENZYME: 2.6.1.2 / Caenorhabditis elegans (nematode): C32F10.8、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4342210、KEGG / ENZYME: 2.6.1.2 / Oryza sativa japonica (Japanese rice): 4348524、KEGG / ENZYME: 2.6.1.2 / Cyanidioschyzon merolae: CMM066C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YLR089C、KEGG / ENZYME: 2.6.1.2 / Saccharomyces cerevisiae: YDR111C、KEGG / ENZYME: 2.6.1.2 / Ashbya gossypii (Eremothecium gossypii): AGOS_AGR085W、KEGG / ENZYME: 2.6.1.2 / Candida albicans: CaO19_346、KEGG / ENZYME: 2.6.1.2 / Schizosaccharomyces pombe: SPBC582.08、KEGG / ENZYME: 2.6.1.2 / Aspergillus nidulans: AN1923.2、KEGG / ENZYME: 2.6.1.2 / Aspergillus fumigatus: AFUA_6G07770、KEGG / ENZYME: 2.6.1.2 / Aspergillus oryzae: AO090003000164、KEGG / ENZYME: 2.6.1.2 / Cryptococcus neoformans JEC21: CNG01490、KEGG / ENZYME: 2.6.1.2 / Dictyostelium discoideum: DDB_0232139、KEGG / ENZYME: 2.6.1.2 / Trypanosoma brucei: Tb927.1.3950、KEGG / ENZYME: 2.6.1.2 / Leishmania major: LmjF12.0630、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 233.t00009、KEGG / ENZYME: 2.6.1.2 /Entamoeba histolytica: 24.t00016、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.420、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 506529.430、KEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.120又はKEGG / ENZYME: 2.6.1.2 / Trypanosoma cruzi: 510889.140の塩基配列を有するDNAに相補的なDNAとストリンジェントな条件下でハイブリダイズするDNAであり、かつALTと機能的に同等なポリペプチドをコードするDNAを含む。
ストリンジェントな条件としては、当業者であれば適宜選択することができるが、例えば低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、例えば42℃、2×SSC、0.1%SDSが挙げられ、好ましくは50℃、2×SSC 、0.1%SDSである。またより好ましくは、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、2×SSC及び0.1%SDSが挙げられる。これらの条件において、温度を上げる程に高い相同性を有するDNAを得ることができる。上記のハイブリダイズするDNAは好ましくは天然由来のDNA、例えばcDNA又は染色体DNAであってよい。
これらハイブリダイゼーション技術により単離されるDNAは、通常、ヒト等のALTをコードするDNAと塩基配列において高い同一性を有する。ALTをコードするDNAには、ヒト等のALTと機能的に同等なポリペプチドをコードし、ヒト等のALTをコードするDNAと高い同一性を有するDNAも含まれる。高い同一性とは、通常、96%以上の同一性、好ましくは98%以上の同一性、さらに好ましくは99%以上の同一性を指す。塩基配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。このアルゴリズムに基づいて、BLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol.215:403-410, 1990)。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメーターは、例えば、score = 100、wordlength = 12とする。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。
所望のポリペプチドを製造するには、BicarbonateトランスポーターとCSAD又はALTを強発現する細胞に所望のポリペプチドをコードする遺伝子を導入し、該細胞を培地中で培養することにより製造することが可能である。
Bicarbonateトランスポーター遺伝子とCSAD又はALT遺伝子が人為的に導入された細胞を用いて所望のポリペプチドを製造する場合、Bicarbonateトランスポーター遺伝子とCSAD又はALT遺伝子と所望のポリペプチドをコードする遺伝子の導入の順序は特に制限されず、Bicarbonateトランスポーター遺伝子とCSAD又はALT遺伝子を導入した後に所望のポリペプチドをコードする遺伝子を導入してもよいし、所望のポリペプチドをコードする遺伝子を導入した後にBicarbonateトランスポーター遺伝子とCSAD又はALT遺伝子を導入してもよい。又、Bicarbonateトランスポーター遺伝子とCSAD又はALT遺伝子と所望のポリペプチドをコードする遺伝子を同時に導入してもよい。
Bicarbonateトランスポーター遺伝子、CSAD又はALT遺伝子及び所望のポリペプチドをコードする遺伝子の導入は単一のベクターにより同時に導入してもよいし、複数のベクターを用いて別々に導入してもよい。
Bicarbonateトランスポーターを強発現する細胞(CSAD又はALTを強発現してもよい)の培養には、通常の細胞(好ましくは、動物細胞)培養で使用されている培地を用いることができる。これらには通常、アミノ酸、ビタミン類、脂質因子、エネルギー源、浸透圧調節剤、鉄源、pH緩衝剤を含む。これらの成分の含量は、通常、アミノ酸は0.05−1500mg/L、ビタミン類は0.001−10mg/L、脂質因子は0−200mg/L、エネルギー源は1−20g/L、浸透圧調節剤は0.1−10000mg/L、鉄源は0.1−500mg/L、pH緩衝剤は1−10000mg/L、微量金属元素は0.00001−200mg/L、界面活性剤は0−5000mg/L、増殖補助因子は0.05−10000μg/Lおよびヌクレオシドは0.001−50mg/Lの範囲が適当であるが、これらに限定されず、培養する細胞の種類、所望のポリペプチドの種類などにより適宜決定できる。
上記成分のほか、例えば、微量金属元素、界面活性剤、増殖補助因子、ヌクレオシドなどを添加しても良い。
具体的には、例えば、L-アラニン、L-アルギニン、L-アスパラギン、L-アスパラギン酸、L-システイン、L-シスチン、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-オルニチン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン等、好ましくはL-アラニン、L-アルギニン、L-アスパラギン、L-アスパラギン酸、L-シスチン、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン等のアミノ酸類;i−イノシトール、ビオチン、葉酸、リポ酸、ニコチンアミド、ニコチン酸、p-アミノ安息香酸、パントテン酸カルシウム、塩酸ピリドキサール、塩酸ピリドキシン、リボフラビン、塩酸チアミン、ビタミンB12、アスコルビン酸等、好ましくはビオチン、葉酸、リポ酸、ニコチン酸アミド、パントテン酸カルシウム、塩酸ピリドキサール、リボフラビン、塩酸チアミン、ビタミンB12、アスコルビン酸等のビタミン類;塩化コリン、酒石酸コリン、リノール酸、オレイン酸、コレステロール等、好ましくは塩化コリン等の脂質因子;グルコース、ガラクトース、マンノース、フルクトース等、好ましくはグルコース等のエネルギー源;塩化ナトリウム、塩化カリウム、硝酸カリウム等、好ましくは塩化ナトリウム等の浸透圧調節剤;EDTA鉄、クエン酸鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第二鉄等、好ましくは塩化第二鉄、EDTA鉄、クエン酸鉄等の鉄源類;炭酸水素ナトリウム、塩化カルシウム、リン酸二水素ナトリウム、HEPES、MOPS等、好ましくは炭酸水素ナトリウム等のpH緩衝剤を含む培地を例示できる。
上記成分のほか、例えば、硫酸銅、硫酸マンガン、硫酸亜鉛、硫酸マグネシウム、塩化ニッケル、塩化スズ、塩化マグネシウム、亜ケイ酸ナトリウム等、好ましくは硫酸銅、硫酸亜鉛、硫酸マグネシウム等の微量金属元素;Tween80、プルロニックF68等の界面活性剤;および組換え型インスリン、組換え型IGF-1、組換え型EGF、組換え型FGF、組換え型PDGF、組換え型TGF-α、塩酸エタノールアミン、亜セレン酸ナトリウム、レチノイン酸、塩酸プトレッシン等、好ましくは亜セレン酸ナトリウム、塩酸エタノールアミン、組換え型IGF-1、塩酸プトレッシン等の増殖補助因子;デオキシアデノシン、デオキシシチジン、デオキシグアノシン、アデノシン、シチジン、グアノシン、ウリジン等のヌクレオシドなどを添加してもよい。なお上記培地の好適例においては、ストレプトマイシン、ペニシリンGカリウム及びゲンタマイシン等の抗生物質や、フェノールレッド等のpH指示薬を含んでいても良い。
培地のpHは培養する細胞により異なるが、一般的にはpH6.8〜7.6、多くの場合pH7.0〜7.4が適当である。
培地は、市販の動物細胞培養用培地、例えば、D-MEM (Dulbecco's Modified Eagle Medium)、 D-MEM/F-12 1:1 Mixture (Dulbecco's Modified Eagle Medium : Nutrient Mixture F-12)、 RPMI1640、CHO-S-SFM II(Invitrogen社)、 CHO-SF (Sigma-Aldrich社)、 EX-CELL 301 (JRH biosciences社)、CD-CHO (Invitrogen社)、 IS CHO-V (Irvine Scientific社)、 PF-ACF-CHO (Sigma-Aldrich社)などの培地を用いることも可能である。
又、培地は無血清培地であってもよい。
Bicarbonateトランスポーターを強発現する細胞(CSAD又はALTを強発現してもよい)がCHO細胞である場合、CHO細胞の培養は当業者に公知の方法を用いて行うことができる。例えば、通常、気相のCO2濃度が0−40%、好ましくは、2−10%の雰囲気下、30−39℃、好ましくは37℃程度で、培養することが可能である。
Bicarbonateトランスポーターを強発現する細胞(CSAD又はALTを強発現してもよい)を用いて所望のポリペプチドを産生するために適当な培養期間は、通常1日〜3ヶ月であり、好ましくは1日〜2ヶ月、さらに好ましくは1日〜1ヶ月である。
また、動物細胞培養用の各種の培養装置としては、例えば発酵槽型タンク培養装置、エアーリフト型培養装置、カルチャーフラスコ型培養装置、スピンナーフラスコ型培養装置、マイクロキャリアー型培養装置、流動層型培養装置、ホロファイバー型培養装置、ローラーボトル型培養装置、充填槽型培養装置等を用いて培養することができる。
培養は、バッチ培養(batch culture)、流加培養(fed-batch culture)、連続培養(continuous culture)などのいずれの方法を用いてもよいが、流加培養又は連続培養が好ましく、流加培養がより好ましい。
本発明の方法により製造されたポリペプチドが医薬として利用可能な生物学的活性を有する場合には、このポリペプチドを医薬的に許容される担体又は添加剤と混合して製剤化することにより、医薬品を製造することができる。
医薬的に許容される担体及び添加剤の例として、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤等が挙げられる。
実際の添加物は、本発明治療剤の剤型に応じて上記の中から単独で又は適宜組み合わせて選ばれるが、もちろんこれらに限定するものではない。例えば、注射用製剤として使用する場合、精製されたポリペプチドを溶剤、例えば生理食塩水、緩衝液、ブドウ糖溶液等に溶解し、これに吸着防止剤、例えばTween80、Tween20、ゼラチン、ヒト血清アルブミン等を加えたものを使用することができる。あるいは、使用前に溶解再構成する剤形とするために凍結乾燥したものであってもよく、凍結乾燥のための賦形剤としては、例えば、マンニトール、ブドウ糖等の糖アルコールや糖類を使用することができる。
ポリペプチドの有効投与量は、ポリペプチドの種類、治療や予防の対象とする疾患の種類、患者の年齢、疾患の重篤度などにより適宜選択される。例えば、ポリペプチドが抗グリピカン抗体である場合、抗グリピカン抗体の有効投与量は、一回につき体重1kgあたり0.001mgから1000mgの範囲で選ばれる。あるいは、患者あたり0.01〜100000mg/bodyの投与量を選ぶことができる。しかしながら、これらの投与量に制限されるものではない。
ポリペプチドの投与方法は、経口、非経口投与のいずれでも可能であるが、好ましくは非経口投与であり、具体的には、注射(例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによる全身又は局所投与)、経鼻投与、経肺投与、経皮投与などが挙げられる。
本発明は、BicarbonateトランスポーターをコードするDNAとシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼをコードするDNAが導入されている細胞(どちらのDNAもベクターに組み込まれていてもよい)も提供する。
真核細胞を使用する場合、例えば、動物細胞、植物細胞、真菌細胞を宿主に用いることができる。動物細胞としては、哺乳類細胞、例えば、CHO(J. Exp. Med. (1995) 108, 945)、COS 、3T3、ミエローマ、BHK (baby hamster kidney )、HeLa、Vero、両生類細胞、例えばアフリカツメガエル卵母細胞(Valle, et al., Nature (1981) 291, 358-340 )、あるいは昆虫細胞、例えば、Sf9 、Sf21、Tn5が知られている。CHO 細胞としては、特に、DHFR遺伝子を欠損したCHO 細胞であるdhfr-CHO(Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220 )やCHO K-1 (Proc. Natl. Acad. Sci. USA (1968) 60, 1275)を好適に使用することができる。動物細胞において、大量発現を目的とする場合には特にCHO細胞が好ましい。宿主細胞へのDNA(ベクターに組み込まれていてもよい)の導入は、例えば、リン酸カルシウム法、DEAEデキストラン法、カチオニックリボソームDOTAP(ベーリンガーマンハイム社製)を用いた方法、エレクトロポレーション法、リポフェクションなどの方法で行うことが可能である。
植物細胞としては、例えば、ニコチアナ・タバカム(Nicotiana tabacum )由来の細胞がポリペプチド生産系として知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces )属、例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae )、糸状菌、例えば、アスペルギルス(Aspergillus )属、例えば、アスペルギルス・ニガー(Aspergillus niger )が知られている。
原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大腸菌(E. coli )、例えば、JM109、DH5α、HB101 等が挙げられ、その他、枯草菌が知られている。
これらの細胞を目的とする遺伝子により形質転換し、形質転換された細胞をin vitroで培養することにより、目的とする遺伝子がコードするポリペプチドが得られる。培養は、公知の方法に従い行うことができる。例えば、動物細胞の培養液として、例えば、DMEM、MEM 、RPMI1640、IMDMを使用することができる。その際、牛胎児血清(FCS)等の血清補液を併用することもできるし、無血清培養してもよい。培養時のpHは、約6〜8であるのが好ましい。培養は、通常、約30〜40℃で約15〜200時間行い、必要に応じて培地の交換、通気、攪拌を加える。
一方、in vivo でポリペプチドを産生させる系としては、例えば、動物を使用する産生系や植物を使用する産生系が挙げられる。これらの動物又は植物に目的とする遺伝子を導入し、動物又は植物の体内でポリペプチドを産生させ、回収する。本発明における「宿主」とは、これらの動物、植物を包含する。
動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシを用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications, 1993 )。また、哺乳類動物を用いる場合、トランスジェニック動物を用いることができる。
例えば、目的とする遺伝子を、ヤギβカゼインのような乳汁中に固有に産生されるポリペプチドをコードする遺伝子との融合遺伝子として調製する。次いで、この融合遺伝子を含む遺伝子断片をヤギの胚へ注入し、この胚を雌のヤギへ移植する。胚を受容したヤギから生まれるトランスジェニックヤギ又はその子孫が産生する乳汁から、目的のポリペプチドを得ることができる。トランスジェニックヤギから産生されるポリペプチドを含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702 )。
また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場合、目的のポリペプチドをコードする遺伝子を挿入したバキュロウィルスをカイコに感染させることにより、このカイコの体液から目的のポリペプチドを得ることができる(Susumu, M. et al., Nature (1985) 315, 592-594 )。
さらに、植物を使用する場合、例えばタバコを用いることができる。タバコを用いる場合、目的とするポリペプチドをコードする遺伝子を植物発現用ベクター、例えばpMON 530に挿入し、このベクターをアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens )のようなバクテリアに導入する。このバクテリアをタバコ、例えば、ニコチアナ・タバカム(Nicotiana tabacum )に感染させ、本タバコの葉より所望のポリペプチドを得ることができる(Julian K.-C. Ma et. al., Eur. J. Immunol. (1994) 24, 131-138)。
これにより得られたポリペプチドは、宿主細胞内または細胞外(培地など)から単離し、実質的に純粋で均一なポリペプチドとして精製することができる。ポリペプチドの分離、精製は、通常のポリペプチドの精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせればポリペプチドを分離、精製することができる。
クロマトグラフィーとしては、例えばアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えばHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。本発明は、これらの精製方法を用い、高度に精製されたポリペプチドも包含する。
なお、ポリペプチドを精製前又は精製後に適当なポリペプチド修飾酵素を作用させることにより、任意に修飾を加えて部分的にペプチドを除去することもできる。ポリペプチド修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。
なお、本発明において、「DNAが導入された細胞」あるいは「DNAを導入した細胞」とは、遺伝子組み換え技術により外来性DNAが組み込まれた細胞の他、遺伝子活性化技術(例えば、国際公開第WO94/12650号パンフレット参照)により内因性DNAが活性化され、その結果、当該DNAに対応する蛋白質の発現もしくは当該DNAの転写が開始或いは増加した細胞も包含する概念である。
以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。
〔実施例1〕ヒト肝細胞アニオンエクスチェンジャー(Anion Exchanger 1, band 3)遺伝子クローニング
市販のHuman Liver QUICK-Clone cDNA(Clontech社)を鋳型にして、ヒト肝由来Anion Exchanger(AE1)遺伝子をPCR法によって得た。クローニングされた遺伝子は塩基配列を決定し、公開されているヒトAE1との相同性からAE1をコードしていることを確認した。得られたAE1遺伝子は、2733塩基中、8箇所(t263g,t357c,a645t,a672c,c951t,a2078g, t2195c,c2500t)に変異がみられ、コードするアミノ酸は、911個中、4アミノ酸(L88R、E693G, V712A,H834Y)が異なっていた。しかし、13の膜貫通領域をもつトランスポーターと予測されるため(図1)、ヒト肝由来AE1 遺伝子として細胞改変に用いた。
〔実施例2〕ヒトアニオンエクスチェンジャー遺伝子導入による抗体産生量増加
実施例1のPCRクローニングにより取得したヒトAE1(以下AE1)遺伝子にKozak配列を加え、CMVプロモーター発現プラスミドpHyg-AE1(図2)、pPur-AE1(図3)を構築した。pHyg-AE1あるいはAE1遺伝子を含まないpHyg発現プラスミド(Clontech社のpTK5由来のHygromycin耐性遺伝子発現ユニットをpSV2-dhfrプラスミド(ATCC No.37146)に導入したプラスミドを構築後、dhfr発現ユニットを取り除いたものである。)を、親株である抗グリピカン-3抗体産生CHO細胞(国際公開第WO 2006/006693号パンフレットを参照)にエレクトロポレーション法で導入し、Hygromycin(200μg/ml) 存在下、静置培養下で高増殖であった細胞株を拡大したのち、pHyg-AE1細胞株からTotal RNAを調製し、TaqMan法によってヒトAE1を高発現していた5株を選抜した。さらに、振とう培養下で、コントロールであるpHyg導入細胞(4株)と同程度に増殖した4株をヒトAE1導入細胞として、抗体産生量比較をおこなった。初発密度2x10cells/mLの50mlシェーカーフラスコによる流加培養において、シェーカー培養後期12日目のpHyg-AE1導入細胞(4株)の抗グリピカン-3抗体産生量は、pHyg導入細胞(4株)に対して優位であった(t検定 P<0.05, 図4)。
次に、pHyg-AE1導入細胞4株中で最も抗体高産生であったAE1発現株を親株として、Puromycin耐性遺伝子を含むシステインスルフィン酸デカルボキシラーゼ(CSAD)発現プラスミドpPur-CSAD(図10、後述の参考例2), Puromycin耐性遺伝子を含むアラニンアミノトランスフェラーゼ(ALT1)発現プラスミド pPur-ALT1(図11、後述の参考例4), コントロールプラスミドpPur(Clontech社のpPUR (a puromycin resistance expression vector))をエレクトロポレーション法で導入した。Puromycin(6μg/ml) 存在下、静置培養下で高増殖であった細胞株を拡大したのち、Total RNAを調製し、新たに導入された遺伝子を高発現していたAE1/CSAD共発現株(9株)、AE1/ALT1共発現株(10株)、AE1/pPur共発現株(8株)を選抜し、抗体産生量および生存率の比較をおこなった。初発密度2x10cells/mLの50mlシェーカーフラスコによる流加培養において、AE1/CSAD共発現株(9株)はコントロールのAE1/pPur共発現株(8株)に対して、シェーカー培養後期10日目の抗グリピカン-3抗体産生量(t検定 P<0.05, 図5)、生存率(t検定 P<0.01, 図6)ともに優位であった。3種類の共発現株中、抗グリピカン-3抗体産生量の最も高かった細胞株はAE1/ALT1共発現株(10株)であり、シェーカー流加培養8日目でコントロールのAE1/pPur共発現株(8株)に対して優位であった(t検定 P<0.01, 図7)。そこで、AE1/ALT1共発現株(10株)中、シェーカー流加培養検討において最も抗体高産生、且つ、ALT1 mRNAを高発現していたAA53 (1497mg/L/8days)を初発10x10cells/mLで1Lジャー流加培養をおこなうと、培養7日目で1.9g /L /7day と短期培養で抗体高産生であった(図8)。培養21日目で5.3g/LであったTauT/ALT1発現株TA41(後述の参考例4)は、培養7日目で1.5 g/Lであることから、AA53はTA41以上に短期に抗体を高産生できるポテンシャルを有しており、実生産に適していると考えられる。
以上の結果は、アニオンエクスチェンジャー(AE1)を人為的に強発現させることによって、また、AE1とCSAD又はALT1を同時に強発現させることにより、抗体を高産生する細胞が得られることを示す。
AE1強発現効果は、また、AE1強発現宿主細胞を用いた抗IL-6R抗体産生株構築によって示された。通常の宿主細胞DXB11にpHyg-AE1(図2)をエレクトロポレーション法で導入し、Hygromycin(200μg/ml)存在下、静置培養下で高増殖であった細胞株を選抜、拡大したのち、TaqMan法によってヒトAE1を高発現していた細胞をAE1/DXB11宿主細胞として樹立した。AE1/DXB11宿主細胞に抗IL-6R抗体発現プラスミドを導入し、シングルクローン化されたAE1-S08細胞は抗IL-6R抗体高産生であり、図12に示したように、初発7x10cells/mLの1Lジャー流加培養14日目の産生量は3.0g/Lであった。抗体高産生細胞AE1-S08および宿主細胞AE1/DXB11は共に、継代培養による安定性試験において安定であること、AE1高発現が維持されることは確認済みである。
以上の結果は、AE1遺伝子導入効果が抗体遺伝子導入前後、どちらにおいてもポジティブに作用することを示している。
本発明は、あらゆるポリペプチド(好ましくは抗体)産生細胞へ応用可能である。
〔参考例1〕CHO細胞由来ハムスターCysteine sulfinic acid decarboxylase (CSAD)遺伝子クローニング
CHO DXB11細胞に抗IL-6レセプター抗体遺伝子を導入した抗IL-6レセプター抗体産生細胞(特開平8-99902号公報)からtotal RNA抽出をおこなったのち、ポリAに依存するcDNAを合成した。SalI、XhoI、EcoRIの三種類の制限酵素で断片化したcDNAを鋳型することで、Hamster CSAD遺伝子をPCRにより得た。PCRプライマーは 既知であるRatとMouse間で遺伝子配列が保存されている5’,3’を含むものを設計して用いた。クローニングされた遺伝子は塩基配列を決定し、既知の生物種のCSADとの相同性から Hamster CSAD(図9)をコードしていることを確認した。 Hamster CSADはMouse(96% Identity)、Rat(96% Identity)、Human(91% Identity)と既知のアミノ酸配列に対して高い相同性を有しており、同様の活性をもつ酵素であることが予想された。ハムスターのCSADの塩基配列を配列番号3に示す。ハムスターのCSADのアミノ酸配列を配列番号4に示す。
〔参考例2〕ハムスター CSADを発現するPuromycin選抜用プラスミドの構築
参考例1のクローニングにより取得したHamster CSAD(以下CSAD)遺伝子にKozak配列を加え、CMVプロモーター発現プラスミドpPur/CSAD(図10)を構築した。
〔参考例3〕ヒト肝細胞アラニンアミノトランスフェラーゼ(Alanine aminotransferase)遺伝子クローニング
市販のHuman Liver QUICK-Clone cDNA(Clontech社)を鋳型にして、ヒト肝由来Alanine aminotransferase(ALT1)遺伝子をPCR法によって得た。クローニングされた遺伝子は塩基配列を決定し、公開されているヒトALT1との相同性からALT1をコードしていることを確認した。得られたALT1遺伝子は、1488塩基中、5箇所(c157a,a215g,c765t,t857c,t995a)に変異がみられ、コードするアミノ酸は、496個中、4アミノ酸(R53S、Q72R, F286S, M332K)が異なっていたが、ヒト肝由来ALT1 PCRクローンとして細胞改変に用いた。
〔参考例4〕ヒトアラニンアミノトランスフェラーゼ導入による抗体産生量増加
参考例3のクローニングにより取得したヒトALT1(以下ALT1)遺伝子にKozak配列を加え、CMVプロモーター発現プラスミドpPur-ALT1(図11)を構築した。pPur-ALT1あるいはALT1遺伝子を含まないpPur発現プラスミドを、親株である抗グリピカン-3抗体産生CHO細胞(国際公開第WO 2006/006693号パンフレットを参照)にエレクトロポレーション法で導入し、Puromycin(6μg/ml)存在下、静置培養で高増殖であった細胞株(pPur-ALT1:7株, pPur:3株)を選抜した。拡大後、pPur-ALT1細胞株からTotal RNAを調製し、TaqMan法によってヒトALT1を高発現していた6株を選抜し、さらに、振とう培養下で、コントロールであるpPur導入細胞(3株)と同程度に増殖する4株をヒトALT1導入細胞とし、抗体産生量比較をおこなった。初発密度2x10cells/mLの50mlシェーカーフラスコによる流加培養において、シェーカー培養後期17日目のpPur-ALT1導入細胞(4株)の抗グリピカン-3抗体産生量(1236±149 mg/L)は、pPur導入細胞(3株)の抗グリピカン-3抗体産生量(871±119 mg/L)に対して優位であった(t検定 P<0.01)。シェーカー流加培養検討において、それぞれ最も抗体高産生であったpPur-ALT1発現株A72およびPur発現株P41を初発10x10cells/mLで1Lジャー流加培養をおこなうと、A72の抗体産生量は、培養19日目で2.9g/Lであり、P41の抗体産生量(2.2g/L)以上に高産生であった。培養14日目以降にP41の産生量増加がみられないことから、A72の抗体高産生は生存率維持効果によるものと考えられた(培養14日目生存率は、pPur-ALT1発現A72で60%、pPur発現株P41で23%であった)。
次に、pHyg-TauT導入細胞T10(後述の参考例6を参照)を親株にして、pPur-ALT1あるいはpPurを共導入し、高増殖で且つヒトALT1を高発現していたTauT/ALT1共発現細胞(6株)、および高増殖なTauT/pPur共発現細胞(8株)を選抜し、初発密度10x10cells/mLで50mlシェーカーフラスコによる流加培養をおこなった。ALT発現細胞であるTauT/ALT1共発現株のシェーカー培養4日目の抗グリピカン-3抗体産生量(745±87 mg/L)は、TauT/pPur発現株のシェーカー培養4日目の抗グリピカン-3抗体産生量(616±29 mg/L)に対して優位であった(t検定 P<0.01)。
シェーカー流加培養検討において最も抗体高産生であり、且つ、ALT1 mRNAを最も発現していたTauT/ALT1共発現株TA41 (881mg/L/4days)を初発10x10cells/mLで1Lジャー流加培養をおこなうと、その抗体産生量は、培養7日目で1.3g/L、培養10日目で3.0g/L、培養12日目で3.5g/L、培養17日目で4.6g/L、培養21日目で5.3g/Lと高く、TauT/pPur共発現株中で最も産生量が高かったコントロール株TP08 (656mg/L/4days)に対しても明らかに高かった(培養10日目で2.4g/L)。
〔参考例5〕CHO細胞由来ハムスタータウリントランスポーター遺伝子クローニング
CHO DXB11細胞に抗IL-6レセプター抗体遺伝子を導入した抗IL-6レセプター抗体産生細胞(特開平8-99902号公報)からtotal RNA抽出をおこなったのち、ポリAに依存するcDNAを合成した。SalI、XhoI、EcoRIの三種類の制限酵素で断片化したcDNAを鋳型することで、Hamsterタウリントランスポーター(TauT)遺伝子をPCRにより得た。PCRプライマーは 既知であるRat/Mouse TauT間で遺伝子配列が保存されている5’,3’を含むものを設計して用いた。クローニングされた遺伝子は塩基配列を決定し、既知の生物種のTauT との相同性から Hamster TauTをコードしていることを確認した(図13)。Hamster TauTアミノ酸配列はMouse(96% Identity)、Rat(96% Identity)、Human(93% Identity) TauTに対して高い相同性を有しており、12の膜貫通領域をもつトランスポーターであることが予想された(図14)。
〔参考例6〕ハムスタータウリントランスポーター導入による生細胞密度増加、乳酸産生量抑制、および抗体産生量増加
参考例5のクローニングにより取得したHamster TauT(以下TauT)遺伝子にKozak配列を加え、CMVプロモーター発現プラスミドpHyg/TauT(図15)を構築した。pHyg/TauTあるいはTauT遺伝子を除いたコントロールプラスミドpHygを、親株である抗グリピカン-3抗体産生CHO細胞(国際公開第WO 2006/006693号パンフレットを参照)にエレクトロポレーション法で導入した。発現プラスミド導入細胞をHygromycin(400μg/ml)存在下で選抜したのち、安定して増殖する細胞株すべてを拡大した(pHyg/TauT:8株, pHyg:7株)。TauT mRNAを調製ののちTaqMan法により、親株に対して優位な発現を確認できる7株をpHyg/TauT導入細胞とした。導入細胞(7株)のmRNA平均発現量はコントロール(7株)の約40倍であった。計14株の細胞は2x10cells/mLの初発密度で50mlシェーカーフラスコによるバッチ(batch)培養および流加(Fed-batch)培養をおこない、培養後期7日目における生細胞密度、乳酸産生量、抗グリピカン-3抗体産生量を比較した。バッチ培養においては細胞増殖にともない培養液中に乳酸などの生育阻害物質が蓄積し、増殖が抑制されるが、pHyg/TauT導入細胞の生細胞密度(9.28±3.27 x 105 cells/ml)および乳酸産生量(1.54±0.20 g/L)はpHyg導入細胞(生細胞密度:5.69±2.09 x 105 cells/ml、乳酸産生量:1.75±0.15 g/L)に対して優位であった(t検定 P<0.05)。抗グリピカン-3抗体産生量に関しては、pHyg/TauT導入細胞の7株中4株(平均抗体産生量:440.6 mg/L)がpHyg導入細胞の最高値(389.6 mg/L)以上であった。さらにpHyg/TauT導入細胞の抗グリピカン-3抗体産生量の優位性(t検定 P<0.01)が流加培養により明らかになったため、上記4株中で最も増殖能が高かったpHyg/TauT導入細胞(T10)と親株の1L ジャーによる流加培養をおこなったところ、T10は培養32日目においても生存率が80%以上に維持されており、乳酸産生が抑制されていた。その結果、抗グリピカン-3抗体産生量は、培養35日目において2.9g/Lを達成した。TauT導入T10細胞が細胞膜上にTauT分子を発現していることはフローサイトメトリー分析で確認した。以上の結果は、Hamster TauTを人為的に発現させることによって抗体産生細胞のポテンシャルが上がり、抗体高産生株が得られることを示唆している。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
本発明は、ポリペプチドの生産に利用することができる。
<配列番号1>
配列番号1は、ヒトAE1をコードする遺伝子の塩基配列(GenBank M27819)を示す。
<配列番号2>
配列番号2は、ヒトAE1のアミノ酸配列(UniProtKB/Swiss-Prot P02730)を示す。
<配列番号3>
配列番号3は、ハムスターCSADをコードする遺伝子の塩基配列を示す。
<配列番号4>
配列番号4は、ハムスターCSADのアミノ酸配列を示す。
<配列番号5>
配列番号5は、ヒトALT1をコードする遺伝子の塩基配列(KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875)を示す。
<配列番号6>
配列番号6は、ヒトALT1のアミノ酸配列(KEGG / ENZYME: 2.6.1.2 / Homo sapiens (human): 2875)を示す。
<配列番号7>
配列番号7は、ハムスタータウリントランスポーターをコードする遺伝子の塩基配列を示す。
<配列番号8>
配列番号8は、ハムスタータウリントランスポーターのアミノ酸配列を示す。

Claims (10)

  1. BicarbonateトランスポーターをコードするDNA及び所望の抗体をコードするDNAが人為的に導入され、且つ当該Bicarbonateトランスポーターを発現する細胞を培養し、所望の抗体を産生させることを含む、ポリペプチドの製造方法。
  2. BicarbonateトランスポーターをコードするDNA及び所望の抗体をコードするDNAが人為的に導入され、且つBicarbonateトランスポーターを発現する細胞がさらにシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼをコードするDNAが人為的に導入され、且つ当該システインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼを発現する請求項1記載の製造方法。
  3. Bicarbonateトランスポーターが、SLC4アニオンエクスチェンジャーまたはSLC26アニオンエクスチェンジャーである請求項1又は2に記載の製造方法。
  4. Bicarbonateトランスポーターが、SLC4アニオンエクスチェンジャーである請求項1又は2に記載の製造方法。
  5. SLC4アニオンエクスチェンジャーが、AE1である請求項記載の製造方法。
  6. SLC4アニオンエクスチェンジャーをコードするDNAが以下の(a)〜(d)のいずれかである請求項のいずれかに記載の製造方法。
    (a) 配列番号2のアミノ酸配列を有するポリペプチドをコードするDNA
    (b) 配列番号2のアミノ酸配列において、1個以上10個以下のアミノ酸が置換、欠失又は/及び付加されたアミノ酸配列を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
    (c) 配列番号2のアミノ酸配列と97%以上の同一性を有し、かつSLC4アニオンエクスチェンジャー活性を有するポリペプチドをコードするDNA
    (d) 配列番号1の塩基配列を有するDNA
  7. 以下の工程を含む、所望のポリペプチドを含有する医薬品を製造する方法;
    (i)請求項1〜6のいずれかに記載の方法で所望のポリペプチドを製造する工程、
    (ii)当該ポリペプチドを医薬的に許容される担体又は添加剤と混合する工程。
  8. BicarbonateトランスポーターをコードするDNAと所望の抗体をコードするDNAが人為的に導入されているCHO細胞。
  9. さらにシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼをコードするDNAが人為的に導入されている請求項記載の細胞。
  10. BicarbonateトランスポーターをコードするDNAとシステインスルフィン酸デカルボキシラーゼ又はアラニンアミノトランスフェラーゼをコードするDNAが人為的に導入されているCHO細胞。
JP2009538243A 2007-10-24 2008-10-23 異種タンパク質製造のための細胞及びそれを用いた製造方法 Expired - Fee Related JP5337044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009538243A JP5337044B2 (ja) 2007-10-24 2008-10-23 異種タンパク質製造のための細胞及びそれを用いた製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007276182 2007-10-24
JP2007276182 2007-10-24
JP2009538243A JP5337044B2 (ja) 2007-10-24 2008-10-23 異種タンパク質製造のための細胞及びそれを用いた製造方法
PCT/JP2008/069184 WO2009054433A1 (ja) 2007-10-24 2008-10-23 異種タンパク質製造のための細胞及びそれを用いた製造方法

Publications (2)

Publication Number Publication Date
JPWO2009054433A1 JPWO2009054433A1 (ja) 2011-03-03
JP5337044B2 true JP5337044B2 (ja) 2013-11-06

Family

ID=40579535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009538243A Expired - Fee Related JP5337044B2 (ja) 2007-10-24 2008-10-23 異種タンパク質製造のための細胞及びそれを用いた製造方法

Country Status (15)

Country Link
US (1) US9068212B2 (ja)
EP (1) EP2213746B1 (ja)
JP (1) JP5337044B2 (ja)
KR (1) KR101636086B1 (ja)
CN (1) CN101821403B (ja)
AU (1) AU2008314973C1 (ja)
BR (1) BRPI0818764B1 (ja)
CA (1) CA2703493C (ja)
DK (1) DK2213746T3 (ja)
ES (1) ES2548294T3 (ja)
HK (1) HK1143404A1 (ja)
MX (1) MX2010004397A (ja)
RU (1) RU2494148C2 (ja)
TW (1) TWI434935B (ja)
WO (1) WO2009054433A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421411B (zh) 2006-04-13 2015-06-03 中外制药株式会社 牛磺酸转运蛋白基因
JP5635260B2 (ja) 2007-03-15 2014-12-03 中外製薬株式会社 ポリペプチドの製造方法
KR101577839B1 (ko) 2007-08-07 2015-12-15 추가이 세이야쿠 가부시키가이샤 이종 단백질의 제조 방법
US9802993B2 (en) 2007-10-15 2017-10-31 Chugai Seiyaku Kabushiki Kaisha Method for producing a cell for protein production by treating a cell overexpressing a taurine transporter with methotrexate
DK2213746T3 (en) 2007-10-24 2015-08-03 Chugai Pharmaceutical Co Ltd CELL FOR USE IN THE PREPARATION OF exogenous protein, AND MANUFACTURING METHOD THAT USE CELL
JP5715050B2 (ja) 2009-04-22 2015-05-07 中外製薬株式会社 異種タンパク質を高生産する細胞の作製方法
US8722387B2 (en) * 2011-02-28 2014-05-13 Novozymes, Inc. Microorganisms for C4-dicarboxylic acid production
WO2012137683A1 (ja) * 2011-04-01 2012-10-11 中外製薬株式会社 組換えポリペプチドの製造方法
WO2014055366A1 (en) * 2012-10-05 2014-04-10 Lamplight Farms Incorporated Outdoor appliance with retractable platform
CN104718291B (zh) 2012-10-10 2020-12-01 中外制药株式会社 经修饰的宿主细胞的建立方法
SG11201700908TA (en) * 2014-08-11 2017-03-30 Hoffmann La Roche Method for increasing the specific production rate of eukaryotic cells
CN107287178B (zh) * 2016-04-12 2019-10-29 中国科学院微生物研究所 Csad蛋白及其编码基因在抗流感病毒中的应用
CN113242907A (zh) * 2018-12-11 2021-08-10 富士胶片株式会社 动物细胞、动物细胞的制造方法及靶蛋白的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119115A2 (en) * 2005-04-29 2006-11-09 Centocor, Inc. Anti-il-6 antibodies, compositions, methods and uses
WO2007056507A1 (en) * 2005-11-09 2007-05-18 Abbott Laboratories Human bnp immunospecific antibodies

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184841A (ja) * 1983-04-05 1984-10-20 ベクトン・デイツキンソン・アンド・カンパニ− サンプル中の白血球のサブクラスを識別する方法および装置
GB9019812D0 (en) * 1990-09-11 1990-10-24 Scotgen Ltd Novel antibodies for treatment and prevention of infection in animals and man
US6225115B1 (en) * 1992-03-04 2001-05-01 Synaptic Pharmaceutical Corporation DNA encoding taurine and GABA transporters and uses thereof
US5658786A (en) * 1992-03-04 1997-08-19 Synaptic Pharmaceutical Corporation DNA encoding rat taurine transporter and uses thereof
TW402639B (en) 1992-12-03 2000-08-21 Transkaryotic Therapies Inc Protein production and protein delivery
JP3630453B2 (ja) 1994-09-30 2005-03-16 中外製薬株式会社 Il−6レセプター抗体を有効成分とする未熟型骨髄腫細胞治療剤
AU695117B2 (en) 1994-10-06 1998-08-06 Hoechst Aktiengesellschaft Regulated genes by stimulation of chondrocytes with IL-1beta
JPH09203734A (ja) 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd 抗血清、抗体、リガンド及びそれらの検出方法
JPH1075787A (ja) 1996-09-02 1998-03-24 Asahi Chem Ind Co Ltd 変異型アラニンアミノトランスフェラーゼおよびその製造法
JPH10191984A (ja) * 1997-01-09 1998-07-28 Oriental Yeast Co Ltd 活性型ヒトaltの製造法
DE19855313A1 (de) 1998-12-01 2000-06-08 Degussa Verfahren zur fermentativen Herstellung von D-Pantothensäure durch Verstärkung des panD-Gens in Mikroorganismen
ATE363074T1 (de) * 1999-09-14 2007-06-15 Xenoport Inc Substrate und screeningverfahren für transportproteine
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
WO2002092768A2 (en) 2001-05-14 2002-11-21 University Of Maryland, Baltimore Novel alanine transaminase enzyme and methods of use
WO2003039485A2 (en) 2001-11-08 2003-05-15 Protein Design Labs Stable liquid pharmaceutical formulation of igg antibodies
ATE432338T1 (de) 2002-01-18 2009-06-15 Novozymes As Alanin-2,3-aminomutase
IL152905A0 (en) 2002-11-17 2003-06-24 Univ Ramot Dopaminergic markers induction in neuronal-like cells isolated from adult human bone marrow stromal cells: implications for novel gene therapy strategy for parkinsons disease
US20050265983A1 (en) * 2002-11-17 2005-12-01 Eldad Melamed Methods, nucleic acid constructs and cells for treating neurodegenerative disorders
US20030165495A1 (en) * 2003-04-01 2003-09-04 Carulli John P. Nucleic acids and polypeptides
US20050170391A1 (en) 2004-01-30 2005-08-04 Xenoport, Inc. TAUT1 transporters expressed in blood brain barrier cells
KR100789645B1 (ko) * 2004-04-14 2007-12-27 주식회사유한양행 B형 간염바이러스의 s-표면항원을 인식하는 인간화 항체및 이의 제조방법
DE602005024502D1 (de) * 2004-07-09 2010-12-16 Chugai Pharmaceutical Co Ltd Anti-glypican-3-antikörper
KR20070060950A (ko) 2004-10-07 2007-06-13 가부시키가이샤 상기 경피·경점막 흡수 제제
BRPI0620312A2 (pt) * 2005-12-23 2011-11-08 Arcadia Biosciences Inc plantas monocotiledÈneas com eficiencia de nitrogenio
CN101421411B (zh) 2006-04-13 2015-06-03 中外制药株式会社 牛磺酸转运蛋白基因
JP5635260B2 (ja) * 2007-03-15 2014-12-03 中外製薬株式会社 ポリペプチドの製造方法
KR101577839B1 (ko) 2007-08-07 2015-12-15 추가이 세이야쿠 가부시키가이샤 이종 단백질의 제조 방법
US9802993B2 (en) * 2007-10-15 2017-10-31 Chugai Seiyaku Kabushiki Kaisha Method for producing a cell for protein production by treating a cell overexpressing a taurine transporter with methotrexate
DK2213746T3 (en) 2007-10-24 2015-08-03 Chugai Pharmaceutical Co Ltd CELL FOR USE IN THE PREPARATION OF exogenous protein, AND MANUFACTURING METHOD THAT USE CELL
JP5715050B2 (ja) * 2009-04-22 2015-05-07 中外製薬株式会社 異種タンパク質を高生産する細胞の作製方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119115A2 (en) * 2005-04-29 2006-11-09 Centocor, Inc. Anti-il-6 antibodies, compositions, methods and uses
WO2007056507A1 (en) * 2005-11-09 2007-05-18 Abbott Laboratories Human bnp immunospecific antibodies

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6008058703; FEBS Lett. Vol.579, 2005, pp.2105-2110 *
JPN6008058705; Database DDBJ/EMBL/GenBank [online], Accession No. NM_000342, KESKANOKWONG, T. et al., Definition: H , 20070925 *
JPN6008058708; Exp Physiol. Vol.91, 2006, pp.153-161 *

Also Published As

Publication number Publication date
CA2703493C (en) 2016-11-08
KR101636086B1 (ko) 2016-07-04
CA2703493A1 (en) 2009-04-30
AU2008314973A1 (en) 2009-04-30
HK1143404A1 (en) 2010-12-31
MX2010004397A (es) 2010-06-01
WO2009054433A1 (ja) 2009-04-30
BRPI0818764A2 (pt) 2015-04-22
RU2494148C2 (ru) 2013-09-27
EP2213746B1 (en) 2015-07-15
TW200934870A (en) 2009-08-16
RU2010120677A (ru) 2011-11-27
BRPI0818764B1 (pt) 2017-11-21
CN101821403B (zh) 2014-01-01
JPWO2009054433A1 (ja) 2011-03-03
TWI434935B (zh) 2014-04-21
AU2008314973C1 (en) 2014-05-08
EP2213746A4 (en) 2010-11-24
DK2213746T3 (en) 2015-08-03
ES2548294T3 (es) 2015-10-15
US9068212B2 (en) 2015-06-30
AU2008314973B2 (en) 2014-01-09
KR20100082003A (ko) 2010-07-15
CN101821403A (zh) 2010-09-01
EP2213746A1 (en) 2010-08-04
US20110014654A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5337044B2 (ja) 異種タンパク質製造のための細胞及びそれを用いた製造方法
JP5337033B2 (ja) 異種タンパク質の製造方法
JP5635260B2 (ja) ポリペプチドの製造方法
JP5399529B2 (ja) タウリントランスポーター遺伝子
JP5715050B2 (ja) 異種タンパク質を高生産する細胞の作製方法
WO2010084947A1 (ja) 異種ポリペプチドの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5337044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees